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Figure 1: A compilation of advanced software maps: (a) mixed use of rectangular and voronoi layout, (b) mixed-projection to
combine 2D and 2.5D depictions, (c) structure-enhancing cushion shading, (d) visual aggregation for a higher-level view on the
data, (e) a reference surface for improved height comparison and visual filtering, (f) in-situ comparison for different points
in time, (g) using the fire metaphor to augment interpretability, (h) small multiples to compare multiple points in time and
map themes, (i) different contour types to convey information on aggregated data, (j) using growing and shrinking to derive
subsequent layouts, (k) color weaving to encode variation in underlying data, (l) subdivision on leaf nodes, (m) transparency
as visual variable, (n) highlighting of nodes using glow, (o) rustiness, shininess, and (p) sketchiness as visual variable.

ABSTRACT
Software maps provide a general-purpose interactive user interface

and information display for software analytics tools. This paper

systematically introduces and classifies software maps as a treemap-

based technique for software cartography. It provides an overview

of advanced visual metaphors and techniques, each suitable for

interactive visual analytics tasks, that can be used to enhance the

expressiveness of software maps. Thereto, the metaphors and tech-

niques are briefly described, located within a visualization pipeline

model, and considered within the software map design space. Con-

sequent applications and use cases w.r.t. different types of software

system data and software engineering data are discussed, arguing

for a versatile use of software maps in visual software analytics.
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1 INTRODUCTION
Treemaps are a well established information visualization technique

that implements the information seeking mantra [54] and is used

in different domains [55]. They allow for a depiction of non-spatial,

multi-variate data and provide the convenience and expressiveness

of thematic maps, i.e., given a spatialization strategy (layouting),

they support a combination of two ormore visual variables for infor-

mation display, such as color, size, or texture [10]. The 2D depiction

is often extended into the third dimension, resulting in so called

2.5D treemaps, allowing for additional information display [62].

https://doi.org/10.1145/3356422.3356444
https://doi.org/10.1145/3356422.3356444


VINCI’2019, September 20–22, 2019, Shanghai, China Limberger, Scheibel, Döllner, and Trapp

Knowledge

Focus
Data Image

Visualization
Object

Config

UserVisualization Pipeline

Visualization
Data

Problem
Data

Exploration Perception
& Cognition

MappingFilteringAnalysis Rendering

Figure 2: Model of the visualization process [63] consisting of a visualization pipeline [17] and a feedback loop for knowledge
gathering and interactive user control. This model is applicable to visual software analytics using software maps.

2D and 2.5D treemaps alike can support visual analytics to “foster

the constructive evaluation, correction and rapid improvement of

our processes and models and – ultimately – the improvement of

our knowledge and our decisions” [30].

In the domain of software analytics, treemaps are used to depict

software system data and software engineering data [8, 66], result-

ing in so called software maps. Software maps provide a unique and

general-purpose interactive user interface and information display

for software analytics tools. Typically, a catalogue of software map
themes compiles commonly used attribute selections related to spe-

cific tasks in software analytics. A software map theme, hereinafter

referred to as map theme, defines a selection of software informa-

tion dimensions that are mapped onto visual variables of a software

map. It portrays selected aspects of the software information gath-

ered and analyzed by software analytics processes. A map theme

presents, in a sense, topic-specific software map templates that sup-

port different stakeholders in software engineering in data-driven

decision making as well as in finding actionable insights.

To advance towards the goals of visual software analytics, i.e.,

“(1) derive insight from massive, dynamic, ambiguous, and often

conflicting data, (2) detect the expected and discover the unexpected,

(3) provide timely, defensible, and understandable assessments,

[and] (4) communicate assessment effectively for action” [30], we

derive the following challenges for software maps:

• What are best practices and variations to software maps?

• How does the type of data impacts its visualization?

• Can techniques be used individually or in combination?

• In what ways can data be depicted beyond the basic use of

the visual variables position, area, height, and color?

To provide a basis for answering these questions, we discuss

advanced visual metaphors and techniques for software maps by ex-

ploring the visualization pipeline of softwaremaps. A superimposed

visualization process integrates a visualization pipeline into a feed-

back loop with interactive user control of the various stages [63].

Such visualization pipeline is basically a sequence of three to four

data processing stages with named inputs and outputs that con-

ceptualize the transformation process of data into images. This

visualization process is well understood and there are only a few

variations of models of visualization pipelines: Using a data state

reference model the stages can be referred to as transformations,

namely, (1) data transformation, (2) visualization transformation,

and (3) view or visual mapping transformation [9, 13, 14]. An exten-

sive overview of specific transformations suitable for visualization

purposes was recently provided by Liu et al. [43]. A similar naming

schemes uses (1) data enrichment/enhancement, (2) visualization

mapping, and (3) rendering to describe the same process [23]. This

scheme was later refined to (1) data analysis, (2) filtering, (3) map-

ping, and (4) rendering [17]. For our purposes, we use the latter

model and refer to the first two stages as preprocessing and filtering.
Preprocessing and filtering covers, among others, analytics, selection,

enrichment, transformation, and resampling of raw data. Mapping
maps abstract data to visual representations. Rendering creates a

visual representation using image synthesis (cf. Figure 2).

Based on this approach, we provide an overview of advanced

visual metaphors that have already been or can be used in com-

bination with software maps to approach above mentioned chal-

lenges (cf. Figure 1). For it, we briefly summarize and discuss each

metaphor and technique within the context of a stage with the con-

ceptual model of the visualization pipeline and describe common

practices based on our experiences. We discuss the extent to which

each metaphor or technique can be used to communicate different

types of data and, furthermore, identify feasible combinations of

isolated techniques and possible interferences, spanning as well as

extending a design space of software maps.

2 DESIGN SPACE OF SOFTWARE MAPS
In software cartography, the term software maps is not uniquely

defined. Each variation (such as software cities [66], code cities [67],

cityscapes, or thematic software maps [33]) is focusing on their

specific intended use, i.e., visualizing abundant software system

and process data and, thereby, providing a communication artifact

for software engineering. “A single graphic can convey a great

deal of information about various aspects of a complex software

system, such as its structure, the degree of coupling and cohesion,

growth patterns, defect rates, and so on” [33]. In order to obtain

a more precise, low-level definition of software maps, we propose
a definition that precisely denotes them as a subset of treemaps

using existing systematization approaches.

Schulz et al. [53] identified the following axis for the design space
of implicit hierarchy visualizations: dimensionality (either 2D or

3D), node representation (graphics primitives), edge representation

(inclusion, overlap, and adjacency), as well as hierarchical layout

(subdivision and packing). Dübel et al. [18] further differentiate
between reference space and attribute space for a more precise

classification – assuming the validity of their classification is not

affected by the non-spatial nature of treemaps.
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Using these design spaces, the software map can be expressed

as follows. For the spatialization of nodes of a software map we

prefer subdivision or packing within a 2D reference space (R2
).

The representation of edges is assumed to be implicit by means

of nesting/inclusion. Adjacency in 2.5D maps can also be used,

but we suggest to consider its use carefully; eventually we use flat

representations of inner nodes only for all map themes in order to

allow for special representation of aggregates. Techniques that are

based on containment and overlap in 3D are only marginally useful

for medium to large data sets due to added interaction complexity

and hard-to-resolve occlusion. Fortunately, this restriction does not

exclude any of the commonly used treemap layouting algorithms

based on rectangular or Voronoi shapes [25].

For the representation of leaf nodes, 2D graphics primitives are

common, e.g., Voronoi shapes or rectangles (A2
). They further

can be extruded, optionally tapered, and thereby exploiting the

third spatial dimension (A3
). “Increasing the visual vocabulary

can provide for richer information resolution” [62] and allows for

additional information display. For these so called 2.5D software

maps, we generally prefer graphical primitives of rectangular foot-

prints over more complex ones (cf. Figure 3) – depending on (1)

the importance of stability for the respective map theme and (2)

whether or not rendering of more complex geometry is justifiable

in terms of visual complexity, implementation complexity, and per-

formance. Since the reference space is still in R2
, we support the

term 2.5D [62] to avoid confusion with actual 3D treemaps that

utilize a 3D layouting for positioning graphical elements in a 3D

reference space (R3
).

With the attribute and reference space constrained, the typical

characteristics of A2 ⊗ R2
and A3 ⊗ R2

visualizations adhere to

software maps. Consequently, we define software maps as a subset

of 2D and 2.5D treemaps with the purposeful depictions of abstract

software-system data and software engineering data, as well as

software development data (cf. Figure 4). This has one outstanding

benefit: their characteristics largely match these of ubiquitously

available, interactive 2D and 2.5D (geo-spatial) maps. With this def-

inition of software maps, both visualization engineers and software

engineers can rely on and build upon well established (1) interac-

tion metaphors, (2) provisioning strategies, and (3) visualization

metaphors, thereby harnessing on the habits and experiences of

most users.

2.1 Data Characteristics
Traditionally, visualizations targeting software analytics are re-

quired to handle three major aspects of software system data: static,

dynamic, and evolving aspects [16]. We use a broader scope for

software maps by including software development data as well,

which basically includes all stakeholders of the software develop-

ment process. The data typically covers mined, preprocessed data

gathered from various sources:

• Software implementations: Typically modularized and in dis-

tributed tree-structured components and source code units.

In addition to topology information additional metrics and

other key performance indicators (KPIs) are measured and

derived by applying static source code analysis to the pro-

grammed artifacts (e.g., source code, scripts, documentation).

Figure 3: An example of a 2.5D softwaremapwithmixed use
of rectangular and Voronoi treemap layouts.

Figure 4: An example of a semi-transparent information
overlay to superimpose additional information.

• Dynamics of software executions (traces): e.g., analysis of
run-time execution in order to capture a software’s behavior.

• Software development processes and evolution: e.g., analysis

of the engineering work on the system done by software

developers. This usually available in revisioning systems and

issue, bug and customer feedback tracking tools.

Even if measured exactly, the data, is (1) prone to uncertainty due

to missing semantic normalization, (2) lacks standardized metrics

and interpretations, (3) is highly language specific and, thus, highly

heterogeneous in large software system. Further, anonymization

may be required, the measurement resolution is unnecessarily high,

and finally, the data is massive for medium to large sized engineer-

ing processes (metrics per file and per commit, plus all changes

w.r.t. various issue tracking systems and continuous integration

systems). All these characteristics should be considered when speci-

fying map themes or developing visualization techniques for visual

information display using software maps. An overview of visual-

ization techniques for static aspects and their evolution, including

visualization techniques besides treemaps and software maps, is

listed in a survey by Caserta and Zendra [11].
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2.2 Preliminaries and Assumptions
This paper does not provide a comprehensive set of common design

guidelines for creating rectangular treemaps. Guidelines concerned

with perception [32] and use of color [47, 52, 69] are outside the

scope of this paper, since these are of complex nature itself and still

subject to active research. The selection of presented visualization

techniques focuses on visualization metaphors and techniques that

cope with the data characteristics within the domain of software en-

gineering, i.e., volume and complexity of the data. Thus, we selected

visualization techniques that were used for software data and where

an implementation can handle datasets up to hundreds of thousands

of data items. Contrarily, this paper does not cover city or city-like

metaphors [3, 31] that map abstract data to features of virtual 3D

city models such as building facades, car or pedestrian traffic, or

street furniture. Regarding frameworks and implementations of

software maps, we refer to state-of-the-art approaches based on

hardware acceleration and highly dynamic mappings [48, 60]. Sim-

ilarly, the deployment and provisioning of data and visualization is

highly contextual and application-specific [38, 42]. Fortunately, a

simplifying view on the application scenarios allows to derive com-

mon characteristics and shared approaches for visualization [49].

3 PREPROCESSING AND FILTERING
During preprocessing and filtering, the incoming data – also known

as problem or task data – is transformed and prepared for visualiza-

tion. This includes operations such as resampling, normalization,

filtering of outlier, accumulating weighted leaf-node data to inner

nodes, and more. From a framework design perspective, we tend to

leave any input data unmodified and let any transformation result

in additional tree-structures and data views.

Attribute Resolution. While creating software maps in practice,

we encountered several challenges. For example, the data is usually

available in much higher resolution than required for visualization.

In those cases, we suggest to reduce the data to a resolution that

is reasonable for the map theme, e.g., attributes mapped to area,

color, or height do not require a 32 bit floating-point resolution.

Often, reducing the attribute resolution to a few bits can increase

readability by means of discriminability and emphasize results

of preceeding data analysis. This can also be supported from a

perceptual point of view: height with perspective foreshortening

is hardly comparable on a per-pixel basis and the exact size of a

module within a treemap should be of subordinate relevance. Thus,

often a transformation to a categorical data type as irrelevant, low,
medium, and high (for color, height, or change) or lower-outlier,
below average, average, above average, and upper-outlier (for area)
seem to be comparably or even more effective.

Streaming and Level-of-Detail. The major challenge, however,

is that industry software projects tend to be massive (in terms

of number of modules, code units, metrics, or activities). This is

often ignored or only marginally covered in research but has sig-

nificant impact on visualization design. Software maps might be

streamed on demand (node by node, slice by slice, etc. ). Loading

millions of attribute values for nodes that should not even be de-

picted (e.g., as they are out of scope or of sub-pixel size) can decrease

responsiveness and result in visual clutter or memory shortages.

Figure 5: Stepwise generalization of a software map by use
of aggregation, ranging from no aggregation (left) to strong
aggregation (right). Outlier nodes – also called landmarks –
are preserved [37].

It is beneficial to have a highly customizable, interactive level-of-

detail [19, 37] (filtering and rendering) that allows for dynamic

detail (cf. Figure 5), e.g., detecting source code duplicates, generated

code, automated activities, and filter irrelevant areas such as third

party code. Furthermore, the software map should always support

the concept of mental maps, i.e., the overall landscape/spatial layout

should not change due to a dynamic level-of-detail. A particular

technique to combine aggregated and detailed views in combination

with reduced occlusion is the lifted map [12].

4 MAPPING
The mapping stage transforms pre-processed and filtered data (e.g.,

attribute values) into depictable and reversibly encoded graphical

primitives and scenes. This is a fundamental step for efficient encod-

ing of input data and should address human capacities and abilities

to decode a depiction [65]. There is not necessarily an explicit rep-

resentation of the resulting visualization object in memory. The

result may only be volatile during visualization, especially from an

implementation point-of-view: the distinction between mapping

and rendering sustains more on a conceptual level [48, 60]).

Software maps usually use inner nodes to depict applications,

modules, or even source code units, i.e., source code files [8]. The

leave nodes depict either modules, source code units, functions,

events, developers, or activity (by means of commits). The position

of each node is computed by a layout technique specified by themap

theme, and a metric is usually mapped to the size of the graphical

primitive, e.g., lines-of-code, file size, or size of domain logic.

Use of Height. We utilize height of cuboids by means of an ex-

trusion of the 2D shape [6, 15] as secondary visual variable. The

idea is to provide the following order with declining importance

for the task: (1) color, (2) height, (3) other visual variables. For 2.5D

software maps, pyramid-like shapes can be used to further encode

an attribute or just reduce occlusion [62]. When depicting evolving

data with accustomed map themes, height seems to allow for an

intuitive encoding of data changes by means of growing/increasing

vs. shrinking/decreasing. Height should not be used, however, to

depict negative or diverging scales directly, as this would result in
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Figure 6: A set of in-situ templates to depict changes in underlying data for up to three attributes using up to three visual
variables [41]. Left group contains templates for color-only changes. Middle group contains templates for color and height
changes. Right group presents templates for changes in all area, height, and color.

downwards facing cuboids. Even though this was suggested several

times, we prefer to refine the map theme to transform or map rele-

vant value ranges of attributes to make a salient but expected use of

visual variables (cuboids are high if data is of interest). In contrast

thereto, if a negative value range is relevant, it is mapped inversely

to height. If positive values are relevant as well, the absolute value

could be mapped to height and the sign to color, shape, or texture.

Finally, the orientation of the leaf node’s geometry [34] and the type

– by means of poly cylinders [45] and three-dimensional glyphs [7]

are further suitable as visual variables.

Evolutionary Data. One of the biggest challenges for treemaps

– and thus, software maps – is the handling of topology changes,

i.e., addition, move, and removal of nodes, in a predictable and

comprehensible manner. If the time range of interest is in the past,

a multi-revision hierarchy can be computed [61]. The quality of this

hierarchy heavily depends on the computations capabilities to track

nodes overmultiple revisions (renames, copies, clones, splits, moves,

deletions, etc. ). If the software map is used to visualize ongoing

processes and continuously evolving data, an initial layout can be

incrementally evolved based on the topology changes, resulting in

nodes growing, shrinking, appearing, and disappearing [51].

Juxtaposing and Complex Shapes. For visual display of multiple

states or sub-elements, data vases, stacked cuboids, or fragmenting

can be used. In remembrance of stacked bar charts, the extruded

polytopes can be subdivided in height, allowing for depiction of

subcategories and their share on the overall height [21, 29]. This

process can further be utilized, e.g., to encode evolution by means

of evolution segments [58] and data vases [59]. Small multiples can

be used for “the comparison of multiple software map themes and

revisions simultaneously on a single screen” [50]. We found this

especially useful for generation of an overview on as well as explo-

ration and identification of map theme variations.

Depicting Relations. For an emphasis of the topology w.r.t. to

the nested structure of nodes, cushion shading [64], variations of

margins or padding, as well extruded, stacked inner nodes [6] can

be applied. If additional relations of nodes in addition to their tree-

structured topology are of interest (e.g., functional dependencies or

often-coinciding changes during the development process), edges

or edge bundles can be superimposed to software maps [27, 57].

This approach, however, is visually constrained by the number of

depicted relations and data set size. Superimposing relations by

means of edges or tubes on top of 2.5D treemaps introduces addi-

tional clutter, occlusion, and visual complexity that is not inherent

to the treemap metaphor.

5 RENDERING
In this stage, the visualization object is transformed into images

using (real-time) image synthesis. Although the mapping stage is

usually aware of the available visual variables and metaphors, it

usually only provides appropriate attribute values, descriptions of

graphic primitives, and additional data for rendering. As a result

of the rendering stage, the mapped attributes should be visually

encoded in the resulting image by use of visual variables, some of

which are mapped by means of geometry, e.g., position or extent.

Depicting Change. Many software map themes are designed to

facilitate understanding of the evolution of the underlying data

sets. This eventually requires for visual comparison of (1) multiple

visual variables for (2) multiple points in time over (3) large time

ranges. Therefore, Tu and Shen [61] introduced contrast treemaps.

Their approach could be applied within visual software analytics by

encoding two different states of the attribute mapped to area and

color. It was conceptually extended by in-situ templates [41], which

allow for visual encoding of former and latter states on a per-cuboid

basis for rectangular software maps (cf. Figure 6). Specifically, basic

and more complex templates were introduced in order to depict

changes in more than one visual variable simultaneously, including

area, color, and height. Although not discussed in the paper, the

templates allow for comparison of additional per-node visual vari-

ables as well. The visual quality and expressiveness also depends

on the available rendering techniques, e.g., procedural texturing

and transparency are accounted for by several templates.

In practice, most of the comparison templates would result in

a complex mapping and should be used for complex tasks or ex-

pert systems only. For example, the depiction of area changes in

combinations with others are challenging to perceive. However,

they allow for a convenient encoding of changes in height that are

usually mapped from secondary information such as number of

authors, or size of domain logic. Another use is to depict changes

in color for primary information, i.e., the most prominent indicator

for the main purpose of the map theme, such as maintainability or

faultiness of a software module.

Utilizing Textures. Different texture patterns can be applied to en-
code categorical data [46]. Exemplary attributes for texture pattern

mapping are (the abstract) file type (e.g., source code, documen-

tation, deployment), associated teams, or budgets. Alternatively,

texture intensity was suggested as visual variable for scales with

a natural zero [28]). With most modern rendering engines sup-

porting some form of physically-based materials, textures can be

used to enable visual variables based on their metalness or rough-

ness (see natural metaphors). In the past, we predominantly used
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Figure 7: A five-step scale to encode “uncertainty, impreci-
sion or vagueness” [35] using sketchiness as visual variable.
The scale ranges from no uncertainty (left) to a high de-
gree of uncertainty (right) with varying degrees of a sketch-
rendering effect.

procedural textures to depict quality measures (e.g., degree of doc-

umentation, error-prone-ness), complexity measures (incoming or

outgoing dependencies, mixed use of third-party dependencies),

and development process indicators (e.g., number of authors).

Utilizing Transparency. Regarding geometric processing of inner

nodes, there are approaches that extrude the layout as well, creat-

ing platforms [1] or pyramid frustums [2], placing child nodes on
top of the platforms. Instead of stacking, there are approaches for

nested depiction as well, e.g., full spheres [5] and hemispheres [4]

in combination with transparency. Other uses of transparency [44]

are (1) to reduce occlusion and (2) as a visual variable to encode

different node states. Transparency can further be used to depict

removed or planned components, goals, irrelevant nodes as of the

current map theme, or enhance the expressiveness and quality of

(procedural) texturing. However, the most relevant obstacle for

using transparency is the complexity of its implementation: es-

pecially for web-based rendering clients, modern strategies such

as order-independent transparency cannot easily be implemented

due to limited graphics APIs and device capabilities. One solution

is to use stochastic dithering in a rendering framework based on

multi-frame sampling [36].

Depicting Uncertainty. For the visual display of uncertainty, fuzzy
drawing styles can be applied. For example, node contour width

as well as multiplexed frequency and amplitude could be param-

eterized [22] and used to indicate vagueness. Pencil-like outlines

and hatching of surfaces can be combined into a single visual vari-

able, i.e., sketchiness (cf. Figure 7). Although technically an appli-

cation of texture as a visual variable, mapping data to sketchiness

is especially useful to encode “uncertainty, imprecision, or vague-

ness” [35]. Sketchiness is designed to encode varying degrees of

uncertainty and, furthermore, can be used in addition to color. For

software maps, it can display measurement inaccuracies (incom-

plete or estimated data) or target data that is yet to get discussed or

implemented (i.e., targets for complexity, coverage, performance,

or other quality measure).

Depicting Aggregates. As previously discussed for the prepro-

cessing and filtering stages, aggregation is an essential technique

for software maps (cf. Figure 8). In the context of rendering, it

is important to adhere to aggregation guidelines [19]. For exam-

ple, the depiction should discern leaf nodes from aggregated ones.

In addition, small charts, diagrams, or glyphs encoding informa-

tion of the underlying data can be expressed on top or within

aggregates [56]. Likewise, noise or color weaving [24] as well as

Figure 8: An example of software map aggregation and in-
ternal labeling [37]. The resulting space from aggregating
nodes is used to embed labels into the software map.

nesting-level contours (multiple contours that hint the depth of the

aggregated sub-tree, i.e., the number of an aggregate’s subjacent

hierarchy levels) can be used as well [37]. For software maps, the

aggregation should summarize contextual data of low variation to

provide orientation without distraction. Aggregation can further

extend user control and interaction, e.g., by means of folding and

unfolding, as well as for dynamically scaling the rendering load in

order to comply to performance constraints.

Height-based Selection and Thresholding. For 2.5D software maps,

a reference surface – a height reference – can be used to “facilitate

accurate identification of highest nodes as well as similar nodes [. . . ].

It allows filtering and selection of nodes based on their height and

depicts filtered and unselected notes in a clean way without intro-

ducing additional visual clutter.” [40]. Depending on the capabilities

of the renderer and the already occupied visual variables, one of

various approaches for the visual display of the height reference can

be applied, e.g., intersection, stilts, explicit surface, closed surface,

and implicit surface (cf. Figure 9). Using user-controlled aggrega-

tion (by means of folding and unfolding) in combination with an

interactive height-reference can provide a sufficient foundation for

exploration-heavy tasks and map themes for single software maps

and whole software map landscapes.

Using Natural Metaphors. The use of natural metaphors is based

on the idea that, “when faced with unfamiliar concepts, our cogni-

tive system searches for the best mapping between the unknown

concept and existing knowledge of other domains” [70]. To this

end, natural metaphors, such as physically-based materials (e.g.,

rust, radiant emittance, roughness, and shininess; cf. Figure 10) or

weather phenomena (e.g., rain, clouds, fire, dust, snow, etc. ) were

suggested to “emotionalize the visual communication by provid-

ing memorable visualizations” [68]. These metaphors can be used

to depict change predictions or deviations from expected values

on a secondary visual variable, while considering knowledge or

best-practices on preattentive processing of, e.g., numerical infor-

mation [20, 26]. However, the use of weather phenomena requires

sophisticated rendering techniques, renderers and an interactive

context. Further, their use might be inappropriate in certain profes-

sional contexts and even distracting for the map theme.
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Figure 9: An example combining visual filtering using a ref-
erence surface and adjacent charts that display per-axis pro-
jected height information [40]. The nodes that are below the
reference surface are visually filtered by means of a semi-
transparent surface metaphor.

Rough Neutral Shiny

Rusty Neutral Glowing

Figure 10: An example of (top) rough-to-shiny and (bottom)
rusty-to-glowing visualization metaphors to be used as vi-
sual variables. Thesemetaphors are capable to communicate
deterioration or negative deviation (roughness, rust) and im-
provement or positive deviation (shine, glow) without need
for further introduction of the mapping semantics [68].

Mixed Projections. Recently, an approach for focus-sensitive use

2D and 2.5D treemaps was presented: “the technique operates by

tilting the graphical elements representing inner nodes using affine

transformations and animated state transitions” [39]. This allows

for on-demand separation of high-detail focus areas and context

areas. It further allows to reduce occlusion issues – which might

occur for a certain data set or map theme – and complexity of

navigation (3D to 2D). For software analytics, mixed projection can

facilitate communication of the source code modules that are target

to change for the current sprint. In this example, the context are

the other source code files present in the project. Similarly, mixed

projection can be of use if the height mapping is irrelevant for the

context, but highly relevant for focus, e.g., using the estimated time

to invest for a source code module to be mapped on height.

6 CONCLUSIONS AND FUTUREWORK
This paper reviewed advanced visual metaphors and visualization

techniques for software maps. A brief discussion for each metaphor

and technique is extended by common practices and own experi-

ences by the authors. Notably, the presented techniques are modular

and can be used in combination in an on-demand manner without

conflicting with other techniques. This way, the software map can

be used for a wide range of use cases. Thereby, the approaches

can visually scale from small to large and even massive data sets.

Summarizing, we argue that the software map is a highly versatile

tool in visual software analytics.

For future work, we evaluate the applicability of the advanced

metaphors and techniques to other 2D and 2.5D information visu-

alization techniques. In order to broadly provide the software map

and its extensions, we plan to provide an open software ecosystem.
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