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Figure 1. 2D treemap (left) and 2.5D treemap (center) depicting the same data using color and additional height mapping respectively. A mixed-projection
treemap (right), in contrast, reduces visual clutter and occlusion. At the same time it exposes important correlations not accounted for in the 2D treemap.

Abstract—This paper presents a novel technique for com-
bining 2D and 2.5D treemaps using multi-perspective views to
leverage the advantages of both treemap types. It enables a new
form of overview+detail visualization for tree-structured data
and contributes new concepts for real-time rendering of and
interaction with treemaps. The technique operates by tilting
the graphical elements representing inner nodes using affine
transformations and animated state transitions. We explain
how to mix orthogonal and perspective projections within a
single treemap. Finally, we show application examples that
benefit from the reduced interaction overhead.

Keywords-Information Visualization; Overview+Detail;
Treemaps; 2.5D Treemaps; Multi-perspective Views;

I. INTRODUCTION

Treemaps represent a space-filling visualization technique
that facilitates display and exploration of non-spatial, at-
tributed, tree-structured data. They map attributes to graph-
ical elements, e.g., rectangles, that are recursively stacked
within their parents’ elements. As one key advantage 2D

treemaps serve as scalable visualization technique for tree-
structured data [1]. They are applied in various research
and industry applications to provide comprehensive and
consistent means for communication and visual analytics [2]
of non-spatial, massive, temporal and structural evolving in-
formation such as file systems [3] and software systems [4].
2.5D treemaps extend this concept by introducing height as
additional visual variable. The 3D representation, however,
leads to increased rendering effort, occlusion, and demands
for advanced navigation techniques that counterbalance the
advantages of 2.5D treemaps to a certain degree.

The expressiveness of 2D treemaps is limited compared to
2.5D treemaps taking advantage of the third dimension [5].
Apart from the height per graphical element they also pro-
vide additional visual variables such as transparency, texture,
shading, extended shape, as well as silhouette enhancement
techniques [6]. Similar to 2D treemaps, 2.5D treemaps can
be efficiently rendered [7] and offer an additional dimension
for information display.



2.5D treemaps are limited by a number of drawbacks [5],
[8]; such as occlusion, underutilized screen-space, and
perspective-foreshortening–problems well known in the field
of thematic 3D visualization [9], [10]. Especially occlusion
appears to have a “detrimental impact on discovering, ac-
cessing, and spatially relating embedded data” [11]. In most
applications though, occlusion is usually counterbalanced by
a well-tuned map theme (a task-centric specification of the
attribute mapping to visual variables) and usually does not
lead to a “significant loss of information”: similar to the use
of color, a meaningful use of height facilitates identification
of relevant data by means of outlier perception, data range
and distribution adjustments, as well as aggregation of irrel-
evant areas [12]. When applying these established operations
the resulting 2.5D treemaps consist mostly of flat cuboids.
However, when the input data is partially unknown or the
task focuses on dynamic exploration, tuning the overall map
theme might not be beneficial or appropriate at all and
the visual complexity, e.g., by means of occlusion, can be
hindering in the information gathering process.

This paper presents a novel visualization approach for
treemaps that combines orthogonal and perspective projec-
tions within a single 2.5D treemap. Thereby it strengthens
the applicability of treemaps by optimizing their compli-
ance to the visual information seeking mantra “overview
first, zoom and filter, then details-on-demand” [13]. For
it, rendering and interaction techniques that enable 2D
treemaps to get locally extended to 2.5D treemaps (mixed-
projection treemaps, Fig. 1) are introduced and the following
contributions are made:

1) A rendering technique that dynamically mixes dif-
ferent projections supporting seamless integration of
2.5D treemaps for region-of-interests into 2D treemaps
to facilitate communication of additional information
using more visual variables.

2) An interaction concept that enables users to control the
projection by means of manual and automated tilting,
either providing explicit control or using animated
state transitions, respectively.

We argue that interactive mixed-projection treemaps reduce
the need for complex navigation metaphors typically associ-
ated with 2.5D treemaps and, further, feature traits common
for focus+context or overview+detail metaphors, i.e., (1)
the reduction of visual complexity for overview and context
display and (2) the visualization of additional data in focus
or detail areas. We demonstrate and discuss these aspects by
means of application examples.

II. RELATED WORK

Treemaps are a common technique for space-restricted vi-
sualization of tree-structured data. The original algorithm
presented by Shneiderman recursively splits parent nodes
alternating in horizontal and vertical direction by their child
nodes [3], resulting in a 2D layout. By using specific

shading [14], margins or insets [15], the treemap can depict
topology as well. Often used visual variables include size
and color [1] as well as texture [16].

Treemap Layouts: Besides treemap presentations, a
basic layout algorithm has to be chosen according to the
particular use cases. For example, the choice of the layout
algorithm influences the creation and preservation of a
mental map for the user of the visualization [17]. One major
disadvantage of the Slice’n Dice algorithm is the creation of
unfavorable aspect ratios of the node representations. Bruls
et al. as well as Bederson and Shneiderman counterbalance
this problem using Squarified [18] and Strip Treemap [19]
layouts. Latest research focus on the use of space-filling
curves and further optimizes the trade-off between readabil-
ity and stability [20], [21]. Since most of the treemap layout
algorithms are designed for 2D presentation, they do not take
possible occlusion within 2.5D treemaps into account.

2.5D Treemaps: The first extension of 2D treemap
algorithms to the third dimension are presented in the
StepTree visualization system by Bladh et al. [22]. It extends
the initial approach by stacking the graphical representations
of subdirectories. In a comparative study between the Step-
Tree and its corresponding 2D treemap users significantly
performed better in tasks of interpreting the hierarchical
structure while preserving performance in other interpretive
and navigational tasks. In addition to this approach there
exist a variety of modifications and extensions, e.g., 3D Polar
Treemaps, Treecubes, or Collector’s Box Treemaps [5]. In
contrast to general 3D treemaps, most of current 3D tree
visualization techniques combine a 2D layout and extrude
the graphical elements forming the third dimension. Due to
the restricted use of the third dimension, we refer to the term
2.5D treemaps. An example on how to adaptively extend
the nodes’ shape in 2D treemaps by the third dimension
was provided by Chaudhuri and Shen [23]. Wettel and
Lanza use 2.5D treemaps to create a metaphorical view on
software system artifact hierarchies with CodeCities [24] by
mapping additional information to the height of leaf nodes.
Bohnet and Döllner mentioned the benefits of using realistic
rendering effects (e.g., shadows) in 2.5D treemaps to support
the users’ in distinguishing individual elements [25].

The increasing number of items in large hierarchies
leads to perceptional questions about treemap visualizations,
e.g., how much effect does the width of a nodes’ border
have on the ability to extract the hierarchical structure of
the underlying data [26]. With an increasing number of
items, the need for focus+content as well as overview+detail
techniques emerges [27]. Even though the visualization of
a wide range of large hierarchical datasets (e.g., software
systems, economy data) is frequently studied, the interac-
tion techniques used in this field remains straightforward.
Apparent interaction techniques in 2.5D treemaps are the
selection of inner nodes and leafs as well as the color-
ing/highlighting of nodes [24]. Sud et al. present interac-
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tive rendering, navigation, and animation of dynamically
changing 2D Voronoi Treemaps by using a GPGPU-based
rendering technique [28].

Mixed-perspective Visualization: The choice for the
type of projection for virtual 3D environments is often either
an orthographic or perspective projection [29]. However,
depending on the composition and the characteristics of
the environment, mixed projections can provide effective
communication of the content. For virtual terrain and city
model visualization, multi-perspective views with bended
projections provides a near-field depiction of high detail and
a context area of less detail [11], [30]. Prior to hardware-
accelerated rendering techniques for mixed projections were
developed [10], these approaches were already applied by
artists such as H. C. Berann [31].

III. VISUALIZATION

This section (1) introduces a two part tilt operator that
uses a sequence of parameterized affine transformations,
(2) describes a rendering that relies on a single geometry
encoding and uses the exact same pipeline for both 2D
and 2.5D nodes, and (3) specifies two interaction modes
featuring manual and automated tilt control.

Node-local Tilt Operator

Given a 2D treemap, a tilt denotes the rotation of an
inner node (and its children) that enables exploration of the
height mapping using either an orthographic or perspective
projection. Any tilt comprises the following two node-local
operations: a tilt transformation Λ and a tilt projection Γ.

The tilt transformation shifts the node’s rotation axis by
TR using a relative offset τ ∈ [−1,+1], with −1 shifting
to the node’s bottom edge and +1 to its top edge. It then
rotates the node by the tilt angle α using R, and anchors
the node by TA using to a preferred relative location υ ∈
[−1,+1] (again, −1 at bottom and +1 at top, 0 at center).
The complete, affine transformation (Fig. 3) is defined as

Λ = [TC ]TAT
−1
R RTR. (1)

TC thereby denotes an optional translation that reduces
occlusion introduced when using a perspective projection. It
can be easily derived using the virtual cameras eye position
and, e.g., the nodes vertical extend. Also, we advise against
deviating from τ = 0 (using perspective projection) since it
either introduces more occlusion or reduces the nodes size
on display with τ > 0 and τ < 0 respectively.

The tilt projection basically mixes any two given projec-
tions P0 and P1 with respect to the node local tilt angle and
a global angular threshold β and is defined as

Γ = (1− t)P0 + tP1, (2)

with t = αβ−1, clamped to [0, 1]. If P1 is a perspective pro-
jection P0 should be the respective orthographic projection,
i.e., it should cover the exact same treemap region.
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Figure 3. This illustration describes a tilt transformation Λ of an inner-
node n with perspective projection applied: n is (1) translated by TR for
(2) rotation by R with α = 60◦ at the local tilt offset τ = 0.5. After
(3) translating n (T−1

R ) it is (4) moved to the bottom anchor by TA with
υ = −1 and, finally, (5) shifted up again by TC in order to reduce the
occlusion caused by the perspective projection. Step (5) is only required
when using orthogonal projection.

Even though, both transformation and projection are ap-
plied per-node and can be at different states at any time
for any node, they are restricted to global parameters for β,
τ , and υ provided by the map theme. For a seamless tilt
transition only α has to be increased, starting at α = 0 for
no transition up to the desired, final tilt angle.

Rendering

For the interactive use of mixed-projection treemaps a real-
time rendering based on attributed vertex clouds [32] is
used. It allows for efficient GPU encoding of hierarchical
information and facilitates interactive, dynamic attribute
mapping, and on-the-fly, attribute-based geometry instanti-
ation. The use of the node-local tilt operator allows us to
rely solely on a 2.5D GPU encoding for simultaneously
rendering some nodes in 2D and others in 2.5D (either
orthographic or perspective). This means that the height
mapping is always enabled, but not noticeable on nodes that
are not titled. Furthermore, the same rendering pipeline can
be applied to all nodes. It ultimately enables a seamless
transition between 2D and 2.5D as well as orthographic and
perspective projections, especially since the results of screen
space effects remain consistent w.r.t. shading, local ambient
occlusion, shadows, contouring etc.

Interaction

Navigation in 2.5D treemap can be implemented by means
of a landscape-metaphor or world-in-hand metaphor. In the
case of mixed-projection treemaps, however, a simple zoom
and pan metaphor is sufficient for navigating the treemap.
Based on the parameterization introduced previously, a user
can interact directly with treemap nodes based on direct
manipulation metaphors. For it we suggest two similar tilt
modes: manual tilt and automated tilt. A manual tilt enables
the user to increase and decrease the tilt angle of any node
seamlessly (e.g., via click/touch to an inner node and vertical
drag down). An automated tilt enables the user to invoke a
preset tilt angle or un-tilt any node by a single input event
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(e.g., click/touch to an inner node). To avoid abrupt tilt angle
changes, an animated transitions with arbitrary easing can
be applied. Due to the simplicity of both tilt interactions,
additional interactions (e.g., filtering) can be integrated more
easily. Both modes can also be combined using applying
some type of mode switch. Keep in mind though that the
tilt is not designed for nested application.

IV. RESULTS

When using mixed-projection treemaps to visualize tree-
structured data, the designated use case follows a multi-step
process. First, the user gains overview using the 2D top view
on the treemap rendered with orthographic projection. For all
areas-of-interest, the user can select the inner nodes. Those
selected nodes are then tilted into a 2.5D presentation with
additional visual variables. The prototypical implementation
is an extension to a 2.5D treemap visualization system by
means of (1) the management of selected inner nodes for
the detail view, (2) computing the nodes’ geometry tilting,
(3) efficient image synthesis using an attributed vertex cloud
of axis-aligned cuboids where (4) the tilt is applied during
geometry instantiation [32].

Application Examples

Mixed-projection treemaps support in getting an overview
over a dataset first and finding relevant nodes afterwards
by enabling the third dimension on-demand. As examples
of real-world tree-structured datasets we chose a population
count dataset and a software system dataset.

Population Count Dataset: The first dataset is the pop-
ulation count of the zoo in Munich from 2014 (Fig. 1). The
dataset contains 247 nodes whereby each node represents
one species. The footprint size of a visual item refers to
the population count of a species, the color refers to the
extinction threat index, and the number of born animals
in the last year is mapped to the height. This map theme
facilitates the detection of recovering species.

Software System Dataset: The second dataset repre-
sents an analysis of the open-source project POCO1 (Fig. 6).
The dataset contains 5775 nodes. Each node represents
one source code file. The number of real-lines-of-code is
mapped to the footprint size, the color refers to cyclomatic
complexity, and the average nesting level of a source code
file is mapped to the height. This map theme is primarily
used to detect source code files with disproportional nesting
level in comparison to the implemented business logic.

Discussion

While the process is set, the actual depiction of selected
nodes is subject to discussion. There are different approaches
for setting the tilt anchor, angle, and additional occlusion-
reducing rotation. To support users in maintaining their

1GitHub project available at github.com/pocoproject/poco; Analysis of
revision from March 24 in 2009.

mental map, animated transition and different types of
perspectives can be applied.

Perspective vs. Orthographic Projection: Due to per-
spective foreshortening in a perspective view (the default
for virtual 3D environments), objects that are far form the
virtual camera away are rendered smaller than closer ones.
Alternatively, in an orthographic view, all objects appear
at same scale. Since the user preference of projection may
differ, both options are supported: (1) perspective projections
provide additional information about depth and are often
easier to interpret, and (2) orthographic projections facilitate
comparison of nodes w.r.t. height and area. Further, an
orthographic projection renders no occlusion to neighboring
nodes in the overview.

Tilt Anchor: After tilting the inner nodes, the inclina-
tion introduces unused screen space. This may be partially
covered by higher nodes but the overall impression remains
and even supports the identification of these nodes as tilted
(and thus, conveying height information). To exploit this
space further, the tilted node can be shifted within the
original bounding rectangle (Fig. 4).

α = 60°, υ = -1 α = 60°, υ = 0 α = 60°, υ = +1

Figure 4. Orthogonal (top row) and perspective (bottom row) projections
anchored at different locations, all tilted by 60 (overdraw colored black).

During experiments we made the following observation: the
lower alignment seems to be most beneficial as the risk of
occluding nearby nodes is minimized (compare to the right
pictogram with top alignment; overdraw is colored black)
and there is still sufficient space for possible additional
information display (as opposed to the center alignment with
justified whitespace, compare center pictogram).

Tilt Angle: The effective tilt angle is subject to inner-
node complexity and height-value distribution. Although
angles between 0◦ and 90◦ are possible, a tilt degree of
α = 0◦ results in no additional height information and a
tilt of α = 90◦yields high occlusion (Fig. 5). We found tilt
angles between 30◦ and 60◦ to be reasonable supportive. We
also found that a slightly different shading of the cuboids’
lateral surfaces servers as additional tilt cue.



α = 30°, υ = -1 α = 45°, υ = -1 α = 60°, υ = -1

Figure 5. Orthogonal (top row) and perspective (bottom row) projections
at different tilt angles, all anchored at the bottom (overdraw colored black).

Tilt Transitions: Even though the mixed-projection
treemap is designed for static display, the use of manual or
animated transitions can help a user to maintain its mental
map during the state change from overview to detailed
depiction of an inner node and is highly suggested.

V. CONCLUSION AND FUTURE WORK

This paper presents how to combine 2D and 2.5D treemaps.
The concept is based on in-situ mixed projections, i.e.,
the dynamic adjustment of and interpolation between or-
thographic and perspective projections of components of a
single treemap based on regions of interest, which can be
interactively selected by a user. The combination strengthens
the particular advantages of each projection technique: the
overview and simple interaction with tree-structured data
using 2D treemaps and the advanced capabilities of present-
ing additional data attributes using 2.5D treemaps. To some
extent it counterbalances the limitations inherent to 2.5D
treemaps, e.g., occlusion and perspective-foreshortening.
It also simplifies the user interactions required for 2.5D
treemaps. Preliminary results obtained by using our proto-
typical implementation indicate a simplified treemap explo-
ration and effective comparison of additional data mapped
to height. For future work we plan to take into account the
available screen space for display of additional information
using data charts such as histograms.
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