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Abstract. Image-based artistic rendering can synthesize a variety of
expressive styles using algorithmic image filtering. In contrast to deep
learning-based methods, these heuristics-based filtering techniques can
operate on high-resolution images, are interpretable, and can be param-
eterized according to various design aspects. However, adapting or ex-
tending these techniques to produce new styles is often a tedious and
error-prone task that requires expert knowledge. We propose a new
paradigm to alleviate this problem: implementing algorithmic image fil-
tering techniques as differentiable operations that can learn parametriza-
tions aligned to certain reference styles. To this end, we present WISE,
an example-based image-processing system that can handle a multitude
of stylization techniques, such as watercolor, oil or cartoon stylization,
within a common framework. By training parameter prediction networks
for global and local filter parameterizations, we can simultaneously adapt
effects to reference styles and image content, e.g., to enhance facial fea-
tures. Our method can be optimized in a style-transfer framework or
learned in a generative-adversarial setting for image-to-image transla-
tion. We demonstrate that jointly training an XDoG filter and a CNN
for postprocessing can achieve comparable results to a state-of-the-art
GAN-based method. https://github.com/winfried-loetzsch/wise

1 Introduction

Image stylization has become a major part of visual communication, with mil-
lions of edited and stylized photos shared every day. At this, a large body of
research in Non-photorealistic Rendering (NPR) has been dedicated to imitat-
ing hand-drawn artistic styles [37,53]. Traditionally, such heuristics-based algo-
rithms [57] for image-based artistic rendering emulate a certain artistic style
using a series of specifically developed algorithmic image processing operations.
Thus, creating new styles is often a time-consuming process that requires the
knowledge of domain experts.

Recently, deep learning-based techniques for stylization and image-to-image
translation have gained popularity by enabling the learning of stylistic abstrac-
tions from example data. In particular, Neural Style Transfer (NST) [28,27] that

⋆ Both authors contributed equally to this work.
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(a) Content/Style (b) WISE / without edits (c) WISE / with local edits

Fig. 1: Example-based effect adjustment. WISE optimizes effect parame-
ters, e.g., of a watercolor stylization effect, to match stylized outputs to a ref-
erence style a. The results b can then be interactively adjusted by tuning the
obtained parameters globally and locally for increased artistic control c3.

transfers the artistic style of a reference image and Generative Adversarial Net-
work (GAN)-based [15,24] methods for fitting style distributions have achieved
impressive results and are increasingly used in commercial applications [1].

Classical heuristics-based filters and filter-based image stylization pipelines,
such as the eXtended difference-of-Gaussians (XDoG) filter [65], cartoon ef-
fect [66], or watercolor effect [3,63], expose a range of parameters to the user
that enable fine-grained global and local control over artistic aspects of the styl-
ized output. By contrast, learning-based techniques are commonly limited in
their modes of control, i.e., NST [10] only offers control over a general content-
style tradeoff. Furthermore, their learned representations are generally not in-
terpretable as a set of design aspects and configurations. Thus, these approaches
often do not meet the requirements of interactive image editing tasks that go
beyond one-shot global stylizations towards editing with high-level and low-level
artistic control [23,19,14]. Additionally, deep network-based methods are often
computationally expensive in both training and inference on high image reso-
lutions [10,30,31]. This further limits their applicability in interactive or mobile
applications [13] and their capability to simulate fine-grained (pigment-based)
local effects and phenomena of artistic media such as watercolor and oil paint.

3 View examples of editing in our supplemental video: https://youtu.be/wIndN7cr0PE

https://youtu.be/wIndN7cr0PE
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Fig. 2: Overview of WISE . Differentiable effects can be adapted to example
data, demonstrated for three use-cases: parametric style transfer (A) optimizes
parameter masks to match a hand-drawn or synthesized stylization target (e.g.,
from NST as in Fig. 1) which enables style transfer results to remain editable
and resolution-independent. Local parameter prediction (B) trains PPNs to pre-
dict parameter masks to adapt the effect to the content (e.g., for facial structure
enhancement as shown here). Combined with a postprocessing CNN, local pa-
rameter prediction can learn sophisticated image-to-image translation tasks such
as learning hand-drawn sketch-styles (C).

To counterbalance these limitations, this work aims to combine the strengths
of heuristics-based and learning-based image stylization by implementing algo-
rithmic effects as differentiable operations that can be trained to learn filter-
based parameters aligning to certain reference styles. The goal is to enable (1)
the creation of complex, example-based stylizations using lightweight algorith-
mic approaches that remain interpretable and can operate on very high image
resolutions, and enable (2) the editing with artistic control on a fine-granular
level according to design aspects. To this end, we present WISE , a whitebox
system for example-based image processing that can handle a multitude of styl-
ization techniques in a common framework. Our system integrates existing al-
gorithmic effects such as XDoG-based stylization [65], cartoon stylization [66],
watercolor effects [3,63], and oilpaint effects [56], by creating a library of dif-
ferentiable image filters that match their shader kernel-based counterparts. We
show that the majority of filters (e.g., bilateral filtering) can be transformed into
auto-differentiable formulations, while for the remaining filters, gradients can be
approximated (e.g., for color quantization). Using our framework, effects can be
adapted to reference styles using popular, deep network-based image-to-image
translation losses. We train exemplary effects using both NST and GAN-based
losses and show qualitatively and quantitatively that the results are comparable
to state-of-the-art deep networks while retaining the advantages of filter-based
stylization. To summarize, this paper contributes the following:

1. It provides an end-to-end framework for example-based image stylization us-
ing differentiable algorithmic filters. Fig. 2 shows an overview of the system.

2. It demonstrates the applicability of style transfer-losses to adapt stylization
effects to a reference style (Fig. 1 and Fig. 2 A). The results remain editable
and resolution-independent.
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3. It shows that both global and local parametrizations of stylization effects
can be optimized as well as predicted by a parameter prediction network
(PPN). The latter can be trained on content-adaptive tasks (Fig. 2 B).

4. It demonstrates that filters can be trained in combination with CNNs for
improved generalization on image-to-image translation tasks. Combining the
XDoG effect with a simple post-processing Convolutional Neural Network
(CNN) (Fig. 2 C) can achieve comparable results to state-of-the-art GAN-
based image stylization for hand-drawn sketch styles, but at much lower
system complexity.

2 Related Work

Heuristics-based Stylization. In NPR, image-based artistic rendering deals with
emulating traditional artistic styles, using a pipeline of rendering stages [37,53,57].
Commonly, edge detection and content abstraction are important parts of such
pipelines. The XDoG filter [65,66] is an extended version of the Difference-of-
Gaussians (DoG) band-pass filter, and can be used to create smooth edge styliza-
tions. Furthermore, edge-aware smoothing filters such as bilateral filtering [62] or
Kuwahara filtering [36] can abstract image contents, and can be combined with
image flow to adapt the results to local image structures [38,40]. These tech-
niques can be found in heuristics-based effects such as cartoon stylization [66],
oil-paint abstraction [58] and image watercolorization [3,63], each consisting of a
series of rendering stages such as image blending, wobbling, pigment dispersion
and wet-in-wet stylization. For a comprehensive taxonomy of techniques, the
interested reader is referred to the survey by Kyprianidis et al . [37].

These effects are typically parameterized globally, and can be further ad-
justed within pre-defined parameter ranges, or locally on a per-pixel level using
parameter masks [58]. In this work, we implement variants of the XDoG, car-
toon filtering, and watercolor pipeline in our framework using auto-differentiable
formulations of each rendering stage. At runtime, users choose between one of
these different effect pipelines; and results are generally achieved by optimizing
the exact chain of filters as introduced in [65,66,3,63,56].

Deep Learning-based Methods. With the advent of deep learning, CNNs for image
generation and transformation have led to a range of impressive results.

In NST, first introduced by Gatys et al . [10], the stylistic characteristics of
a reference image are transferred to a content image by matching deep feature
statistics using an optimization process. Fast feed-forward networks have been
trained to reproduce a single [28] or even arbitrarily many styles [22,16,47]. Fur-
thermore, there have been efforts to increase controllability of NSTs, e.g., by
control over color [11], sub-styles [51] or strokes [26,50], however, the represen-
tations are not interpretable. Recently, style transfer has been formulated as a
neurally-guided stroke rendering optimization approach [35], that retains inter-
pretability, however, is slow to optimize. We show that our method can obtain
comparable results to a state-of-the-art NST [33], while retaining interactive
editing control.
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GANs, first introduced by Goodfellow et al . [15], learn powerful generative
networks that model the input distribution. They have been widely used for
conditional image generation tasks, with both paired [24] and unpaired [71]
training data. In the stylization domain, it has found applications for collection
style transfer [6,55], cartoon generation [7,61], and sketch styles [68]. However,
domain-specific applications often require sophisticated losses and multiple net-
works to prevent artifacts [7,69]. We show that our differentiable implementation
of the XDoG filter can be trained as a generator network in a GAN frame-
work and can produce comparable sketches to state-of-the-art (CNN-based)
GANs [68,69].

Learnable Filters. While the previous end-to-end CNNs deliver impressive re-
sults, they are limited in their output resolution. A few recent methods have
proposed training fast algorithmic filters to operate efficiently at high resolu-
tions. Getreuer et al . [12] introduce learnable approximations of algorithmic
image filters, such as of the XDoG filter. At run-time, a linear filter is selected
per image pixel according to the local structure tensor; filters can be combined
in pipelines for image enhancement [9]. Gharbi et al . [13] train a CNN to pre-
dict affine transformations for bilateral image enhancement, e.g., to approximate
edge-aware image filters or tone adjustments. The transform filters are predicted
at a low resolution and then applied in full resolution to the image. “Exposure”
framework [21] combines learning linear image filters with reinforcement learn-
ing, where an actor-critic model decides which filters to include to achieve a
desired photo enhancement effect.

These methods have in common that they learn several simple, linear func-
tions to approximate image processing operations [12,67,13,21,45]. Our frame-
work consists of pipelines of differentiable filters as well. However, in contrast to
previous work, we make a variety of heuristics-based stylization operators dif-
ferentiable and learn to predict their parameterizations. Thereby, sophisticated
stylization effects (e.g., those found in stylization applications) can be ported
and directly used in our framework.

3 Differentiable Image Filters

Heuristics-based stylization effects consist of pipelines of image filtering oper-
ations. To compute gradients for effect input parameters, all image operations
within the pipeline are required to be differentiable with respect to their pa-
rameters and the image input. Gradients throughout the pipeline can then be
obtained by applying the chain rule. Fig. 3 outlines the gradient flow from a
loss function to the effect parameters by the cartoon pipeline example, gradients
for parameters can be obtained both globally as well as locally using per-pixel
parameter masks.

In previous works, individual operations in such pipelines are typically im-
plemented as shader kernels for fast GPU-based processing. To achieve an end-
to-end gradient flow, we implement these operations in an auto-grad enabled
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Fig. 3: Exemplary differentiable effect pipeline. Shown for the cartoon ef-
fect proposed by Winnemöller et al . [66]. Gradients are backpropagated from the
loss to the filter parameter masks. In the effect, colors are first adjusted based
on parameters such as saturation S, contrast C or gamma γ, and then, using an
Edge Tangent Flow (ETF) [29], orientation-aligned bilateral filtering [38], and
XDoG [65] are computed. Additionally, the image is quantized with respect to
the number of bins b and softness s.

framework, the implemented filtering stages are listed in Tab. 1. Point-based
and fixed-neighbourhood operations such as color space conversions, structure
tensor computation [38], or DoG [65] can generally be converted into differ-
entiable filters by transforming any kernelized function into a sequence of its
constituent auto-differentiable transformations. The exception to this are func-
tions which are inherently not differentiable, such as color quantization, and
which require the approximation of a numeric gradient. An example for numeric
gradient approximation of color quantization is shown in the supplemental mate-
rial. Structure-adaptive neighborhood operations, such as the orientation-aligned
bilateral filter and flow-based Gaussian smoothing filter, iteratively determine
sampling locations based on the structure of the content (often oriented along a
flow field). To preserve gradients and make use of the in-built fixed-neighborhood
functions of auto-grad enabled frameworks, per-pixel iteration is transformed
into a grid-sampling operation where neighborhood values are accumulated into
a new dimension with size D which represents the expected maximum kernel
neighbourhood. A structure-adaptive filter transformation by example of the
orientation-aligned bilateral filter is shown in the supplementary material.

Implementation Aspects. We implement differentiable filters in PyTorch and
create reference implementations of the same effects using OpenGL shaders.
The learnability of each effect parameter is validated in a functional bench-
mark (shown in supplemental material) by optimizing the differentiable effect to
match reference effects with randomized parameters. At inference time, OpenGL
shaders can be interchangeably used with the differentiable effect, and can be
efficiently executed on high-resolution images using parameters predicted on low-
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Table 1: Differentiable filters by type and effect. Filters can be classified by
their sampling approach, which is either point-based (PB) or in a fixed neigh-
borhood (FN) or structure-adaptive neighborhood (SN). Some filters are non-
differentiable and require numerical gradient (NG) approximations for training.

Filtering operation Differentiable Car- Water- Oil-
Filter Type toon color paint

Anisotropic Kuwahara [40] SN ✓

Bilateral [62] FN ✓ ✓

Bump Mapping / Phong Shading [48] FN ✓

Color Adjustment PB ✓ ✓ ✓

Color Quantization [66] PB,NG ✓

Flow-based Gaussian Smoothing [38] SN ✓ ✓ ✓

Gaps [44] FN ✓

Joint Bilateral Upsampling [34] SN ✓

Flow-based Laplacian of Gaussian [39] SN ✓

Image Composition [49] PB ✓

Orientation-aligned Bilateral [38] SN ✓ ✓

Warping / Wobbling [3] FN ✓

Wet-in-Wet [63] SN ✓

XDoG [65] SN ✓ ✓ ✓

resolution images. At training time, memory usage of differentiable filters can
be reduced by controlling their kernel-size (shown in supplemental material).

4 Parameter Prediction

With the introduced differentiable filter pipelines, parameters can be optimized
using image-based losses. To generalize to unseen data, we explore Parameter
Prediction Networks (PPNs) that are trained to predict global parameters or
spatially varying (local) parameters.

4.1 Parameter Prediction Networks

Global Parameter Prediction. We construct a PPN that predicts the effect pa-
rameters of a stylized example image, given both the stylized and source image.
Thereby, the network is trained to effectively reverse-engineer the stylization
effect. During training, gradients are back-propagated through the effect, the
parameters, and finally to the PPN. Formally, let I denote the input image, T
the target image, O(·) the differentiable effect, PG(·) the PPN network. The loss
for the global PPN is computed using an ℓ1 image space-based loss as:

Lglobal = ∥O(I, PG(I)))− T∥1 (1)

Our global PPN architecture consists of a VGG backbone [59] that extracts
features of the input and stylized image and computes layer-wise Gram matrices
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Table 2: Global PPN loss functions. The PPNs are trained with different
loss functions on the NPR benchmark [54]. Networks trained in parameter space
use reference parameters as the loss signal directly. We measure the Structural
Similarity Index Measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR)

Loss domain SSIM PSNR Parameter loss

Parameter space ℓ1/ℓ2 0.738/0.737 12.530/12.927 0.158/0.162
Image space ℓ1/ℓ2 0.780/0.764 13.875/13.286 0.183/0.190

to encode important style information [10]. The accumulated features are passed
to a multi-head module to predict the final global parameters. We found this
network architecture to perform superior against other common architecture
variants, please refer to the supplementary material for an ablation study and
details on the architecture.

Local Parameter Prediction. While the global PPN can predict settings of sim-
ilar algorithmic effects, real-world, hand-drawn images often vary significantly
based on the local content, which cannot be modeled by a global parameteriza-
tion. Therefore, we construct a PPN to predict local parameter masks. We use
a U-Net architecture [52] for mask prediction at input resolution, where each
output channel represents a parameter. Gradients are back-propagated to the
PPN through the differentiable effects for all parameter masks.

For training, a paired data GAN approach is used, where a patch-based
Pix2Pix discriminator [24] matches the distribution of patches in the reference
image and an additional weighted ℓ1 image space loss enforces a more strict
pixel-wise similarity. Formally, let D(·) denote the discriminator, LTV (·) the
total variation regularizer [28] to enforce smooth parameter masks, and PL(·)
the local PPN which acts as the generator network. The final loss L for the PPN
generator is computed as:

L = E
[
α log(1−D(I,O(I, PL(I))))

+ β∥O(I, PL(I))− T∥1 + γLTV (PL(I))
] (2)

4.2 PPN Experiments

We conduct several experiments to validate our approach for global and local
parameter prediction.

Global Parameter Prediction. We compare the loss function and loss space of
global PPNs in (Tab. 2). We find that while directly predicting in parameter
space (without obtaining gradients from the effect) yields closer parameter val-
ues, the highest visual accuracy is achieved using an ℓ1 image space-based loss.
This validates the usefulness of the differentiable effect being part of the train-
ing pipeline. Global PPNs can accurately match reference stylizations created by
the same effect, as shown in Fig. 4b. Furthermore, they can approximate similar
hand-drawn styles, albeit with significant local deviations, as shown in Fig. 4e.
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(a) Source (b) Predicted (c) Reference (d) Source (e) Predicted (f) Reference

Fig. 4: Predictions using the global PPN for XDoG. The stylized reference
c is synthetic (generated using the reference XDoG implementation), while the
reference f is hand-drawn, taken from APDrawing [68].
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Fig. 5: Local PPN results. Networks are trained on CelebAMask-HQ [41] to
generate selective enhancements by predicting parameter masks. The default
result is created by a global parameter configuration, while the shown predicted
parameter masks create the content-adaptive result.

Content-adaptive Effects. Using the previously described approach for local PPN
training, we demonstrate its applicability to several common problems that are
often present in purely algorithmic image-stylization techniques. We consider
three tasks to improve stylization quality: (1) highlighting facial features, for
example by increasing contours at low-contrast edges such as the chin (Fig. 5a),
(2) selectively reducing details such as small wrinkles in the face (Fig. 5b), and (3)
background removal (refer to supplemental material). We use the CelebAMask-
HQ dataset [41] for training, which consists of 30,000 high-resolution face images
and segmentation masks for all parts of the face. For the above tasks, we each
create a synthetic training dataset by stylizing images using a reference effect
and adjusting its parameters for certain parts of the face (obtained from dataset
annotations) according to the task, e.g., increasing the amount of contours in the
chin area. In Fig. 5 trained PPN networks are evaluated by plotting the predicted
local parameter masks together with the generated stylizations. It shows that the
networks learn to predict parameter masks for the relevant regions accurately
solely by observing pixels without additional supervision.
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(a) Content image (b) Style image (c) Stylized result (d) Locally edited

Fig. 6: Parametric style transfer. Effect parameters are optimized (watercolor
effect in top row, oilpaint effect in bottom row) to match the stylistic reference
image b. Users can then interactively edit the result c by adjusting resulting
parameter masks. In the top row, the saturation parameter mask is adjusted to
highlight foreground objects d. In the bottom row, the oilpaint-specific bump
scale and flow-smoothing are adjusted in d to make the background appear to
be painted wet-in-wet with long brushstrokes.

5 Applications

Using our framework for global and local parameter prediction for differentiable
algorithmic pipelines, example-based stylization with closely related references
is made possible. To adapt to real-world, more diverse example data, our frame-
work can be integrated with existing stylization paradigms. In the following, we
demonstrate our approach for the task of (statistics-based) style transfer recon-
struction and GAN-based image-to-image translation based on the APDrawing
dataset [68].

5.1 Style Transfer

We investigate the combination of iterative style transfer and algorithmic ef-
fects. We use Style Transfer by Relaxed Optimal Transport and Self-Similarity
(STROTSS) by Kolkin et al . [33] to create stylized references for our effect. We
subsequently try to recreate the style transfer result with our algorithmic effects
by optimizing parameter masks (Fig. 6). For this, a ℓ1 loss in image space is
again used to match effect output and reference image.

Optimization. We run the style transfer algorithm [33] for 200 steps to create a
stylized reference with a resolution of 1024 × 1024 pixels. The local parameter
masks are then optimized using 1000 iterations of Adam [32] and a learning rate
of 0.1. The learning rate is decreased by a factor of 0.98 every 5 iterations starting
from iteration 50. To avoid the generation of artifacts in parameter masks, we
smooth all masks at increasing iterations (10, 25, 50, 100, 250, 500) using a
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(a) Watercolor ℓ1 optim (b) Oilpaint LC + LS (c) Watercolor LC + LS

Fig. 7: Optimization of parametric style transfer with different losses. In a), the
effect is optimized by matching the result of STROTSS style transfer [33] using
an ℓ1 loss. In b) and c), the effect is directly optimized using neural style transfer
[10] losses LC + LS . The content/style image are the same as in Fig. 1.

Table 3: Comparison of our method to STROTSS [33] for style loss LS , content
loss LC , and the ℓ1 difference between respective results. We test against in-
domain style images and against a set of common (arbitrary domain) NST styles.
In each case, results are averaged over 10 styles and NPRB [54] as content4

XDoG Cartoon Watercolor Oilpaint
style domain: bw-drawing cartoon watercolor common oilpaint common

LS
STROTSS 0.340 0.289 0.351 0.39 0.209 0.39
Our results 0.246 0.406 0.359 0.42 0.384 0.52

LC
STROTSS 0.099 0.094 0.081 0.036 0.037 0.036
Our results 0.172 0.148 0.092 0.034 0.023 0.033

ℓ1 Difference 0.188 0.136 0.007 0.021 0.036 0.039

Gaussian filter. Alternatively to image-space matching, parameters can also be
directly optimized using NST [10] losses LS + LC , however this often fails to
transfer more complex stylistic elements Fig. 7. As optimizing effect parameters
to affect the output is harder than direct pixel optimization (as done in NST),
stricter supervision (i.e., pixel-wise losses) is necessary to achieve similar outputs.
Directly using LS + LC could however be appropriate for photographic style
transfer.

Results. As Tab. 3 shows, parametric style transfer works better for effects that
have a high expressivity and are closer to hand-drawn styles, such as the water-
color or oilpaint, compared to more restricted effects such as XDoG or cartoon.
After the generation of local parameter masks, the parameters can be refined
by the user as shown in Fig. 6d. By optimizing parameters, we obtain an in-
terpretable “whitebox” representation of a style that, in contrast to current
pixel-optimizing NSTs [10,28,33], retains controllability according to artistic de-
sign aspects. Furthermore, our method is resolution independent, i.e., parameter
masks can be optimized at lower resolutions and then scaled up to high resolu-
tions for editing. In Fig. 6d (bottom row) the effect is applied at 4096 × 4096

4 Exemplary style images and results in suppl. material.
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pixels, while current style transfers are mostly memory-limited to much lower
resolutions. We further compare matching performance of in-domain styles with
a set of common NST styles and observe that the ℓ1 difference (Tab. 3) is only
marginally higher for the latter. Thus, highly parameterized effects such as water-
color or oilpaint can emulate any out-of-domain style by per-pixel optimization
of parameter combinations reasonably well. However, as this creates highly frag-
mented parameter masks, a tradeoff between generalizability and interpretability
of masks can be made using a weighted total variation-loss.

5.2 GAN-based image-to-image translation with PPNs

For learning a style distribution, i.e., the characteristics of an artistic style over
a larger collection of artworks, GAN-based approaches have achieved impressive
results [7,64,68]. We investigate training PPNs in a GAN-setting for image-to-
image translation. While the global and local PPNs discussed in Sec. 4 can match
in-domain styles very well (Sec. 4.2), they cannot produce local image structures
that are not synthesizable by their constituent image filters. Artistic reference
styles, however, often contain stylistic elements that have not been modeled in
the heuristics-based filter - this holds especially true for more simple effects such
as xDoG. For reference styles that are stylistically close to such effects (e.g.,
xDoG), such as line-drawings, we hypothesize that combining our filter pipeline
with a lightweight CNN-based post-processing operation and learning them end-
to-end can close the domain gap while retaining the positive properties of the
filter parametrization and beeing computationally efficient.

Dataset. For our experiment, we select the APDrawing [68] dataset which con-
sists of closely matching photos and their hand-drawn stylistic counterparts. Its
hand-drawn images are reasonably similar to the XDoG results, while still con-
taining many stylistic abstractions that cannot be emulated solely by the XDoG.
We hypothesize, that re-creating such an effect entails both edge detection and
content abstraction, which could be performed by our differential XDoG pipeline
combined with a separate convolution network for content abstraction.

APDrawing contains a set of 140 portrait photographs along with paired
drawings of these portraits. The GAN-based local PPN approach introduced
in Sec. 4 is used to train on this paired dataset, where solely the generator is
extended using a CNN N(·) to post-process the XDoG output, i.e., following
Eq. (2) our generator now combines PPN, effect and CNN: N(O(I, PL(I))).

Architecture. We investigate the efficacy of each component in our proposed
approach for APDrawing in Tab. 4. Following Yi et al . [69], we measure the
Fréchet Inception Distance (FID) score [20] and Learned Perceptual Image Patch
Similarity (LPIPS) [70] to the test set. We train for 200 epochs and otherwise use
the same hyperparameters as Pix2Pix [24]. We observed that using the ResNet-
based architecture for image translation introduced by Johnson et al . [28] works
best for the post-processing CNN. Furthermore integrating the XDoG in the
pipeline improves the results vs. a convolutional-only pipeline. Note that this
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Fig. 8: Learned task seperation. Results on APDrawing [68] after XDoG (top)
and then after convolution (bottom) are shown.

(a) Input (b) APDraw.
-GAN [68]

(c) APDraw-
ing++ [69]

(d) Ours -
CNN-only

(e) Ours -
XDoG+CNN

(f) Ground
truth

Fig. 9:Results on APDrawing.While APDrawing GAN b and APDrawing++
GAN c can produce inconsistent lines, our proposed method e generally produces
flow-consistent lines. The differentiable filter in our approach is important for
consistent quality, as solely using an image translation CNN [28] often produces
local dithering artefacts (upper row) and patchy features (lower row) d.

combination of algorithmic effects and CNNs in a training pipeline is only made
possible by our introduced approach for end-to-end differentiable filter pipelines
and PPNs. Omitting the PPN and using fixed parameters for XDoG significantly
degrades the results, which validates the integrated training of filter and CNN.
Fig. 8 visualizes the results after the XDoG stage and after post-processing using
a CNN; the learned separation of edge detection and abstraction is apparent.
Further, we observe that training with XDoG as a postprocessing instead of as
a preprocessing step does not converge. All architecture choices are extensively
evaluated in an ablation study, please refer to the supplemental material.

Results. While the CNN alone (without XDoG) already achieves good FID and
LPIPS scores, we show in Fig. 9 that it creates major artifacts especially around
eyebrows and eyes, which are not detected by those metrics.
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Table 4: Our results on APDrawing [68]

PPN XDoG CNN FID LPIPS
✗ ✗ U-Net 71.26 0.322
✗ ✗ ResNet 62.44 0.275
✗1 ✓ U-Net 75.40 0.329
✗1 ✓ ResNet 71.56 0.305
✓ ✓ U-Net 89.93 0.366
✓ ✓ ResNet 60.55 0.285

APDrawing GAN 62.142 0.2912

APDrawing++ 54.40 0.2582

Train vs. Test 49.72 -
1 a fixed parameter preset is used
2 results obtained from [68][69]

Compared to the APDrawing
GAN approach by Yi et al . [68],
our model improves the FID score
(Tab. 4). The state-of-the-art AP-
Drawing++ [69] improves on these
metrics and quantitatively per-
forms better than our model, how-
ever qualitatively it can suffer from
artifacts in small structures such
as the eyes (Fig. 9c) whereas our
approach leads to more consistent
lines. We note that their approach
consists of a sophisticated combi-
nation of several losses and task-
specific discriminators that require
facial landmarks to train multiple
local generator networks for facial features such as eyes, nose, and mouth sep-
arately. This limits their generalizability to other datasets, while our approach,
on the other hand, represents a general setup for image-to-image translation
consisting of a globally trained CNN and a simple effect, making it applicable
to any paired training data without further annotation requirements.

6 Discussion

Applicability. In the previous sections, we have demonstrated the applicability of
differentiable filters to several example-based stylization tasks using four estab-
lished heuristics-based filter pipelines. Their constituent image filters (Tab. 1)
form a common basis of many image-based artistic rendering approaches [37]. We
expect that other filtering-based effects, such as pencil-hatching [43], or stippling
[60], can be transferred to our framework with relative ease due to their pipeline-
based, GPU-optimized formulations. Stroke-based rendering approaches, on the
other hand, are typically optimized globally [46] or locally [18], and are thus chal-
lenging to transform into differentiable formulations. However, a recent approach
by Liu et al . [42] has shown that strokes can be predicted in a single feedforward
pass of a CNN, which could be regarded as a complementary approach.

Limitations. Our PPN-based approaches make use of a paired data training
regime. While paired data can be synthetically generated for content-adaptive
effects aiming at solving filter-specific problems, datasets with paired real-world
paintings are subject to limited availability. As our training approach follows
Pix2Pix GAN [24], future work extending the method to train with unpaired
training losses, such as cycle-consistency losses [71], could alleviate this limita-
tion. An inherent limitation of predicting parameters in comparison to directly
predicting pixels (as with convolutional GANs), remains the constraint of only
being able to produce styles that lie in the manifold of achievable effects of the
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underlying image filters. While this can be mitigated using a post-processing
CNN, this represents a trade-off with respect to interpretability and range of
low-level control (we examine this aspect in the supplemental material). On the
other hand, our parametric style transfer is able to match arbitrary styles when
optimizing highly parameterized effects such as watercolor. Training a PPN with
such an effect on a large dataset, e.g., using unpaired training, could similarly
already have sufficient representation capability without postprocessing CNNs.

7 Conclusions

In this work, we propose the combination of algorithmic stylization effects and
example-based learning by implementing heuristics-based stylization effects as
differentiable operations and learning their parametrizations. The results show
that both optimization of parameters, e.g., to achieve style transfers, and their
global and local prediction, e.g., for content-adaptive effects, are viable ap-
proaches for example-based algorithmic stylizations. Our experiments demon-
strate that our approach is especially suitable for applications that require fast
adaptation to new styles while retaining full artistic control and low computation
times for high image resolutions. Furthermore, stylizations beyond the filters’ ab-
straction capabilities are achieved by adding convolutional post-processing. This
approach can generate results on-par with state-of-the-art CNN-based meth-
ods. For future research, learning the composition of filters as building blocks
of a generic algorithmic effect pipeline would allow for seamless integration of
user control and example-based stylization without the limitation to a specific
stylization technique.
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Trapp, and Jürgen Döllner. Locally controllable neural style transfer on mobile
devices. The Visual Computer, 35(11):1531–1547, 2019. 4

52. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Net-
works for Biomedical Image Segmentation. In Proc. International Conference
on Medical Image Computing and Computer-assisted Intervention, pages 234–241,
2015. 8, 33

53. Paul Rosin and John Collomosse. Image and video-based artistic stylisation, vol-
ume 42. 2012. 1, 4

54. Paul L. Rosin, Yu-Kun Lai, David Mould, Ran Yi, Itamar Berger, Lars Doyle,
Seungyong Lee, Chuan Li, Yong-Jin Liu, Amir Semmo, Ariel Shamir, Minjung



WISE: Whitebox Image Stylization by Example-based Learning 19
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Supplemental Material

Due to space restrictions, some details had to be omitted from the main
paper; we present those details here. In Sec. 1 we describe filter modifications
to obtain gradients using auto-grad enabled frameworks on the example of the
seperated orientation-aligned bilateral filter and color quantization, and elab-
orate on filter pipelines concerning their structure, learnability and memory
consumption. In Sec. 2, we elaborate on training global PPNs by presenting
three PPN architectures and evaluating their performance in an ablation study.
In Sec. 3 we give visual examples for the style transfer capability of different
effects. In Sec. 4, we provide additional details and results for the architec-
ture ablation study on image-to-image translation tasks using the APDrawing
dataset[68] as well as editability of such effects. Finally, in Sec. 5, additional
results for parametric style transfer, image-to-image translation, and effect vari-
ants are shown. Further, our supplemental video1 demonstrates parametric style
transfer optimization and interactive editing for the images shown in the main
paper.

1 Differentiable Filters

In the main paper we note that while most filters are straight-forward to imple-
ment in auto-grad enabled frameworks, for some several filters re-formulations
or approximations are needed. Specifically, for structure-adaptive neighborhood
operations, a re-formulation to retain sub-gradients in adaptive kernel neigh-
bourhoods must be employed, and for non-differentiable operations a numeric
gradient approximation is needed. In the following, we show an example for each.

1.1 Bilateral Filter

Commonly used techniques in image filtering pipelines are bilateral filters. The
bilateral filter [62] using Gaussians G of size σd (distance kernel) and σr (range
kernel) for an image I ∈ RC×W×H is defined for a pixel coordinate x by

Î(x) =
1

W

∑
y∈Ω(x)

I(y)Gσd
(∥y − x∥)Gσr

(∥I(y)− I(x)∥) (1)

where Ω(x) denotes the window centered in x and y ∈ Ω represent pixel co-
ordinates of the kernel neighbourhood. W represents the weight normalization
term, which we omit in the following for the sake of brevity. Computing the
bilateral filter for large images and at large kernel neighbourhoods is, however,
computationally expensive. Several approaches have been proposed to approxi-
mate the filter by separation into multiple passes for improved efficiency.

1 https://youtu.be/wIndN7cr0PE

https://youtu.be/wIndN7cr0PE
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For image abstraction and stylization, the orientation-aligned separated bilat-
eral filter [38,29] has shown a good trade-off between quality and performance.
The filter is guided in two passes along the gradient and tangent direction of
an edge tangent field. The tangent field of the input image is obtained by an
eigenanalysis of the smoothed structure tensor [4]; for more details the reader
is kindly referred to the work of Kyprianidis and Döllner [38]. The tangent field
computation consists of point-based and fixed-neighbourhood kernels only, and
thus is straightforward to implement using common auto-differentiable func-
tions. However, the following separated bilateral filter is iterative and structure
adaptive (i.e., the size of the kernel neighbourhood depends on the content), and
thus cannot be ported to the fixed-neighbourhood functions (e.g., convolutions)
of auto-grad enabled frameworks in a straightforward way.

Specifically, in the work of Kyprianidis and Döllner [38], the filter response at
a sampling point x of a pass of the separated orientation-aligned bilateral filter
in direction t (gradient or tangent direction) is defined as:

Î(x) = I(x) +
∑

y∈Ωt(x)

I(y)Gσd
(∥y − x∥)Gσr (∥I(y)− I(x)∥) (2)

where Ωt(x) = {x + kt, | k ∈ [−N,N ] ∧ k ∈ Z} represents sampling positions
along the direction t defined in x, and N denotes the cut-off kernel radius. N is
typically based on σd, e.g., set to ⌊2σd/∥t∥⌋, and the kernel size locally depends
on the magnitude of the direction vector t.

It would be possible to implement a custom kernel with associated back-
ward pass for the above to manually compute (sub-) gradients for both input
and parameters, and similarly repeat the procedure for every other structure-
adaptive filter in Tab. 1 of the main paper. However, as our goal is to mini-
mize the effort of porting existing (shader-based) filters to our framework while
maximizing reusability and portability, we propose to implement the filters us-
ing common auto-differentiable components. To this end, we reformulate Eq. (2)
into a grid sampling-based operation. Specifically, we use spatial coordinate grids
C ∈ R2×W×H and T ∈ RW×H×2D that represent the mapping of output pixel
locations to input pixels for grid sampling. Grid C is the identity mapping, i.e.,
contains coordinates Cwh = (w, h). Grid T contains the sampling offsets in di-
mension D: Twh = {ktwh, | k ∈ [−D,D] ∧ k ∈ Z}. Then the neighbourhood
sampling values V ∈ RC×W×H×2D for the entire image I are computed as:

V = I(C + T )δ [Gσd
(∥T∥)]Gσr

(∥I(C + T )− I∥) (3)

where in slight abuse of notation, I(C+T ) denotes bilinear grid sampling [25] of
I over the coordinate grid of unfolded kernels. It is thus equivalent to retrieving
I(Ωt(x)) for every pixel x with fixed number of samples. To clip values outside
of the adaptive kernel neighborhood, δ is computed as:

δwhd(v) =

{
v if ∥Twhd∥ ≤ Nwh

0, otherwise
(4)
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Note that multiplications between tensors in Eq. (3) are performed elementwise.
Filter responses in dimension D are then folded (summed) to obtain the response
over the full kernel neighborhood (i.e., the filtered image Î):

Î = I +

D∑
d=1

Vd (5)

The size of dimension D can be varied for performance-quality trade-offs (as
shown in Fig.4 in the main paper).

1.2 Color Quantization

Color quantization is often applied to achieve a flat, cartoon-like impression
(Fig. 3, main paper). It is usually defined using the floor function: y = ⌊xb⌋ + 0.5/b [66],
where x denotes the color value before and y the color value after quantization,
and b (number of quantization bins) is the parameter that should receive gra-
dients. Due to the non-differentiable nature of the floor function, we introduce
a differentiable approximation. Common differentiable proxies like the straight-
through estimator[2] work well for approximating the gradient of quantization
functions with fixed numbers of quantization bins. However, for color quantiza-
tion we want to differentiate with respect to the strength of the quantization or
the number of bins, which is not possible using common differentiable proxies.
As reasoning about the number of quantization bins requires information about
the complete image, a global optimization is formulated instead:

f(r) =
∑
i

sign

(
yi −

⌊rxi⌋+ 0.5

r

)
sign(gi) (6)

where x denotes a vector containing the input pixel values, y the outputs of
y(x), and g the gradient vector for y.

Intuitively, f sums values for each pixel, which are positive if the pixel’s
gradient points in the direction of r and negative otherwise. The maximum
number of per-pixel gradients should point in the direction of r.

We choose b̂ = argmaxr f(r) to derive the optimal value for the parameter b,
which minimizes the learning target. This value is obtained in a single optimiza-
tion step. To obtain a continuous gradient, the difference b − b̂ is scaled by the
gradient magnitude |gi| of the loss function computed with respect to all pixels
yi ∈ y, such that gradients for b decrease, once the optimal value is approached:

∂y

∂b
:=

∑
i

|gi|(b− b̂) (7)

1.3 Differentiable filter pipeline - Oilpaint

As noted in the main paper, we implement differentiable filter pipelines anal-
ogous to their originally published versions and show an example for the toon
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Fig. 1: Oilpaint filter pipeline adapted from Semmo et al . [58].

pipeline in Fig. 3 of the main paper. In Fig. 1 we further show the filter pipeline
of the oilpaint effect [58]. In contrast to Semmo et al . we do not use color palette
extraction and color quantization and instead use a color adjustment layer.

Table 1: Parameter optimization to compare learned and target stylizations.
Scores are computed on NPR benchmark [54] for both high-quality (level I) and
low-quality (level III) portraits.

NPR level I NPR level III
Loss SSIM PSNR SSIM PSNR

Cartoon ℓ2 0.937 28.144 0.958 34.124
Cartoon ℓ1 0.931 26.939 0.947 30.429
Watercolor ℓ2 0.922 30.634 0.897 32.342
Watercolor ℓ1 0.883 31.032 0.895 29.048

1.4 Functional Benchmark

To verify that all parameters of an effect pipeline can be learned, we set up a
functional benchmark to evaluate how well effects can be adapted to an example
stylization in the same domain. We developed an OpenGL-based “ground truth”
implementation to generate reference stylizations, where parameter values are
randomized during the benchmark. Using an image-based loss, gradients are
then backpropagated to optimize the parameters of the differentiable effect using
gradient descent. We measure the SSIM and PSNR. Tab. 1 shows that both the
cartoon and watercolor effect achieve very high similarity to their reference using
both ℓ1 and ℓ2 losses. The photographic quality level of the input images does
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(a) 0.98GiB, 0.12 s (b) 1.51GiB, 0.17 s (c) OpenGL reference

Fig. 2: GPU VRAM and run-time in seconds for varying kernel sizes D = 1 a
and D = 5 b for XDoG. (Image resized to 1MP from [5]).

not seem to play a role in the style-matching capability. As the XDoG filter is
contained in both cartoon and watercolor pipelines, it is not evaluated separately.

1.5 Implementation Aspects - Memory

During training, limiting the memory consumption of individual filters is im-
portant, as they operate in the full input resolution. Generally, filters that ac-
cumulate sampling of multiple different locations in a single tensor have the
highest memory usage. For our filters, wet-in-wet stylization, Kuwahara, and
bilateral filtering are the most expensive with 3GB to 5GB peak memory us-
age for 1MP input images. The trade-off between the quality of the generated
results and computing resources can be controlled by the kernel size parameter
D as shown in Fig. 2. To further reduce memory consumption during training,
we use gradient checkpointing to recompute intermediate gradients on the fly.
Thereby, activations are stored only at the end of each filter, which is usually a
single RGB image. Intermediate activations are re-computed on the fly during
back-propagation. The peak memory usage thus then depends on the single most
memory-intensive filter. For example, the non-checkpointed XDoG uses 4GB of
GPU memory at peak for 1MP resolution input, while the checkpointed version
uses 2GB. The loss in speed is small and can be mitigated through the larger
batch size that can be processed with the available memory.

2 Global PPN

This section provides details on the global PPN, as well as an ablation study for
architecture variants and losses.

2.1 Architecture

The network architecture receives two images: an input image and a stylized
image, which has been generated with unknown parameters. We develop and
benchmark three network architectures for parameter prediction, as follows:

1. SimpleNet: A simple convolution network with three Conv-ReLU layers
(channel count: 16,32,64) followed by MaxPooling layers. All features are
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concatenated at the end and transformed with an additional linear layer to
yield the global parameters. Input and stylized image are concatenated along
the channel dimension and subsequently passed through the network.

2. ResNet + Multi-head: A ResNet50 architecture [17] without BatchNor-
malization layers is used to extract features. We initialize the ResNet with
pre-trained weights on the ImageNet dataset [8]. Again, input and stylized
image are concatenated along the channel dimension before passing them
through the network. Features F are extracted after the last convolution
layer and passed to a custom multi-head module depicted in Fig. 3b. The
streams of linear layers process the features for each global parameter inde-
pendently.

3. Multi-feature + Multi-head: A VGG backbone without BatchNormaliza-
tion and pre-trained weights on ImageNet is used. Input and stylized image
are passed separately through the feature extractor in two passes and all
compact features are accumulated afterward. We extract features and com-
pute Gram matrices for every convolution step as depicted in Fig. 3a. As the
Gram matrices contain essential information about style, we hypothesize
that these features help understand the input stylizations. The accumulated
features F from both images are passed to the multi-head module of Fig. 3b
to predict the final global parameters.

The design of the PPN architectures is motivated by two assumptions: (1)
using a multi-head module for independent processing of each parameter should
improve the accuracy as parameters for algorithmic effects model independent
aspects of the stylization process and thus benefit from learning parameter-
specific representations; (2) extraction of features at multiple scales (multi-
feature) should be beneficial for the PPN’s performance, as parameter changes
can affect larger parts of the image as well as small details. As Huang et al .
[22] find that normalization layers also perform normalization of style, we sus-
pect that leaving out BatchNormalization in all architectures would yield better
results
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Fig. 3: Multi-feature extractor a: Features are extracted from all convolution
stages of a pre-trained VGG-11 network. We only show the first 3 convolution
stages of the VGG-11 here for brevity. The features are passed through small
stacks of strided convolutions with stride 4 and kernel size 4× 4 pixels to gener-
ate compact representations. In parallel, the same features are passed through a
single 1× 1 pixel convolution and a subsequent operation to calculate the Gram
matrices. All compact features F are concatenated. Convolution operations are
visualized in yellow, ReLU layers in orange, and pooling layers in red. Multi-
head module b: After the extraction of all features, we continue with multiple
streams of linear layers. A separate stream of 3 linear layers is created for each
global parameter: The first two layers process the features and have ReLU ac-
tivations. The last layer outputs the final prediction as a single number. Fully
connected layers are visualized in light violet and ReLU layers in dark violet.
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2.2 Ablation Study

We conduct an ablation study for the previously discussed PPN architectures
and loss functions. We use the XDoG filter effect [65] and compute the SSIM and
PSNR metric in image space between the predicted and reference stylizations.
We also indicate the mean absolute difference (ℓ1) between the predicted and
ground truth global parameters.

Loss Functions. For our ablation study, we compare parameter space- and image
space losses. Parameter space losses are computed from the output of the PPN
directly (i.e., in parameter space), thus the differentiable effect is not used during
training. For image space losses, the predicted parameters are used to parame-
terize the differentiable effect, its output is then compared to the target output
image using a pixel-wise similarity metric and gradients are back-propagated
through the effect back to the PPN.

Network Training. For training, we use a random extract of 7000 images from
the FFHQ-dataset of portrait images [31] at a resolution of 1024× 1024 pixels.
For data augmentation, images are randomly cropped to resolution 920 × 920
pixels. We use Adam [32] with a learning rate of 10−5 and train for 25 epochs,
using a virtual batch size of 64. For testing, we use all 60 portrait images of the
NPR benchmark portrait [54] and randomly generated global parameters. The
final parameter predictions are passed through a tanh activation function for all
networks and multiplied by 0.5 to yield parameters in the range [−0.5, 0.5].

Results. Results are summarized in Tab. 2. Interestingly, the simple network
architecture performs better than or similar to the ResNet in most experiments.
We argue that for the ResNet, too much spatial information gets lost, as fea-
tures are derived only after all downsampling and convolution operations. The
multi-feature architecture effectively recovers the ability to derive representa-
tive features at all scales, as shown by Zhang et al . [70], and outperforms the
other two options. We observe that computing the loss in image space instead
of parameter space generally yields better results in terms of SSIM and PSNR,
even though the ground-truth parameters are not directly available to the net-
work in this case. As expected, computing the loss in parameter space still leads
to a closer approximation of the ground truth parameters as measured by the
ℓ1 distance between ground truth and predicted parameters. If gradients are
used as a learning signal, the model learns to use parameters more effectively
to achieve better results, sometimes deviating more from the ground truth pa-
rameters. Some parameter changes within the XDoG effect (e.g., changing either
contour or blackness) can similarly impact the final outcome. We reason that the
gradients, which are derived from our differentiable effects, enable the model to
build a better understanding of how the various parameters influence the final
outcome.
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Table 2: Global parameter prediction: ablation study for XDoG on FFHQ[31].
For network variants SimpleNet (SN), ResNet + Multi-head (R+M), Multi-
feature + Multi-head (M+M), using image space-based losses I[ℓ1/2] and pa-
rameter space-based losses P [ℓ1/2].

Network Loss SSIM PSNR P [ℓ1]
– across all NPR levels –

M+M I[ℓ2] 0.764 13.286 0.190
SN I[ℓ2] 0.733 12.523 0.218
R+M I[ℓ2] 0.726 12.234 0.235

M+M P [ℓ2] 0.738 12.530 0.158
SN P [ℓ2] 0.686 11.277 0.197
R+M P [ℓ2] 0.677 10.874 0.205

M+M I[ℓ1] 0.780 13.875 0.183
SN I[ℓ1] 0.728 12.407 0.227
R+M I[ℓ1] 0.721 12.038 0.236

M+M P [ℓ1] 0.737 12.927 0.162
SN P [ℓ1] 0.697 11.805 0.200
R+M P [ℓ1] 0.692 11.408 0.200

3 Style Transfer Capability

In Tab. 3 of the main paper we compared the potential of our differentiable
effects to be optimized in a (general) style transfer framework. In Fig. 4 we show
example images from the in-domain optimization for the implemented effects.
For this, we used content images from the NPR benchmark dataset[54] and
several style images from the same artistic domain for each effect (one example
per effect is shown Fig. 4 b,f,j,n).

The reference for optimization is created by STROTSS [33] style transfer.
Note that it does not necessarily produce references that would be considered
strictly in-domain with the style image (e.g., cartoon or line drawing domains) as
the style transfer method has no concept of the actual drawing techniques used.
The created reference (e.g., Fig. 4k) is then matched as closely as possible during
local parameter optimization. As is visible, only the Watercolor and Oilpaint
effects are able to produce closely matching results Fig. 4l. The Cartoon and
XDoG effects can, on the other hand, only be optimized with references that are
closer to their range of achievable effects and are not suited for the general style
transfer case.

In Fig. 5 and Fig. 6 we further show the general style transfer capability of
oilpaint and watercolor on the set of common NST styles measured in Tab. 2.
It is visible that oilpaint achieves a decent matching on most styles, but fails
to create structure in some regions, while watercolor achieves an almost perfect
matching of all references.
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(a) Content image (b) Style image (c) STROTSS [33] (d) XDoG optim

(e) Content image (f) Style image (g) STROTSS [33] (h) Cartoon optim

(i) Content image (j) Style image (k) STROTSS [33] (l) Watercolor optim

(m) Content image (n) Style image (o) STROTSS [33] (p) Oilpaint optim

Fig. 4: Local parameter optimization using different algorithmic effects
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Style STROTTS[33] Watercolor Oilpaint

Fig. 5: Style transfer capability on common NST styles.
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Style STROTTS[33] Watercolor Oilpaint

Fig. 6: Style transfer capability on common NST styles.
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4 GAN-based image-to-image translation with PPNs

Here, we provide additional details to GAN-based image-to-image translation
with PPNs. In an ablation study (Sec. 4.1) we elaborate on the architecture
evaluation section on combining algorithmic effects and CNNs in the main paper
(Sec. 5.2). We then provide additional comparisons to state of the art method,
show predicted parameter masks and evaluate the methods editability in Sec. 4.2.

4.1 Ablation study for APDrawing Stylization

Table 3: Ablation study for our model on the APDrawing [68] dataset. The FID
score between the train and the test set can be used as a baseline for all results.

XDoG PPN weights Postprocessing Dropout FID score Key in
Architecture Fig. 7

✗ - U-Net ✓ 75.27 -
✗ - U-Net ✗ 71.26 -
✗ - ResNet ✓ 70.00 -
✗ - ResNet ✗ 62.44 (a)

✓ Random U-Net ✓ 86.73 -
✓ Random U-Net ✗ 89.93 -
✓ Random ResNet ✓ 71.92 -
✓ Random ResNet ✗ 60.55 (c)

✓ ImageNet U-Net ✓ 100.41 -
✓ ImageNet U-Net ✗ 79.56 -
✓ ImageNet ResNet ✓ 76.25 -
✓ ImageNet ResNet ✗ 64.81 -

✓ - U-Net ✓ 71.64 -
✓ - U-Net ✗ 75.40 -
✓ - ResNet ✓ 71.56 -
✓ - ResNet ✗ 73.77 -

APDrawing GAN [68] 62.14 (b)
Train vs. Test 49.72 -

The results are summarized in Tab. 3. For the ResNet-50 backbone of the
PPN, we compare initialization with random weights and weights pre-trained
on ImageNet. For the convolutional postprocessing network in our generator,
we compare the ResNet-based network architecture of Johnson et al . [28] and a
classical U-Net[52] without residual blocks following Isola et al . [24]2. We also
investigate the effect of dropout. As it decreases the FID compared to architec-
tures trained without dropout, the model clearly benefits from having the full
learning capacity at its disposal during training. Also, pre-trained weights on
ImageNet do not increase the ability of the model to adapt to data successfully.

2 We adapt the implementation of https://github.com/junyanz/

pytorch-CycleGAN-and-pix2pix

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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We also test whether parameter prediction and thus differentiable effects
are necessary by comparing our method to the same approach using a fixed
parameter preset, which is optimized for portrait data specifically. Our PPN
network can dynamically adapt parameters locally to input images. As the results
using our PPN and those with a fixed preset differ by a large margin, we conclude
that parameter prediction and thus differentiable effects play an important role in
the success of our method. We do not include results using only the differentiable
XDoG effect in conjunction with a PPN. All experiments without a separate
convolution network failed with mode collapse of the generator, i.e., the PPN
started to predict the same parameters regardless of the input. We argue that
this behavior is related to the missing ability of the XDoG effect to model the
artist’s style accurately.

4.2 Additional results and editability

Results. Fig. 7 shows additional comparisons of our model trained on APDraw-
ing [68] against state of the art methods. We plot the parameter masks of our
results in the latter figure in Fig. 8.

Editability. In Fig. 9 we show that while the postprocessing CNN reduces the
stylistic variance that can be achieved with XDoG, results main editable vs. re-
sults of APDrawingGAN [68] and also remain stylistically close to the reference.
Combining pretrained GANs such as APDrawingGAN++ [69] with a XDoG
effect for postprocessing, on the other hand, does not yield visually appealing
results and results deviate from the style of the reference, as shown in the last
row, thus validating our integrated training approach.
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(a) Yi et al . [68] (b) Our method (c) CNN-only (d) Ground truth

Fig. 7: Results on the APDrawing [68] dataset, our method uses XDoG and a
postprocessing CNN. Our method, in contrast to APDrawing GANs[68,69], often
produces more consistent lines e.g., for the eyes, and does not need any known
facial landmarks at both training and inference time.
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Fig. 8: In addition to the generated outputs in figure 7, we show the parameter
masks that have been predicted for the first stage of our method (XDoG). See
Fig. 8 of the main paper for a plot of the intermediate results after processing
with XDoG.
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Fig. 9: Adjusting parameters of the XDoG effect after prediction using our
XDoG+CNN method trained on APDrawing [68]. Each row corresponds to
global changes of one parameter from lowest to highest value in the visual range,
where unedited results (i.e., the predicted parameters) are shown in the middle
column.
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5 Additional Results

This section provides additional results of our method, i.e., for content-adaptive
effects Sec. 5.1, and parametric style transfer Sec. 5.2. Further results on AP-
Drawing depicted in Fig. 13 demostrate that our model generalizes to portraits
from other datasets, such as the NPR benchmark [54]. Finally, we show base-
line results of our implemented algorithmic differentiable effects with different
parameter variants in Sec. 5.4.

5.1 Content-adaptive Effects

Fig. 10: Facial feature enhancement and predicted local parameter maps.

Fig. 11: Background removal. The PPN learns to reduce details and stroke-width
for the XDoG filter in such a way that background details seen in the default
output (middle) are removed the output with locally adapted parameters (right).
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5.2 Style Transfer

S
ty
le

Content

Fig. 12: Additional results for style transfer optimization. Our parametric style trans-
fer can match a wide variety of styles and remains editable after optimization (not
performed here). While the presented parameter smoothing schedule removes most
artefacts stemming from parameters falling into local optima, some can remain in the
final image (best seen zoomed in). These can be easily removed in a final, manual
parameter editing step, as shown in the supplemental video.
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5.3 Image Translation on APDrawing

Fig. 13: Our model generalizes to example images3drawn from the NPR bench-
mark [54]. Our method retains only salient lines in the face, abstracting irrelevant
details. Furthermore, lines generally flow consistently without unnatural discon-
tinuities. Our model has been trained on portraits with uniform background
only, thus prediction on images with non-uniform backgrounds (e.g., images in
bottom row) may lead to background artefacts in the stylization.

3 We show only images that are not part of APDrawing trainset
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5.4 Effect Variants

(a) XDoG variant A (b) Cartoon variant A (c) Watercolor variant A

(d) XDoG variant B (e) Cartoon variant B (f) Watercolor variant B

(g) Oilpaint variant A (h) Oilpaint variant B

Fig. 14: A selection of global parametrization variants of our differentiable effects
are shown. These represent default states of the effect without any parameter
learning applied.
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