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3D point clouds are a widely used representation for surfaces and object geometries. However, their visualization
can be challenging due to point sparsity and acquisition inaccuracies, leading to visual complexity and ambiguity.
Non-photorealistic rendering (NPR) addresses these challenges by using stylization techniques to abstract from
certain details or emphasize specific areas of a scene. Although NPR effectively reduces visual complexity,
existing approaches often apply uniform styles across entire point clouds, leading to a loss of detail or saliency
in certain areas. To address this, we present a novel segment-based NPR approach for point cloud visualization.
Utilizing prior point cloud segmentation, our method applies distinct rendering styles to different segments,
enhancing scene understanding and directing the viewer’s attention. Our emphasis lies in integrating aesthetic
and expressive elements through image-based artistic rendering, such as watercolor or cartoon filtering. To
combine the per-segment images into a consistent final image, we propose a user-controllable depth inpainting
algorithm. This algorithm estimates depth values for pixels that lacked depth information during point cloud
rendering but received coloration during image-based stylization. Our approach supports real-time rendering of

large point clouds, allowing users to interactively explore various artistic styles.

1 INTRODUCTION

3D point clouds are unstructured sets of points in 3D
space that often lack consistent density or distribution.
The term “cloud” metaphorically reflects their abstract,
shapeless nature, akin to atmospheric clouds. Point
clouds can efficiently represent diverse 3D entities,
capturing various shapes, topologies, and scales. Re-
cent advances in remote sensing technologies, particu-
larly LiDAR (Horaud et al., 2016) and photogramme-
try (Westoby et al., 2012), have made point cloud ac-
quisition more accessible and efficient. Consequently,
point clouds have become an integral part of spatial
computational models and digital twins, serving var-
ious sectors such as autonomous driving (Li et al.,
2021) or infrastructure management (Mirzaei et al.,
2022).
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However, despite their widespread adoption, vi-
sualizing point clouds remains a challenge due to in-
herent issues such as incompleteness, point sparsity,
and inaccuracies arising from the acquisition process.
These issues often result in point cloud renderings that
suffer from visual clutter and ambiguity (Xu et al.,
2004). Non-photorealistic rendering (NPR) offers a
way to address these challenges by using techniques
that do not aim for photorealism, but deliberately
employ abstraction to enhance scene comprehension
and guide the viewer’s focus to relevant scene ele-
ments (Dollner, 2008; DeCarlo and Santella, 2002)
(Figure 1). Different NPR approaches for point clouds
have been designed in the last years, using both object-
space and image-space effects (Awano et al., 2010;
Xu et al., 2004; Wagner et al., 2022). However, many
of these approaches uniformly apply the same visual
style to the entire point cloud. While this helps to re-
duce visual clutter, it often leads to foreground objects
blending into the background. Only a few methods
have adopted a segment-based approach, allowing dis-
tinct rendering styles to be applied to different parts
of a point cloud, e.g., individual stylization of dif-



(a) Rendering of a point cloud via rasterization of point prim- (b) Example result of a NPR of the same point cloud based on
itives. The only available attribute of reflectance intensity is edge enhancement, class-specific coloring, ambient occlusion,

interpreted as a single-channel color.

and a watercolor postprocessing operation.

Figure 1: Comparison of conventional point-based rendering with reflectance intensity information (a) and NPR that supports
expressive visualization of point clouds (b), e.g., by highlighting specific objects and scene parts.

ferent semantic classes (Richter et al., 2015; Wegen
et al., 2022). Such rendering approaches are especially
suited for complex scenes, where the same degree of
abstraction may not be appropriate for every object or
semantic class, or where it is necessary to highlight
certain areas. While prior works on segment-based
point cloud rendering use simple NPR techniques as a
tool for focus+context visualization, the use of image-
based artistic rendering (IB-AR) has rarely been ex-
plored. As (Gooch et al., 2010) note, traditional il-
lustration and drawing styles can effectively convey
information and allow for engaging depictions that cap-
ture and maintain the viewer’s interest. Therefore, in
the image stylization domain, a large variety of IB-AR
filters have been developed (Kyprianidis et al., 2013)
that enable a wide range of visual effects.

In this work, we introduce an approach for
segment-based stylization of point clouds, using differ-
ent artistic styles implemented through IB-AR filters.
Several challenges must be addressed to achieve this
goal. First, rendering of large point clouds as well as
subsequent artistic filtering and compositing of per-
segment images must be implemented in a real-time
manner to create an interactive experience. To this end,
we propose a pipeline approach for scene-graph-based
rendering and compositing of point cloud segments.
The approach enables the interactive exploration of
large point clouds and allows users to experiment with
a variety of artistic styles.

Second, the compositing of different segments
must adhere to the depth order of points. However,
as image-based filtering can shift segment boundaries,
naive composition based on depth testing can lead to
visual artifacts at these boundaries. To address this
issue, we employ a compositing method based on lay-

ered depth images and propose a depth inpainting step
to correct the segments’ depth values in areas altered
by image filtering. To summarize, our contributions
are:

1. A pipeline-based approach for segment-based real-
time NPR of point clouds that integrates a variety
of image-based stylization techniques.

2. A user-controllable segment compositing approach
based on depth-buffer inpainting that eliminates
artifacts at segment borders.

The remainder of this work is structured as follows:
In Section 2, we review related work in the areas of
point cloud segmentation, rendering, and NPR. In
Section 3, we present our approach for segment-based
real-time NPR of point clouds. Implementation details
are given in Section 4. In Section 5, we showcase
exemplary results for different application domains,
demonstrate the effectiveness of our segment composit-
ing method, and discuss limitations of our approach.
Finally, Section 6 concludes the paper and outlines
possible directions for future work.

2 BACKGROUND AND RELATED
WORK

This section provides an overview of the research areas
related to our work. After providing a definition of
3D point clouds, we present previous work on point
cloud rendering and segmentation, before we subse-
quently review related work in the area of NPR, focus-
ing IB-AR and NPR for point clouds.









(a) Direct rendering of a raw point cloud.

(b) Segment-based NPR of the same point cloud.

Figure 4: A segmentation of the point cloud enables separate processing and subsequent blending of the rendering results.

was extended to incorporate depth information in the
2D (Liu et al., 2017) and 3D (Hollein et al., 2022)
domain. (Shekhar et al., 2021) enhance cartoon styl-
ization effects by producing salient edges around depth
discontinuities. Similar to our approach, depth-based
segment stitching has been explored in the form of
layered depth images in the context of 3D photo styl-
ization. (Bath et al., 2022) segment an image based
on predicted depth and apply different stylizations that
are then stitched together using a simple form of depth-
inpainting. (Mu et al., 2022) extract a point cloud from
a depth image and use it to condition view-consistent
style transfer features. We also use depth-aware com-
position of stylized segments, but instead of generating
new content (as done in 3D photo stylization), we em-
ploy depth inpainting to improve blending between
stylized point cloud segments.

3 APPROACH

In the following, we present our approach for combin-
ing IB-AR with segment-based NPR of point clouds.
Figure 5 illustrates the overall process of obtaining a
stylized image from point cloud data. Initially, each
point cloud is preprocessed, e.g., using outlier filter-
ing or computing additional point attributes. An inte-
gral part of the preprocessing is the segmentation of
the point cloud, i.e., creating segments that represent
point clusters, semantic classes, or object instances.
Subsequently, on a per-frame basis, each point cloud
segment is rendered separately, resulting in at least a
color and a depth image. A rendering pipeline P for a
single segment comprises different processing steps in
a fixed order:

1. The segment is rasterized using point primitives of
a user-defined size. The results are raster images

containing color and depth information for further
processing in subsequent pipeline steps.

2. An arbitrary number of image-based postprocess-
ing steps can be applied to the result of the raster-
ization step. Examples include smoothing, color
grading, or IB-AR filters.

3. A depth inpainting step is used to counter border
artifacts that can occur when compositing the per-
segment images.

To enable fine-grained control of the rendering pro-
cess, each processing step can be parameterized. After
all segments are rendered, the resulting per-segment
images are composited into a final image.

3.1 Countering Compositing Artifacts

Since each segment is rendered separately, the question
arises of how to combine the per-segment results into
a cohesive final image. Merely overlaying the results
of each segment fails to accurately represent scenarios
where segments are partially obscured or interleaved,
as is the case with the lantern pole and the tree in Fig-
ure 1. To ensure proper visibility, depth testing has to
be employed. However, image-based postprocessing
can modify color values at pixels where no fragment
was recorded during rasterization, e.g., when adding
outlines. These newly colored pixels would have no
valid depth value, leading to artifacts when composit-
ing the rendered segments. A potential solution could
be to resolve visibility before applying image filters:
for each segment, the occluded areas are computed
and masked by setting the alpha channel to zero before
applying image-based postprocessing. While this par-
tially mitigates the problem, it requires the definition
of a strict order of segments, implying that one seg-
ment consistently overlaps the other in areas lacking



Figure 5: Illustration of the overall rendering approach. First, the point cloud is preprocessed, e.g., using outlier filtering.
Additionally, it is segmented according to point clusters, semantic classes, or object instances. Then, each point cloud segment
is rendered separately and the results are combined into a final image. The user can interactively control the processing

pipelines for each point cloud.

depth data. Additionally, by introducing transparency
early in the process, IB-AR techniques might not pro-
duce correct results or overwrite the alpha channel as
part of their processing pipeline.

Therefore, we propose to instead use a depth in-
painting pass on the per-segment depth buffers. This
inpainting pass is guided by the differences between
the rasterized and the postprocessed color images, as
depicted in Figure 6. First, for each segment, the ras-
terized and the postprocessed images are converted
to grayscale and their difference is computed. Sub-
sequently, this difference image is converted into a
binary inpainting mask using a user-defined threshold,
encoding areas significantly altered by postprocess-
ing. Then, the depth values of all masked pixels are
inpainted. For this, all pixels in a circular neighbor-
hood, whose depth values do not correspond to the far
plane depth, are averaged. The size of the averaging
kernel is user-controllable. Pseudo-code for the depth
inpainting pass is provided in Section 4.

4 IMPLEMENTATION

This sections provides implementation aspects of the
proposed approach. After describing the segmentation
methods we use as part of point cloud preprocessing,
we detail our implementation of the described point
cloud stylization approach.

4.1 Point Cloud Segmentation

As described, we perform point cloud segmentation
independently of the rendering in a preprocessing step.
Depending on the application scenario, we employed
different segmentation approaches:

Connected Component Analysis. We use the algo-
rithm implemented in the open source software Cloud-
Compare.! This algorithm uses an octree and identifies
connected components based on two criteria: The oc-
tree level, which defines the minimum size of the gap
between two components, and the minimum number
of points per component, which causes components
with fewer points to be discarded.

Semantic Segmentation. We present examples that
were created using a rule-based approach, as well as
examples based on a DL approach. Specifically, we
use the rule-based approach of (Richter et al., 2015),
which segments point clouds into five disjoint parti-
tions representing buildings, vegetation, terrain, in-
frastructure, and water. For this purpose, the point
clouds are first segmented using the algorithm of (Rab-
bani et al., 2006), after which the label of each seg-
ment is determined in several rule-based classification
steps. As an example of a DL method, the pipeline
of (Burmeister et al., 2023) is used. It is based on DL
architectures that can directly process point clouds,
namely KP-FCNN (Thomas et al., 2019).

Instance Segmentation. As an example of an instance
segmentation task, we consider single tree delineation.
To segment vegetation point clouds into individual
trees, we use the marker-controlled watershed algo-
rithm (Kornilov and Safonov, 2018), with the local
maxima of the canopy height serving as markers.

4.2 Point Cloud NPR

The proposed segment-based point cloud styliza-
tion approach was implemented using C++ and
OpenGL 4.3.

lwww.cloudcompare.org/doc/wiki/index.php/

Label_Connected_Components
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Figure 6: A flow chart depicting our depth inpainting approach to counter compositing artifacts.

Point Rendering. We structure the point cloud to
render as a tree. Each leaf node of the tree comprises a
point cloud segment S with its own rendering pipeline
P that defines the different stylization steps, as well
as their parameterization. Inner nodes of the tree rep-
resent user-defined groupings of multiple segments,
facilitating their joint manipulation. Changes made
to inner nodes, e.g., addition of stylization steps or
adjustment of processing parameters, are propagated
to all child nodes. However, child nodes may override

float computeDepth(ivec2 coords, float maskThreshold,
» int kernelSize){
float originalDepth = readDepthAt(coords);

if (colorsAreSimilar (coords, maskThreshold))
return originalDepth;

// inpaint depth based on neighbor depth
float counter = 0.0, finalDepth = 0.0;
for (each pixel in a circle around coords with
» radius kernelSize){
float neighborDepth = readDepthAt(pixel);

// skip depth values on the far plane
float skipFactor = 1.0 — step(1.0,
» neighborDepth) ;

finalDepth += neighborDepth * skipFactor;
counter += skipFactor;

}

return finalDepth /counter;

}

Listing 1: GLSL-inspired pseudocode of the function that
estimates the depth of a pixel in the depth inpainting pass.
The colorsAreSimilar corresponds to the calculation of the
inpainting mask (Figure 6), i.e., it retrieves the color after
rasterization and the color after postprocessing at the given
coordinates, computes their intensity difference, and thresh-
olds the result according to the maskThreshold.

the pipeline configuration inherited from their parent.
This hierarchical structure enables intuitive and effec-
tive control of the rendering. General settings can be
applied to multiple segments by specifying them in
higher-level nodes, while still allowing for individual
parameterization at lower levels.

Image Filtering. For postprocessing after raster-
ization, we integrated several IB-AR effects that can
be parameterized by the user. Examples include a car-
toon effect (Winnemoller et al., 2006), a watercolor
filter (Bousseau et al., 2006), an oilpaint filter (Semmo
et al., 2016), image warping, and color grading. To
define the effects to be applied to each segment, we
use the description format for image and video pro-
cessing operations introduced by (Diirschmid et al.,
2017). This format provides a consistent description
of the effect parameters and their presets and allows
multiple IB-AR effects to be combined in a pipeline.

Maintaining Interactivity. To facilitate interac-
tive navigation through the scenes during rendering,
we employ two approaches: First, the image stylization
per segment is performed asynchronous to the rest of
the rendering in a separate thread. This enables smooth
navigation, even with computationally intensive post-
processing pipelines. However, if the processing times
for certain segments differ significantly, image arti-
facts can occur during camera movement. This is due
to the fact that during postprocessing of a segment, the
virtual viewpoint might change, which then already
influences the rendering result of other segments. As a
result, segments rendered from slightly different view
points might be combined in the compositing stage.
Second, we provide the option to automatically switch
to lower resolution buffers during camera movement,
to maintain interactivity in scene navigation on sys-
tems with less computational power. If the virtual cam-
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segment-based image-space NPR for point clouds cur-
rently requires high-quality data and segmentation re-
sults, as well as careful configuration of user param-
eters. If these constraints are met, it is an effective
approach to reduce noise or highlight certain objects
in point cloud renderings, as our results show.

6 CONCLUSIONS AND FUTURE
WORK

The integration of point clouds with NPR techniques
has significant potential for various applications. NPR
of point clouds improves the clarity of their depiction,
reduces visual complexity, and enables a wide range
of expressive graphical representations. We demon-
strated that in this context the integration of IB-AR
provides a high degree of artistic freedom and enables
diverse stylization results. Further, we have shown
that point cloud segmentation allows to enhance and
combine existing NPR techniques, improving object
perception and enabling the highlighting of specific
objects or semantic classes. To counter artifacts that
can arise during composition of per-segment render-
ing results, we proposed a depth inpainting approach
that effectively deals with complex scenes comprising
overlapping and intersecting segments. As our overall
approach strongly depends on the quality of the point
cloud segmentation, more accurate segmentation tech-
niques are required to further enhance the stylization
results in the future. The development of foundational
models through suitable pretraining methods seems
to be a promising research direction. Further, in our
current approach, the stylization and depth inpainting
parameters need to be fine-tuned manually. In the fu-
ture, automatic deduction of these parameters from
point cloud properties (e.g., density or segment over-
lap) could be investigated. Overall, our work shows
that point clouds are not only useful for analysis tasks,
which is perceived as their main application in current
scientific literature, but also for artistic stylization and
the creation of helpful and engaging visualizations.
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