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Figure 1: High-level overview of the presented point cloud classification approach using image-based classification. The pro-
cess shows: (1) generation of the training data, (2) retraining of the CNN, (3) user input of point cloud for classification and
the visualized output, (4) resulting generation of octree nodes, (5) generation of cubemaps for the image-based classification.

ABSTRACT
The rapid digitalization of the Facility Management (FM) sector has
increased the demand for mobile, interactive analytics approaches
concerning the operational state of a building. These approaches
provide the key to increasing stakeholder engagement associated
with Operation and Maintenance (O&M) procedures of living and
working areas, buildings, and other built environment spaces. We
present a generic and fast approach to process and analyze given
3D point clouds of typical indoor office spaces to create corre-
sponding up-to-date approximations of classified segments and
object-based 3D models that can be used to analyze, record and
highlight changes of spatial configurations. The approach is based
on machine-learning methods used to classify the scanned 3D point
cloud data using 2D images. This approach can be used to primarily
track changes of objects over time for comparison, allowing for
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routine classification, and presentation of results used for decision
making. We specifically focus on classification, segmentation, and
reconstruction of multiple different object types in a 3D point-cloud
scene. We present our current research and describe the implemen-
tation of these technologies as a web-based application using a
services-oriented methodology.
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1 INTRODUCTION
Establishment of Building Information Modelling (BIM) within the
building lifecycle has created a need to bridge digital assets and tra-
ditional documentation approaches [Eastman et al. 2011]. This also
requires the Facility Management (FM) sector to make use of digital
documentation for building Operation and Maintenance (O&M).
According to Roper and Payant [2014], the use of building automa-
tion within an existing IT infrastructure is the main cornerstone
of an Integrated Workplace Management System (IWMS). These
IWMSs must be able to communicate and provide an informative
analytical output of a given FM operation status to stakeholders.
One requirement for such a system is frequently updated physical
representations of the built environment - in our case this would
include frequently updated snapshots of physical interiors of office
spaces. These snapshots would be used to capture the 3D physi-
cal representation of the environment to a reasonable degree of
accuracy and allow for further inspection, update, and analysis.
An approach to generate these snapshots is with the use of point
clouds.

Using laser scanning and photometry-based methods, point
clouds can provide 3D and textured up-to-date physical representa-
tions of the built environment up to high resolutions (millions of
points per square meter), and featuring intricate details [Discher
et al. 2018]. The ability for FM stakeholders to be able to capture,
classify and collaboratively annotate point-cloud representations
of indoor environments can increase engagement, encourage col-
laboration, and enhance decision making concerning generation of
digital FM documentation.

1.1 Problem Statement and Contribution
Recurring generation of up-to-date representations and documen-
tation of building interiors creates problems when capturing the
current state of the built environment. Apart from historical 2D and
3D data of buildings (e.g, 2D floor plans and 3D CADmodels), which
may not have been updated since the design stage of the building,
manual generation and updating of BIM data is an expensive and
time consuming process. The use of 3D point clouds provides an
efficient, affordable, and manageable alternative to capturing the
physical state of the built environment. Less detailed scans can
also be made routinely and can be used to assess physical changes
over time. A 3D point cloud consists of what can be defined as non-
interpreted data, meaning data that is open to visual interpretation
but does not have any semantics associated with it.

For example, a point-cloud representation of an office will place
all the captured chair, desks, and computers into the same dataset
category (Figure 2 (a) provides an example of an office point-cloud
scan). The use of mobile devices for capturing and generation of
3D point-cloud representations of interior environments has also
become a viable option (e.g., Google Tango specification compatible
consumer mobile devices). The main advantage of using commodity
consumer mobile devices with depth-sensing cameras is the ability
to provide an affordable, flexible, and simple approach for captur-
ing 3D point clouds of interiors, in comparison to more expensive
and professional laser scanning devices [Froehlich et al. 2017]. To
generate up-to-date digital documentation, point cloud data needs

to be segmented and classified and often reconstructed as 3D ge-
ometry: segmentation is required to distinguish different geometric
features in the data and classification is used to add semantics to the
segmented data. Subsequently it can be used as basis for primary
Level of Detail (LOD) representation or as source data for as-is BIM.
Figure 1 illustrates a high-level overview of our approach to this
problem.

Wewant to enable FM users to capture, classify, annotate, and dis-
cuss routinely captured physical representations of interior spaces
from an online portal. Figure 3 illustrates the proposed process
using the methodology described in this paper and the stages of
our approach. With respect to this, the main challenges are:

(1) Accurate and efficient documentation generation without
having to deal with large volumes of point-cloud data and
time-consuming processing.

(2) Users should be able to capture point-cloud data using both
high-end and commodity point-cloud acquisition hardware.

(3) Allow for frequent generation of digital documentation from
point-cloud scans.

(4) Documentation must be centrally accessible to involved
stakeholders via a service-oriented platform.

We present our approach for automatic classification of indoor
point clouds containing multiple different office furniture objects.
We present this using a prototypical web-based application that en-
ables classification, segmentation, and reconstruction of point-cloud
scenes of office interiors. Finally, we discuss the implementation
details of our method using a service oriented approach and provide
preliminary test results.

2 RELATEDWORK
2.1 BIM In the Context of FM
The two key features of using BIM in FM are information sharing be-
tween stakeholders and clash detection, which potentially can help
reduce operational costs [Teicholz et al. 2013]. According to Kincaid
[1994], two important factors of integrated FM are (1) management
of the organization, (2) management of the support and critical
services of the organization. As-is BIM data is used to capture the
current state of the building, in contrast to as-designed BIM data
created during the design and construction stages [Anil et al. 2013].
The visualization-based analytical output of combined as-designed
and as-is BIM, point cloud and sensor data can be combined to
create a Digital Twin [Grieves 2014], that allows for historical and
current real-time representations of building lifecycle-management
topics within the emerging Industry 4.0 realm [Lasi et al. 2014].

2.2 As-is BIM Data from 3D Point Clouds
Current methods for automated classification and reconstruction
of as-is BIMs and 3D geometry from 3D point clouds still require a
degree of manual user input as well as pre- and post-processing,
in order to generate a usable dataset required for digital documen-
tation [Ochmann et al. 2016; Xiong et al. 2013]. Previous research
by Tang et al. [2010] has provided reviews and discussion of cur-
rent methods used for automated generation of usable as-is BIMs
from point clouds. According to Qu and Sun [2015], the required
point-cloud processing can be too complex for routine FM use. As
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(a)

(b)

Figure 2: (a) Example of a 3D point cloud of an office environ-
ment (222 084 points for approximately 20 square meters),
captured using a Google Tango compatible mobile phone,
and (b) the same point cloud, running on a modern WebGL
compatible web-browser.

Figure 3: The proposed process of deriving of office furniture
objects from point clouds and generating digital documenta-
tion for collaborative stakeholder engagement. The yellow
highlighted stages are addressed by our approach.

noted by Dimitrov and Golparvar-Fard [2015], raw point clouds
can contain a number of possibly undesired artefacts, including:
(1) noise introduced due to surface roughness and surface mate-
rial reflections, (2) visual clutter (e.g. small objects), (3) occluding
elements, (4) partially and/or incorrectly captured data and (5) in-
creased point-cloud density due to overlapping scans. The majority
of the previous research on reconstruction has been focused on
reconstructing empty interior spaces at a given BIM LOD, which

does not include things such as office furniture; rather the recon-
struction often focuses on the structural, non-furnished interiors,
registered equipment (in case of manufacturing or maintenance)
and Mechanical, Electrical and Plumbing (MEP) components of the
building [Volk et al. 2014].

2.3 Service-Oriented 3D Visualization
Applications of 3D point clouds, BIM and 3D visualization for FM
are currently at an early stage of adaptation in comparison to other
stages in the building lifecycle, though successful case studies have
been described [Teicholz et al. 2013]. This is mainly due to the de-
manding requirements of dealing with large volumes of generated
digital data (including storage and retrieval) and complexities of
integration with existing IT infrastructure and CAFM (Computer-
Aided Facility Management) approaches [Pärn et al. 2017]. There
are advantages of using 3D visualization in comparison to using
static 2D images (such as floorplans), in terms of enhancing com-
munication between different stakeholders [Fischer et al. 2003].
Majority of current approaches for 3D visualization in FM rely
on desktop-based applications that do not offer the flexibility of
service-oriented applications, such as streaming to mobile thin
clients [Hagedorn and Döllner 2007]. Apart from processing visual-
ization outputs, research by Zhao et al. [2015] describes the use of
a service-oriented architecture to update BIM and energy models
during the design phase of a building construction project. Further,
Scully et al. [2015] describes how web-based 3D visualization can
be used for tracking of related 3D assets through a service-oriented
and BIM-enabled online repository. Lee et al. [2016], describe an
online FM portal for collaborative visualization and decision mak-
ing using web-based 3D visualization technologies. There is a clear
paucity for the use of service-oriented approaches for enabling
FM stakeholders to generate, document, track and discuss digital
representations of interior building environments centrally.

2.4 Multiview-Based Classification Methods
With the current advancements in machine learning driven by
computer vision and robotics applications, there is an ongoing re-
search in the classification and generation of semantics for and from
3D point-cloud data. Most notable approaches rely on machine-
learning methods for training and classifying 3D Convolutional
Neural Networks (CNNs) as well as Deep Learning methods [Ioan-
nidou et al. 2017]. The development and release of Google’s Incep-
tion V3 CNN model and TensorFlow API allows for more practical
implementation and application of machine-learning-based meth-
ods for classification of 2D and 3D data [Abadi et al. 2016; Szegedy
et al. 2016]. The two mainstream methods for classification of 3D
data include 3D voxelization and 2D image-based classification. The
former uses a 3D CNN trained on the voxelized representation of a
given 3D object in order to distinguish between geometric features
(examples include Qi et al. [2017] and Wang et al. [2017a]), while
the later uses a 2D CNN image classifier and uses 2D images of 3D
objects for classification. However, in terms of both training and
classification, using a 2D image-based approach is still considered
to be faster and more optimal [Wang et al. 2017b].

There is a recent trend towards using multiview-based methods
for classification on 3D data, with notable approaches described
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by Ma et al. [2017], Boulch et al. [2017], and Kanezaki et al. [2016].
Multiview approaches generate 2D training data for classifying
3D objects by taking consecutive screen captures around a 3D
object. The way the images are generated are largely left to the
programmer to decide (e.g., using spherical projection images of 3D
objects described by Cao et al. [2017]). This makes multiview-based
classificationmethods suitable for web-based 3D visualization using
a service-oriented approach, where 2D image data is smaller and
faster to classify than 3D point clouds. This is especially important
for 3D point clouds since their data can be very large in size, e.g.,
a few terabytes for one building. Our research expands on the
approach explored by Dietze et al. [2017], for classification of single
3D geometry objects based on 2D images and 3D models using a
service-oriented architecture.

3 APPROACH AND IMPLEMENTATION
We have implemented a prototypical 3D web application based on
the service-oriented architecture paradigm. It enables users to load
and classify point-cloud data via an user interface running in any
WebGL compatible browser (Figure 2 (b)). We can currently load
and classify scenes with up to 1.5 million points for approximately
twenty square meters. We focus on a simpler 2D image-based classi-
fication approach, in contrast to dealing with larger and more com-
plex 3D point-cloud data types and structures, to accommodate our
methodology for service-oriented use. The primary technologies
used for our approach are HTML5, WebGL (via Three.js), Node.js,
Websockets, Python and the Google Tensorflow machine-learning
framework.

The client-server model allows for communication between the
back-end processing (implemented as a Node.js server interfacing
Python image classification scripts), and the front-end for display-
ing the classification results (Section 3.1.3). The output of our web-
based application is a numerical and visual classification result that
is presented to the user in the form of an interactive 3D scene for
inspection. In addition, our application can approximate spatial
positions where placeholder 3D models of classified 3D models can
be inserted. We can also extract point clusters from classified octree
nodes, thus implementing basic segmentation (Sections 4.2.1).

3.1 Service-Oriented Architecture Overview
The client-side is responsible for the following operations: (1) load-
ing and displaying of point clouds, (2) generation and displaying
of an octree for loaded point clouds for visual debugging, (3) gen-
eration and validation of cubemap faces, (4) notifying the server
that the generated data is ready for classification, (5) receiving and
displaying the classification results from the server, (6) segmenta-
tion of point-cloud data, and (7) k-means clustering and 3D object
placement (reconstruction).

Figure 4 illustrates this processing pipeline of the client-server
model. We currently perform the majority of data generation on
the client-side. While this approach limits data throughput to and
from the server, it allows us keep all the generated data locally on
the client machine and facilitates better digital rights management.
Using this approach, sensitive data (except the cubemap images)
does not need to be sent to a remote server for classification. The

cubemap images that are sent could possibly be encrypted by the
client and decrypted on the server prior to classification.

Using the client-side interface, a user is able to load in a raw point
cloud for classification. We use RGB point-cloud data in the PLY file
format. The web application then automatically partitions the point
cloud using an octree of adjustable complexity. The octree complex-
ity is determined by the sampling size of points set by the user. The
more points that are sampled, the more sparse the generated octree
becomes. At each octree node that contains a point cluster, a virtual
camera position is computed. Generation of cubemap images is
performed on the client-side, while the classification is computed
on the server-side using Python (with TensorFlow being installed
as a separate add-on for Python). The generation of the cubemaps
is handled via a fragment shader and saved as a JPEG image using
the HTML5 Canvas 2D image processing components. Commu-
nication from the server JavaScript code and the Python code is
enabled through Node.js using an extension (called PythonShell).
Each of the generated cubemap images is then classified using a
retrained version of the Inception v3 CNN model via TensorFlow.
The classification average value of a node is obtained by summing
up each object type classification percentage for valid cubemap
faces, and dividing the total number of its valid cubemap faces. The
average classification results are sent back to the client application
to be presented as a percentage-based value for each object type
at each octree node that contains a given point cluster. Nodes that
have completely invalid faces are not used for classification.

Once the 3D point cloud has been classified, we use k-means
clustering to generate placeholder nodes for 3D objects from the
classified octree nodes. The number of placeholder nodes is based on
the number of objects that are set prior to classification. This allows
us to place 3D models in approximated positions in 3D space to
enhance visualization and enable comparison between the original
point cloud scan. The extraction of point clusters from classified
nodes is also possible and allows us to perform basic segmentation
if required (Section 4.2.1).

3.1.1 Spatial Partitioning Using Octrees. One of the main re-
quirements for this project was to be able to classify multiple fur-
niture types in a captured 3D point cloud. A typical scene may
contain more than one object type, such as multiple chairs, a table,
and a sofa in the background. While 3D and 2D CNNs can be used
successfully to classify single objects, including multiple objects for
classification requires partitioning of the 3D scene in order to treat
each partition as a cluster belonging to a given object type. The
use of an octree structure for partitioning and discretization has
previously been used by Wang et al. [2017a] for training a 3D CNN
using voxelized 3D objects, and by Qi et al. [2017] for multiview-
based classification. Octrees have also been researched by Bassier
et al. [2017] for segmentation of unstructured point cloud scans
of building interiors using region growing-methods (particularly
random fields for sampling octree clusters for segmentation). We
decided to use an octree for spatial partitioning mainly because
it provides a reasonable performance in terms of node traversal
in comparison to other solutions such as kd-trees and BSPs, and
scales sufficiently to the spatial distribution of point clouds. We also
needed to use an octree instead of a quadtree due to dealing with
data with variable point distribution in 3D space. Figure 5 (a) shows
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Figure 4: The presented client-server model showing the data flow, processes, and systems used for our approach.

the results of an octree for an input point cloud and the generation
of the classified octree nodes for the classification result.

(a) (b)

Figure 5: (a) Example octree used for image-based classifica-
tion with generated valid cubemap faces, and (b) example of
methodused to generate 2D image training data using octree
node positions (top) and random positions (bottom).

3.1.2 Generation of Cubemap Images. At each octree node that
contains a point cluster, a virtual camera position is computed.
This virtual camera generates a cubemap of the location, while the
visibility of other octree nodes is disabled (this prevents occlusion
and points from other nodes intruding the current node whose
cubemap is being generated). This approach allows us to capture the
complete environment around each node center as a single image.
We also check if the generated cubemap faces have an average
color value of less than 250 for each of the RGB color channels.
These faces are marked as being valid, otherwise they are marked
as invalid and we do not classify whitespace (blank) faces with
none or too few points. One current limitation of this this approach
is that it works only on RGB color values that are not bright. A

remedy to this would be to use a binary coverage map along with
RGB color values (Section 5).

This image is then converted to cubemap faces using the HTML5
Canvas API and sent to the server for image classification. The
generated cubemap faces are resized to 300 × 300 pixels size and
saved as JPEG images (recommended size and file type for image
classification using the Inception CNN). File names of the generated
cubemap faces that aremarked as valid are given a numerical ID that
corresponds to a specific octree node in the scene. This allows us to
map calculated classification result averages to each corresponding
octree node. Due to security reasons, the generated cubemap face
images and any segmented point-cloud clusters must be explicitly
downloaded by the user via the client webpage. We remedy this by
using a default assets directory with the web browser to where we
download all the generated data.

3.1.3 Client-Server Model Implementation. The server is imple-
mented using Node.js and communication with the server is es-
tablished via the Sockets.io library, using an echo client/server
architecture. The server listens to any communication by the client
from a given port, such as incoming SEND responses for receiv-
ing data and GET responses for sending classification results. The
server calls the image classifier script implemented in Python 3.5
using Tensorflow. Once the classification results have been gener-
ated by calling the image classifier Python script, the server loads
in the classification results (stored as JSON data and saved as text
files on the server), parses them and sends the results back to the
client. The client then averages the result for each corresponding
node that the valid cubemap faces were generated from. The server
then removes the generated cubemap faces and results once the
classification has been completed.

3.2 CNN Retraining Methods and Testing
Criteria

The training point-cloud data was obtained from the RGB-D Ob-
ject Dataset from University of Washington [Lai et al. 2011] and
the IRML point-cloud dataset [Gómez 2018]. The image data sets
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used for retraining the CNN model were generated using two ap-
proaches. With the first approach, the set of training data was
generated by randomly sampling 32 different locations around each
point-cloud object and then generating the corresponding 2D im-
ages of cubemap projections at those points. For the first approach
the axis-aligned bounding box for a given point-cloud object is
calculated, then the random points used as camera positions are
generated within the bounding box. This approach was selected
as it closely resembled how the point clusters may be partitioned
within an octree structure, but is faster. The second approach is
based on the actual node locations using the generated octree par-
tition of the point-cloud cluster. This approach is identical to the
main classification approach, except only the first two stages of the
classification pipeline are used. For the retraining of the CNNmodel,
we used between 300-700 images per object category. For each of
the datasets, two different testing categories were established. First,
there is a simple testing category that features no more than two
types of objects in the same 3D space. The second, more complex
category, features multiple instances of any of the three object cat-
egories arranged in various positions in the same 3D space (this
complexity factor is based on the number of different object types
in the scene and not on the complexity of the point cloud itself).
The out-of-core point-cloud data was considerably lower resolu-
tion than the dataset constructed using the in-core point-cloud test
data (on average 100 times more sparse). For each of the datasets
and their complexity categories, three different octree complexity
presets were chosen (low, medium, and high). Overall we had 72
different test cases (36 for each of the two test datasets). Figure 5
shows examples from both training data generation methods.

3.2.1 CNN Model Retraining Configuration. The Inception V3
CNN model was retrained via TensorFlow (Inception V3 was orig-
inally trained using ImageNet dataset [Russakovsky et al. 2015]).
The retrained CNN configuration used was based on Google [2018].
For our classification tasks we only had to retrain the last bottle-
neck layer of the CNN with the new image categories. The training
data input vector size is 300 × 300 × 3 elements. Random distortion
of training data (brightness, scale, and cropping) was not utilized,
as the generated point cloud 2D image data is fairly uniform in
terms of visual elements (point size, color, and opacity). The pre-
dicted classification accuracy with this approach is 81.3%, using
4000 training steps with a learning rate of 0.01. We use a linear
softmax function for generating the classification probability scores
for the input image data. The specific hyper-parameters used for
the retraining of the last bottleneck layer of the Inception V3 CNN
are included in Table 1, along with the recommended default hyper-
parameters for complete retraining. For practical fine-tuning of the
hyper-parameters, other possible configurations are described by
Bengio [2012].

3.3 Visualization Features
We use Three.js for the client-side rendering system. It is based
on WebGL and allows for the use of the OpenGL ES 2.0 and 3.0
API specifications within a compatible web-browser [Cabello et al.
2010]. The use of high-level JavaScript classes hides underlying
WebGL code and allows for advanced real-time 3D features such
as model loading (including PLY file format support for 3D point

Table 1: Default model retraining hyper-parameters and the
specific hyper-parameters used for retraining the last bottle-
neck layer of the Inception V3 CNN.

Default/Retrained Hyper-Parameter Value

Default RMSPROP_DECAY 0.9
Default MOMENTUM 0.9
Default RMSPROP_EPSILON 1.0
Default INITIAL_LEARNING_RATE 0.1
Default NUM_EPOCHS_PER_DECAY 30.0
Default LEARNING_RATE_DECAY_FACTOR 0.16

Retrained RETRAINING_LEARNING_RATE 0.01
Retrained BOTTLENECK_TENSOR_SIZE 2048
Retrained MODEL_INPUT_WIDTH 300
Retrained MODEL_INPUT_HEIGHT 300
Retrained MODEL_INPUT_DEPTH 3
Retrained TRAINING_STEPS 4000
Retrained TESTING % 10%
Retrained VALIDATION % 10%
Retrained EVAL_STEP_INTERVAL 10
Retrained TRAIN_BATCH_SIZE 100
Retrained TEST_BATCH_SIZE 1
Retrained VALIDATION_BATCH_SIZE 100

clouds), scene navigation, 3D data structures (octrees), and GPU-
based rendering. Further, it features a flexible scene-management
system where each component of the scene is added to a scene
graph and accessed using a hierarchical function call system. The
rendering of the point clouds is enabled through the use of a built-in
point material shader. While the shader code for default materials
is not exposed, input parameters such as point size and opacity
can be adjusted. Three.js also supports loading the COLLADA 3D
file format for visualizing the 3D placeholder models. We also im-
plemented debug rendering of the octree and the associated valid
nodes for easier verification output. One limit of Three.js for visual-
izing point clouds is the lack of support for out-of-core rendering of
massive amounts of point-cloud data, thus it can only be used to vi-
sualize point-cloud scenes in real-time with approximately 1 million
points, without resorting to the use of more sophisticated scene and
memory management methods [Richter et al. 2015; Schütz 2016].
While we do use an octree for classification purposes, we have not
focused on using it as an acceleration structure for rendering large
point-cloud datasets.

4 RESULTS AND DISCUSSION
This section presents the preliminary results that we have obtained
by testing our approach. We tested for the general accuracy of the
classification model, the visualization accuracy (how well the dis-
tinctions between different object types are made visually), segmen-
tation and reconstruction results, and finally the basic performance.
Our approach addresses the key issues stated in Section 1.1 by:

(1) Allowing users to classify scans of indoor offices using a
retrained model able to classify specific object types.

(2) Our implementation supports point-cloud resolutions that
can typically be acquired using commodity hardware (e.g.,
mobile phones with a depth-sensor camera).

(3) Users can load and classify different point clouds multiple
times without having to reset the system or adjust parame-
ters unless needed to do so.

(4) Service-oriented architecture can be extended to include
collaborative and centralized documentation access.
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Table 2: True positive classifications for each of the 6 test
scenes for each octree complexity category in the two in and
out-of-core test datasets. The average number of generated
nodes for each of the six scenes for the given (low, medium,
or high) octree complexity is included.

Datset Average Nodes Test Scenes True Positive

In-core_Set_1 42 6 5
In-core_Set_2 49 6 5
In-core_Set_3 55 6 5
In-core_Set_4 87 6 6
In-core_Set_5 100 6 5
In-core_Set_6 111 6 6

Out-of-core_Set_1 35 6 4
Out-of-core_Set_2 49 6 3
Out-of-core_Set_3 56 6 3
Out-of-core_Set_4 70 6 2
Out-of-core_Set_5 97 6 4
Out-of-core_Set_6 121 6 1

Table 3: Set 1 correspondence between octree complexity
and the classification percentage for each number of object
types in the scene (N = Number of valid generated nodes, S
= Sofa, T = Table and C = chair).

Model N %S %T %C Points
Set_1_Scene_1 23/27 4.34 17.39 78.26 203894
Set_1_Scene_1 30/34 6.7 26.7 67.7 203894
Set_1_Scene_1 31/40 3.22 12.9 83.87 203894
Set_1_Scene_2 80/100 16.25 23.75 60 640662
Set_1_Scene_2 91/115 24.17 24.17 51.64 640662
Set_1_Scene_2 101/130 31.68 17.82 50.5 640662
Set_1_Scene_3 3/14 0 33.3 66.6 4244
Set_1_Scene_3 5/22 0 20 80 4244
Set_1_Scene_3 6/28 0 33.3 66.6 4244
Set_1_Scene_4 6/37 16.6 50 33.3 12524
Set_1_Scene_4 14/49 0 21.4 78.6 12524
Set_1_Scene_4 14/53 0 28.57 71.43 12524

Table 4: Set 2 correspondence between octree complexity
and the classification percentage for each number of object
types in the scene (N = Number of valid generated nodes, S
= Sofa, T = Table and C = chair).

Model N %S %T %C Points
Set_2_Scene_1 28/34 3.6 64.28 32.14 589638
Set_2_Scene_1 13/22 7.7 61.53 30.77 589638
Set_2_Scene_1 9/14 0 55.55 44.44 589638
Set_2_Scene_2 12/20 58.33 33.33 8.33 212947
Set_2_Scene_2 7/9 85.71 0 14.3 212947
Set_2_Scene_2 4/6 75 0 25 212947
Set_2_Scene_3 13/21 46.15 38.46 15.38 32893
Set_2_Scene_3 10/14 40 40 20 32893
Set_2_Scene_3 8/11 25 50 25 32893
Set_2_Scene_4 16/23 12.5 25 62.5 10974
Set_2_Scene_4 7/10 0 14.28 85.71 10974
Set_2_Scene_4 6/6 0 10 90 10974

4.1 Classification Model Accuracy
We have aggregated the data from the 72 different test cases, divided
into 36 test cases using the in-core data and 36 using the out-of-core
data for testing (Table 2). We used 6 different test scenes for each
dataset at three different octree complexities (low,medium, and high
complexity). This was tested with the initial version of retrained
CNN model (using randomly generated camera node positions for
generating the training data). We used two different point-cloud
datasets for testing the accuracy of the classification method. In
this paper we presented the true-positive classification accuracy

results only for the initial version of the classification model. The
first dataset was composed of the original in-core training data,
but edited so that multiple objects were merged in the same file,
thus essentially creating a new dataset. Whether or not the set is
classified correctly, is determined by comparing the classification
percentage of a specific object classification based on the actual
number of such objects in the scene. The test scenes created using
the in-core data have an 88.8% classification success rate, while the
test scenes created using out-of-core data have a significantly lower
classification success rate of 42.2%. For the worse classification rate
for the out-of-core data, it shows that our system currently works
best for classification of objects containing similar visual features as
the training data. Therefore, our approach is not suitable for general
classification. Since most office buildings have specific furniture
styles, in reality for each use case our system would need to be
retrained for specific office building furniture.

4.2 Empirical Results

(a) (b)

(c) (d)

Figure 6: Set 1 empirical results (red nodes = chair, green
nodes = table and blue nodes = sofa): (a) Set_1_Scene_1 (n
= 31/40 valid nodes), (b) Set_1_Scene_2 (n = 91/115 valid
nodes), (c) Set_1_ Scene_3 (n = 5/22 valid nodes) and (d)
Set_1_Scene_4 (n = 14/49 valid nodes).

The presented empirical results show that the image-based clas-
sification system is able to provide a sufficient description of the
composition of objects in the scene (Figure 6 and Figure 7, Table 3
and Table 4). The empirical results were obtained using two ver-
sions of the retrained CNN model. The first version is the same
CNN model used to obtain the classification model accuracy results
in Section 4.1 (training data created using only randomly gener-
ated camera node positions). The second version uses both the
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(a) (b)

(c) (d)

Figure 7: Set 2 empirical results (red nodes = chair, green
nodes = table, and blue nodes = sofa). The bounding boxes
of valid nodes of the generated octree are rendered, in order
to show the lower octree complexity used for classification.
Portions of outer octree bounding boxes have been removed
to show better focus on the visual classification result in the
center. (a) Set_2_ Scene_1 (n = 9/14 valid nodes), (b) Set_2_
Scene_2 (n = 7/9 valid nodes), (c) Set_2_Scene_3 (n = 8/11 valid
nodes) and (d) Set_2_ Scene_4 (n = 6/6 valid nodes).

randomly generated camera-node positions and those captured
from the octree object representation. The two sets of data used
for the empirical results have the following properties and test
configurations:

(1) Set_1_Scene_1 and Set_1_Scene_2 were created using in-core
data, while Set_1_Scene_3 and Set_1_Scene_4 were created
using out-of-core data, and using the initial version of the
retrained CNN model.

(2) Set 1 results were acquired using a more complex octree
(more nodes for classification).

(3) Set 2 is composed also of four test scenes, but all four test
scenes were created using in-core data.

(4) Set 2 results were acquired using a less complex octree, and
using the second version of the retrained CNN model.

The test data we used for the empirical results consists of vari-
ations of the three different furniture types, with different spatial
arrangements and rotations of multiple objects in a given scene.
The results from Set 1 show that increasing the density of the octree
and the number of generated nodes does not guarantee increase in
the accuracy of the classification method. Tables 2 and 3 provide a
comparison of the obtained results. We can conclude from the com-
parison of the two set results that a sparser octree is better suited
for classification. The points contained in these sparser and larger

node volumes are easier to distinguish based on their color and spa-
tial distribution, rather than a sparser point sample that would be
captured for classification if using a higher resolution octree with
higher segmentation. All of the test data was edited prior to classi-
fication to remove walls, ceilings, floors, and other non-classifiable
objects. For sparse point clouds we found that increasing the point
size during rasterization provides a better classification result. This
approach works fairly well if the overall shape of the object can
be preserved. We also observed empirically that there was not a
noticeable difference in the classification results due to using two
different versions of the retrained CNN models. This is possibly
due to using a smaller sampler size of training images per category
(less than 1000).

4.2.1 Segmentation, Reconstruction and Performance Results.
Our segmentation approach allows for point clusters from clas-
sified nodes to be extracted and exported as 3D point coordinates
in the XYZ file format. The reconstruction of classified point clouds
is possible by placement of 3D furniture models. The placement of
these 3D models is based on the calculated k-means centers, and
allows us to provide a better visual approximation of the spatial
arrangement of furniture objects. Figure 8 illustrates examples of
the reconstruction and segmentation methods. In terms of perfor-
mance, we have measured preliminary computation performance.
We can classify a scene of less than 50 nodes and 30 000 points
within two minutes average. The development desktop computer
used is a commodity PC with an Intel Core i5-6500 CPU at 3.2GHz,
8GB RAM and an NVIDIA GeForce GT 630 graphics card with 2GB
of dedicated video memory.

(a)

(b)

Figure 8: (a) Reconstruction by placement of 3D models
at k-means centers (larger cubes, models obtained from
SketchUp 3D Warehouse), and (b) example segmentation of
a desk object (green point cluster).
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5 CONCLUSIONS AND FUTURE RESEARCH
In this paper we have demonstrated the feasibility of our idea for
automatic deriving of indoor office spaces from point clouds for
potential FM and BIM use. Our image-based classification approach
can be used for fast labeling and extraction approximations of in-
door spaces. Our approach also allows for the classification of image
data, streaming, and viewing of the results using a service-oriented
approach. Potential for parallel computation of convolutions and
max pooling, as well as using multiple layers utilizing GPU and
cloud computing, will be investigated for CNN model retraining
(along with feature map merging and using larger sample sizes for
object category training data). We also want to include the use of
a binary coverage map in addition to checking the RGB values to
detect faces for brightly colored surfaces and sparse point clusters
that may otherwise be marked as invalid. Finally, we want to ex-
pand our client web application to allow multiple users to upload,
classify, inspect and annotate point cloud scans of office interiors.
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