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Abstract. Today, landscapes, cities, and infrastructure networks are com-
monly captured at regular intervals using LiDAR or image-based remote 
sensing technologies. The resulting point clouds, representing digital snap-
shots of the reality, are used for a growing number of applications, such as 
urban development, environmental monitoring, and disaster management. 
Multi-temporal point clouds, i.e., 4D point clouds, result from scanning the 
same site at different points in time and open up new ways to automate 
common geoinformation management workflows, e.g., updating and main-
taining existing geodata such as models of terrain, infrastructure, building, 
and vegetation. However, existing GIS are often limited by processing strat-
egies and storage capabilities that generally do not scale for massive point 
clouds containing several terabytes of data. We demonstrate and discuss 
techniques to manage, process, analyze, and provide large-scale, distributed 
4D point clouds. All techniques have been implemented in a system that 
follows service-oriented design principles, thus, maximizing its interopera-
bility and allowing for a seamless integration into existing workflows and 
systems. A modular service-oriented processing pipeline is presented that 
uses out-of-core and GPU-based processing approaches to efficiently han-
dle massive 4D point clouds and to reduce processing times significantly. 
With respect to the provision of analysis results, we present web-based vis-
ualization techniques that apply real-time rendering algorithms and suita-
ble interaction metaphors. Hence, users can explore, inspect, and analyze 
arbitrary large and dense point clouds. The approach is evaluated based on 
several real-world applications and datasets featuring different densities 
and characteristics. Results show that it enables the management, pro-
cessing, analysis, and distribution of massive 4D point clouds as required 
by a growing number of applications and systems. 
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1. Introduction and Problem Statement 

Over the last decades, 3D point clouds, i.e., discrete, digital representations 
of 3D objects and environments based on unstructured collections of 3D 
geometric points, have become an essential data category for geospatial and 
non-geospatial applications in diverse areas such as building information 
modeling (Pătrăucean et al. 2015, Stojanovic et al. 2017), urban planning 
and development (Musialski et al. 2013), or the digital preservation of cul-
tural and natural heritage (Rüther et al. 2012, Hämmerle et al. 2014). A 
major cause for that popularity surge have been technological advances in 
remote and in-situ sensing technology, allowing us to capture assets, build-
ings, cities, or complete countries with unprecedented speed and precision. 
As an example, state-of-the-art laser scanners may capture millions of 
points per second, generating highly detailed point clouds of individual 
sites (e.g., several points per square centimeter) within few hours (Rüther et 
al. 2012). Larger areas can be covered by attaching the scanning device to a 
moving vehicle, such as cars or unmanned aircraft systems (UAS), resulting 
in massive point clouds that may contain several billion points and tera-
bytes of raw data (Leberl et al. 2010, Martinez-Rubi et al. 2015). Due to its 
increased affordability and effectiveness, communities worldwide have 
started to intensify the use of in-situ and remote sensing technology by 
conducting scans more regularly (e.g., once a year) and by combining dif-
ferent capturing methods, such as aerial laser scanning and mobile map-
ping (Nebiker et al. 2010, Puente et al. 2013). The resulting dense and mul-
ti-temporal datasets, commonly referred to as 4D point clouds, may be vis-
ualized and used as interactive models that document how a given site or 
land-scape has changed over time (Discher et al. 2017). Furthermore, they 
allow us to automate and speed up common geoinformation management 
workflows: in urban planning and development for example, existing geo-
data such as official tree cadasters or terrain models, can be efficiently up-
dated based on 4D point clouds (Oehlke et al. 2015). In the wake of natural 
disasters, remote sensing can be applied to quickly gather up-to-date in-
formation about affected areas and to conduct an automated damage as-
sessment based on a comparison to previous scans (Richter et al. 2013b).  

However, existing geoinformation systems (GIS) are often limited by pro-
cessing and visualization techniques that do not scale for such massive da-
tasets. To handle limited processing and memory capabilities (i.e., main 
and GPU memory), data quality is often reduced, either by thinning the 
respective point clouds (Peters & Ledoux 2016) or by converting them into 
generalized 3D meshes (Berger et al. 2014). To overcome these limitations 



and to make use of the full potential and resolution of 4D point clouds, ex-
ternal memory algorithms are required, which dynamically fetch and un-
load subsets of the data based on their relevance to the task at hand, limit-
ing the memory usage to a predefined budget. An efficient access to the rel-
evant subsets can be ensured by organizing point clouds using appropriate 
spatial data structures and level-of-detail (LoD) concepts (Elseberg et al. 
2012, Goswami et al. 2013). With data sources becoming more numerous 
and diverse, an ever-increasing number of stakeholders requires access to 
the data. Hence, there is a growing demand for a seamless integration of 
point-based processing and rendering functions into existing workflows 
and systems. As a result, the efficient and scalable management of 4D point 
clouds becomes an increasingly relevant aspect (van Oosterom et al. 2015, 
Cura et al. 2017). Available research solutions use service-oriented design 
principles to implement scalable systems. As an example, Martinez-Rubi et 
al. (2015) describe a system that integrates massive point cloud data and 
makes it publicly accessible via a web interface, allowing users to interac-
tively explore or download arbitrary subsets of the data. Richter & Döllner 
(2014) propose a system for the management of multi-temporal point 
clouds, addressing both integration, processing, and rendering functionali-
ty. They discuss a service-oriented architecture that focuses on a seamless 
integration of system components into existing workflows: each component 
can be accessed individually via standardized web services. 

We extend the architecture proposed in Richter & Döllner (2014) by im-
proving processing performance and interoperability. We introduce a mod-
ular processing pipeline that implements parallel processing strategies to 
speed up individual tasks and facilitate the distribution of those tasks 
alongside corresponding datasets within a distributed infrastructure for 
data storage. The use of external memory algorithms allows us to handle 
arbitrary large 4D point clouds. In addition, existing web services for geoda-
ta can be seamlessly integrated into the processing pipeline to improve pro-
cessing results. The article is structured as follows: Section 2 discusses the 
acquisition and management of massive, heterogeneous 4D point clouds, 
focusing on the characteristics of different data sources and consequential 
system requirements. The pipeline architecture is presented in Section 3. 
Section 4 discusses web-based rendering techniques and interaction meta-
phors that facilitate the exploration and inspection of resulting datasets. In 
Section 5, we present case studies based on real-world applications and 
datasets. Section 6 gives conclusions and an outlook on future challenges. 

2. Data Acquisition and System Requirements 

Systems for the acquisition of point clouds are manifold and allow us to 
capture real-world surfaces at all scales, ranging from small objects over 



individual buildings to complete cities or even countries. In this section, we 
describe the characteristics of common, established acquisition systems and 
identify requirements for systems aiming to enable the efficient manage-
ment, processing, and distribution of the resulting data on a massive scale 
as vital for a variety of applications. Based on these requirements, a corre-
sponding system architecture is presented. 

2.1. Data Sources and Characteristics 

Today, real-world surfaces are captured using active or passive sensors. 
Active sensors (e.g., LiDAR, radar, stripe projection systems) emit electro-
magnetic radiation to directly measure the distance between surface and 
sensor, generating so-called range data (Eitel et al. 2016). Passive sensors 
(e.g., aerial cameras, digital cameras, hyperspectral radiometers) on the 
other hand (Remondino, Spera et al. 2013) solely rely on natural radiation, 
most notably sunlight, and generate series of images used as input for dense 
image matching algorithms to derive 3D information (Rothermel et al. 
2012). Both, active and passive sensors, can capture individual objects with 
point densities of up to a few micrometers. The resolution depends on the 
distance between sensor and captured surface. On a larger scale, point 
clouds of entire rooms, buildings, or facilities can be efficiently generated by 
placing sensors at key positions within the site in question (Remondino, 
Menna et al. 2013). By attaching the sensors to moving vehicles such as 
cars, trains, UAS, or satellites, data for even larger areas such as infrastruc-
ture networks, cities, or countries can be efficiently collected, although at 
reduced point densities (Ostrowski et al. 2014).  

Each acquisition system comes with specific advantages and disadvantages, 
affecting its suitability for different use cases. Passive sensors tend to be 
more affordable, portable, and easier to use than their active counterparts, 
as evidenced by their frequent integration into state-of-the-art consumer 
electronics (Kersten et al. 2016) and UAS. Furthermore, image-based 
methods allow for potentially higher point densities, e.g., up to 100 
points/m2 for aerial photographs as in contrast to typically 1-25 points/m2 
for aerial laser scans (Remondino, Spera et al. 2013). However, the quality 
of the resulting point clouds is significantly influenced by surface materials 
(e.g., shininess, texturedness) and image properties (e.g., shadows, color 
variety, depth of field). This can be especially noticeable when capturing 
glassy surfaces, where range-based approaches tend to generate much 
cleaner point clouds (Remondino, Spera et al. 2013). With respect to per-
formance, passive sensors collect data faster; however, a computation-
intense post-processing of the generated images is required to compute 3D 
points, whereas active sensors provide those directly (Remondino, Menna 
et al. 2013). In practice, both sensor categories are frequently used in paral-
lel. Advanced driver assistance systems for example, combine varying active 



and passive sensors to observe a car’s immediate surroundings (Langner et 
al. 2016). Table 1 provides an overview of several common acquisition sys-
tems and their specific characteristics. 

Acquisition System Typical Scale Typical Density (pts/m2) Costs 

Airborne Laserscanning Infrastructure networks, urban + rural areas 1 - 25 very high 

Aerial Photography Infrastructure networks, urban + rural areas 25 - 100 high 

Mobile Mapping (rails, roads) Infrastructure networks, urban areas 200 - 1,400 medium 

UAS Buildings, facilities, infrastructure networks 500 - 6,000 medium 

Static Terrestrial Laserscanning Indoor scenes, buildings, facilities 4,000 - 20,000 medium 

Smartphone cameras / DSLRs Individual objects, indoor scenes, buildings 4,000 - 40,000 low 

Depth Cameras Individual objects, indoor scenes 4,000 - 20,000 low 

Stripe-projection Systems Individual objects, indoor scenes 100,000 - 400,000 low 

Table 1. Commonly used acquisition systems for point clouds and their characteristics. 

2.2. Challenges and System Requirements 

Traditionally, point clouds are captured, processed, analyzed, and visual-
ized in the scope of only one specific application. However, each dataset 
might also contain relevant information for completely different use cases. 
For example, point clouds generated by advanced driver assistance systems, 
can be of immense value for urban planning and development, as they pro-
vide up-to-date information about the infrastructure of a city on a frequent 
basis and from an often supplementary perspective (i.e., from a pedestrian’s 
perspective instead of a bird’s-eye view). Similarly, a frequent scanning of a 
site raises valuable insights about its history, which has the potential to 
greatly benefit common geoinformation management workflows such as 
predictive maintenance and the automated updating of official cadaster 
data (Section 5). Nonetheless, traditional GIS still operate primarily on 2D 
or 3D meshes (Musliman et al. 2008, van Oosterom et al. 2008) derived 
from point clouds in a time-consuming process (Berger et al. 2014). A direct 
processing of point clouds would be more efficient because point clouds 
have no limitations regarding model, geometry, structure, or topology and 
can be updated automatically in contrast to meshes (Paredes et al. 2012). 
Hence, the use of point-based instead of mesh-based models within geoin-
formation management workflows has the potential to speed up common 
tasks and applications notably (Richter & Döllner 2014). 



Establishing 4D point clouds as a basic data type to provide geographic con-
tent requires systems that facilitate the efficient management of such da-
tasets. In particular, this refers to the integration of heterogeneous point 
clouds from various data sources, the updating, processing, and analysis of 
massive datasets, as well as the provision and visualization of arbitrary sub-
sets based on varying per-point attributes (e.g., spatial, temporal, or seman-
tic information). To ensure an efficient access to the data, suitable spatial 
data structures and LoD concepts are required. Parallel processing strate-
gies need to be implemented and combined with a distributed storage of the 
point data to significantly improve the performance of a system. To facili-
tate the exploration of analysis results, suitable visualization techniques and 
interaction metaphors must be applied that enhance the recognition of ob-
jects, semantics, and temporal changes within point cloud depictions.  

To ease the integration of such systems into existing workflows and process 
chains, their interoperability must be guaranteed by making their function-
ality available via standardized web services (van Oosterom et al. 2008), 
likewise the integration of existing web services for geodata into the system 
should be supported. In summary, the following requirements need to be 
addressed: 

R1. Integration of point clouds from heterogeneous data sources into a 
homogeneous spatial data model, 

R2. distributed storage of point clouds, 

R3. processing services for the distributed, scalable, adaptive, and selec-
tive updating, processing, and analysis of massive 4D point clouds, 

R4. support to integrate existing web services for geodata into the sys-
tem to further increase interoperability, 

R5. visualization services to provide 4D point clouds for heterogeneous 
clients (e.g., desktop computers, mobile devices), 

R6. visualization and interaction techniques to enable a task-specific 
and application-specific visualization of massive 4D point clouds. 

The next section presents a system architecture that fulfills these require-
ments. 

2.3. System Architecture 

We propose a service-oriented architecture that builds upon the system 
proposed by Richter & Döllner (2014), but further improves its scalability 
and interoperability (Figure 1). Generally, managing 4D point clouds com-
prises three stages: 



1) Data Integration. Components that implement the integration of 
point clouds from heterogeneous data sources into a homogeneous 
spatial data model (R1). This includes georeferencing of acquired 
data as well as preparing or updating LoD data structures to ensure 
an efficient data access in subsequent stages. Another aspect is the 
filtering and quality control of the data (e.g., thinning, noise reduc-
tion, and outlier filtering).  

2) Data Analytics. Components for common and domain-specific 
analyses and simulations (R3). Those typically require additional 
per-point attributes (e.g., normal, topological, or surface category 
information) that are either computed by specific preprocessing 
components or provided by external web services, which can be 
seamlessly integrated into the system (R4). Depending on the use 
case, analysis results can be stored as additional per-point attributes 
or exported as 2D or 3D meshes (e.g., shapes). 

3) Data Provision. Components providing access to data and analy-
sis results for external processing and visualization tools. The data is 
either provided in standardized geodata formats via Web Feature 
Services (Rautenbach et al. 2013) or optimized for a web-based vis-
ualization using Web 3D Services or Web View Services (Klimke et 
al. 2013). This allows for the interactive exploration of the data on 
heterogeneous client systems (R5), ranging from high-end work-
stations to low-end mobile devices with very limited computing ca-
pabilities, network bandwidth, or memory resources. 

The individual components are chained together in a modular processing 
pipeline that implements parallel and distributed computing concepts to al-
low for the efficient and scalable execution of updating, processing, and 
analysis tasks (R3). The processing pipeline can be accessed and reconfig-
ured via a Web Processing Service (Mueller & Pross 2015) to dynamically 
adapt the applied analyses and simulations to the field of application and 
current use cases (Section 3). Our system stores point clouds in a distribut-
ed way: If required, additional computing and storage resources may be 
added at runtime, maximizing its scalability and availability (R2). A stand-
ardized interface to integrate, update, and access arbitrary subsets of the 
data is provided by a central system component, which we refer to as point 
cloud database. Spatial data structures, that hierarchically subdivide the 
spatial area, and LoD concepts, that provide subset representations, are 
used by that database to reduce the amount of data adaptively for data que-
ries and processing tasks. The suitability of different LoD data structures 
(Richter & Döllner 2010, Elseberg et al. 2012, Goswami et al. 2013) varies 
based on the application scenario (e.g., real-time visualization or analysis) 
and spatial distribution of the data (e.g., terrestrial or airborne). Evaluating, 



generating, and maintaining them is also the responsibility of the point 
cloud database. 

Figure 1. Service-oriented architecture of our system with arrows indicating usage relations 
between components. 

3. Service-oriented Point Cloud Analytics 

Processing or analyzing 4D point clouds requires typically only a small sub-
set of the entire data set at the same time. Typical tasks and complex com-
putations that must be computed for each point in a dataset such as dupli-
cate detection, change detection, and classification operate on a small prox-
imity around each point (Richter et al. 2013a, Belgiu et al. 2014). Hence, the 
processing performance can be significantly increased by applying parallel 
computing concepts, either based on a CPU or GPU. Furthermore, work-
flows that include multiple processing tasks can be efficiently chained to-
gether by interleaving them. Instead of executing each task one at a time for 
the complete data set, processed subsets are immediately subjected to sub-
sequent tasks. By splitting the data into sufficiently small subsets, even 
massive point clouds, which exceed available memory capacities, can be 
handled efficiently. In this section, we present a modular pipeline architec-
ture (Figure 2) that implements those concepts: Complex analyses, com-
prising several basic processing tasks, can be performed on arbitrary large 
data sets, making optimal use of available hardware resources by paralleliz-
ing, interleaving, and distributing processing tasks alongside corresponding 



data subsets within networks (R3). Each analysis is described by a pro-
cessing pipeline that defines involved processing tasks and can be reconfig-
ured and replaced dynamically. Also, the pipeline architecture can be easily 
expanded to integrate existing web services for geodata, thus, maximizing 
its interoperability (R4). 

3.1. Pipeline Architecture 

The proposed architecture comprises two major components: first, a re-
source manager, monitoring the memory and processing capacity of a sys-
tem and distributing them among currently executed processing tasks (Sec-
tion 3.2); second, a pipeline engine to configure and execute various pro-
cessing pipelines. Each pipeline defines a specific combination of basic in-
put, processing and output tasks. We define the elements that compose a 
pipeline as follows: 

 Importers, i.e., pipeline nodes that import data from any source 
such as files, the point cloud database or other, external sources 
(e.g., web-services). Each importer prepares data packages. If the 
input data exceeds the maximum data package size, the importer 
prepares subsets by splitting the data. 

 Exporters, i.e., pipeline nodes that export processing and analysis 
results into standardized formats for point clouds (e.g., LAS/LAZ), 
the point cloud database or other geodata (e.g., shape files, 
CityGML, GeoTIFFs). The latter functionality makes exporters es-
sential in facilitating the integration of the proposed system into ex-
isting workflows. 

 Tasks, i.e., pipeline nodes that implement a specific processing or 
analysis algorithm. Some algorithms operate on multiple data sets 
simultaneously, e.g., to compare or to merge them. Similarly, algo-
rithms may split incoming data sets or yield multiple results, e.g., 
additional per-point attributes and corresponding shapes. Hence, 
multiple incoming and outgoing connections may be defined per 
task. 

 Connections, i.e., links between two pipeline nodes for the transfer 
of data packages. They define the order of execution. A given con-
nection transfers only packages of a specific type, e. g., point clouds 
or shapes. Depending on the pipeline nodes being connected, vari-
ous constraints may be defined, such as defined per-point attributes 
that are required. 

 Data Packages, i.e., data subsets that are transferred between 
pipeline nodes via connections. Similar to connections, a given data 



package may only contain a specific type of geodata. Also, the size of 
the corresponding data subset may not exceed a specific maximum 
defined by the resource manager. 

External services for geodata can be seamlessly integrated by implementing 
tasks and importers as interfaces. The pipeline engine allows to execute 
multiple pipeline plans in parallel, each of which can be started, paused, 
and stopped dynamically. At runtime, each active pipeline node gets as-
signed its own set of resources by the resource manager. Processed data 
packages are immediately transferred to subsequent pipeline nodes. For 
each incoming connection, a pipeline node manages a queue of incoming 
data packages. The query size is limited to a defined number of data pack-
ages. If a queue reaches its maximum capacity, no additional data packages 
are accepted and preceding nodes are not executed. To improve their 
runtime performance, the most time-consuming pipeline nodes are execut-
ed in parallel by adaptively assigning additional resources (e.g., CPU or 
GPU cores).  

Figure 2. Overview of the pipeline architecture and pipeline elements. 

3.2. Memory and Resource Management 

The resources of a system may be distributed across several network nodes, 
each featuring different memory capacities (i.e., size of secondary storage, 
main memory, and GPU memory) and computing capabilities (e.g., number 
and clock speed of CPU and GPU cores, memory transfer rates). Network 
nodes and their resources are added to a global resource pool that is moni-
tored by the resource manager of the system. Whenever a pipeline node 
needs to be executed, the resource manager assigns resources based on 
available system capabilities. After the execution is finished, all assigned 



resources are released to the resource pool and become available for other 
nodes (Figure 2). Distributing resources requires the resource manager to 
make a trade-off between several, often contradicting optimization goals: 

 Exclusivity. Exclusive access to a resource (e.g., storage or GPU) 
significantly improves the runtime performance of a pipeline node, 
e.g., by minimizing cache misses and seek times. 

 Transfer Costs. Frequently transferring data packages via connec-
tions may notably reduce the performance if subsequent pipeline 
nodes operate on different network nodes. This can be avoided by 
executing them on the same network nodes.  

 Parallelization. Executing pipeline nodes in parallel or interleav-
ed is an essential mechanism to improve the overall performance of 
the system. Thus, available resources and network nodes should be 
shared among as many pipeline nodes as possible. 

The runtime of nodes may vary significantly depending on the task. An 
adaptive resource scheduling allows to prevent bottlenecks in the pro-
cessing. The execution time is tracked for each node and the number of as-
signed resources is adjusted dynamically. 

4. Point Cloud Visualization 

The interactive exploration of massive 4D point clouds is an essential func-
tionality of our system, facilitating the visual recognition and interpretation 
of objects, semantics, and analysis results within corresponding data sets. 
In this section, we discuss web-based rendering approaches allowing to 
render arbitrary large data sets on a multitude of heterogeneous clients (R5, 
Section 4.1). Furthermore, we describe how visual filtering and highlighting 
within point cloud depictions can be facilitated by combining different visu-
alization techniques and interaction metaphors (R6, Section 4.2). 

4.1. Web-based Rendering 

Since point clouds with billions of points exceed typically available main 
and GPU memory capacities by an order of magnitude, out-of-core render-
ing techniques are required to decouple rendering efforts from the amount 
of data. Exemplary systems (Goswami et al. 2013, Richter et al. 2015) use 
LoD data structures to organize the data into chunks that are suitable for 
fast processing and rendering. The LoD node selection is performed on a 
per-frame basis and depends on the view position and user interaction, as 
well as computing and storage capabilities of the underlying rendering sys-
tem. Different caching approaches are used to minimize data swapping la-



tencies for memory transfers between secondary storage, main memory, 
and GPU memory. 

While being applicable to arbitrary large data sets, out-of-core rendering 
algorithms require a direct access to the data, which generally restricts their 
application to systems with massive storage capacities. For other systems 
such as mobile devices, these algorithms must be combined with existing 
web-based approaches that limit workload and data traffic on client-side by 
using a central server infrastructure to maintain and distribute the data 
(R5, Figure 3). Rendering directly on the server and only transferring the 
rendered images to the client is commonly referred to as a thin client ap-
proach (Döllner et al. 2012, Klimke et al. 2014). As an optimization, many 
of such approaches render and transfer cube-maps instead of individual 
images. Thus, new data requests are only required when the view position 
changes significantly. Alternatively, thick client approaches can be used 
that delegate the rendering to the client side. Here, the server is only re-
sponsible for selecting and transferring the data to the client (Krämer & 
Gutbell 2015, Martinez-Rubi et al. 2015, Limberger et al. 2016b, Schoedon 
et al. 2016). While a thin client approach notably reduces the minimal 
hardware requirements on client side, a thick client approach is usually 
more feasible to serve a large number of clients due to lower workload gen-
erated on server side. Furthermore, a thick client approach tends to be 
more resilient to unstable network connections since the visualization can 
still be adjusted to user interactions when the connection to the server has 
been lost temporarily, albeit some relevant data might be missing. 

4.2. Semantic-based Visualization 

The visualization of point clouds can be adapted to various objectives (e.g., 
highlighting structural changes within multi-temporal datasets) by switch-
ing between different point-based rendering techniques and color schemes 

Figure 3. Service-oriented rendering approaches: thin clients vs. thick clients. 



(Gross & Pfister 2007). Many rendering techniques focus on a photorealis-
tic visualization: points are represented as splats, i.e., oriented disks, 
spheres, or paraboloids. An adequate size and orientation enables to render 
a closed surface (Preiner et al. 2012, Schütz & Wimmer 2015). However, a 

Figure 4. Visualization of an airborne laser scan of an urban area, showcasing different 
rendering setups using per-point surface category and topological information: (left) Uni-
form rendering for all categories using rgb colors. (middle) Height gradient applied to 
ground points, uniform color and edge highlighting applied to other categories. (right) 
Height gradient and closed surface rendering applied to building points, category-specific 
colors used for ground, street and vegetation points. 

Figure 5. Overview of the proposed rendering engine. Prior to rendering, points are sepa-
rated based on per-point attributes (e.g., surface categories). 



photorealistic representation often hinders the visual identification and 
categorization of structures and topological properties. In airborne datasets 
for example, vegetation can be difficult to distinguish from ground points 
and small structures might not be visible due to an insufficient contrast to 
the environment (Richter et al. 2015). Meanwhile, non-photorealistic ren-
dering techniques (Boucheny 2009) efficiently highlight edges and struc-
tures within point cloud depictions. 

In general, task-specific explorations of virtual 3D scenes can be facilitated 
by combining different rendering techniques, color schemes, and post-
processing effects (Döllner et al. 2005, Semmo et al. 2015, Würfel et al. 
2015, Limberger et al. 2016a). For point cloud depictions, this is exempli-
fied by Richter et al. (2015) who use per-point attributes (e.g., surface cate-
gory, topologic information) to adapt the appearance of a point, i.e., its col-
or, size, orientation, or shape (Figure 4). They apply multi-pass rendering 
utilizing G-Buffers for image-based compositing (Figure 5). Points are 
grouped into different subsets (e.g., based on their surface category), each 
of which is rendered separately. A compositing pass merges the rendering 
results, enabling sophisticated focus+context visualization and interaction 
techniques (Elmqvist & Tsigas 2008, Vaaraniemi et al. 2013, Semmo & 
Döllner 2014) such as visibility masks (Sigg et al. 2012) or interactive lenses 
(Trapp et al. 2008, Pasewaldt et al. 2012). Thus, task-relevant structures 
can be easily identified even if they are fully or partly occluded (R6, Figure 
6). All rendering and interaction techniques can be selected, configured, 
and combined at run-time. 

5. Case Studies 

We implemented the proposed pipeline engine using C++, CUDA (Storti & 
Yurtoglu 2015), and the Point Cloud Library (Rusu & Cousins 2011) as basic 

Figure 6. Focus+context visualization for massive point clouds. Left: Using an interactive 
see-through lens, the occluded interior of a building can be inspected in the context of the 
overall scan. Right: A visibility mask is used to highlight otherwise hidden street points. 



technologies. For the rendering engine, we additionally used OpenGL 
(Shreiner et al. 2013) and OpenSceneGraph (Wang & Qian 2010) for the 
thin client approach as well as WebGL and Cesium (Krämer & Gutbell 
2015) for the thick client approach. Test data sets were integrated into a 
layered LoD data structure with each layer representing a different surface 
category (e.g., ground, vegetation, buildings) and acquisition date. The LoD 
data structure and corresponding data chunks were serialized to files acting 
as a database. All tests and measurements were performed by a small net-
work containing a total of six nodes, each featuring an Intel Core i7 CPU 
with 3.40 GHz, 32 GB main memory, and a NVIDIA GeForce GTX 1070 
with 8 GB device memory and 1920 CUDA cores. As case studies, we evalu-
ated the following scenarios: 

Deriving Tree Cadasters. Tree cadasters consolidate detailed infor-
mation about biomass in an area and are essential for a growing number of 
applications in urban planning, landscape architecture, and forest man-
agement. Point cloud analytics allows for the automatic, area-wide deriva-
tion and continuation of such tree cadasters and corresponding metrics, 
e.g., height and crown diameter (Oehlke et al. 2015). As depicted in Figure 
7a, the analysis comprises three major tasks: identification of points repre-
senting vegetation, delineation of individual trees within those vegetation 
points, and calculation of per-tree metrics. To identify vegetation points, an 
iterative, segment based classification (Richter, Behrens & Döllner 2013) 
was applied that distinguishes between ground, building, and vegetation by 
analyzing for each point the topology of its local neighborhood. To efficient-
ly delineate individual trees, a point-based approach by Li et al (2012) was 

Figure 7. Exemplary processing pipelines as they have been used for the case studies. 



adapted, requiring only a single iteration over the point cloud. For fast 
nearest-neighbor queries a GPU-based implementation was used.  

Monitoring Infrastructure Networks. Infrastructure networks (e.g., 
roads, canalizations, or power lines) are constantly subjected to environ-
mental loads (e.g., wind, temperature changes), causing them to deteriorate 
over time. Regularly capturing such infrastructure networks provides effi-
cient means for their automatic, accurate, and predictive maintenance. The 
corresponding analysis (Figure 7b) is commonly referred to as a change 
detection (Kang & Lu 2011, Eitel et al. 2016). For each input point, the dis-
tance to a reference geometry (e.g., another point cloud or 3D model) is 
estimated as a metric for the degree of change within the covered area and 
stored as a per-point attribute. This approach allows to identify changes 
efficiently and establish update and maintaining workflows.  

Continuing 3D City Models. Many applications in urban planning and 
development or building information modeling require official, state-issued 
cadaster data or even full-fledged 3D city models. Keeping those models up-
to-date constitutes a major challenge for municipalities that can be facilitat-
ed by using point cloud analytics. As an example, a change detection as de-
scribed above can be combined with per-point surface category information 
to automatically identify all building points with a certain distance to a giv-
en virtual 3D city model (Figure 7c), indicating newly constructed, re-
moved, or otherwise modified buildings. The resulting points can be seg-
mented into subsets of neighboring points, each representing a separate 
building. Based on these subsets, 2D building outlines and additional met-
rics (e.g., average distance, projected roof area) can be derived that facili-
tate the assessment of necessary –typically manual– modifications to the 
3D city model.  

Test data sets for those scenarios comprised airborne, terrestrial, and mo-
bile scans covering different parts of three metropolitan regions with the 
largest point cloud featuring 100 points/m2 for an area of 800 km2. In Ta-
ble 2, the data throughput for the most relevant processing tasks is speci-
fied. Data throughput for the integration and rendering of the data is de-
fined by the overall network and memory bandwidth and was at around 80 
MB/second. 

Table 2. Average data throughput. Change detection was run on airborne, terrestrial, and 

mobile mapping data, all other tasks were performed for airborne data sets. 

Processing Task Average Data Throughput 

Surface Category Identification 0.44B pts/hour 

Tree Delineation  0.53B pts/hour 

Change Detection 7.68B pts/hour 

Building Outline Extraction 8.27B pts/hour 



6. Conclusions and Future Work 

By applying out-of-core, parallel, and distributed processing strategies, 4D 
point clouds of any size can be updated and analyzed at significantly re-
duced processing times. Our modular pipeline architecture implements 
such concepts, making efficient use of available hardware resources. A da-
tabase component is used for the distributed storage and efficient integra-
tion of point clouds from heterogeneous data sources, ensuring efficient 
access to arbitrary subsets of the data. A rendering component allows for 
analysis results to be visualized and inspected on heterogeneous clients 
with differing computing capabilities by implementing web-based and out-
of-core rendering algorithms. To facilitate the inspection, specialized visual-
ization and interaction techniques are provided. All system components can 
be configured at runtime, allowing to design task and domain-specific anal-
ysis and inspection tools. They also provide interoperability to existing 
workflows and process chains by following service-oriented design princi-
ples. A prototypical implementation of our system has been successfully 
tested for several real-world scenarios. Novel devices and sensors have the 
capability to generate point clouds in real-time, resulting in massively re-
dundant point cloud streams. Hence, ad-hoc data management, analysis, 
and visualization tools are fundamental requirements. Our future work will 
focus on challenges introduced by such point cloud streams to use them 
even for applications which are not in the core area of GIS to expedite the 
digital transformation.  
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