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Figure 1: Classification of indoor point clouds, using the viewpoint entropy of a virtual perspective camera view of a 3D point
cluster. The entropy is obtained as a vector parallelism measure between the randomly sampled cluster bounding sphere
vertices (used as virtual camera positions and directions), and point cluster normal vectors. This approach allows for semantic-
enrichment of indoor point cloud scenes, implemented as a light-weight service-oriented Web3D software component.

ABSTRACT
We present an approach for classifying 3D point clouds of indoor
environments using Convolutional Neural Network (CNN)-based
image analysis for entropy-selected 3D views. Prior to classification,
the 3D point clouds are clustered using either Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) or k-Means algo-
rithms. We then use randomly sampled 3D point normal vectors
as an entropy descriptor to calculate the direction and position of
the virtual camera, which is placed around these clusters. It syn-
thesizes 2D images of a given cluster from multiple views with
positions and directions that have highest visual entropy. We then
proceed to classify the images using a retrained CNN. We test our
approach for classifying common office furniture items using both
synthetic and actual 3D point clouds of typical indoor office spaces.
The empirical results demonstrate that our approach is suited to-
wards classifying specific indoor furniture objects. We also describe
how our approach can be implemented as a lightweight compo-
nent within a service-oriented system that is used for visualization
and classification of 3D point clouds using a given Web3D tool.
The resulting semantically-enriched 3D point clouds can further be
used for digital indoor environment representations, with further
use as base data for Building Information Model (BIM), Facility
Management (FM), and Digital Twin (DT) applications.
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1 INTRODUCTION
Classification of indoor 3D point clouds is becoming increasingly
important as photogrammetry and laser-based scanning acquisition
technologies are rapidly adopted to capture the physical state of
all kinds of as-built environments. In particular, 3D point clouds
can represent the physical features of indoor environments (e.g.,
room representations, furniture objects, machinery, and any other
static features of the operational areas) at varying Level-of-Detail
(LOD). Insofar, indoor 3D point clouds serve as source data for as-is
BIM generation [Teicholz et al. 2013], and provide a basis for DT
representations [Stojanovic et al. 2018b]. While 3D point clouds
may feature either RGB or intensity color-mapped representations,
because they are mainly interpreted visually by users, the semantics
are not explicitly contained in the data. Manually segmenting 3D
point clouds and assigning semantics tends to be a time consuming,
error prone, and costly process. In contrast, our approach classifies
3D point clouds of indoor environments using a retrained CNN
based on image analysis for entropy-selected 3D views that allows
for object detection and adding semantics to 3D point clouds used,
e.g., for further reconstruction and representation tasks (Fig. 1). It
aims to enable flexible and fast classification on indoor point clouds
within the context of Web3D, utilizing lightweight service-oriented
web-application components for routine visualization, classification,
and semantic enrichment of such data. We have implemented the
presented cluster, viewpoint entropy selection, and point cloud
visualization methods using Three.js [Cabello et al. 2010]. However,
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our approach is adaptable for integration and extension of most
Web3D-based tools, specifically those that can support 3D point
cloud visualization.

Motivation. Image-based classification relies on using a CNN
model to classify image data, based on given training data used as
examples for classification categories. Since 3D point clouds are
predominantly captured from physical as-built built environments
[Qu et al. 2014], a CNNs can be trained using photographs of specific
indoor features or objects (e.g., furniture, machinery, or structural
features), and used to classify 2D images synthesized from 3D point
clouds. These photographs may feature items in various positions
and projections. If specific objects are required to be classified, then
images containing optimal views of given objects are best suited for
training. The CNN trained to classify specific images can be applied
to classify 2D images of 3D point clusters containing expected
items. However, the more items are partially occluded, the more
the correct classification of item types decreases. To improve the
classification approach, multiple 2D images of a given 3D point
cluster need to be classified. By using optimal viewpoints for taking
images of 3D point clusters, we can reduce the amount of time
and data required for classification, while increasing the overall
classification accuracy of specific item clusters in the given scene.

Research Contributions. Our approach automatically classifies
indoor 3D point clouds, based on classifying automatically deter-
mined multiple 2D images synthesized from 3D point clusters. The
views are selected such that the most useful amount of visual in-
formation, i.e., those with highest entropy, is shown [Castelló et al.
2006]. Our method to select viewpoints is based on an entropy
measure, i.e., a measure of normal vector parallelism. Randomly
sampled inverted normal vectors from the bounding sphere of a
given 3D point cluster are taken as camera positions and directions
based on their parallelism in terms of direction to the pre-computed
3D point cluster normal vectors. The 2D images of 3D point clusters
with optimal viewpoints are then synthesized and classified, and
the classification results are averaged for each cluster, and streamed
back into the 3D point cloud for semantic enrichment. In particular,
we focus on detecting common office furniture items (e.g., chairs,
sofas and tables); the corresponding 3D point clouds are generated
by commodity mobile scanning devices applying photogrammetric
methods for 3D point cloud acquisition. We also evaluate the use
of k-means and DBSCAN for clustering of points and discuss their
advantages, comparative performance and limitations for specific
clustering tasks of indoor 3D point clouds.

We also discuss how this approach can be implemented as a
data processing service for 3D point clouds. Experimental results
are presented regarding the classification approach using different
clustering methods. We have tested our approach using synthetic
datasets, and real-world indoor 3D point clouds using the Stanford
dataset [Armeni et al. 2017]. We compare the classification cor-
rectness and limitations for classifying as-is 3D point clouds with
RGB information containing common office furniture. Finally, the
classification accuracy of our approach is compared against another
similar multiview classification method described by Stojanovic
et al. [2018a].

2 RELATEDWORK
Semantic Enrichment of 3D Point Clouds. Two approaches for

semantic enrichment of 3D point clouds are presented by Armeni
et al. [2016] and Armeni et al. [2017]. The first paper proposes
a method where raw 3D point clouds are parsed into 3D space
volumes, which are aligned into a canonical reference coordinate
system. This approach relies on assuming the structural similarity
of disjoint indoor spaces—taking into account the fairly detectable
spatial histogram signature of void spaces between representative
3D point clusters of rooms. Once the rooms have been detected,
other features such as furniture can be detected by using a sliding
box representation to capture and inspect any remaining point
clusters using voxelized elements of the sliding box for geometric
classification. The second approach uses joint 2D and 3D scene
data for semantics generation. This includes the 2D RGB images of
the scene, 2.5D images including depth and surface normal vectors,
and the 3D point cloud and reconstructed meshes. The semantics
for a 3D point cloud are generated using the same approach as in
the first paper, but these semantics are then aligned with all of the
associated scene data types.

Recent research by Runceanu and Haala [2018] has focused on
semantic enrichment of indoor 3D point clouds for BIM reconstruc-
tion, making use of region growing segmentation based on point
normal vector and color similarity. Segmented regions allow for
training a Random Forest classifier, which is then applied to detect
segments and to assign corresponding semantics to them. With
advances in machine learning, new approaches for semantic en-
richment rely on using 2D and 3D CNNs for classification of built
environment features [Ioannidou et al. 2017]. The 2D and 3D CNNs
classify 3D point clouds effectively for semantic enrichment of both
indoor [Dietze et al. 2017] and outdoor scenes [Hackel et al. 2017;
Huang and You 2016; Wolf et al. 2019]. We extend the previous
work of Stojanovic et al. [2018a], by evaluating a method for im-
proving the generation of multiviews (instead of using perspective
projections captured in cubemap images) to increase the proba-
bility of correct classification of indoor 3D point clouds. Apart
from parsing semantics, interactive viewing and annotation are
also requirements for multiple stakeholder engagement; such as
web-based 3D visualization for outdoor 3D point clouds described
by Discher et al. [2018a].

Multiview Classification. The two established methods for classi-
fying 3D data include 3D mesh feature and 2D image-based classifi-
cations. The former applies a 3D CNN trained on either on mesh
features such as surface curvature, or the voxelized representation,
of a given 3D object to distinguish between geometric features
(examples include Qi et al. [2017] and Wang et al. [2017a]). The
later applies a 2D CNN image classifier, and uses consecutively cap-
tured 2D images of 3D objects for classification. However, in terms
of both training and classification, a 2D image-based approach is
still considered to be faster and more suitable [Wang et al. 2017b].
Earlier research on 3D shape classification based on multiview
classification was presented by Su et al. [2015]. The authors de-
scribed two different multiview classification setups for capturing
2D images of 3D objects. The first setup assumes that the 3D object
being captured placed on a given axis and 12 cameras are placed
around the model at even angle spacing. The second setup assumes
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that the 3D model is not orientated towards a specific axis and
uses an icosahedron placed around the model to capture different
views (using the vertices of the icosahedron as camera locations).
At all times, the direction of the camera is oriented towards the 3D
object. The classification results show that 2D CNN classification
on the multiview images outperformes the 3D shape classification
methods at that time.

In Kanezaki et al. [2018], a dodecahedron determines the camera
view sampling locations from all directions towards the 3D object
with the elevation angle of the camera being changed using a given
angle interval. The use of such geometric primitives for view sam-
pling has influenced our approach of using bounding spheres for
viewpoint generation of segmented 3D point clusters. In terms of
classifying 3D point clouds using multiview classification, more
recently multiview approaches expand on this research by com-
bining multiview classification with 3D point clouds CNNs [You
et al. 2018]. Another notable approach is based on partial and down-
sampled multiview 3D point clusters of indoor spaces instead of 2D
images to perform automatic classification and segmentation [Zhu
et al. 2018]. While multiview classification has distinct advantages
over other 3D shape classification methods, the approach disregards
the attributes of the 3D model itself and relies on generating a set
number of consecutive images [Huang et al. 2018]. From current
multiview approaches, the direct correlation between the captured
3D viewpoint and the classification result is observed.

Viewpoint Entropy. Selecting optimal viewpoints to visually in-
spect and comprehend 3D shapes has been an active area of com-
puter graphics research for many decades, though methods for
selecting optimal viewpoints for 3D point clouds are not discussed.
Early approaches to viewpoint selection made use of human partici-
pants for selecting optimal viewpoints of generic 3D models [Blanz
et al. 1999]. Soon the idea of selecting the most optimal viewpoint
shifted towards an automated approach, making use of visual en-
tropy for selection of “best views”. The computation of viewpoint
entropy has been described by Vázquez et al. [2001] as the amount of
visual information available for a single view based on the relative
area of the projected 3D geometry faces over the sphere of virtual
camera view directions centered in the viewpoint. This probability
measure is based on information theory entropy measurement. The
authors modify the value of the main probability variable to relate
to the measure of the angle from the viewpoint direction to the
angle of a given mesh face normal vector. The selection of surface
features for measuring the viewpoint entropy is related to the mesh
saliency of a given 3D object [Lee et al. 2005; Yamauchi et al. 2006].
This refers to the quantifiable features of a given 3D object that can
be viewed, such as its surface curvature, which in turn effects user
perception or entropy calculation for selecting a specific view of
the object.

There is a wide selection of viewpoint entropy calculation meth-
ods based on different saliency measures, with reviews of methods
performed by Bonaventura et al. [2018] and Dutagaci et al. [2010].
Each viewpoint entropy method is suitable for specific use cases
and needs to be adapted for specific 3D object attributes (e.g., volu-
metric model viewpoint selection [Takahashi et al. 2005]). Other
notable research by Riemenschneider et al. describes an approach
for predicting a best view for semantic labeling of building facade

components, using an entropy measure based on sparse geometric
features [Riemenschneider et al. 2014]. Per-point normal vectors
approximate the surface of the local point proximity. These can
be computed efficiently by analyzing the local neighborhood of
a point [Mitra and Nguyen 2003], and are used to orientate the
point primitive according to the represented surface. The neigh-
borhood of a point can be defined based on a sphere or a number
of nearest neighbors (knn). It is computed using the covariance
matrix of the neighbors and corresponding eigenvectors and eigen-
values [Hoppe et al. 1992]. Alternatively, a more robust normal
estimation approach can also be used [Mura et al. 2018].

Wemake use of point normal vectors related to randomly-sampled
viewpoints from an object-centred bounding sphere to establish
the optimal viewpoints for multiview classification. A 3D bound-
ing sphere is optimal for approximating the randomly distributed
sampling positions for entropy calculation, as it allows a 3D object
to be viewed from multiple and evenly distributed viewing direc-
tions. The random sampling and computation of viewpoint entropy
measurements is inspired by the research from Lauri et al. [2015],
where a Monte Carlo tree-search simulation is applied to optimize
a system for finding the optimal views for object recognition.

3 APPROACH
Our approach is based on the use of clustering methods for seg-
menting spatial regions of RGB 3D point clouds with respect to
furniture objects. The point cloud is first acquired by the user, using
common RGB point cloud acquisition methods (e.g., photogram-
metry). Our current approach also requires the user to provide a
segmented point cloud with pre-computed normal vectors. Addi-
tionally, the user has to adjust the desired clustering parameters
(e.g., number of clusters based on number of furniture objects in
the scene), as well as the viewpoint entropy sampling parameters.
The pre-segmentation is required to remove the walls, floors, and
ceiling point clusters — this can either be performed automatically
or manually by the user. The normal vectors of the segmented point
cloud can then be pre-computed, using a planar local surface ap-
proximation model (with a preferred normal orientation along the
positive Y-axis). We use the open-source software CloudCompare to
accomplish these pre-processing tasks [Girardeau-Montaut 2011].

For each generated furniture 3D point cluster we generate a
bounding sphere with 994 vertices, using the default 3D sphere
object included with the Three.js framework (Section 3.4). The
bounding sphere encloses each furniture object point cluster. We
use the shuffle method by Fisher et al. [1949] to shuffle an array
copy of the generated bounding sphere vertices, whose position
and inverted normal vectors we then randomly sample a portion
of as a set. We use this set for sampling potential camera directions
and positions. We then compare the inverted sphere vertex normal
vectors from this set to each of the corresponding 3D point cluster
normal vectors. For each of the 3D point cluster normal vectors
that are close to being parallel to the camera direction vector (e.g.,
if the dot product is between 0.75 to 1.0), we mark as an optimal
view (Fig. 2). We use this as the main entropy measure for the
captured viewpoints. The generated multiview images are then
classified, where they are given a classification score (probability
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of being either a sofa, chair or table object), and the average classi-
fication value is then computed for that given cluster. The entire
implementation is used as part of a classification component for a
service-oriented prototype application for semantic enrichment of
indoor 3D point clouds. This process is repeated for each cluster in
the 3D point cloud.

Figure 2: Example of selection and generation ofmultiviews
for a chair object point cluster. Bounding sphere vertices
(blue) are selected as multiview camera positions and direc-
tions (red), based on the parallelism entropy measure be-
tween the inverted bounding vertex normal (blue) and the
point cluster normal vectors (purple).

Two different clustering methods for spatially segmenting the
furniture objects are used: DBSCAN [Ester et al. 1996] and k-means
clustering [Lloyd 1982]. We prefer the DBSCAN algorithm for 3D
point clouds that contain more defined spatial divisions between
the furniture objects. Otherwise, the use of k-means clustering is
suitable for clustering cluttered scenes or scenes where no clear
spatial divisions are present (e.g., if chairs are tucked in partially
under the tables). The DBSCAN algorithm is sensitive to the den-
sity of the 3D point cloud and the number of generated clusters
depends on the user parameter inputs that need to be configured
for each given scene [Aljumaily et al. 2017]. Alternatively, k-means
clustering can be used by setting a default number of clusters and
increasing the number of cluster segments to the 3D point cloud
with each iteration until a stopping condition is reached [Kim and
Sukhatme 2014], or with the user determining how many clusters
are required by visually inspecting the given 3D point cloud. We
use the spatial distance between each of the points as the main
attribute for both clustering approaches. Our implementation cur-
rently supports up to 20 clusters for each of the clustering methods.
Due to recursion limits in JavaScript, the given 3D point cloud has
to be down-sampled to below 10 000 points for DBSCAN clustering.
For the DBSCAN, we sample a minimum number of 1 point and
compute the Euclidean distance as the main distance measurement
value between points. Because of this, the DBSCAN algorithm per-
forms faster in our prototype application. The DBSCAN clusters
generated from the sub-sampled 3D point cloud are then used to
segment the clusters of the full resolution 3D point cloud.

3.1 Viewpoint Selection
Selection of viewpoints is performed for each furniture object clus-
ter, obtained from the full resolution point cloud of the given indoor
scene. We define the clusterC asC := {P ∈ R3, ®N ∈ [−1, 1]3, RGB ∈
[0, 1]3}. For each cluster C representing a finite set of points, we
then generate a bounding sphere, which we define as a standard
3D Sphere B := {M ∈ R3, r , Sw , Sh ,ϕ,θ }, withM being the center
point, r the sphere radius from the center point, Sw and Sh hori-
zontal and vertical sphere divisions, and ϕ and θ the horizontal and
vertical sweep angles.

The bounding sphere B generated for each cluster, based on
B, can be defined as B := B(C). We then randomly sample the
vertices from the bounding sphere, defined as subset Bv , where
Bv = σ (B) := {P ∈ R3, ®N ∈ [−1, 1]3}. We test each of the randomly-
sampled inverted bounding sphere vertex normal vectors for paral-
lelism with the normal vectors from each of the points in C .

We define this as the Entropy Function f : R3 → R, with R→

{0, 1}, where f (Cp ,Bp ) =

{
1,T ≥ C ®N · B ®N ≤ 1.0
0

, and where

the bounding sphere vertices and cluster points that have normal
vectors considered close to parallel within threshold level T are
marked as TRUE positions and directions for the virtual camera.
Finally, we define our virtual camera as Cm := { ®Ld ∈ R3, ®Lu ∈
R3, P ∈ R3}, where ®Ld represent the camera direction, ®Lu the
camera up vector, and P as the camera position. The virtual camera
object is used to synthesize the multiview 2D images. This approach
is further summarized in Algo. 1.

Algorithm 1 Viewpoint selection
Require: C,Bv ,Cm
B ← C {Generate bounding sphere around each point cluster}
Bv = σ (B) {Randomly sample vertices from the bounding sphere}
for i = 0 to lenдth(Bv ) do

for j = 0 to lenдth(CP ) do
if T ≥ C ®N · B ®N ≤ 1.0 then
Cm ← Bp ,B ®N {Set camera position and direction to
bounding sphere vertex position and inverted normal}

end if
end for

end for

3.2 Multiview Classification
3.2.1 Retraining. We use the Inception V3 CNNmodel to retrain

two CNNs for classifying common office furniture items (e.g., chairs,
tables and sofas). We only retrained the last bottleneck layer of the
complete CNN model; Inception V3 was originally trained using
ImageNet dataset [Russakovsky et al. 2015]. For the training data,
we used 9759 different RGB images of chairs, tables and sofas as
we consider these common office furniture. These images were
obtained by using a batch image download script for Google Image
searchwritten in Python.We downloaded in bulk sets with up to 500
images, downloading batch images with search terms such as “office
chair”, “office sofa”, “conference table”, etc. For the three different
classification categories of chairs, tables, and sofas we use 3605,
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2900, and 3254 images per image training class. The images were
reviewed and those that featured pictures of furniture items without
too much visual clutter were selected and resized to 300×300 pixels
(with the aspect ratio preserved). The training data input vector
size is 300 × 300 × 3 elements. Random distortion of training data
(brightness, scale, and cropping) was not utilized for the retraining.
The predicted classification accuracy using the retrained Inception
V3 CNN is 92.9%, using 4000 training steps with a learning rate of
0.01. The second version CNN is used for classifying scenes with
only chairs and tables, being retrained using the same training
parameters, except using only using photos of chairs and tables.
The second CNN model has a predicted classification accuracy of
94.5 %. In initial research tests we found that using a CNN with
only two object furniture criteria for scenes that feature only two
types of furniture point clusters provided us with more accurate
classification results.

3.2.2 Classification. Each of the generated 2D images with op-
timal viewpoint is given a file name containing the cluster ID they
belong to and the image sequence they are part of. These images
are stored on the client and sent to the server for classification via a
Node.js express server application. The Node.js server application
calls the image classification script that classifies each of the images
and generates a text file with a probability value for each of the
three classification categories (chairs, sofas and tables). The clas-
sification script is based on Tensorflow 1.11.0 (compiled for AVX2
CPU instructions for cross-system compatibility), to create and run
a classification tensor using the retrained version of the Incpetion
V3 CNN. The classification probability scores for the input image
data are calculated based on a linear softmax function.

Once all of the images have been classified and their text results
generated, we call the Node.js express server to parse each of the
text files and extract the cluster id from their file name (generated
result text files have same names as the image files that are classi-
fied), and the classification probability values. The Node.js server
then sends these results back to the client. The client associates
each batch of results with each cluster, and generates and average
classification value for that cluster. Since each cluster usually repre-
sents a single furniture object (or groups of the same type of object),
we can associate the classification value with each point cluster,
thus semantically enriching it.

3.3 Service-Oriented Design
Methods for service-oriented visualization and semantic enrich-
ment of geospatial and point-cloud data have previously been
described by [Discher et al. 2018b; Hagedorn and Döllner 2007;
Stojanovic et al. 2018a]. We used this approach to implement a
prototypical 3D web application based on the service-oriented ar-
chitecture paradigm (Fig. 3).

We make use of HTML5 and Three.js [Cabello et al. 2010] for the
client-side 3D visualization and implement our express server using
Node.js based on an echo/server architecture. We can currently load
and classify scenes with up to 4.5 million RGB points for approxi-
mately 20m2 of indoor space using direct and non-optimized 3D
rendering of point clouds with Three.js. The majority of client and
server framework is implemented in Javascript. We make use of
Websockets to enable communication between the client and server.

For image classification tasks, Tensorflow with Python 3.6.1 was
used, and the specific Python scripts are called via Node.js.

The server for our web application is implemented using an echo
client/server architecture. It listens to any communication by the
client from a given port (e.g., SEND and GET responses for classifi-
cation data). The server loads in the generated classification results
as simple text arrays, before parsing the numerical classification
values as floating point variables and sending these back to the
client. Once the current classification operations are completed, the
server removes all of the classification images and text file results.
Using the client interface, a user is able to load in a pre-segmented
RGB 3D point cloud for classification and visualization (we use
RGB point-cloud data in the Stanford PLY file format). The opti-
mal viewpoint images are generated by the client by accessing the
domElement data URL of the current scene 3D rendering context.
The client saves the images as JPEG files (using the resolution of
the current 3D rendering context), via an automatic download link
generation. Using a image resolution of 3000 × 1772 pixels, the
average generated multiview image file size is 221 kB. A default
download directory that is on the client computer is chosen prior
to running the generation of optimal viewpoint images. Images
from this directory are sent to the server for classification. While
our approach of generation of multiview images and clustering is
performed client-side with potential limitation of data throughput,
it enables potentially sensitive data to be kept on the client side
and provides better security management of local client data.

3.4 Testing Procedure
We conducted a total of 64 different tests, whereby we had 32 tests
using the Stanford dataset [Armeni et al. 2017] with 16 different
scenes, and 32 tests based on 16 synthetic scenes that we con-
structed. We created the synthetic scenes of varying complexity
from furniture point clusters captured using a mobile phone scan-
ning device and also objects from the RGB-D Object Dataset from
University of Washington [Lai et al. 2011]. The non-synthetic Stan-
ford dataset was chosen as it features a high number of cluttered
items in the desired classification categories (e.g., chairs, tables and
sofas). We did not spatially edit the Stanford dataset, as we just
extracted the 3D point clusters featuring the furniture objects using
manual segmentation with the CloudCompare software tool. For
each of the two datasets, we tested each of the 16 scenes using
either k-means or DBSCAN clustering. The field-of-view based on
the circumference of a 3D point cluster bounding sphere was kept
a constant value of 1.8 for all of the tests; this enabled each image
to completely capture each cluster from an optimal view position
and direction. The optimal classification parameters were chosen
after initial tests were carried out to fine-tune the parameters for
best results. The point size of the 3D point cluster was increased to
4 pixels to prevent any background color to be shown.

In terms of calculating the probability of correct classification of
each scene, we used a score of 1, 0.5, 0.25, or 0 for furniture clusters
that are either completely or partially classified. We decided to
include the classification score of partially classified objects as this is
a common classification outcome in cluttered indoor environments.
The scores for the correct or incorrect classification of each furniture
object were then assigned empirically using visual observation. In
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Figure 3: A high-level overview of the implemented client-server model for our web-based indoor point cloud multiview
classification application prototype. The initial point cloud is acquired by the user, stored on the server and the user adjusts
the clustering and viewpoint entropy sampling parameters prior to classification.

terms of object semantics, we assume all sofa chair objects as sofas,
and connected tables are treated as a single table object unless they
are adjacent or if there is a visible space between the point clusters.
Additionally, coffee tables, office desks and conference desks are
all treated as “table” objects. The selected number of clusters for
each scene was determined visually by counting how many objects
of each type are present in the scene. For example, if a scene has
two chairs and a table, a minimum number of three clusters would
be chosen to be approximated using either k-means or DBSCAN
clustering. Since our current implementation supports up to 20
clusters, some complex scenes from the Stanford dataset had to be
subdivided into two smaller scenes to enable finer classification.

To investigate if we could reduce the number of generated mul-
tiview 2D images while keeping the probability of correct classi-
fication at an acceptable percentage, we decided to sample up to
36 different views per point cluster (3.6 %of the bounding sphere
vertices) as this is the approach used in previous research (Section
2.3). Using this sampling size, we usually ended up with an average
of 11 images per cluster. The selected parallel threshold level was
chosen to be between 0.75 and 0.9 in most cases as we wanted to
use mostly parallel normal vectors for sampling when calculating
the entropy for the views to be selected. For some scenes with
highly planar surfaces, we took a parallel threshold above 0.5. The
computer used for testing was a commodity laptop with an Intel i5
1.8GHz CPU, 8GB RAM, and NVidia GeForce MX150 GPU with
2GB video memory, using the FireFox 64.0 web browser.

3.5 Experimental Results
The results in Fig. 4 show the classification results for specific fur-
niture type point clusters, using our multiview sampling approach
with either DBSCAN or k-means clustering. The obtained experi-
mental results from the tests show that the classification score for
the Stanford data set is 63.57 % average using DBSCAN clustering,
and 59.43 % average using k-means clustering. The classification
score for our synthetic dataset is 71.51 % average using DBSCAN

clustering, and 60.75 % average using k-means clustering. We also
compared the classification of our approach against the cubemap im-
age classification method described by Stojanovic et al. [2018a]. We
used the same testing methodology (using the same version of the
CNN retrained on photographs, and classification tests conducted
using the same synthetic and Stanford datasets). The results show
that the approach using the method by Stojanovic et al. [2018a]
provides overall lower correct classification of 47.96 % average for
the synthetic dataset, and 47.18 % average for the Stanford dataset.

For the clustering performance evaluation, both the k-means
and DBSCAN algorithms were implemented in JavaScript, and we
only sampled the X and Z coordinates of scenes from the synthetic
3D point cloud (which were sub-sampled to below 10 000 points).
The average elapsed time for computing an average of 3.25 clusters
for k-means is 1040.06ms, while for DBSCAN it is 586.936ms. The
results show that DBSCAN is approximately twice as fast as the k-
means clustering result, and its computation performance correlates
with the density of the 3D point cloud rather than the number of
clusters that need to be computed.

We also provide empirical results as four different classified 3D
point cloud scenes from both datasets, using the selected clustering
methods (Figs. 4 to 7). We also show a comparative empirical re-
sult (Fig. 8), using our approach versus the classification approach
described in Stojanovic et al. [2018a]. Red clusters indicate chair
object, blue clusters indicate sofa object, and green clusters indicate
table object classifications.

4 DISCUSSION
The entropy-based viewpoint selectionmethod allows our approach
to generate multiview images that feature perspective projection of
3D point clusters based on the amount of the point normal vectors
that are within a parallel threshold to the viewpoint camera. The
one drawback of using only highly parallel normal vectors as an
entropy measure is that for flat surfaces only directly top-down
views will mostly be included in the entropy measure. Therefore,



Classification of Indoor Point Clouds Using Multiviews Web3D ’19, 26-28 July 2019, Los Angeles, USA

(a) (b) (c)

Figure 4: Classification results for a Stanford set scene. (a) Point cloud with 59 566 points, featuring 1 chair and 2 tables. (b)
Classification based on k-means clustering, and (c) DBSCAN clustering.

(a) (b) (c)

Figure 5: Classification results for a synthetic set scene. (a) Point cloud with 81 500 points, featuring 3 chairs, 1 sofa and 1 table.
(b) Classification based on k-means clustering, and (c) DBSCAN clustering.

(a) (b) (c)

Figure 6: Classification results for a Stanford set scene. (a) Point cloud with 52 010 points, featuring 5 chairs and 2 tables. (b)
Classification based on k-means clustering, and (c) DBSCAN clustering.

(a) (b) (c)

Figure 7: Classification results for a Stanford set scene. (a) Point cloud with 40 897 points, featuring 3 chairs and 3 tables. (b)
Classification based on k-means clustering, and (c) DBSCAN clustering.
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(a) (b) (c)

Figure 8: Comparative classification results for a synthetic set scene, with 50 955 points, featuring 3 chairs, 1 sofa and 1 table.
(a) Classified using approach by Stojanovic et al. [2018a] with 16 object type nodes. (b) Our approach with classification based
on k-means clustering, and (c) Our approach with classification based on DBSCAN clustering.

the parallel threshold needs usually needs to be lowered for scenes
that feature objects with flat surfaces such as tables. The chosen
sampling size for generating random camera positions and direc-
tions on the bounding sphere mesh of a given point cluster is low
enough to maintain a small output of multiview images featuring a
high amount of entropy. Using the described sampling and entropy
calculation method, we generate an average of 11 images for a
given point cluster (from a total of 36 randomly sampled bounding
sphere points). This allows us to classify a scene in a few minutes
on average (approximately three minutes on average using the test
datasets on the test computer configuration). The number of gener-
ated images increases with the lowered parallel vector threshold
for the normal vectors comparison. The empirical results (Section
3.6.2) demonstrate visually how our multiview approach handles
scenes with various spatial configurations and varying levels of
scene clutter. Additionally, the comparison of our approach to a
similar multiview approach described by Stojanovic et al. [2018a]
shows that our approach is able to classify both synthetic and real-
world 3D point clouds with overall better probability of correct
classification.

In terms of clustering 3D point clouds, we have evaluated both
the DBSCAN and k-means algorithms. With our approach the high-
est probability of correct classification is achieved if the DBSCAN
clustering method is used for clustering. We observed that the
DBSCAN algorithm generally provides better clustering results,
if the point set has uniform density (and in our implementation
we only sample 2D points along the X and Z axes). The DBSCAN
algorithm is also faster at computing clusters than the k-means
algorithm. The k-means algorithm is better suited for clustering
scenes with lots of clutter and lack of spatial divisions, but is not
constrained by the non-uniform density of points. We have also
found that over-segmentation using k-means can provide better
segmentation results—in this case we generate a minimum of n + 1
clusters, where n is the number of objects in the given scene. For
improved classification results, each of the main system parame-
ters (clustering size, zoom out factor, entropy sampling size, and
parallel threshold) should be adjusted according to the density of
the 3D point cloud, the spatial profile of the scene (e.g., if the scene

is cluttered or not), and the amount of objects needed to be classi-
fied. Currently, the number of clusters for k-means and the density
sampling parameters for DBSCAN need to be set manually. The
generated multiview images can then be classified using a retrained
version of the Inception V3 CNN. Since the retrained CNN was
trained using actual photographs of furniture items (chairs, tables,
and sofas), thus it is more general in terms classification application
as the furniture objects are use-case specific. While the probability
of correct classification largely varies on the types of scenes (e.g.,
if the scene contains incomplete 3D point clusters), and the visual
style of the 3D point clusters (e.g., chairs that are the same color
as sofa objects can be classified as sofa objects, as shown in Fig. 5),
our approach allows for fast and rapid approximation of 3D point
cluster semantics.

We have also described how our approach can be used as a classi-
fication component within service-oriented systems. The presented
software components, both client and server applications, were de-
veloped using modern web technologies with a focus on flexibility
and robustness. Three.js for client-side visualization allows for in-
teractive visualization of low to medium resolution 3D point clouds,
while the use of Node.js and Python for server-side processing
allows for interfacing with various machine-learning technologies.

5 CONCLUSIONS AND FUTURE RESEARCH
We have presented an approach for classification and semantics
parsing of indoor 3D point clouds based on multiview 2D images
taken from selected viewpoints. Based on a view entropy measure,
we calculate adjustable and flexible viewpoints without the need
of any previous scene semantics. The experimental results show
that our approach is mostly accurate and able to quickly classify
more than half of the objects in the tests scenes correctly. We have
implemented our approach as a service-based software component,
which can simplify its integration in complex and larger service-
oriented Building Information Modelling, Facility Management,
Digital Twin and Geoinformation systems. For future work, we
plan to evaluate spatial inference methods to better evaluate the
classification results (e.g., bounding volume comparisons), and to
evaluate the OPTICS [Ankerst et al. 1999] clustering algorithm.
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