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Abstract

This paper presents a hybrid treemap layout approach that optimizes layout-quality metrics by combining state-of-the-art
treemap layout algorithms. It utilizes machine learning to predict those metrics based on data metrics describing the char-
acteristics and changes of the dataset. For this, the proposed approach uses a neural network which is trained on artificially
generated dataset,s containing a total of 15.8 million samples. The resulting model is integrated into an approach called Smart-
Layouting. This approach is evaluated on real-world data from 100 publicly available software repositories. Compared to other
state-of-the-art treemap algorithms it reaches an overall better result. Additionally, this approach can be customized by an end
user’s needs. The customization allows for specifying weights for the importance of each layout-quality metric. The results
indicate, that the algorithm is able to adapt successfully towards a given set of weights.

Categories and Subject Descriptors (according to ACM CCS): [Human-centered computing]: Visualization—Treemaps; [Human-
centered computing]: Visualization—Empirical studies in visualization

1. Introduction

Treemaps have been researched for over 25 years [JS91, Sch11]
as a visualization technique for the depiction of hierarchical data.
Geometric shapes, e.g., rectangles, are laid out in a space-filling
non-overlapping manner to display the hierarchical structure of a
dataset and additional attributes. This allows for an efficient use
of limited space making the technique especially useful for large
datasets. The size of the shapes usually corresponds to a weight at-
tribute defined on a per-element basis. Other visual variables, such
as color or shading can be added to the visualization to display ad-
ditional attributes [Ber83, Car03]. Furthermore, multiple treemaps
can be used to depict the data at different times or in different states,
so called snapshots.

Depicting hierarchical structures and artifact-related information
within the context of the surrounding structure is an important vi-
sualization aspect in different domains, such as visualizing busi-
ness data maps [VvWVdL06], showing software quality measures
of software system artifacts [BE95, BD11], and image collection
browsing [Bed01]. Depending on the use case of the created depic-
tions, certain qualities of the created treemap layouts are of vary-
ing importance. These aspects are optimal aspect ratios (near one),
maintaining the order of the depicted dataset, or producing highly
stable layouts for varying data that changes over time. The latter is
important if recognizing and memorizing the position of familiar
elements between snapshots is intended. For example, weekly de-
pictions software metric data [BD11] require more layout stability

Figure 1: Two treemaps showing the real lines of code of files
in the format module of the d3 Javascript library created by the
Smart layout algorithm. The base algorithms Hilbert, Slice&Dice,
and Voronoi were used for different sub-hierarchies of the data.

than static reports of sports results [JB97]. Producing optimal re-
sults for all possible use cases presents an algorithmic challenge.
Within the high number of treemap algorithms, designed to im-
prove certain aspects of previously published ones, no algorithm is
superior in all aforementioned aspects and under all circumstances.
In fact, they all have certain strong and weak points regarding these
aspects, which further depend on characteristic in the data.

For example, any rectangular algorithm necessarily produces
high aspect ratios for unbalanced data, such as two items with
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weights 999 and 1 [Wat05]. Only algorithms, which depart from
the traditional rectangular regions, can achieve low aspect ratios
for this case.

Based on the these currently incomprehensible dependencies be-
tween the dataset and the algorithm’s performance, the question
arises, whether the differences between datasets can be recognized
and exploited by an algorithm. This thought can be extended to re-
spect the hierarchy of both the dataset and the depiction. It could
be possible to not only use the heterogeneity between different
datasets but within different parts of a single dataset as an advan-
tage. This leads us to one central question: Can different treemap
layout algorithms be combined into one dynamic algorithm, which
achieves better layout qualities than any of the individual algo-
rithms, by predicting individual algorithm performance for each
sub-hierarchy based on descriptive data metrics?

In this paper we present an approach which uses multiple neu-
ral networks to predict individual algorithm performance and op-
timizes algorithm selection. A combination of existing and novel
data metrics is used to describe the input data. For the evaluation of
the system, established layout quality metrics are used. The outline
of this paper remains as follows: An overview about treemap lay-
out algorithms and the research regarding layout quality is given
in Section 2. The descriptive data metrics and the layout-quality
metrics are described in Section 3. In Section 4 the training pro-
cess of the neural network and the Smart algorithm is shown. The
validation of different model architectures and testing of the final
Smart algorithm is summarized in Section 5. Finally, we conclude
this paper and present areas for future work in Section 6.

2. Related Work

Treemap Layout Algorithms have been used for more than 25
years [Sch11]. The first treemap layout algorithm Slice&Dice was
presented by Johnson and Shneiderman [JS91]. Slice&Dice divides
the available space into linear regions for each level in the tree
and alternates between vertical and horizontal division, depending
on the tree depth. This potentially leads to thin elongated rectan-
gles, reducing the visibility of single elements and occurs more
severely if elements in the tree have a large number of children.
The Squarified algorithm, published by Bruls et al. [BHVW00],
focuses on achieving square-like aspect ratios. Although the algo-
rithm leads to very favorable aspect ratios close to one, it intro-
duces more instability in consecutive treemap layouts, if weights
are changed or elements are added to the tree. In 2002, Bederson
et al. presented the Strip algorithm [BSW02], which is a modi-
fication of the Squarified algorithm. It aims at a compromise be-
tween decent aspect ratios and stability, but items are processed in
their original order and the alignment and direction of the strips are
constant, e.g. from left to right. These modifications create paral-
lel lines of items and make it more stable than Squarified, but it
has worse aspect ratios. A variant of this algorithm, called Strip-
Inv, alternates the directions of the created strips in each new row.
This slightly increases stability, since when items at the ends of
a strip move, they only move to an adjacent position on the next
strip, instead of jumping to the opposite end. The Spiral treemap
layout algorithm was developed by Tu and Shen [TS07]. The al-
gorithm uses a flow concept similar to a spatial curve, following a

spiral pattern, to lay out items, such that neighboring items in the
data are adjacent in the treemap. Tak and Cockburn [TC13] pre-
sented the Hilbert and Moore algorithm based on the identically
named space-filling curves to determine the item positions. The re-
sult has low aspect-ratios and high stability on average. Balzer et
al. published the Voronoi algorithm based on Voronoi diagrams
which uses non-rectangular areas in 2005 [BD05]. It was adapted
by Hahn et al. by adding an initial stable distribution [HTMD14].
It has further been extended by Rinse van Hees and Jurriaan Hage
with a stable placement based on a scaled Hilbert curve which also
decreases computation time [vHH15].

Only very few approaches were presented combining different
algorithms in this way. The first approach, called Mixed treemaps,
was reported by Vliegen et al. [VvWVdL06] in 2006. They use
the algorithms Slice&Dice, Strip, and Squarified and slight mod-
ifications of these algorithms. In contrast to our work, they use a
smaller number of algorithms and suggest a fixed configuration of
algorithms, created by an expert for a specific visualization. This
means, their algorithm is adaptable to a dataset, however, this must
be done manually by an expert. A slightly different idea, which is
most similar to the approach in this work is presented by Hahn and
Döllner [HD17] in 2017. They use statistical analysis over a large
set of inputs to identify which base algorithm should by applied for
a given sub-hierarchy of a dataset. The resulting Hybrid algorithm
combines eight rectangular and non-rectangular based algorithms
and achieves superior performance in visualizing ten different soft-
ware projects. Their approach is similar to the one presented in this
work, as they also choose the most suitable layout algorithm among
a set of existing algorithms. However, their approach relies on sta-
tistical analysis, rather than on machine learning, and only consid-
ers the number of elements as data characteristics. In addition, it is
limited to optimization of a fixed weighting of layout-quality met-
rics, whereas the optimization objective of the dynamic approach
presented in this work can be adapted by an end user later on.

Different measures have been proposed to measure the useful-
ness of created treemap depictions. Possible tasks which can be
performed with treemaps include comparing or estimating sizes of
elements and locating certain elements. Comparing sizes of items
in treemaps with different aspect ratios is mentioned as being frus-
trating by Stasko et al. [SCGM00]. The aspect ratio of items tries
to measure the degree of difficulty for this task and was introduced
by Bruls et al. [BHVW00]. The research regarding layout stability
is strongly connected to the model of a mental map for graphs de-
fined by Misue et al., who specify three main aspects: orthogonal
ordering, proximity relations, and topology [MELS95]. The first
measure which captures layout stability distance change was in-
troduced by Bederson et al. to measure layout stability [BSW02]. It
measures the Euclidean distance between consecutive positions and
aspect ratios of items. The relative direction change metric was in-
troduced by Hahn et al. [HBD17]. It captures changes between the
angles of each pair of elements in a treemap, independent of rota-
tions of whole groups of elements and serves as a mean to measure
the topological and arrangement stability of treemap items. Further-
more, they state, that a combination of average aspect ratio, average
distance change and relative direction can be used to significantly
predict user performance in recovery tasks. Therefore these three
metrics were also used to evaluate the Smart approach.
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3. Input Data

This section explains which metrics were used to model the depen-
dency between dataset characteristics and algorithm performance.
The following terms are used throughout this section:

• Snapshot: One instance of a tree with an additional numeric at-
tribute for each element. It is visualized in one treemap.
• Dataset: One complete set of multiple snapshots, either gener-

ated artificially or derived from real data, such as a version con-
trol system.

3.1. Data Metrics

To allow prediction of the outcome, the neural network needs the
receive all relevant inputs for the task. The first important factor
is the orientation and size of the boundaries for the current sub-
hierarchy. It is conveyed to the neural network by using the width
and height, normalized by the maximum of both. Six additional
metrics describe each individual snapshot: the maximum, minimum
and median weight, the number of elements, and the sum and vari-
ance of weights. Four metrics are used to describe changes between
snapshots directly, the relative weight change proposed by Stein-
brückner [Ste12], and two novel metrics, the positional change and
the hierarchy change. The positional change measures positional
shifts of elements between their sibling nodes. Let pi, pi+1 denote
the positions of one data element and ni,ni+1 be the total number
of children in the sub-hierarchy. Then the positional change PC is
defined as PC = 1

2·max(ni,ni+1)
(|pi+1− pi|+ |(ni+1− pi+1)− (ni−

pi)|). The hierarchy change measures deletions and insertions in
the hierarchy with the Jaccard index [Jac08]. If A and B denote the
set of elements in a sub-hierarchy in two snapshots, then the hier-
archy change HC is HC = 1− |A∩B|

|A∪B| .

3.2. Layout Metrics

The aim of the neural network is to predict the layout quality of
an arbitrary input dataset for each algorithm. Three layout metrics
were used to measure different aspects of layout quality:

• Average Aspect Ratio: Reflects the readability of the treemap
and how well sizes can be distinguished and compared.
• Average Distance Change: Measures stability of individual

treemap items.
• Relative Direction Change: Measures stability between the

treemap items (arrangement and topology of treemap items).

They are defined in the literature [HBD17, TC13].

3.3. Normalization

Before the metric data was used for training and prediction, it was
normalized. The different metrics, which are used as input data
are preprocessed and normalized in different ways (see Table 1).
All methods are applied to one sample in a fixed way, i.e. the
normalization is not dependent on maximum or minimum values
over the whole dataset. Instead it sometimes relies on the maxi-
mum and minimum value of some other metrics of that particular
sample. Preliminary tests showed, that the accuracy of the mod-
els increased, when the skewed distributions of values for the input

Table 1: List of metrics used as machine learning data and their
normalization functions. These metrics are used to approximate the
dependency between two snapshots, and the layout-quality metrics
between two corresponding depictions. Metrics with a star (*), only
refer to one of these snapshots. Therefore, they appear twice in the
actual machine learning data, representing either the first or the sec-
ond snapshot respectively (as indicated by the a or b in the super
script in formulas). The neural network predicts the metrics with
type out, based on the value of the metrics with type in.

Metric name Short Type Normalization
Width of Parent (*) Pw In x

max(Pw,Ph)

Height of Parent (*) Ph In x
max(Pw,Ph)

Weight Sum (*) Ws In x
max(W a

s ,W b
s )

Largest Weight (*) Wmax In x
Smallest Weight (*) Wmin In fm(x)
Weight Variance (*) Wv In fm(x)
Weight Median (*) Wmed In fm(x)
Number of Children (*) Wn In fe(x)

Relative Weight Change RWC In fm
(

x
max(W a

s ,W b
s )

)
Positional Change PC In fm(x)
Hierarchy Change HC In fm(x)
Average Distance Change ADC Out fm(x)
Average Aspect Ratio (*) AAR Out fi(x)
Relative Direction Change RDC Out fm(x)

metrics were transformed to be more evenly distributed. Therefore,
in addition to achieving values between zero and one another goal
of the normalization process was to achieve a distribution similar
to a uniform distribution for these metrics. Further, the normaliza-
tion functions are bijective, so the inverse function can be used to
retrieve the actual predictions from the predicted values.

Four different methods of normalization were used. Both, the
prediction of the average aspect ratio in the first and in the sec-
ond snapshot is normalized with the inverse function fi(x) := 1

x .
Because the original average aspect ratio x is always x ≥ 1, the
inversed average aspect ratio is always 0 < fi(x)≤ 1. The logarith-
mic normalization function fe(x) = 1

2 (log10(x+ 10)− 1) is used
for the number of children to provide values between 0 and 1 for
the input interval [1,1000]. The logarithmic normalization function
fm(x) = log100(99x+1) is used for multiple metrics, for example,
for the relative weight change to distribute the values more evenly
in the interval between 0 and 1. The number of children Wnum is
represented by natural numbers with no real limits. A logarithmic
function fe(x) := 1

2 (log10(x+10)−1) is used instead to normalize
these values. No actual hierarchy, neither in the training data, nor
in the evaluation data had more than 1000 children in a single sub-
hierarchy, therefore, this function could be used as a normalization
method. If any instances were encountered, the value could simply
be clipped at 1.

4. Smart Treemap Layouts

The Smart layout algorithm was implemented based on one trained
neural network for each algorithm. These neural networks were
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Figure 2: The general procedure used to create a Smart algorithm. First, training samples are generated, by calculating data and layout-quality
metrics for a large number of datasets. Secondly, a neural network is trained, to predict the layout-quality metrics, based on the data metrics.
Finally, the resulting model can be used to predict the layout-quality metrics for each algorithm for unknown data. Based on this information,
the optimal algorithm can be chosen for each sub-hierarchy.

trained from a large number of treemaps which was generated by
all algorithms from artificially generated datasets. This section de-
scribes the generation of the artificial data, the training process and
how the predictions are used to select the optimal algorithm. An
overview can be seen in Figure 2.

4.1. Training the Model

The training data was generated to produce data which is similar
to real data, but can be generated in the desired amount. Different
parameters were used to ensure creating artificial data which has
a high diversity and coverage of edge cases. The general process
is similar to the approach described by Tak and Cockburn [TC13]
for their evaluation process. However, the process is executed six
times, with an adaptation of some of the parameters. For reference
we denote the six combinations of parameters with A, B, C, D,
E, and F. Three log-normal distributions with different variances
(1.05 (A), 1.5 (B, C, D, E), 1.8 (F)) are used instead of the original
Zipfian distribution for the initial weight assignment. Additionally,
before modifying the weight attribute for each snapshot some of
the dataset types contained a chance to add or remove items. The
actual chance is calculated per element in the treemap with chances
of 0% (C), .5% (A, B, E, F), or 1% (D). This covers real datasets,
where the addition and removal items can regularly happen. Ran-
dom values x are drawn from a Gaussian distribution to modify the
weights in each step by multiplying them with ex. The variance of
the Gaussian distribution is 0 (E), 0.05 (A, B, C, F), or 0.1 (D).

These six combinations were used to generate datasets with 44 dif-
ferent numbers of initial elements. Every number between 2 and
20, and every third number between 20 and 50 is used. Further-
more, we used every fifth number between 50 and 100, and every
tenth number between 100 and 150. Each combination of initial
size and type of dataset is created 5 times with different random
seeds. Afterwards the eight algorithms (Slice&Dice, Strip, Strip-
Inverted, Squarified, Spiral, Moore, Hilbert, Voronoi) are used to
create multiple single-level treemaps with different bounding rect-
angles. In addition to a square with width and height of 1, both nar-
row and wide variations are created by reducing either the width or
height to 9

10 ,
3
4 ,

2
3 ,

1
2 ,

1
3 ,

1
4 , and 1

10 . This results in a total of almost 2
million samples for each treemap algorithms, 15.8 million in total.

4.2. The Smart Algorithm

To allow the optimal prediction of the best algorithm for each sub-
hierarchy in a dataset, the layout process is executed by order of
the snapshots. Therefore, the treemap for the children of the root
element is calculated first for all snapshots. Then, the recursive lay-
out process for the sub-hierarchies starts for all snapshots in par-
allel. Because of this, the bounding rectangles are known for all
snapshots and can be used for the prediction. Before each layout
process starts, the corresponding data metrics can be calculated be-
tween each pair of snapshots. Then the trained models are used
to predict the layout-quality metric values for each algorithm and
each pair of snapshots. Based on the predicted layout-quality met-
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Figure 3: Five snapshots of the format module of the d3 library as calculated by the Hilbert (top) and the Smart algorithm (bottom).

rics and importance weighting of each metric the average score is
calculated between all snapshots. Afterwards Smart algorithm se-
lects the layout algorithm which achieves optimal values according
to the predictions. In this process, the polygonal layout algorithm
(Voronoi) is used only for sub-hierarchies which do not contain any
other sub-hierarchies, i.e. they only contain leaf elements. Other-
wise the recursive layout process could no longer use the rectangu-
lar algorithms.

Instead of using machine learning an exhaustive search can be
used, by running all algorithms for every sub-hierarchy to compare
the actual results. However, this approach would increase the total
time needed for creating the final layout by a factor of the number
of algorithms. Therefore, this might be feasible for a low number
of algorithms, but not for a larger number. Since it is expected that
new algorithms for treemaps are added over time, this gap will fur-
ther increase. By using machine learning, the decision can be made
based on the results of the trained neural network, which can be
computed faster than some of the more complex layout algorithms.
To achieve this speedup, additional time is needed to train the initial
models, which can then be used over and over.

5. Evaluation

The evaluation data consists of software source code repositories
publicly available from Github. The snapshots were created based
on the revision history, with one snapshot being taken every month.
The data contained snapshots for each month from November 2013
to January 2016, resulting in at most 26 snapshots for each reposi-
tory. One example depiction can be seen in Figure 3.

The file structure of the repository represented the hierarchy,
where each leaf node represents a file in a repository and the inter-
mediary nodes represent folders, containing other folders and files.
The real lines of code metric was used as a weight attribute. Fur-
thermore, duplicate snapshots were removed, i.e., when no activity
occurred in the repositories for a whole month. Finally, different
repositories were used for comparing the different models (valida-
tion data), and evaluating the final model compared to the other
layout algorithms (test data).

These two different data collections, denoted with either valida-
tion or test, both include data from 100 repositories. The validation
data contains 128,350 sub-hierarchies. The calculated data and lay-
out metrics for each of the eight algorithms were used as validation
samples, about 1 million in total. The number of snapshots for each
repository was between 2 and 26 (Mean = 6.41,sd = 5.91). The
validation data is used for evaluating different model parameters
and configurations. The test data contains 198,101 sub-hierarchies.
In this part of the data, each repository had between 2 and 22
(Mean = 6.14,sd = 5.45) snapshots. This data is used solely for
evaluating the Smart algorithm compared to the base algorithms,
based on the best model from the previous experiments. Therefore,
the data and layout metrics were calculated only for the evaluation
of the resulting layouts.

5.1. Preliminary Experiments

Multiple experiments were conducted to evaluate the optimal se-
lection of various training and model parameters and the general
size and structure of the model. The mean squared error for the
predicted and the actual value was measured to validate individ-
ual model performance. The lower this error, the better a model
is able to predict the metric values. Furthermore, the performance
across all models was validated by measuring the accuracy of cor-
rectly predicting the best algorithm according to each metric (Top
1). This means, the predictions were cast by all models individu-
ally, and the result was considered correct, if the presumably best
algorithm according to the predictions was actually the best algo-
rithm for that layout-quality metric. Furthermore, this accuracy was
calculated for a second variation, where all of the three actual best
algorithms were considered correct (Top 3).

The structure of the neural network consists of a number of fully
connected layers each followed by an activation layer and a dropout
layer. The final layer produces 4 outputs, two values for the Aver-
age Aspect Ratio (one for each input snapshot) and the Relative Di-
rection Change and the Average Distance Change. The number of
layer and the sizes of each layer is defined by a list notation, where
each element stands for the number of intermediary elements be-
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Figure 4: The performance of different keep probabilities for the
dropout layer, based on the two different measures. The tests show
best results for probabilities of 0.1 and 0.3.

tween two layers. For example, a model with the input vector of
size 19, one hidden layer with output size 10 and a second hidden
layer with output size 5, and the final prediction layer with output
size 4 would be written as [10,5].

The first decision was to use a learning rate lr = 0.001, and
the AdamOptimizer [KB14] instead of a GradientDescent opti-
mizer [Bot10]. This was based on a grid search, with a model
of size [20,10], without dropout and ReLU [NH10] activations.
After these initial parameters were determined, five probabilities
0.95,0.9,0.5,0.3,0.1 for retaining weights in the dropout layer the
keep probability p were tested (see Figure 4). The results show the
lowest mean squared error for p = 0.3, slightly below p = 0.1 and
p = 0.5 (see Figure 4a). However, the prediction accuracy reaches
their highest values for p = 0.1 in both the Top 1 and the Top 3 cat-
egory. Therefore, we decided to use a keep probability of p = 0.1
for the dropout layers.

In the same manner, three different configurations of activation
functions were tested:

1. ELU [CUH15] for the whole network
2. ELU for the hidden layers and ReLU for the final prediction

layer
3. ReLU [NH10] for the whole network

The results show, that either ELU or the combination of ELU/ReLU
achieves the best model performance (see Figure 5). The mean
squared error of both variants is slightly better than the error ob-
tained by using ReLU (see Figure 5a). However, the prediction ac-
curacy is much lower for ELU/ReLU (see Figure 5b). Therefore,
the optimal function seems to be using the ELU in the whole net-
work.

As for model size and structure, we determined, that models with
less than two layers were significantly worse than those with two
or more layers. However there was no significant difference be-
tween the models [20,10], [40,20,10], and [20,10,5] according to
the mean squared error or the prediction accuracy.

5.2. Evaluation of the Smart Algorithm

Three different objectives were used to evaluate the Smart algo-
rithm and its ability to adapt to user input. They are presented by
different weights of importance for the layout-quality metrics. The
first objective, called balanced, uses equal weights for all three
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Figure 5: The performance of the different activation functions,
based on the two different measures. The results slightly favor the
ELU activation function, but are overall similar and insignificant.

layout-quality metrics. The second objective represents a use case
where high visibility is more important, the weight of the Aver-
age Aspect Ratio (AAR) is increased to be four times as high as
for the Average Distance Change (ADC) and the Relative Direc-
tion Change (RDC). Finally, the last objective represents a use case
where high stability is more important, the weight of ADC and
RDC is four times as high as the weight of AAR. The resulting
layout quality score is then calculated by the weighted average, us-
ing the previously defined weights. Since a low value is better for
all metrics, as it indicates higher stability and small aspect ratios, a
lower layout quality score is better. The performance of the Smart
layout algorithm was evaluated based on this layout quality score.

The results show Smart as the best algorithm with a much better
AAR than the second best algorithm Slice&Dice (see Figure 6a)
for the balanced objective. But, the RDC and ADC of Slice&Dice
are higher at the same time. Moore and Hilbert achieve third and
fourth best results. Moore achieves slightly better metric values
than Hilbert for all three metrics. Moore also achieves a lower RDC
better than Smart, but is worse in the other two metrics. Spiral is the
next best algorithm, and even though it has a better AAR than all
of the previous algorithms, the RDC and ADC are larger. Squari-
fied achieves the sixth best result through its low AAR. The seventh
and eight best results are achieved by StripInv and Strip. They both
have slightly worse ADC and AAR, than Spiral. But, StripInv has a
better RDC, hence being better than Strip overall. Voronoi achieves
the worst result, even though it has very low AAR. However, the
ADC and RDC are very high as expected, and are the reason for
the algorithm achieving the worst overall score.

The individual metric values of all base algorithms were equal
to those in the balanced dataset, since they can not be adapted to
specific optimization objectives. Therefore, the main question was,
whether the Smart algorithm could be better than the algorithms,
which were biased towards a certain metric, such as stability for
Slice&Dice and low aspect ratios for Voronoi and Squarified.

The Smart algorithm achieved the best score for the high visibil-
ity objective (see Figure 6b). However, Voronoi achieved an overall
score almost as good. The Smart algorithm had a slightly worse
AAR than Voronoi and Squarified, but achieved higher stability
measured by RDC and ADC. As expected all other base algorithms
performed worse for the high visibility objective. Slice&Dice in
particular was second best performing for the balanced objective,
but now had the worst result overall.
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(a) Algorithm performance based on the balanced objective.
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(b) Algorithm performance based on the high visibility objective.
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(c) Algorithm performance based on the high stability objective.

Figure 6: The performance of all algorithms on the test data,
based on different optimization objectives. The score represents the
weighted average between all layout-quality metrics. The smaller
the individual metrics values and the score, the better. The algo-
rithms are ordered by their average score.

For the high stability objective the Smart algorithm only
achieved the second best result (see Figure 6c). Slice&Dice
achieved the best score for this case. This was also the only ex-
periment, where the Smart algorithm achieved a worse AAR, than
Slice&Dice. Furthermore, the stability of Slice&Dice was also
higher than that of the Smart algorithm.

Therefore, we conclude that adjusting to a higher stability does
work with the Smart algorithm. But, in a real-world use case, the
Slice&Dice algorithm might be a better choice instead, if the flexi-
bility of adapting the objective is not important. Also, other objec-
tives, such as weighing AAR by only a factor of 2 or 3 instead of 4

could show different results. On the contrary, adaptation towards a
higher visibility worked well, as the Smart was able to achieve the
best results also for that objective.

6. Conclusion

We presented a new dynamic treemap layout algorithm, the Smart
algorithm, which combines eight existing treemap layout algo-
rithms. A neural network was used to predict the layout qualities
metrics relative direction change, average distance change, and av-
erage aspect ratio. Based on these predictions, the presumably best
algorithm was chosen. Artificial data was generated for training the
neural network, and different parameters and structures were eval-
uated. The Smart algorithm based on the trained model was eval-
uated against the existing treemap layout algorithms based on data
from software repositories. The resulting decisions of the Smart al-
gorithm were analyzed, depending on the optimization objective.

The results in the evaluation suggest, that this specific approach
can be used successfully to achieve overall better results than any
individual existing algorithm. It can further provide flexibility to
end users, who can directly balance the importance of the layout
metrics. This also provides a potential topic for future work, as
to whether this flexibility can be used effectively for actual users,
who create treemap visualizations. It might be possible, that other
layout-quality metrics, reflect the requirements desired in treemaps
in a better way. Maybe the set of metrics needs to be extended, or
other metrics should be used instead. Furthermore, a user study re-
mains to be conducted to validate the usefulness of mixing multiple
layout algorithms.

In a similar way, the data metrics used as features for the neu-
ral network could be extended, modified or otherwise improved.
The predictions of the machine learning models only reached about
60% accuracy on the validation data, which is quite low, when
compared to other more well-known machine learning problems,
such as hand-written digit recognition, where the error rate of the
state-of-the-art methods is 0.21% [WZZ∗13]. Therefore, there is
still room for improvement. Four main factors could possibly be
limiting the current machine learning solution. First, the amount
and quality of training data might not be sufficient to reach better
results. Secondly, the data provided to the algorithm does simply
not provide enough information. Thirdly, the model is not suffi-
cient to capture the dependencies between the data in a better way.
The last reason might be, that the desired predictions are inher-
ently unpredictable, which is unlikely since the algorithms used are
deterministic. Furthermore, we think the third reason can be ruled
out, since extensive testing with different model architectures was
done. Therefore, the two remaining reasons are best candidates for
further improvement.
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