
Non-Photorealistic Rendering of 3D Point Clouds Using Segment-Specific
Image-Space Effects

Ole Wegen1 a, Josafat-Mattias Burmeister1 b, Max Reimann2 c, Rico Richter1 d, and

JÈurgen DÈollner2 e

1University of Potsdam, Germany
2Hasso-Plattner-Institute, University of Potsdam, Germany

{wegen, burmeister, rico.richter.1, doellner}@uni-potsdam.de, max.reimann@hpi.de

Keywords: 3D Point Clouds, Non-Photorealistic Rendering, Segmentation, Image-Based Artistic Rendering

Abstract: 3D point clouds are a widely used representation for surfaces and object geometries. However, their visualization

can be challenging due to point sparsity and acquisition inaccuracies, leading to visual complexity and ambiguity.

Non-photorealistic rendering (NPR) addresses these challenges by using stylization techniques to abstract from

certain details or emphasize specific areas of a scene. Although NPR effectively reduces visual complexity,

existing approaches often apply uniform styles across entire point clouds, leading to a loss of detail or saliency

in certain areas. To address this, we present a novel segment-based NPR approach for point cloud visualization.

Utilizing prior point cloud segmentation, our method applies distinct rendering styles to different segments,

enhancing scene understanding and directing the viewer’s attention. Our emphasis lies in integrating aesthetic

and expressive elements through image-based artistic rendering, such as watercolor or cartoon filtering. To

combine the per-segment images into a consistent final image, we propose a user-controllable depth inpainting

algorithm. This algorithm estimates depth values for pixels that lacked depth information during point cloud

rendering but received coloration during image-based stylization. Our approach supports real-time rendering of

large point clouds, allowing users to interactively explore various artistic styles.

1 INTRODUCTION

3D point clouds are unstructured sets of points in 3D
space that often lack consistent density or distribution.
The term ªcloudº metaphorically reflects their abstract,
shapeless nature, akin to atmospheric clouds. Point
clouds can efficiently represent diverse 3D entities,
capturing various shapes, topologies, and scales. Re-
cent advances in remote sensing technologies, particu-
larly LiDAR (Horaud et al., 2016) and photogramme-
try (Westoby et al., 2012), have made point cloud ac-
quisition more accessible and efficient. Consequently,
point clouds have become an integral part of spatial
computational models and digital twins, serving var-
ious sectors such as autonomous driving (Li et al.,
2021) or infrastructure management (Mirzaei et al.,
2022).
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However, despite their widespread adoption, vi-
sualizing point clouds remains a challenge due to in-
herent issues such as incompleteness, point sparsity,
and inaccuracies arising from the acquisition process.
These issues often result in point cloud renderings that
suffer from visual clutter and ambiguity (Xu et al.,
2004). Non-photorealistic rendering (NPR) offers a
way to address these challenges by using techniques
that do not aim for photorealism, but deliberately
employ abstraction to enhance scene comprehension
and guide the viewer’s focus to relevant scene ele-
ments (DÈollner, 2008; DeCarlo and Santella, 2002)
(Figure 1). Different NPR approaches for point clouds
have been designed in the last years, using both object-
space and image-space effects (Awano et al., 2010;
Xu et al., 2004; Wagner et al., 2022). However, many
of these approaches uniformly apply the same visual
style to the entire point cloud. While this helps to re-
duce visual clutter, it often leads to foreground objects
blending into the background. Only a few methods
have adopted a segment-based approach, allowing dis-
tinct rendering styles to be applied to different parts
of a point cloud, e.g., individual stylization of dif-



(a) Rendering of a point cloud via rasterization of point prim-
itives. The only available attribute of reflectance intensity is
interpreted as a single-channel color.

(b) Example result of a NPR of the same point cloud based on
edge enhancement, class-specific coloring, ambient occlusion,
and a watercolor postprocessing operation.

Figure 1: Comparison of conventional point-based rendering with reflectance intensity information (a) and NPR that supports
expressive visualization of point clouds (b), e.g., by highlighting specific objects and scene parts.

ferent semantic classes (Richter et al., 2015; Wegen
et al., 2022). Such rendering approaches are especially
suited for complex scenes, where the same degree of
abstraction may not be appropriate for every object or
semantic class, or where it is necessary to highlight
certain areas. While prior works on segment-based
point cloud rendering use simple NPR techniques as a
tool for focus+context visualization, the use of image-
based artistic rendering (IB-AR) has rarely been ex-
plored. As (Gooch et al., 2010) note, traditional il-
lustration and drawing styles can effectively convey
information and allow for engaging depictions that cap-
ture and maintain the viewer’s interest. Therefore, in
the image stylization domain, a large variety of IB-AR
filters have been developed (Kyprianidis et al., 2013)
that enable a wide range of visual effects.

In this work, we introduce an approach for
segment-based stylization of point clouds, using differ-
ent artistic styles implemented through IB-AR filters.
Several challenges must be addressed to achieve this
goal. First, rendering of large point clouds as well as
subsequent artistic filtering and compositing of per-
segment images must be implemented in a real-time
manner to create an interactive experience. To this end,
we propose a pipeline approach for scene-graph-based
rendering and compositing of point cloud segments.
The approach enables the interactive exploration of
large point clouds and allows users to experiment with
a variety of artistic styles.

Second, the compositing of different segments
must adhere to the depth order of points. However,
as image-based filtering can shift segment boundaries,
naive composition based on depth testing can lead to
visual artifacts at these boundaries. To address this
issue, we employ a compositing method based on lay-

ered depth images and propose a depth inpainting step
to correct the segments’ depth values in areas altered
by image filtering. To summarize, our contributions
are:

1. A pipeline-based approach for segment-based real-
time NPR of point clouds that integrates a variety
of image-based stylization techniques.

2. A user-controllable segment compositing approach
based on depth-buffer inpainting that eliminates
artifacts at segment borders.

The remainder of this work is structured as follows:
In Section 2, we review related work in the areas of
point cloud segmentation, rendering, and NPR. In
Section 3, we present our approach for segment-based
real-time NPR of point clouds. Implementation details
are given in Section 4. In Section 5, we showcase
exemplary results for different application domains,
demonstrate the effectiveness of our segment composit-
ing method, and discuss limitations of our approach.
Finally, Section 6 concludes the paper and outlines
possible directions for future work.

2 BACKGROUND AND RELATED

WORK

This section provides an overview of the research areas
related to our work. After providing a definition of
3D point clouds, we present previous work on point
cloud rendering and segmentation, before we subse-
quently review related work in the area of NPR, focus-
ing IB-AR and NPR for point clouds.



2.1 3D Point Clouds

A 3D point cloud is a set of points in space, which is
permutation invariant. Each point is defined at least by
its 3D coordinates, but may have additional attributes,
such as reflectance intensity or color. In this paper, we
focus on surface point clouds, where each point repre-
sents a discrete sample of a continuous surface. Due to
imperfections in the data acquisition process, 3D point
clouds are often incomplete, have an irregular point
distribution, and contain measurement inaccuracies
and noise. During data preprocessing, some of these
issues can be mitigated (e.g., by filtering outliers) and
additional per-point attributes, such as surface normals,
can be computed.

2.2 Point Cloud Rendering

For point cloud rendering, different approaches have
been developed. A straightforward approach is to use
point primitives supported by graphics APIs to ren-
der individual points with fixed size in screen space.
Alternatively, splatting provides a linear approxima-
tion to the underlying surface by rendering primitives
(e.g., disks) of a certain world-space size and blend-
ing overlapping regions to create the appearance of
smooth surfaces (Zwicker et al., 2001). Recently, deep
learning (DL) approaches have been proposed to gener-
ate high-resolution renderings from low-density point
clouds (Bui et al., 2018; Aliev et al., 2020). How-
ever, these methods often require RGB images, are
time-consuming to train, and the rendering perfor-
mance is not yet comparable with standard rendering
approaches. The described rendering techniques can
be implemented with level-of-detail (LoD) data struc-
tures to enable out-of-core rendering of massive point
clouds, enhance rendering performance, and reduce vi-
sual clutter (Scheiblauer, 2014). For this, point clouds
are hierarchically organized in spatial data structures
(e.g., kd-trees or octrees), which are used during ren-
dering to select a suitable LoD, depending on the vir-
tual view position. Our approach is compatible with
any point cloud rendering technique, provided it can
generate a depth image during the rendering process.
For the sake of clarity in our demonstrations, we opt
for a straightforward approach using point primitive
rasterization and do not use any LoD data structure.

2.3 Segmentation of Point Clouds

Although different subsets of a point cloud may repre-
sent distinct parts of a scene, there is no inherent order
in a point cloud that reflects this. Basic structural
information can be obtained from unsupervised seg-

Figure 2: Result of a deep-learning-based semantic segmen-
tation of the point cloud shown in Figure 1.

mentation algorithms that divide point clouds into non-
overlapping segments. Xie et al. provide an overview
of these methods, of which region growing, cluster-
ing, and model fitting are the most common ones (Xie
et al., 2020). Further information can be added by
semantic segmentation, where each point is assigned a
semantic label (Figure 2), and instance segmentation,
where points with the same semantic label are grouped
into individual objects. This paper does not focus
on the segmentation process itself, as our segment-
based stylization approach is agnostic to the segmen-
tation method used. Nevertheless, we provide a brief
overview of approaches below.

Semantic segmentation can be performed both
with unsupervised, rule-based approaches as well as
with supervised machine learning (ML) approaches. In
rule-based approaches, additional attributes are com-
puted for each point and subsequently used to distin-
guish between different semantic classes. This can
involve deriving geometric descriptors (e.g., linearity,
planarity, scattering) from the distribution of neighbor-
ing points (Weinmann et al., 2015). Often, rule-based
approaches are based on a prior point cloud segmen-
tation with unsupervised algorithms, allowing classifi-
cation rules to be based on segment shape (Hao et al.,
2022). Supervised ML models for semantic segmenta-
tion can be trained if annotated datasets are available.
In recent years, deep neural networks have become
popular for this task, as they often outperform statis-
tical ML models, such as random forests (Weinmann
et al., 2015). A number of DL architectures have been
developed to process point clouds directly, offering
performance advantages over DL architectures that are
based on image- or voxel-based intermediate represen-
tations (Bello et al., 2020).

Instance segmentation approaches often rely on
special shape characteristics of the object category to
be segmented. Many instance segmentation methods
are based on unsupervised model fitting, region grow-
ing, or clustering algorithms, such as DBSCAN (Ester



(a) Point rasterization result. (b) NPR based on image-space processing.

Figure 3: Compared to simple point primitive rasterization, NPR mitigates the problem of holes due to missing points and
difficulty of perceiving object boundaries.

et al., 1996). Some authors have also proposed deep
learning approaches (Wang et al., 2018; Luo et al.,
2021).

2.4 Non-Photorealistic Rendering

NPR uses visual abstraction and focus techniques to
simplify images and direct attention, creating aestheti-
cally pleasing and easily understandable illustrations.
IB-AR is a sub-area of NPR that transforms an in-
put image into an artistically stylized rendition using
image filtering techniques. A variety of IB-AR tech-
niques have been proposed that mimic artistic painting
methods, such as oil painting (Semmo et al., 2016),
watercolor (Bousseau et al., 2006), cartoon filtering
(WinnemÈoller et al., 2006), stroke-based painterly ren-
dering (Hertzmann, 1998), and many others (Kypri-
anidis et al., 2013). Further, with the advancements
in DL, example-based techniques such as neural style
transfer (NST) (Jing et al., 2020) have emerged, which
apply an artistic style extracted from an input style
image to a new content image. In our approach, we
implement the previously named techniques as part
of an image processor responsible for stylizing point
cloud segments.

2.4.1 NPR of Point Clouds

The main strengths of NPR also apply to point cloud
rendering: Scene understanding is enhanced and vi-
sually appealing images can be created (Figure 3).
NPR of point clouds can be categorized into object-
space and image-space approaches. Object-space ap-
proaches control the rendering result via the selection
of geometric primitives (e.g., points, splats, strokes,
or 3D glyphs) and their orientation (e.g., surface-

aligned or view-aligned) and scaling. Image-space ap-
proaches postprocess the image resulting from a prior
point cloud rasterization step. In theory, any IB-AR
technique could be employed during postprocessing.
To date, some NST approaches have been adapted to
point clouds (Cao et al., 2020), and eye-dome light-
ing has been developed as a technique to enhance
object perception in point cloud renderings (Ribes and
Boucheny, 2011). However, generic approaches for
integrating point cloud rendering with arbitrary IB-AR
methods have rarely been investigated.

The use of point cloud segmentation techniques to
stylize segments in different ways has been explored
in the past, e.g., by (Richter et al., 2015) and (Wegen
et al., 2022). Both employ semantic-class-dependent
NPR to enhance recognition of objects. While their
approaches are focused on specific application do-
mains and mostly employ object-space techniques, we
propose a more general approach to segment-based
point cloud stylization. In particular, our approach
enables per-segment stylization using a multitude of
NPR techniques, including especially IB-AR meth-
ods (Figure 4). The segments can be derived from
semantic classes, object instances, point clusters, or
application-specific attributes.

2.4.2 Depth-Aware IB-AR Techniques

Typically, IB-AR approaches do not make assump-
tions about the geometry an image depicts, which of-
ten leads to a flattening effect in the output. How-
ever, for point clouds, maintaining depth perception is
important. Several image-based approaches incorpo-
rate depth information (either predicted or captured),
to enhance depth perception and improve separation
of foreground and background. For example, NST



(a) Direct rendering of a raw point cloud. (b) Segment-based NPR of the same point cloud.
Figure 4: A segmentation of the point cloud enables separate processing and subsequent blending of the rendering results.

was extended to incorporate depth information in the
2D (Liu et al., 2017) and 3D (HÈollein et al., 2022)
domain. (Shekhar et al., 2021) enhance cartoon styl-
ization effects by producing salient edges around depth
discontinuities. Similar to our approach, depth-based
segment stitching has been explored in the form of
layered depth images in the context of 3D photo styl-
ization. (Bath et al., 2022) segment an image based
on predicted depth and apply different stylizations that
are then stitched together using a simple form of depth-
inpainting. (Mu et al., 2022) extract a point cloud from
a depth image and use it to condition view-consistent
style transfer features. We also use depth-aware com-
position of stylized segments, but instead of generating
new content (as done in 3D photo stylization), we em-
ploy depth inpainting to improve blending between
stylized point cloud segments.

3 APPROACH

In the following, we present our approach for combin-
ing IB-AR with segment-based NPR of point clouds.
Figure 5 illustrates the overall process of obtaining a
stylized image from point cloud data. Initially, each
point cloud is preprocessed, e.g., using outlier filter-
ing or computing additional point attributes. An inte-
gral part of the preprocessing is the segmentation of
the point cloud, i.e., creating segments that represent
point clusters, semantic classes, or object instances.
Subsequently, on a per-frame basis, each point cloud
segment is rendered separately, resulting in at least a
color and a depth image. A rendering pipeline P for a
single segment comprises different processing steps in
a fixed order:

1. The segment is rasterized using point primitives of
a user-defined size. The results are raster images

containing color and depth information for further
processing in subsequent pipeline steps.

2. An arbitrary number of image-based postprocess-
ing steps can be applied to the result of the raster-
ization step. Examples include smoothing, color
grading, or IB-AR filters.

3. A depth inpainting step is used to counter border
artifacts that can occur when compositing the per-
segment images.

To enable fine-grained control of the rendering pro-
cess, each processing step can be parameterized. After
all segments are rendered, the resulting per-segment
images are composited into a final image.

3.1 Countering Compositing Artifacts

Since each segment is rendered separately, the question
arises of how to combine the per-segment results into
a cohesive final image. Merely overlaying the results
of each segment fails to accurately represent scenarios
where segments are partially obscured or interleaved,
as is the case with the lantern pole and the tree in Fig-
ure 1. To ensure proper visibility, depth testing has to
be employed. However, image-based postprocessing
can modify color values at pixels where no fragment
was recorded during rasterization, e.g., when adding
outlines. These newly colored pixels would have no
valid depth value, leading to artifacts when composit-
ing the rendered segments. A potential solution could
be to resolve visibility before applying image filters:
for each segment, the occluded areas are computed
and masked by setting the alpha channel to zero before
applying image-based postprocessing. While this par-
tially mitigates the problem, it requires the definition
of a strict order of segments, implying that one seg-
ment consistently overlaps the other in areas lacking
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Figure 5: Illustration of the overall rendering approach. First, the point cloud is preprocessed, e.g., using outlier filtering.
Additionally, it is segmented according to point clusters, semantic classes, or object instances. Then, each point cloud segment
is rendered separately and the results are combined into a final image. The user can interactively control the processing
pipelines for each point cloud.

depth data. Additionally, by introducing transparency
early in the process, IB-AR techniques might not pro-
duce correct results or overwrite the alpha channel as
part of their processing pipeline.

Therefore, we propose to instead use a depth in-
painting pass on the per-segment depth buffers. This
inpainting pass is guided by the differences between
the rasterized and the postprocessed color images, as
depicted in Figure 6. First, for each segment, the ras-
terized and the postprocessed images are converted
to grayscale and their difference is computed. Sub-
sequently, this difference image is converted into a
binary inpainting mask using a user-defined threshold,
encoding areas significantly altered by postprocess-
ing. Then, the depth values of all masked pixels are
inpainted. For this, all pixels in a circular neighbor-
hood, whose depth values do not correspond to the far
plane depth, are averaged. The size of the averaging
kernel is user-controllable. Pseudo-code for the depth
inpainting pass is provided in Section 4.

4 IMPLEMENTATION

This sections provides implementation aspects of the
proposed approach. After describing the segmentation
methods we use as part of point cloud preprocessing,
we detail our implementation of the described point
cloud stylization approach.

4.1 Point Cloud Segmentation

As described, we perform point cloud segmentation
independently of the rendering in a preprocessing step.
Depending on the application scenario, we employed
different segmentation approaches:

Connected Component Analysis. We use the algo-
rithm implemented in the open source software Cloud-
Compare.1 This algorithm uses an octree and identifies
connected components based on two criteria: The oc-
tree level, which defines the minimum size of the gap
between two components, and the minimum number
of points per component, which causes components
with fewer points to be discarded.
Semantic Segmentation. We present examples that
were created using a rule-based approach, as well as
examples based on a DL approach. Specifically, we
use the rule-based approach of (Richter et al., 2015),
which segments point clouds into five disjoint parti-
tions representing buildings, vegetation, terrain, in-
frastructure, and water. For this purpose, the point
clouds are first segmented using the algorithm of (Rab-
bani et al., 2006), after which the label of each seg-
ment is determined in several rule-based classification
steps. As an example of a DL method, the pipeline
of (Burmeister et al., 2023) is used. It is based on DL
architectures that can directly process point clouds,
namely KP-FCNN (Thomas et al., 2019).
Instance Segmentation. As an example of an instance
segmentation task, we consider single tree delineation.
To segment vegetation point clouds into individual
trees, we use the marker-controlled watershed algo-
rithm (Kornilov and Safonov, 2018), with the local
maxima of the canopy height serving as markers.

4.2 Point Cloud NPR

The proposed segment-based point cloud styliza-
tion approach was implemented using C++ and
OpenGL 4.3.

1www.cloudcompare.org/doc/wiki/index.php/
Label Connected Components

www.cloudcompare.org/doc/wiki/index.php/Label_Connected_Components
www.cloudcompare.org/doc/wiki/index.php/Label_Connected_Components
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Point Rendering. We structure the point cloud to
render as a tree. Each leaf node of the tree comprises a
point cloud segment S with its own rendering pipeline
P that defines the different stylization steps, as well
as their parameterization. Inner nodes of the tree rep-
resent user-defined groupings of multiple segments,
facilitating their joint manipulation. Changes made
to inner nodes, e.g., addition of stylization steps or
adjustment of processing parameters, are propagated
to all child nodes. However, child nodes may override

1 float computeDepth(ivec2 coords, float maskThreshold,

→֒ int kernelSize){

2 float originalDepth = readDepthAt(coords);

4 if(colorsAreSimilar(coords, maskThreshold))

5 return originalDepth;

7 // inpaint depth based on neighbor depth

8 float counter = 0.0, finalDepth = 0.0;

9 for (each pixel in a circle around coords with

→֒ radius kernelSize){

10 float neighborDepth = readDepthAt(pixel);

12 // skip depth values on the far plane

13 float skipFactor = 1.0 − step(1.0,

→֒ neighborDepth);

15 finalDepth += neighborDepth ∗ skipFactor;

16 counter += skipFactor;

17 }

18 return finalDepth /counter;

19 }

Listing 1: GLSL-inspired pseudocode of the function that
estimates the depth of a pixel in the depth inpainting pass.
The colorsAreSimilar corresponds to the calculation of the
inpainting mask (Figure 6), i.e., it retrieves the color after
rasterization and the color after postprocessing at the given
coordinates, computes their intensity difference, and thresh-
olds the result according to the maskThreshold.

the pipeline configuration inherited from their parent.
This hierarchical structure enables intuitive and effec-
tive control of the rendering. General settings can be
applied to multiple segments by specifying them in
higher-level nodes, while still allowing for individual
parameterization at lower levels.

Image Filtering. For postprocessing after raster-
ization, we integrated several IB-AR effects that can
be parameterized by the user. Examples include a car-
toon effect (WinnemÈoller et al., 2006), a watercolor
filter (Bousseau et al., 2006), an oilpaint filter (Semmo
et al., 2016), image warping, and color grading. To
define the effects to be applied to each segment, we
use the description format for image and video pro-
cessing operations introduced by (DÈurschmid et al.,
2017). This format provides a consistent description
of the effect parameters and their presets and allows
multiple IB-AR effects to be combined in a pipeline.

Maintaining Interactivity. To facilitate interac-
tive navigation through the scenes during rendering,
we employ two approaches: First, the image stylization
per segment is performed asynchronous to the rest of
the rendering in a separate thread. This enables smooth
navigation, even with computationally intensive post-
processing pipelines. However, if the processing times
for certain segments differ significantly, image arti-
facts can occur during camera movement. This is due
to the fact that during postprocessing of a segment, the
virtual viewpoint might change, which then already
influences the rendering result of other segments. As a
result, segments rendered from slightly different view
points might be combined in the compositing stage.
Second, we provide the option to automatically switch
to lower resolution buffers during camera movement,
to maintain interactivity in scene navigation on sys-
tems with less computational power. If the virtual cam-



Table 1: The point clouds used in the paper.

Figures Reference

1,2,12 Street scene in the city of Hamburg, scanned with mobile mapping

vehicle. Provided by AllTerra Deutschland GmbH.

3 ªTottieska malmgården, Faro Pointcloud, Decimatedº (https://skfb.ly/

6RTvX) by HagaeusBygghantverk. Licensed under Creative Com-

mons Attribution.

4,6,11,12 ªHintze Hall, NHM London [point cloud]º (https://skfb.ly/6sXWG)

by Thomas Flynn. Licensed under Creative Commons Attribution-

NonCommercial.

7 ªStone Griffin, Downing College, Cambridgeº (https://skfb.ly/OVZx)

by Thomas Flynn. Licensed under Creative Commons Attribution.

8 From ªHessigheim 3Dº dataset (KÈolle et al., 2021).

10 Street scene in the city of Essen, scanned with mobile mapping vehi-

cle. Provided by the Department for Geoinformation, Surveying and

Cadastre of the City of Essen.

9, 12 Forest area scanned with aerial LiDAR, obtained from OpenGeo-

DataNRW (www.opengeodata.nrw.de). Licensed under Data licence

Germany - Zero - Version 2.0

era is not moved for 500 milliseconds, high-resolution
buffers are used again for rendering.

Depth Inpainting. The implementation of the
depth inpainting pass is shown in Listing 1. Although
the generation of the difference image, the inpainting
mask, and the processed depth buffer are conceptually
separate steps, we implemented them as a single shader
for performance reasons.

5 RESULTS

The proposed rendering process can be customized on
different granularity levels: each point cloud segment
is rendered by an individual processing pipeline and
each pipeline step can be controlled interactively by a
set of parameters. This makes the approach capable
of producing diverse results. In the following, we
showcase example renderings for point clouds with
up to 82 million points, employing different pipeline
configurations (see Table 1 for the point cloud sources).
Please also refer to the supplementary video.

While our prototype mainly showcases our ap-
proach’s feasibility and is not fully optimized for per-
formance, basic runtime and scene statistics are shown
in Table 2 for reference. All images were rendered
with a resolution of 1920×1080 pixels on a machine
equipped with an AMD Ryzen 7 3700-X processor,
32GB RAM, and an NVIDIA RTX 3090 graphics
card. The rendering performance of a given scene is
influenced by numerous factors, including number of
points, viewpoint, the rendering pipelines and their
parameterization, the number of point cloud segments
and depth inpainting kernel size.

5.1 Exemplary Results

Application of IB-AR to non-segmented point clouds
enables aesthetic and diverse rendering results, as
demonstrated in Figure 3, Figure 7, and Figure 8.

(a) (b) (c) (d) (e)

Figure 7: Different IB-AR filters applied to point cloud (a):
toon (b), posterization (c), oil painting (d,e).

Figure 8: An edge enhancement and oilpaint IB-AR filter
applied to a point cloud obtained by a UAV.

(a) Original point cloud (b) Stylized result
Figure 9: NPR based on semantic segmentation and tree
instance segmentation.

When integrated with segmentation, the approach am-
plifies the strengths of NPR, such as highlighting key
areas, resulting in engaging visualizations. In the fol-
lowing, we present a few application examples of this
approach.
NPR in Vegetation Mapping. Figure 9 shows a point
cloud of a forest area. The NPR is parameterized by
segmentation results with respect to coloring and edge
thickness to facilitate the simultaneous distinction of
semantic classes and individual trees. Figure 10 shows
results for a mobile mapping point cloud. The point
cloud is segmented into five classes (low vegetation,
tree trunks, tree branches, tree crowns, non-vegetation)
using a DL approach (Figure 10b). Then, coloring
(Figure 10c), as well as cartoon and watercolor filter-
ing (Figure 10d) are applied to the vegetation classes,
using black outlines for trees and white outlines for
low vegetation.

https://skfb.ly/6RTvX
https://skfb.ly/6RTvX
https://skfb.ly/6sXWG
https://skfb.ly/OVZx
www.opengeodata.nrw.de


Table 2: Rendering performance for the scenes depicted in this paper (capped at 60 FPS). Please note that for the measurements
with an additional number in brackets, an unoptimized CPU-side pencilhatching IB-AR filter is used on some of the segments.
The number in brackets reports the performance for the case that this filter is exchanged for a GPU-accelerated cartoon filter.
We further state the used segmentation methods, if applicable: SSDL = deep learning semantic segmentation, SSR = rule-based
semantic segmentation, CC = connected components analysis, ISA = algorithmic instance segmentation. Please also refer to
Section 4 for more details on the segmentation methods.

Figure 1(b) 3(b) 4(b) 7(b)-(e) 8 9(b) 10(d) 11 12(d) upper 12(d) middle 12(d) lower

Number of Points 18.3M 4.8M 2.5M 3M 82M 12M 64.8M 2.5M 2.5M 18.3M 12M

Segmentation SSDL - CC - - SSR+ISA SSDL CC CC SSDL SSR

FPS 53 60 60 60 48 60 32 45 (60) 12 (60) 22 (45) 12 (60)

(a) Reflectance intensity (b) Semantic segmentation (c) Class-based coloring (d) Stylized vegetation

Figure 10: Application example in the area of urban vegetation mapping.

NPR for Urban Visualization. The point cloud
shown in Figure 1 was obtained via mobile map-
ping. Preprocessing involved the exclusion of points
assigned to the transportation category (e.g., buses,
bicycles). Vegetation elements were recolored to
green, pedestrians to red, and architectural structures to
beige. To conceal gaps within the point cloud and aug-
ment the overall aesthetic quality, a watercolor effect
was then applied to the entire image. By smoothing
larger surfaces (e.g., building facades) and emphasiz-
ing smaller objects (e.g., pedestrians), the configu-
ration of the urban landscape can be observed more
easily.
Animations via Warp Filtering. In Figure 11, we em-
ployed a warping-based geometric transformation to
the segmented representation of a whale skeleton, with
temporal parameterization to simulate the motion of
swimming (see the supplementary video). Our depth
inpainting approach ensures visual coherence by main-
taining the correct depth ordering for the transformed
image pixels

(a) Timestamp 1 (b) Timestamp 2
Figure 11: A geometric warp transformation that is parame-
terized over time is applied to one of the segments.

5.2 Comparison of Compositing

Methods

Figure 12 illustrates our compositing technique and
compares it to alternative approaches:
Layering without Depth Test. As demonstrated in
Figure 12b, a naive layering of per-segment results is
inadequate if segments overlap. This approach fails to
resolve occlusions correctly, leading to visual errors.
Layering with Per-Fragment Depth Tests. Incorpo-
rating per-fragment depth tests (Figure 12c) improves
the compositing of layers by ensuring that segments ob-
struct each other appropriately. However, this method
produces visual artifacts at segment boundaries, espe-
cially when a cartoon filter is applied. Boundaries may
be added at pixels without depth information, resulting
in a jittery appearance as the filter’s overdraw effect is
not integrated seamlessly.
Our Depth Inpainting Approach. Our depth inpaint-
ing approach (Figure 12d) addresses these shortcom-
ings, leading to smooth outlines and, thus, a more
uniform and aesthetically pleasing representation. As
the missing depth information at segment boundaries
is effectively estimated, a cohesive and visually stable
output is ensured.

5.3 Discussion

One notable advantage of using image-space filtering
methods for segment-based NPR of point clouds is
their independence from specialized data structures,
often required for organizing point clouds in object-
space approaches, as well as their generality - any



(a) Original (b) Layering (c) Naive depth testing (d) Ours with depth inpainting
Figure 12: Comparison of our approach to other compositing approaches.

image filtering method can be applied without needing
adaption to point cloud geometry. However, combin-
ing image-space NPR with segment-based point cloud
rendering raises the following issues:
Validity of Pixel Information. Image-based NPR
approaches often assume that each pixel contains valid
data. However, when rendering sparse point clouds,
pixels may represent background values rather than
meaningful information, which can cause problems
with image-based processing steps. For example, the
sparsity of point clouds can cause edge filters to place
an excessive number of edges around single points.
To mitigate this problem, gap-filling techniques can
be used, such as increasing the point size or using
splatting. Alternatively, image-based smoothing can
be combined with our depth inpainting approach.
Handling Intersecting Segments and Edge Zones.
In segment-based point cloud rendering, dealing with
overlapping segments and ambiguous boundary zones
is challenging and often requires manual adjustment
of the parameters used to compose the per-segment im-
ages. However, the proposed parameters of our depth
inpainting approach allow for manual adjustment and
provide a degree of control over these complex areas.
Depth Precision Constraints. In scenarios where

the far plane is very far away from the camera, depth
precision may be insufficient for distant parts of the
scene. This can lead to inaccuracies during depth
testing, resulting in visual artifacts when compositing
the per-segment images.

Regardless of whether object- or image-space methods
are used, the following additional issues arise with
segment-based NPR of point clouds:
Inter-Frame Consistency. Achieving consistent ren-
dering results for different camera viewpoints is chal-
lenging, especially when the user can interactively con-
trol the camera. Because camera movements can lead
to variations in the screen-space point density, visual
artifacts such as flickering and popping can occur.
Segmentation Quality Dependence. As the render-
ing techniques and their parameters are selected based
on the preceding segmentation, the quality of the fi-
nal image is greatly influenced by the segmentation
quality. In case of erroneous segmentation, the visual
quality of the result can be significantly degraded, po-
tentially even communicating incorrect information
(e.g., in Figure 1, the lantern pole has been classified
as a pedestrian).

In summary, the successful implementation of



segment-based image-space NPR for point clouds cur-
rently requires high-quality data and segmentation re-
sults, as well as careful configuration of user param-
eters. If these constraints are met, it is an effective
approach to reduce noise or highlight certain objects
in point cloud renderings, as our results show.

6 CONCLUSIONS AND FUTURE

WORK

The integration of point clouds with NPR techniques
has significant potential for various applications. NPR
of point clouds improves the clarity of their depiction,
reduces visual complexity, and enables a wide range
of expressive graphical representations. We demon-
strated that in this context the integration of IB-AR
provides a high degree of artistic freedom and enables
diverse stylization results. Further, we have shown
that point cloud segmentation allows to enhance and
combine existing NPR techniques, improving object
perception and enabling the highlighting of specific
objects or semantic classes. To counter artifacts that
can arise during composition of per-segment render-
ing results, we proposed a depth inpainting approach
that effectively deals with complex scenes comprising
overlapping and intersecting segments. As our overall
approach strongly depends on the quality of the point
cloud segmentation, more accurate segmentation tech-
niques are required to further enhance the stylization
results in the future. The development of foundational
models through suitable pretraining methods seems
to be a promising research direction. Further, in our
current approach, the stylization and depth inpainting
parameters need to be fine-tuned manually. In the fu-
ture, automatic deduction of these parameters from
point cloud properties (e.g., density or segment over-
lap) could be investigated. Overall, our work shows
that point clouds are not only useful for analysis tasks,
which is perceived as their main application in current
scientific literature, but also for artistic stylization and
the creation of helpful and engaging visualizations.
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