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Figure 1: Different types of effects produced with our mobile app. It is the first that supports a large variation of image manipulation tasks
within a unified framework, which is based on intrinsic image decomposition.

Abstract
Intrinsic decomposition refers to the problem of estimating scene characteristics, such as albedo and shading, when one view
or multiple views of a scene are provided. The inverse problem setting, where multiple unknowns are solved given a single
known pixel-value, is highly under-constrained. When provided with correlating image and depth data, intrinsic scene decom-
position can be facilitated using depth-based priors, which nowadays is easy to acquire with high-end smartphones by utilizing
their depth sensors. In this work, we present a system for intrinsic decomposition of RGB-D images on smartphones and the
algorithmic as well as design choices therein. Unlike state-of-the-art methods that assume only diffuse reflectance, we consider
both diffuse and specular pixels. For this purpose, we present a novel specularity extraction algorithm based on a multi-scale
intensity decomposition and chroma inpainting. At this, the diffuse component is further decomposed into albedo and shading
components. We use an inertial proximal algorithm for non-convex optimization (iPiano) to ensure albedo sparsity. Our GPU-
based visual processing is implemented on iOS via the Metal API and enables interactive performance on an iPhone 11 Pro.
Further, a qualitative evaluation shows that we are able to obtain high-quality outputs. Furthermore, our proposed approach
for specularity removal outperforms state-of-the-art approaches for real-world images, while our albedo and shading layer de-
composition is faster than the prior work at a comparable output quality. Manifold applications such as recoloring, retexturing,
relighting, appearance editing, and stylization are shown, each using the intrinsic layers obtained with our method and/or the
corresponding depth data.

CCS Concepts
• Computing methodologies , . . . , Image-based rendering; Image processing; Computational photography;

1. Introduction

On a bright sunny day, it is quite easy for us to identify objects
like a wall, a car, or a bike irrespective of their color, material
or whether they are partially shaded. This remarkable capacity of
human visual system (HVS) to disentangle visual ambiguities due

to color, material, shape, and lighting is a result of many years of
evolution [BBS14]. Replicating this ability for machine vision—to
enable better scene understanding—has been a widely researched
topic, but ever has been challenging because of its ill-posed and
under-constrained nature.
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The physical formation of an image involves various unknowns
at macroscopic and microscopic levels, and decomposing them al-
together makes it ill-posed. A more relaxed approximation is given
by the Dichromatic Reflection Model where an image (I) is assumed
to be composed of the sum of specular (Is) and diffuse (Id) compo-
nents (at every pixel location xxx) [Sha85]:

I(xxx) = Id(xxx)+ Is(xxx). (1)

The diffuse component (Id) can be further expressed as the product
of albedo (A) and shading (S) [BT78]:

Id(xxx) = A(xxx) ·S(xxx). (2)

However, even this approximation is under-constrained, because
three unknowns— A(xxx), S(xxx) and Is(xxx)—need to be solved given
only the image color I(xxx). In this work, we propose a novel
smartphone-based system to extract intrinsic layers of albedo, shad-
ing and specularity. In our system, the specularity removal is car-
ried out as a pre-processing step followed by a depth-based energy
minimization for computing the other two layers. The computed
layers, apart from offering better scene understanding, facilitate a
range of image-editing applications such as recoloring, retexturing,
relighting, appearance editing etc. (Fig. 1).

Compared to many previous works, ours is not limited in assum-
ing a complete diffuse reflection. In general, the decomposition of
an image into diffuse reflectance (albedo) and shading is referred
to as Intrinsic Image Decomposition (IID). The existing IID algo-
rithms can be broadly classified into two categories:

Learning-based methods: the priors on albedo and shading are
incorporated as loss functions, and the decomposition is learned
by training. In the past few years—with the significant im-
provement in deep-learning technology—such methods have be-
come quite popular [ZKE15, KPSL16, CZL18, LVv18]. How-
ever, capturing real-world training data for IID is challeng-
ing and the existing datasets might not be sufficient [GJAF09,
BKK15,BHK∗16,SBZ∗18]. Unsupervised learning does not re-
quire any training data, however, the results are generally of in-
ferior quality [LVVG18, MCZ∗18, LS18]. Most learning-based
models have high GPU memory consumption, making them po-
tentially unsuitable for mobile devices—especially at those im-
age resolutions that an image-editing application typically re-
quires. Furthermore, these models are generally not controllable
at run-time, i.e., the decomposition cannot be fine-tuned to the
image at hand, which is a significant limitation for interactive
editing applications.

Optimization-based methods: a cost function based on priors is
minimized to find an approximate solution. Initial techniques
use simplistic priors, which are not suitable for real-world
scenes [TFA05]. More complex priors improve the accuracy
at the cost of associated computational complexity [ZTD∗12,
BBS14, BM15, WLYY17]. Readily available depth sensors fos-
tered depth-based methods for IID [CK13, JCTL14]. Nowadays,
with easily available mobile devices with depth sensors, a depth-
based intrinsic image decomposition method can be a preferred
choice for an intrinsic-image application in mobile environ-
ments.

As an additional constraint, only a few previous methods per-
form both IID and specularity extraction together. Innamorati

et al. [IRWM17] and Shi et al. [SDSY17] employ a learning-based
technique: both of them train and test for single objects but do
not consider a realistic scene with many objects. The algorithm by
Alperovich et al. [AG16] is designed for light-fields but cannot be
used for a single image. The method of Beigpour et al. [BSM∗18]
is applicable for a single image and, like ours, removes specu-
larities in a pre-processing step. However, for specularity extrac-
tion, they do not consider chroma channels leading to artifacts in
highly saturated image regions. Moreover, their method is an or-
der of magnitude slower than ours. Unlike most of the previous
standalone specularity removal techniques, we showcase our re-
sults based on a broad range of realistic images [ABC11]. Because
we treat high- and low-frequency specularities differently, we ob-
tain seamless outputs.

Finally, the processing schemes of many state-of-the-art tech-
niques are comparably slow (optimization-based and learning-
based), resource intensive and are limited to low image resolutions
(learning-based). Thus, using an intrinsic decomposition for inter-
active image editing on mobile devices is considered challenging.
We propose a system that provides a more practical approach to
intrinsic decomposition. Specifically, we address the following de-
sign objectives:

Accessibility: a decomposition is provided on readily available
mobile devices with depth sensors.

Speed: all post-capture processing takes at most a few seconds (on
the mobile device) before the edited photo can be viewed, even
when the device is offline. Thus, we cannot delegate processing
to a desktop computer or the cloud.

Interaction: interacting with the decomposition and editing
pipeline is possible in real-time, and the navigation affordances
are fairly obvious.

Quality: the rendered application outputs look (i) plausible with
respect to appearance editing and (ii) aesthetically pleasing for
image-stylization tasks.

To this end, we split our processing pipeline into pre-processing
and image-editing stages, of which the specularity removal and im-
age editing perform at interactive frame rates. Thereby, we pro-
vide the first mobile app that performs intrinsic decomposition in a
unified framework and supports a large variation of image editing
tasks (Fig. 1). This is technically achieved by utilizing the built-in
depth sensor and dedicated GPU of modern smartphones for real-
time capturing and interactive processing of RGB-D data.

Our contributions are summarized as follows, we propose:

1. A novel, interactive specularity removal method that treats high-
frequency and low-frequency specularities differently, performs
chroma-inpainting to address the problem of missing or little
chromaticity information for saturated pixels, and that is well-
suited for real-world images,

2. A fast and robust system for intrinsic decomposition of RGB-D
images on smartphones that makes use of depth-data for local
shading smoothness and enforce albedo (L1-)sparsity by em-
ploying the efficient iPiano optimization solver [OCBP14],

3. A variety of mobile-based applications—to show the ubiquitous
accessibility, speed, and quality of our method—using the given
depth data and/or computed intrinsic layers of albedo, shading,
and specularity.
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Figure 2: Flowchart of our complete framework showing extraction of intrinsic layers (Sec. 3) followed by image editing (Sec. 5).

2. Related Work

2.1. Specularity Removal

Some of the earliest methods for specularity removal were based
on color segmentation, thus they were not robust against tex-
tures [KSK88, BLL96]. Mallik et al. [MZBK06] introduce a par-
tial differential equation (PDE) in the SUV color space that it-
eratively erodes the specular component. A class of algorithms
use the concept of specular-free image based on chromaticity val-
ues [TI05, SC09]. Yang et al. [YWA10] use a similar approach,
and achieve real-time performance by employing parallel process-
ing. Kim et al. [KJHK13] use a dark channel prior to obtain
specular-free images, followed by an optimization framework. Guo
et al. [GZW18] propose a sparse low-rank reflection model and use
a L1 norm constraint in their optimization to filter specularities. A
broad survey of specularity removal methods is provided by Ar-
tusi et al. [ABC11]. Recently, Li et al. [LLZI17] utilize both im-
age and depth data for removing specularity from human facial im-
ages. Most of these methods, however, employ specific object(s) or
scene settings to evaluate their methods and do not consider generic
real-world images. A recent method by Fu et al. [FZS∗19] aims
to address this issue; the authors assume that specularity is gener-
ally sparse and the diffuse component can be expressed as a linear
combination of basis colors. They present a wide range of results,
however, the optimization solving is comparably slow and is lim-
ited to low-resolution images. By contrast, our method is aimed for
generic real-world high-resolution images with interactive perfor-
mance on mobile devices.

2.2. Intrinsic Image Decomposition

The term intrinsic decomposition was introduced in the litera-
ture by Barrow and Tenenbaum [BT78]. The Retinex theory by
Land and McCann proved to be a crucial finding, which be-
came part of many following algorithms as a prior [LM71]. In
the course of previous decades, intrinsic decomposition algorithms
have been proposed for image [TFA05, BBS14, BM15, ZTD∗12,
ZKE15,KPSL16,CZL18,MCZ∗18,LS18,LXR∗18,LSR∗20], video
[YGL∗14, BST∗14, MZRT16], multiple-views [LBD13, DRC∗15,
MQD∗17] and light-fields [GEZ∗17, AG16, AJSG18, BSM∗18]. A
survey covering many of these algorithms is provided by Bonneel
et al. [BKPB17]. A particular class of algorithms use depth as ad-
ditional information for IID. Lee et al. [LZT∗12] use normals to

impose constraints on shading and also use temporal constraints to
obtain smooth results. Chen and Koltun [CK13] further decompose
shading into direct and indirect irradiance; the authors use depth to
construct position-normal vectors for regularizing them. Hachama
et al. [HGW15] use a single image or multiple RGB-D images to
construct a point cloud. The normal vectors along with low dimen-
sional global lighting model is used to jointly estimate lighting and
albedo. Similarly, we use depth information to impose local shad-
ing smoothness constraints. However, unlike previous methods, a
pre-processing step of specularity removal makes our method ro-
bust against specular image pixels. Moreover, we employ an effi-
cient iPiano optimization solver [OCBP14] for our fast and robust
mobile-based solution.

3. Method

A pre-processing step removes the specular highlights from the in-
put image (Sec. 3.1), the diffuse component is further decomposed
into albedo and shading layers using an efficient intrinsic decom-
position optimization (Sec. 3.2). The resulting intrinsic layers are
used to showcase various image editing applications (Sec. 5). A
flowchart of our full pipeline is depicted in Fig. 2.

3.1. Specularity Removal Filtering

It has been shown that the perception of lightness and gloss is
related to image statistics and can be altered by modifying the
skewness of sub-bands of luminance histogram [SLM∗08]. Our
specularity removal step is motivated from the above observation.
Further, in order to make our method robust against color arti-
facts we use image intensity L instead of luminance for the above
[BSM∗18]. The chromaticity C of the input image I (with color
channels R, G, and B) is processed separately to handle missing
color information for saturated specular pixels.

L =
√

R2 +G2 +B2, C =
I
L

(3)

A flowchart for our specularity removal algorithm is depicted in
Fig. 3, the method broadly consists of three major steps as the fol-
lowing.
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Figure 3: Flowchart of our specularity removal pipeline described in Sec. 3.1. Note the chroma inpainting depicted by the inset.

3.1.1. Identification of Specularity

In general, specular reflection increases the intensity of output
spectrum and, furthermore, makes it more uniform. Both of these
factors are efficiently captured by the unnormalized Wiener entropy
(H) introduced by Tian and Clark [TC13]. It can concisely be ex-
pressed as the product of input-image color channels R, G, and B
(refer to Eqns. 1 - 6 in [TC13] for a detailed derivation):

H(I) = R ·G ·B. (4)

The proposed unnormalized Wiener (UW) entropy encapsulates the
color-direction-changing and intensity-increasing aspect of spec-
ularities. We can describe a specularity as a region where H of
the total-reflection is significantly higher than the corresponding
diffuse-reflection.

H(Tot(λ))−H(Dif (λ))> τ
′ (5)

H(Tot(λ))> τ
′+ H(Dif (λ))

where Tot(λ) is the spectrum of the total reflection, Dif (λ) is the
spectrum of the diffuse component and τ

′ is a particular threshold.

The UW entropy for the diffuse component is assumed to have
little variation within the scene and is considered a constant. Thus, a
single universal threshold τ = τ

′+H(Dif (λ)) can be applied to the
UW-entropy map for specular pixel identification. An image pixel
is identified as specular (SM) if H(Tot(λ)) is above a threshold (τ).
We assume that an image pixel is equal to the spectrum of total
reflection (i.e., H(Tot(λ)) = H(I)), thus the specular mask is given
as:

SM(xxx) =

{
1, if H(I)> τ

0, otherwise.
(6)

For our experiments, τ ∈ (0,0.5) has been empirically determined
to give plausible results (Fig. 4). The above specularity identifica-
tion approach is inspired by the work of Tian and Clark [TC13].
Please refer to this work for details.

3.1.2. Intensity Reduction of Specular Pixels

The highlights or specularity is efficiently captured by the posi-
tive coefficients in a luminance or intensity sub-band [BBPA15,

(a) Input (b) τ = 0.08 (c) τ = 0.12 (d) τ = 0.17

Figure 4: Input image and corresponding specularity mask with in-
creasing value of threshold τ. Note that with a low threshold value,
even diffuse pixels are marked as specular. On the other hand, with
a higher threshold, some of specular pixels are missed.

BSM∗18]. For this purpose, we perform multi-scale decompo-
sition of the intensity image (L) by repetitive edge-aware im-
age filtering to obtain an intensity scale-space. In each repeti-
tion the spatial extent for the edge-aware filter is doubled pro-
ducing a series of images of increasing smoothness. A fast
way to achieve this on an iPhone is by downsampling the in-
tensity image and then performing edge-preserving upsampling
(CIEdgePreserveUpsample) with original intensity image as
guide, while the downsampling factor is doubled in each repeti-
tion. Subsequently a sub-band (or a frequency band) is obtained
by taking the difference between the current and the next scale. A
straightforward way to reduce the specular component is to scale
the positive coefficients in a sub-band with a constant κ < 1. In
principle, the above operation will also erode image regions which
are both, diffuse and bright. We omit such cases by checking for
positive coefficients only within the specular mask (Sec. 3.1.1).

A common observation regarding specularity is its occurrence
as smooth patches of highlights along with some sparse irregu-
larities due to rough object surfaces. To address these two as-
pects of specularity distribution, we reduce the positive coeffi-
cients of high-frequency (κh) and low-frequency (κl) sub-bands
separately (Fig. 5). For all of our experiments, we use the values
−0.5 ≤ κh,κl ≤ 0.2. Even though we use this approach to reduce
specularities, it can be easily extended (by using κh,κl > 1) to
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seamlessly enhance it for appearance editing [BBPA15] (see sup-
plementary material).

3.1.3. Chroma Inpainting of Specular Pixels

For saturated specular pixels, the chromaticity image might have
little or no information. We fill in this missing detail from neigh-
boring pixels using iterative bilateral filtering [TM98]. The initial
chromaticity image with the missing information in specular pixels
is considered as C0, and after k+1 iteration the modified image is
given as

Ck+1(ppp)=
1

Wp
∑

qqq∈M(ppp)
Gσs(||ppp−qqq||)Gσr (||C

k(ppp)−Ck(qqq)||)Ck(qqq),

(7)
where the normalization factor Wp is computed as:

Wp = ∑
qqq∈M(ppp)

Gσs(||ppp−qqq||) Gσr (||C
k(ppp)−Ck(qqq)||). (8)

The amount of filtering in each iteration is controlled by parame-
ters σs and σr for image Ck. As seen in Eqn. 7, the next iteration
of chromaticity image is a normalized weighted average of the cur-
rent one: where Gσs is a spatial Gaussian that decreases the contri-
bution of distant pixels, Gσr is a range Gaussian that decreases the
contribution of pixels that vary in intensity from Ck(ppp). We search
for neighboring pixels in a square pixel window, M(ppp), of length
(5,15) pixels. In principal, any sophisticated inpainting algorithm
can be used for this purpose. However, we chose the above proce-
dure because of its locality enabling parallel processing. The range
of the inpainting parameters is: σs ∈ (2,8) and σr ∈ (0.2,4.0).

3.2. Intrinsic Decomposition of RGB-D Images

In this section, we describe our optimization framework for de-
composition of the resulting diffuse image (Fig. 7). We assume
monochromatic, white illumination similar to previous IID meth-
ods, thus shading is scalar-valued and image intensity L (Eqn. 3) is
used as shading initialization for the optimization framework. Ini-
tial albedo is defined accordingly using Eqn. 2. We logarithmically
linearize the constraints to enable simpler optimization strategies,
a common practice in previous methods [BKPB17].

id(xxx) = a(xxx)+ s(xxx) (9)

In the above formulation, the lower case letters of id , a, and s de-
notes log values of Id , A, and S respectively at pixel location xxx. In
order to avoid log indeterminacy at close to zero values we add an
offset for logarithm computation i.e., id = log(Id + ε), for all our
experiments we set ε = 1.4. We enforce the constraints per color
channel in the log-domain, i.e., id [c] ≈ a[c] + s for c ∈ {R,G,B}.
For our decomposition, we solve for both a and s simultaneously
by minimizing the energy function,

E(xxx) =
1
2

(
λdEd(xxx)+λraEra(xxx)+λrsErs(xxx)

)
+λsp||a(xxx)||1

(10)
where λdEd , λraEra, and λrsErs are data, retinex-albedo smooth-
ness, and retinex-shading smoothness terms respectively with their
corresponding weights. We use a L1 regularizer to enforce sparsity
in the resulting albedo controlled by the weight λsp.

(a) Input image (b) Only HF specularity removed

(c) Only LF specularity removed (d) Diffuse image (HF and LF specu-
larity removed)

Figure 5: Effect of high frequency (HF) and low frequency (LF)
specularity removal on an input image.

3.2.1. Data Term

The data term ensures that the image is equal to the sum of resulting
albedo and shading in the log-domain. To make the solution robust,
this term is weighted by pixel intensity to avoid contributions from
noisy low-intensity pixels:

Ed(xxx) = L(xxx)
(
||i(xxx)− s(xxx)−a(xxx)||2

)
. (11)

We minimize the energy function (Eqn. 10) with respect to albedo
and shading separately using an iterative solver. The data term ex-
clusively contributes in the gradient-of-energy w.r.t. both albedo as
well as shading, thus coupling both the minimization. The weight-
ing of the energy term is controlled by λd ∈ (0.005,0.05).

3.2.2. Retinex Terms

The Retinex Theory [LM71] forms the basis of many intrinsic de-
composition techniques [BKPB17]. It imposes priors on how edges
vary differently for albedo and shading. Most of the existing meth-
ods assume that an image edge is either an albedo or a shading edge.
However, this is not always true and an edge can be present due
to both albedo and shading. Moreover, we can identify the shad-
ing edges efficiently using the given depth data. Thus, we utilize
the Retinex theory and impose constraints on albedo and shading
smoothness separately.

Albedo Smoothness. Ideally, an albedo image should be piece-
wise smooth. A straightforward way to achieve this is to perform
edge-preserving smoothing. We employ a weighting function to
identify and prevent smoothing at prominent albedo edges,

Era(xxx) = ∑
yyy∈N(xxx)

wa(xxx,yyy)||a(xxx)−a(yyy)||2 (12)

The edge weight is controlled by a parameter αra, where a rela-
tively higher value ensures texture preservation,

wa(xxx,yyy) = exp
(
−αra||a(xxx)−a(yyy)||2

)
(13)

© 2021 The Author(s)
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For all our experiments, we use αra ∈ (5.0,20.0) and consider a
3× 3 pixel neighborhood N(xxx) around pixel xxx. The weighting of
the energy term is regulated by λra ∈ (2.0,40.0).

Shading Smoothness. Ideally, a shading image should be smooth
except for discontinuities due to irregular scene geometry or indi-
rect illumination (such as inter-reflections and shadows). We as-
sume only direct-illumination and ignore discontinuities due to the
latter. By only taking scene geometry into consideration, we ex-
pect two scene points to have similar shading if they have similar
position and normal vectors [RH01]. The position vectors are con-
structed as [x,y,z]> where x,y are pixel coordinates and z is the
corresponding depth. The normal vector [nx,ny,nz]

> is constructed
using the depth D(xxx) as,

nnn = [∇xD,∇yD,1.0]> (14)

∇xD and ∇yD represent depth gradients in horizontal and ver-
tical directions. The normalized position vector and normal vec-
tor is combined to construct a feature vector fff (for a given pixel
xxx): [x,y,z,nx,ny,nz]

>. Thus, all pixels are embedded in a six-
dimensional feature space. The distance between two pixels in this
feature space is used to construct a weight map,

ws(xxx,yyy) = exp(−αrs|| f (xxx)− f (yyy)||2) (15)

The above weight preserves shading variations, captured as dis-
tance in feature space and the overall constraint is formulated as,

Ers(xxx) = ∑
yyy∈N(xxx)

ws(xxx,yyy)||s(xxx)− s(yyy)||2 (16)

Similar to the previous term, N(xxx) represents the 3×3 pixel neigh-
borhood around pixel xxx. The weight is controlled by a parameter
αrs; for all our experiments we use αrs ∈ (20.0,200.0). The weigh-
tage of the energy term is regulated by λrs ∈ (15.0,100.0). The
feature space introduced above is based on the work of Chen and
Koltun [CK13]. However, we consider this distance only in a local
neighborhood to increase runtime performance.

3.2.3. Optimization Solver

All the energy terms discussed above are smooth and convex ex-
cept for the L1 regularizer, which is specific for albedo. This allows
for a straightforward energy minimization w.r.t. shading. For both
albedo and shading we minimize the energy iteratively. By using
an iterative solver, we overcome the limitation of storing a large
matrix in memory and calculating its inverse. Moreover, an itera-
tive scheme allows us to stop the solver once we achieve plausible
results. A shading update sk+1 is obtained by employing Stochastic
Gradient Descent (SGD) with momentum [Qia99],

sk+1 = sk−α∇E(sk)+β(sk− sk−1) (17)

where α and β are the step size parameters, ∇E is the energy gra-
dient w.r.t. shading and k is the iteration count.

In order to enforce albedo sparsity, we utilize an L1 regularizer
for albedo. The regularizer is convex but not smooth and thus makes
the minimization of energy w.r.t. albedo challenging. The solution

for a class of problems that aim to solve for,

argmin
a∈RN

g(a)+h(a) (18)

where g(a) is smooth and h(a) is non-smooth while both are
convex, is generally given by proximal gradient descent (PGD)
[LM79]. A more efficient way to solve the above is proposed by
Ochs et al. [OCBP14] in their iPiano algorithm with the following
update scheme,

ak+1 = (III +αδh)−1︸ ︷︷ ︸
backward step

(
ak−α∇g(ak)︸ ︷︷ ︸

forward step

+β(ak−ak−1)︸ ︷︷ ︸
inertial term

)
(19)

the step size parameters α and β are same as in 17. The inertial term
makes iPiano more effective than PGD, where the update scheme
comprises of only forward descent step and backward proximal
mapping. For the special case where h(a) = λ||a||1 the proximal
operator is given by soft thresholding,

(III +αδh)−1(u) = max{|u|−αλ,0} · sgn(u) (20)

For our problem, the data (3.2.1) and retinex terms (3.2.2) are
smooth and their sum can replace g in Eqn. 18. The L1 regulariz-
tion is achieved with h= λsp||a||1. The regularized albedo is solved
for iteratively using Eqns. 19 and 20. For most of our experiments,
α = 0.003,β = 0.015, and λsp = 0.15 yield plausible results.

Our stopping criteria is a trade-off between performance and ac-
curacy, we do not compute energy residue for this purpose. We aim
to achieve a close to interactive performance with visually convinc-
ing application results. To this end, we empirically determined 100
iterations to be a sufficient approximation (Fig. 6).

4. Evaluation

We evaluated our approach for a variety of real-world images and
ground truth data. We perform qualitative comparisons with recent
methods and quantitative evaluations with existing datasets for both
specularity removal and intrinsic decomposition.

Specularity Removal. We compare our method against recent
specularity removal techniques by Fu et al. [FZS∗19], Akashi
et al. [AO16], Yang et al. [YWA10], and Shen et al. [SC09]. For
the method of Fu et al. , the results were generously provided by
the authors, and for others we use the implementation by Vítor
Ramos [Ram20] to generate the results. We observe that most of the
existing specularity removal techniques are not well suited for real-
world images. The method by Fu et al. , which is especially tailored
for real-world scenario, also struggles to handle high-resolution im-
ages. Our proposed algorithm performs better than state-of-the-art
works for natural images (Fig. 7). It is comparable to results in
a controlled lab setting (see supplementary material). Moreover,
our method works at interactive rates on a mobile device for high-
resolution images. Please refer to the supplemental material for
how the intermediate steps improve the output quality.

Note that the comparisons for specularity removal are performed
using the desktop-based implementation of our algorithm, which
makes use of guided image filtering for multi-scale decomposition
of image intensity. For our mobile version, we replace guided fil-
tering by inbuilt edge-aware filters on iOS (iPhone) to achieve in-
teractive performance while compromising on quality.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



S. Shekhar et al. / Interactive Photo Editing on Smartphones via Intrinsic Decomposition

Table 1: Quantitative evaluation for intrinsic decomposition (pixel
value is scaled between 0 to 1), the lower the error value, the better.

Datset MSE DSSIM
Ours Bell Lettry Jeon Ours Bell Lettry Jeon

LFID 0.075 0.056 0.012 0.085 0.191 0.144 0.158 0.274
MPI-Sintel 0.145 0.041 0.044 0.042 0.325 0.244 0.253 0.288

Intrinsic Decomposition. We compare our intrinsic decomposi-
tion results with a RGB (Bell et al. [BBS14]), a RGB-D (Jeon
et al. [JCTL14]) and a learning (Lettry et al. [LVVG18]) based
technique to cover a broad range of methods. We use the implemen-
tations provided by the authors. Our results are comparable to the
above methods (Fig. 12). Note that the methods of Bell et al. and
Jeon et al. perform at an order of magnitude slower than ours on
a GPU-enabled desktop system. Moreover, unlike ours the quality
of their result for indoor and outdoor scene is not consistent. They
perform quite well for indoor scenes however, their output quality
degrade significantly for outdoor scenes (see supplementary ma-
terial). Even though the time taken by Lettry et al. is comparable
to our mobile-phone based technique, we perform comparatively
better in terms of output quality.

Quantitative Evaluation. For a quantitative evaluation, we re-
quire a dataset that includes ground truth depth, albedo, shad-
ing, and specularity. To this end, we use the Light-Field Intrin-
sic Dataset (LFID) [SBZ∗18]. We also test only the intrinsic de-
composition component of our approach on the MPI-Sintel dataset
[BWSB12]. We use MSE and DSSIM as error metric while com-
paring the computed albedo (for intrinsic decomposition evalua-
tion) and diffuse image (for specularity removal evaluation) with
the respective ground truth. We compare our intrinsic decomposi-
tion results with other methods (specified in Fig. 12) in Tab. 1. For
the MPI-Sintel case, we consider one frame from all the scenes,
and for LFID we use three views from Street Guitar and Wood
Metal light-fields. Our method performs comparatively better on
LFID than MPI-Sintel dataset because the modeling assumptions
for LFID is similar to ours which is physically more accurate. For
specularity removal we employ the desktop implementation of our
approach and achieve MSE and DSSIM values of 0.001 and 0.018
respectively.

Run-time Performance. Our whole processing pipeline has been
implemented on an iPhone 11 Pro smartphone running on the
iOS 13 operating system with an Apple A 13 Bionic processor and
4GB of RAM. We make use of Apples Metal API for GPU-based
processing. The captured image is downscaled by a factor of 0.3 for
interactive performance while maintaining sufficient quality. The
resulting image resolution is of 1128× 1504 pixels and the corre-
sponding depth map is either of resolution 480×640 pixels for the
front facing true-depth sensor or 240×320 pixels for the back cam-
era passive stereo setup. We scale the depth map using built-in fil-
ters to match the image resolution, for consistent processing. On av-
erage, the pre-processing step of specularity removal takes 0.1 sec-
onds. For solving the optimization described in Sec. 3.2, we employ
an iterative solver and analyze its performance with an increase in
number of iterations for two kernel resolutions of 3× 3 and 5× 5
pixels. Our goal is to achieve visibly plausible results with interac-
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Figure 6: Performance of the iterative optimization solver for dif-
ferent kernel widths and number of iterations. The values are com-
puted after an average of seven runs.

tive processing. We empirically determine 100 iterations as a good
trade-off for the above requirement with an execution time of≈ 1.5
seconds for a 3× 3 pixels kernel resolution (Fig. 6). Our mate-
rial editing pass requires to compute sub-bands in a pre-processing
stage for each intrinsic layer, which takes ≈ 3.5 seconds. Subse-
quent thereto, the editing is interactive. The other application com-
ponents run interactively allowing for seamless editing.

5. Applications

A perfect, physically accurate editing of a photo would require
full inverse rendering with high precision. However, one can
achieve convincing material [BSM∗18, KRFB06] and volumetric
media [NN03] editing even without the above. The intrinsic de-
composition output can also be effectively used for enhancing im-
age stylization results [MZRT16]. The following applications in
our work are based on the above observations.

5.1. Material Appearance Editing

Our material editing framework is based on the work of Beigpour
et al. [BSM∗18], where the authors modify the intensity of albedo,
shading, and specularity using band-sifting filters [BBPA15]. The
modified intrinsic layers are merged to form the output image (Iout)
with edited appearance,

Iout = A(r1m1g1,η1) ·S(r2m2g2,η2)+ Is(r3m3g3,η3) (21)

where rimigi with i∈ {1,2,3} represents a component of respective
intrinsic layer—A, S, and Is (described in Eqns. 1 and 2)—intensity,
that is band-sifted. The component categorization is based on the
following signal attributes: spatial frequency (r), magnitude (m),
and sign (g). Only a predefined set of sub-categories is defined:
ri ∈ {H,L,A}, mi ∈ {H,L,A}, gi ∈ {P,N,A}, where H and L de-
note high and low frequency/magnitude range, P and N represent
positive and negative values, and A denote “all”, i.e., the complete
category. The amount of sifting is controlled by the scaling factor
ηi. We can boost (ηi > 1), reduce (0 < ηi < 1), or invert (ηi < 0)
the selected component respectively.

In our framework, we replace the original manual object-
segmentation with a mask generation step based on machine learn-
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Input Ours Fu et al. [FZS∗19] Akashi et al. [AO16] Yang et al. [YWA10] Shen et al. [SC09]

Figure 7: Comparison of specularity removal for real-world images. The figure contains input image and the corresponding diffuse image
obtained using ours, Fu et al. [FZS∗19], Akashi et al. [AO16], Yang et al. [YWA10], and Shen et al. [SC09] specularity removal methods.

(a) Input (b) Beigpour et al. (c) Ours

Figure 8: Comparing our translucency effect with [BSM∗18].

ing [SHZ∗18] or iPhone segmentation mattes [FVH19]. We en-
hance their transparency appearance edit by using depth-based tex-
ture warping (Fig. 8). Our framework is also able to introduce new
textures in the albedo layer for the purpose of coherent retextur-
ing (Fig. 13(a) - (c)). Moreover, our editing framework allows for
multiple edit passes, which was not addressed in previous works.

5.2. Atmospheric Appearance Editing

We perform atmospheric editing as de-weathering and relighting in
the form of God rays. Our de-weathering approach is based on the

(a) Input (b) Low-density fog (c) High-density fog

Figure 9: Input image and atmospheric edit with virtual fog.

work of Narasimhan et al. [NN03], which enables to synthesize an
image-based fog-like appearance. According to their de-weathering
model, the output image (Iout) can be expressed as a linear combi-
nation of the input image (Iin) and the brightness of the sky (F)
using the given depth data (D):

Iout = Iin · exp(−θD)+F ·
(

1− exp(−θD)
)

(22)

The scattering parameter θ ∈ (0.2,7) controls the above linear
combination. We further improved the result by using an ad-
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(a) Input (b) RGB-based (c) Only albedo (d) Shad. + Depth

Figure 10: Enhancements and variations of (b) the RGB cartoon
stylization effect using albedo/shading decomposition with (c) a
constant shading, and (d) smoothed shading and additional depth
edge stylization.

(a) Stylized Input (b) Raymarched (c) Normal-based

Figure 11: Comparison of shadowing/relighting methods. Here, a
portrait with lighting from the back (a) is used to showcase the ef-
fect of cartoon stylization and re-lighting using (b) a ray-marching
based variant and (c) a normal-angle variant for hard shadows.

vanced atmospheric-scattering model that accounts for absorption,
in-scattering, and out-scattering independently [HP02] (Fig. 9).

Our scene relighting approach is based on the image-based volu-
metric light scattering model of Mitchell [Mit08]. It consists of two
steps: (1) create an occlusion map with respect to a defined point
light source using depth data and (2) subsequently use the occlu-
sion map to cast rays from the light source to every pixel. The use
of an occlusion map creates an appearance of light rays shooting
from the background to simulate the appearance of God rays.

For both of the above edits, we make use of depth data captured
by the smartphone instead of manual generation or prediction as
done in previous works. We combine relighting with de-weathering
to create new enhanced atmospheric edits (Fig. 13(d) - (f)).

5.3. Image Stylization using Intrinsic Layers

We implement a cartoon stylization pipeline based on the ex-
tended difference-of-Gaussians (XDoG) filter by Winnemöller
et al. [WOG06, WKO12]. The filtering pipeline is enhanced using
the computed intrinsic layers as follows.

5.3.1. Depth-based Edge Detection

Color-based edge detection methods generally fail to accurately
identify edges in the case of smooth or non-apparent lighting tran-
sitions between objects, and might over-emphasize noisy patterns
in the image. To improve these issues and enhance geometric edges
in the image, we make use of the given depth data.

We intensify depth variations by computing the angle-sharpness
(φ ∈ [0,1]), defined as the magnitude of normal vectors pointing
away from the camera, φ =

||Nxy||
DNz

, where the image normal N (pro-
duced by Eqn. 14) and depth D is used to decrease the edge mag-
nitude for distant objects of usually noisy depth information. The
angle-sharpness is used to boost gradients—derived from the struc-
ture tensor—in areas of high angle-sharpness,

STφ =

{
(φω+1)STD, if φ <

(ω−1)
ω

STD, otherwise
(23)

where STD is the structure tensor calculated on the depth image in
log space, and ω ∈ [0,1000] is a boost factor for low-luminosity
edges (we use ω = 100 in our experiments). Smoothing STφ with a
Gaussian yields the smoothed structure tensor from which the edge
tangent flow is derived via an eigenanalysis [BWBM06].

The flow-based difference-of-Gaussians, as defined in [KD08,
WKO12], is then applied on the angle-sharpness φ along the flow
field induced by the smoothed STφ to obtain coherent depth edges
(Fig. 10(d) and supplementary material).

5.3.2. Albedo and Shading Combination

In the color-based cartoon stylization pipeline, the luminance val-
ues of the input are smoothed and quantized to create a flat material
effect. Through the use of our image decomposition framework,
shading and albedo can be combined in multiple ways to enhance
this stylization. Using albedo only, a flat cartoon like style can be
created (Figs. 10(c) and 13(g)), due to the removal of shading, the
output is brighter than the original image and geometric features
are mainly indicated by XDoG edges.

There are several ways of abstracting the shading information
before recombining it with albedo for enhanced cartoon styliza-
tion. Edge-preserving smoothing of the shading layer with a large
filter kernel yields an airbrush look (Fig. 10(d)), while quantiz-
ing the shading yields a look similar to a classical cartoon styl-
ization [WOG06]. Another method for flattening shading informa-
tion is to use a segmentation-based approach. We implemented a
GPU-based quick-shift filter [VS08] to segment shading accord-
ing to albedo clusters (Fig. 13(h)). Shading alone, combined with
halftoning and edges, can create a vintage effect (Fig. 13(i)). Shad-
ing abstraction is a single-channel operation and is recombined uni-
formly with albedo in RGB space.

5.3.3. Shadows

Shadows in hand-drawn cartoons are an important tool to convey
geometric and lighting cues about the scene and are also often
strategically placed to emphasize character expressions. A method
based on occlusion maps can be used to generate soft-shadows with
semi-realistic lighting (Fig. 11(b)). To create less realistic but more
cartoon-like hard shadows, we assume that shadows are only set on
a foreground object and approximate the lighting based on an angu-
lar thresholding of the depth map. For a given pixel, the re-lighted
shading ŝ is defined as:

ŝ =

{
s, if

(
||arctan(ny,nx)−ρ||< θ and arccos( nz

||n|| )< γ

)
sl, otherwise

(24)
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Input Ours Bell et al. [BBS14] Jeon et al. [JCTL14] Lettry et al. [LVVG18]

Figure 12: Comparison of intrinsic decomposition with other methods. The figure contains input image and the corresponding albedo
obtained using ours, Bell et al. [BBS14], Jeon et al. [JCTL14] and Lettry et al. [LVVG18] intrinsic decomposition methods. Please see
supplementary material for shading results.

where l ∈ [0,2] is a luminance multiplier that either emulates
shadow (l < 1) or lighting (l > 1), ρ is an angle that controls
the shadow direction around the foreground object, and θ is the
shadow circumference that is calculated by thresholding the an-
gle deviation from ρ. To emulate the depth of the light source,
normal z-angle thresholding includes only surface-normals that
point at least γ degrees away from the camera (Fig. 11(c), with
ρ = π,θ = π,γ = 0.01).

6. Discussion and Limitations

Our goal is to provide photorealistic, interactive image editing us-
ing readily available RGB-D data on high-end smartphones. To this
end, we implement an intrinsic decomposition technique capable
of running on smartphones. The trade-offs between performance
and accuracy (Sec. 4) is biased towards performance for the sake
of interactivity, but nonetheless we are able to obtain high quality
results. Unlike most of the previous methods, we perform a pre-

processing step of specularity removal and do not assume “only
diffuse reflection” in the scene. We observe that the above am-
biguity, apart from state-of-the-art methods, is also present in the
popular intrinsic dataset – MPI-Sintel [BWSB12]. For MPI-Sintel,
specularity is encoded as part of the shading information, which is
physically inaccurate. Our observations suggest that specularities
are formed as a complex interplay between reflectance and shad-
ing, and thus should be handled separately.

The extracted intrinsic layers—along with available depth
data—allows for a variety of image manipulations. However, we
make some simplifying assumptions to achieve interactive pro-
cessing and cope with the limited computing capabilities of mo-
bile phones—note that most of these assumptions are also com-
mon for many state-of-the-art desktop-based methods. First of all,
we only consider direct illumination and ignore the multi-bounce
effects of light, such as color bleeding and soft shadows. The as-
sumption of white colored illumination is also not valid for many
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Figure 13: Showcasing results of our full pipeline.

real-world scenes. A multi-color illuminant can cause color varia-
tions that can be mistakenly classified as albedo instead of shad-
ing. We initialize albedo with a chromaticity image for improved
performance [MZRT16], and do not perform clustering in the chro-
maticity domain, which leads to color shifts especially in regions
with low pixel-intensity. Despite the above limitations, our tech-
nique gives plausible application results at interactive frame rates.

7. Conclusions and Future Work

We present a system approach that performs intrinsic image de-
composition on smartphones. To the best of our knowledge, it is the
first such approach for smartphones. Using the depth data captured
by built-in depth sensors on smartphones, together with a novel

specularity removal pre-processing step, we are able to obtain high-
quality results. A GPU-based implementation using the Metal API
allows for close to interactive optimization solving and interactive
image editing. A qualitative evaluation shows that our specularity
removal method performs better than state-of-the-art approaches
for real-world images. The albedo and shading layer results are on
par with state-of-the-art desktop-based methods. Finally, we show-
case how the intrinsic layers can be used for a variety of image-
editing applications.

A mobile-based intrinsic decomposition, as provided in this
work, could be used for photo-realistic image editing in Augmented
Reality (AR) applications. As part of future work, we aim to re-
lax some of the existing assumptions and address image scenes
with multi-color illuminant [BT17] and indirect illumination ef-

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



S. Shekhar et al. / Interactive Photo Editing on Smartphones via Intrinsic Decomposition

fects [MSZ∗19]. We also assume that the super-resolution of depth
maps can further enhance our results [VAE∗19]. Moreover, we be-
lieve that our specular pixel detection can be made more robust
with a non-binary thresholding and better handling of bright image
regions.

Acknowledgements

We thank the anonymous reviewers for their valuable feedback.
We thank Mohammad Shafiei and Mahesh Chandra for valuable
discussion w.r.t. optimization solver. We thank Florence Böttger
for her help with the development of atmospheric editing pipeline.
We thank Ariane Morassi Sasso, Harry Freitas da Cruz, Orhan
Konak and Jessica Jall for patiently posing for the pictures. This
work was funded by the German Federal Ministry of Education
and Research (BMBF) (through grants 01IS15041 – “mdViProject”
and 01IS19006 – “KI-Labor ITSE”) and the Research School on
“Service-Oriented Systems Engineering” of the Hasso Plattner In-
stitute.

References
[ABC11] ARTUSI A., BANTERLE F., CHETVERIKOV D.: A survey of

specularity removal methods. Computer Graphics Forum 30, 8 (2011),
2208–2230. 2, 3

[AG16] ALPEROVICH A., GOLDLUECKE B.: A variational model for
intrinsic light field decomposition. In Asian Conference on Computer
Vision (ACCV), November 20-24 (2016), vol. 10113 of Lecture Notes
in Computer Science, pp. 66–82. 2, 3

[AJSG18] ALPEROVICH A., JOHANNSEN O., STRECKE M., GOLD-
LUECKE B.: Light field intrinsics with a deep encoder-decoder net-
work. In IEEE Conference on Computer Vision and Pattern Recognition,
CVPR, June 18-22 (2018), IEEE Computer Society, pp. 9145–9154. 3

[AO16] AKASHI Y., OKATANI T.: Separation of reflection components
by sparse non-negative matrix factorization. Computer Vision and Image
Understanding 146, C (May 2016), 77–85. 6, 8

[BBPA15] BOYADZHIEV I., BALA K., PARIS S., ADELSON E.:
Band-sifting decomposition for image-based material editing. ACM
Transactions on Graphics 34, 5 (Nov. 2015). 4, 5, 7

[BBS14] BELL S., BALA K., SNAVELY N.: Intrinsic images in the wild.
ACM Transactions on Graphics 33, 4 (July 2014). 1, 2, 3, 7, 10

[BHK∗16] BEIGPOUR S., HA M. L., KUNZ S., KOLB A., BLANZ
V.: Multi-view multi-illuminant intrinsic dataset. In Proceedings of
the British Machine Vision Conference (BMVC) (September 2016),
pp. 10.1–10.13. 2

[BKK15] BEIGPOUR S., KOLB A., KUNZ S.: A comprehensive multi-
illuminant dataset for benchmarking of the intrinsic image algorithms.
In 2015 IEEE International Conference on Computer Vision (ICCV)
(2015), pp. 172–180. 2

[BKPB17] BONNEEL N., KOVACS B., PARIS S., BALA K.: Intrinsic
decompositions for image editing. Computer Graphics Forum 36, 2 (May
2017), 593–609. 3, 5

[BLL96] BAJCSY R., LEE S. W., LEONARDIS A.: Detection of dif-
fuse and specular interface reflections and inter-reflections by color im-
age segmentation. International Journal of Computer Vision 17, 3 (Mar.
1996), 241–272. 3

[BM15] BARRON J. T., MALIK J.: Shape, illumination, and reflectance
from shading. IEEE Transactions on Pattern Analysis and Machine
Intelligence 37, 8 (2015), 1670–1687. 2, 3

[BSM∗18] BEIGPOUR S., SHEKHAR S., MANSOURYAR M.,
MYSZKOWSKI K., SEIDEL H.-P.: Light-field appearance editing
based on intrinsic decomposition. Journal of Perceptual Imaging 1, 1
(2018), 15. 2, 3, 4, 7, 8

[BST∗14] BONNEEL N., SUNKAVALLI K., TOMPKIN J., SUN D.,
PARIS S., PFISTER H.: Interactive intrinsic video editing. ACM
Transactions on Graphics 33, 6 (Nov. 2014). 3

[BT78] BARROW H., TENENBAUM J.: Recovering intrinsic scene
characteristics from images. Tech. rep., Artificial Intelligence Center,
SRI International, 1978. 2, 3

[BT17] BARRON J. T., TSAI Y.: Fast fourier color constancy. In 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2017), pp. 6950–6958. 11

[BWBM06] BROX T., WEICKERT J., BURGETH B., MRÁZEK P.: Non-
linear structure tensors. Image and Vision Computing 24, 1 (2006), 41–
55. 9

[BWSB12] BUTLER D. J., WULFF J., STANLEY G. B., BLACK M. J.: A
naturalistic open source movie for optical flow evaluation. In Computer
Vision – ECCV 2012 (2012), Fitzgibbon A., Lazebnik S., Perona P., Sato
Y., Schmid C., (Eds.), pp. 611–625. 7, 10

[CK13] CHEN Q., KOLTUN V.: A simple model for intrinsic image
decomposition with depth cues. In IEEE International Conference on
Computer Vision (ICCV) (USA, 2013), p. 241–248. 2, 3, 6

[CZL18] CHENG L., ZHANG C., LIAO Z.: Intrinsic image transforma-
tion via scale space decomposition. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2018), pp. 656–665. 2, 3

[DRC∗15] DUCHÊNE S., RIANT C., CHAURASIA G., MORENO J. L.,
LAFFONT P.-Y., POPOV S., BOUSSEAU A., DRETTAKIS G.: Multi-
view intrinsic images of outdoors scenes with an application to relight-
ing. ACM Transactions on Graphics 34, 5 (Nov. 2015). 3

[FVH19] FORD B., VESTERGAARD J. S., HAYWARD D.: Ad-
vances in camera capture and photo segmentation, 2019. https://
developer.apple.com/videos/play/wwdc2019/260/. 8

[FZS∗19] FU G., ZHANG Q., SONG C., LIN Q., XIAO C.: Specular
highlight removal for real-world images. Computer Graphics Forum 38,
7 (2019), 253–263. 3, 6, 8

[GEZ∗17] GARCES E., ECHEVARRIA J. I., ZHANG W., WU H., ZHOU
K., GUTIERREZ D.: Intrinsic light field images. Computer Graphics
Forum 36, 8 (2017), 589–599. 3

[GJAF09] GROSSE R., JOHNSON M. K., ADELSON E. H., FREEMAN
W. T.: Ground truth dataset and baseline evaluations for intrinsic image
algorithms. In International Conference on Computer Vision (ICCV)
(2009), pp. 2335–2342. 2

[GZW18] GUO J., ZHOU Z., WANG L.: Single image highlight removal
with a sparse and low-rank reflection model. In European Conference on
Computer Vision (ECCV), Munich, Germany, September 8-14 (2018),
pp. 282–298. 3

[HGW15] HACHAMA M., GHANEM B., WONKA P.: Intrinsic scene de-
composition from rgb-d images. In IEEE International Conference on
Computer Vision (ICCV) (2015), pp. 810–818. 3

[HP02] HOFFMAN N., PREETHAM A. J.: Rendering out-
door light scattering in real time, 2002. http://amd-dev.
wpengine.netdna-cdn.com/wordpress/media/2012/10/
ATI-LightScattering.pdf. 9

[IRWM17] INNAMORATI C., RITSCHEL T., WEYRICH T., MITRA
N. J.: Decomposing single images for layered photo retouching.
Computer Graphics Forum 36, 4 (2017), 15–25. 2

[JCTL14] JEON J., CHO S., TONG X., LEE S.: Intrinsic image de-
composition using structure-texture separation and surface normals. In
European Conference on Computer Vision (ECCV) (2014), pp. 218–233.
2, 7, 10

[KD08] KYPRIANIDIS J. E., DÖLLNER J.: Image abstraction by struc-
ture adaptive filtering. In Theory and Practice of Computer Graphics
(2008), The Eurographics Association. 9

[KJHK13] KIM H., JIN H., HADAP S., KWEON I.: Specular reflection
separation using dark channel prior. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2013), p. 1460–1467. 3

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

https://developer.apple.com/videos/play/wwdc2019/260/
https://developer.apple.com/videos/play/wwdc2019/260/
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/ATI-LightScattering.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/ATI-LightScattering.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/ATI-LightScattering.pdf


S. Shekhar et al. / Interactive Photo Editing on Smartphones via Intrinsic Decomposition

[KPSL16] KIM S., PARK K., SOHN K., LIN S.: Unified depth prediction
and intrinsic image decomposition from a single image via joint con-
volutional neural fields. In European Conference on Computer Vision
(ECCV) (2016), pp. 143–159. 2, 3

[KRFB06] KHAN E. A., REINHARD E., FLEMING R. W., BÜLTHOFF
H. H.: Image-based material editing. ACM Transactions on Graphics
25, 3 (July 2006), 654–663. 7

[KSK88] KLINKER G. J., SHAFER S. A., KANADE T.: The measure-
ment of highlights in color images. International Journal of Computer
Vision 2, 1 (Jun 1988), 7–32. 3

[LBD13] LAFFONT P., BOUSSEAU A., DRETTAKIS G.: Rich intrin-
sic image decomposition of outdoor scenes from multiple views. IEEE
Transactions on Visualization and Computer Graphics 19, 2 (2013), 210–
224. 3

[LLZI17] LI C., LIN S., ZHOU K., IKEUCHI K.: Specular highlight
removal in facial images. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2017), pp. 2780–2789. 3

[LM71] LAND E. H., MCCANN J. J.: Lightness and retinex theory.
Journal of the Optical Society of America 61, 1 (1971), 1–11. 3, 5

[LM79] LIONS P. L., MERCIER B.: Splitting algorithms for the sum of
two nonlinear operators. SIAM Journal on Numerical Analysis 16, 6
(1979), 964–979. 6

[LS18] LI Z., SNAVELY N.: Learning intrinsic image decomposition
from watching the world. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2018), pp. 9039–9048. 2, 3

[LSR∗20] LI Z., SHAFIEI M., RAMAMOORTHI R., SUNKAVALLI K.,
CHANDRAKER M.: Inverse rendering for complex indoor scenes:
Shape, spatially-varying lighting and svbrdf from a single image. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2020), pp. 2472–2481. 3

[LVv18] LETTRY L., VANHOEY K., VAN GOOL L.: Darn: A deep ad-
versarial residual network for intrinsic image decomposition. In 2018
IEEE Winter Conference on Applications of Computer Vision (WACV)
(2018), pp. 1359–1367. 2

[LVVG18] LETTRY L., VANHOEY K., VAN GOOL L.: Unsupervised
deep single-image intrinsic decomposition using illumination-varying
image sequences. Computer Graphics Forum 37, 7 (2018), 409–419.
2, 7, 10

[LXR∗18] LI Z., XU Z., RAMAMOORTHI R., SUNKAVALLI K., CHAN-
DRAKER M.: Learning to reconstruct shape and spatially-varying re-
flectance from a single image. ACM Transactions on Graphics 37, 6
(Dec. 2018). 3

[LZT∗12] LEE K. J., ZHAO Q., TONG X., GONG M., IZADI S., LEE
S. U., TAN P., LIN S.: Estimation of intrinsic image sequences from im-
age+depth video. In European Conference on Computer Vision (ECCV)
(2012), pp. 327–340. 3

[MCZ∗18] MA W.-C., CHU H., ZHOU B., URTASUN R., TORRALBA
A.: Single image intrinsic decomposition without a single intrinsic
image. In European Conference on Computer Vision (ECCV) (2018),
pp. 211–229. 2, 3

[Mit08] MITCHELL K.: Volumetric light scattering as a post-process. In
GPU Gems 3, Nguyen H., (Ed.). Addison-Wesley, 2008, pp. 275–285. 9

[MQD∗17] MÉLOU J., QUÉAU Y., DUROU J.-D., CASTAN F., CRE-
MERS D.: Beyond multi-view stereo: Shading-reflectance decomposi-
tion. In Scale Space and Variational Methods in Computer Vision (2017),
pp. 694–705. 3

[MSZ∗19] MEKA A., SHAFIEI M., ZOLLHOEFER M., RICHARDT C.,
THEOBALT C.: Live illumination decomposition of videos. arXiv
preprint arXiv:1908.01961 (2019). 12

[MZBK06] MALLICK S. P., ZICKLER T., BELHUMEUR P. N., KRIEG-
MAN D. J.: Specularity removal in images and videos: A pde approach.
In European Conference on Computer Vision (ECCV) (2006), pp. 550–
563. 3

[MZRT16] MEKA A., ZOLLHÖFER M., RICHARDT C., THEOBALT C.:
Live intrinsic video. ACM Transactions on Graphics 35, 4 (July 2016).
3, 7, 11

[NN03] NARASIMHAN S. G., NAYAR S.: Interactive deweathering of
an image using physical models. In ICCV Workshop on Color and
Photometric Methods in Computer Vision (October 2003). 7, 8

[OCBP14] OCHS P., CHEN Y., BROX T., POCK T.: ipiano: Inertial prox-
imal algorithm for non-convex optimization. SIAM journal on imaging
sciences 7, 2 (2014), 1388–1419. 2, 3, 6

[Qia99] QIAN N.: On the momentum term in gradient descent learning
algorithms. Neural networks 12, 1 (1999), 145–151. 6

[Ram20] RAMOS V.: SIHR: a MATLAB/GNU Octave toolbox for single
image highlight removal. Journal of Open Source Software 5, 45 (Jan.
2020), 1822. 6

[RH01] RAMAMOORTHI R., HANRAHAN P.: An efficient representation
for irradiance environment maps. In Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques (2001),
SIGGRAPH ’01, p. 497–500. 6

[SBZ∗18] SHEKHAR S., BEIGPOUR S., ZIEGLER M., CHWESIUK M.,
PALEN D., MYSZKOWSKI K., KEINERT J., MANTIUK R., DIDYK
P.: Light-field intrinsic dataset. In British Machine Vision Conference
(BMVC), Newcastle, UK, September 3-6 (2018), p. 120. 2, 7

[SC09] SHEN H.-L., CAI Q.-Y.: Simple and efficient method for spec-
ularity removal in an image. Applied Optics 48, 14 (May 2009), 2711–
2719. 3, 6, 8

[SDSY17] SHI J., DONG Y., SU H., YU S. X.: Learning non-lambertian
object intrinsics across shapenet categories. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2017), pp. 1685–
1694. 2

[Sha85] SHAFER S. A.: Using color to separate reflection components.
Color Research & Application 10, 4 (1985), 210–218. 2

[SHZ∗18] SANDLER M., HOWARD A., ZHU M., ZHMOGINOV A.,
CHEN L.: Mobilenetv2: Inverted residuals and linear bottlenecks. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2018), pp. 4510–4520. 8

[SLM∗08] SHARAN L., LI Y., MOTOYOSHI I., NISHIDA S., ADELSON
E. H.: Image statistics for surface reflectance perception. Journal of the
Optical Society of America A 25, 4 (Apr 2008), 846–865. 3

[TC13] TIAN Q., CLARK J. J.: Real-time specularity detection using
unnormalized wiener entropy. In International Conference on Computer
and Robot Vision (2013), pp. 356–363. 4

[TFA05] TAPPEN M. F., FREEMAN W. T., ADELSON E. H.: Recover-
ing intrinsic images from a single image. IEEE Transactions on Pattern
Analysis and Machine Intelligence 27, 9 (Sept. 2005), 1459–1472. 2, 3

[TI05] TAN R. T., IKEUCHI K.: Separating reflection components of
textured surfaces using a single image. IEEE Transactions on Pattern
Analysis and Machine Intelligence 27, 2 (Feb. 2005), 178–193. 3

[TM98] TOMASI C., MANDUCHI R.: Bilateral filtering for gray and
color images. In Sixth International Conference on Computer Vision
(IEEE Cat. No.98CH36271) (1998), pp. 839–846. 5

[VAE∗19] VOYNOV O., ARTEMOV A., EGIAZARIAN V., NOTCHENKO
A., BOBROVSKIKH G., BURNAEV E., ZORIN D.: Perceptual deep
depth super-resolution. In IEEE International Conference on Computer
Vision (ICCV) (2019), pp. 5652–5662. 12

[VS08] VEDALDI A., SOATTO S.: Quick shift and kernel methods for
mode seeking. In European Conference on Computer Vision (ECCV)
(2008), pp. 705–718. 9

[WKO12] WINNEMÖLLER H., KYPRIANIDIS J. E., OLSEN S. C.:
Xdog: an extended difference-of-gaussians compendium including ad-
vanced image stylization. Computers & Graphics 36, 6 (2012), 740–753.
9

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



S. Shekhar et al. / Interactive Photo Editing on Smartphones via Intrinsic Decomposition

[WLYY17] WANG Y., LI K., YANG J., YE X.: Intrinsic decomposi-
tion from a single rgb-d image with sparse and non-local priors. In
IEEE International Conference on Multimedia and Expo (ICME) (2017),
pp. 1201–1206. 2

[WOG06] WINNEMÖLLER H., OLSEN S. C., GOOCH B.: Real-time
video abstraction. ACM Transactions On Graphics (TOG) 25, 3 (2006),
1221–1226. 9

[YGL∗14] YE G., GARCES E., LIU Y., DAI Q., GUTIERREZ D.: Intrin-
sic video and applications. ACM Transactions on Graphics 33, 4 (July
2014). 3

[YWA10] YANG Q., WANG S., AHUJA N.: Real-time specular highlight
removal using bilateral filtering. In European Conference on Computer
Vision (ECCV) (2010), pp. 87–100. 3, 6, 8

[ZKE15] ZHOU T., KRAHENBUHL P., EFROS A. A.: Learning data-
driven reflectance priors for intrinsic image decomposition. In IEEE
International Conference on Computer Vision (ICCV) (2015), pp. 3469–
3477. 2, 3

[ZTD∗12] ZHAO Q., TAN P., DAI Q., SHEN L., WU E., LIN S.: A
closed-form solution to retinex with nonlocal texture constraints. IEEE
Transactions on Pattern Analysis and Machine Intelligence 34, 7 (July
2012), 1437–1444. 2, 3

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.


