
Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Concepts and Techniques for Web-based Visualization and
Processing of Massive 3D Point Clouds with Semantics

Sören Discher
Hasso Plattner Institute

University of Potsdam, Germany
soeren.discher@hpi.de

Rico Richter
Hasso Plattner Institute

University of Potsdam, Germany
rico.richter@hpi.de

Jürgen Döllner
Hasso Plattner Institute

University of Potsdam, Germany
juergen.doellner@hpi.de

ABSTRACT
3D point cloud technology facilitates the automated and highly de-
tailed acquisition of real-world environments such as assets, sites,
and countries. We present a web-based system for the interactive
exploration and inspection of arbitrary large 3D point clouds. Our
approach is able to render 3D point clouds with billions of points
using spatial data structures and level-of-detail representations.
Point-based rendering techniques and post-processing effects are
provided to enable task-specific and data-specific filtering, e.g.,
based on semantics. A set of interaction techniques allows users to
collaboratively work with the data (e.g., measuring distances and
annotating). Additional value is provided by the system’s ability to
display additional, context-providing geodata alongside 3D point
clouds and to integrate processing and analysis operations. We
have evaluated the presented techniques and in case studies and
with different data sets from aerial, mobile, and terrestrial acqui-
sition with up to 120 billion points to show their practicality and
feasibility.

CCS CONCEPTS
• Human-centered computing → Geographic visualization; •
Computing methodologies → Computer graphics; Point-based
models.

KEYWORDS
3D Point Clouds, web-based rendering, point-based rendering; pro-
cessing strategies
ACM Reference Format:
Sören Discher, Rico Richter, and Jürgen Döllner. 2018. Concepts and Tech-
niques for Web-based Visualization and Processing of Massive 3D Point
Clouds with Semantics. In Web3D 2018 Special Issue of Graphical Models.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3208806.3208816

1 MOTIVATION
3D point clouds allow for a discrete representation of real-world
objects and environments. They can be time-efficiently and cost-
efficiently generated by a large number of acquisition techniques
using active or passive sensing technology such as LiDAR, radar, or

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
VSI:Web3D 2018, ,
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5800-2/18/06. . . $15.00
https://doi.org/10.1145/3208806.3208816

aerial and digital cameras [Eitel et al. 2016; Ostrowski et al. 2014].
Integrated into a variety of carrier platforms such as airplanes, he-
licopters, UAVs, cars, trains, and robots, the sensing technology
can capture data at different scales, ranging from small assets over
buildings and infrastructure networks up to entire cities and coun-
tries [Kersten et al. 2016; Langner et al. 2016; Remondino et al.
2013]. The resulting data sets are essential for a growing number
of applications in domains such as land surveying, urban planning,
landscape architecture, environmental monitoring, disaster man-
agement, construction as well as spatial analysis and simulation
[Eitel et al. 2016; Nebiker et al. 2010; Pătrăucean et al. 2015].

By their very nature, 3D point clouds are unstructured and do
not contain or imply any order or connectivity between individ-
ual points. As a consequence, traditional analysis algorithms for
geodata often struggle with 3D point clouds as they commonly
rely on explicitly defined connectivity information. Visualization
algorithms often apply a uniform pixel size and render style to
each point and, therefore, are prone to visual artifacts such as holes
or visual clutter which severely limits perception, interaction, and
navigation [Richter et al. 2015]. As a remedy, GIS applications fre-
quently use 3D point clouds only as input data to derive mesh based
3D models (e.g., 3D city models, terrain models) [Berger et al. 2014].
Depending on the use case, this may require a time-consuming
and only semi-automatic process that does not scale for massive
data sets, especially if precision, density and data quality of the
derived 3D models need to be maximized. Moreover, improved
scanning hardware and novel carrier systems, which get cheaper
and easier-to-use, result in more dense 3D point clouds. Thus, there
is a strong demand to store, manage, process and explore massive,
arbitrarily dense 3D point clouds in order to take advantage of their
full potential and to provide an unfiltered, detailed representation
of captured sites.

In this paper, we present a web-based visualization system for
massive 3D point clouds (Fig. 1) based on spatial data structures
and level-of-detail representations that provide efficient access to
arbitrary subsets of the 3D point cloud stored on a central server
component. By combining out-of-core rendering concepts withweb-
based rendering concepts massive data sets can be simultaneously
distributed to and interactively visualized on an arbitrary number of
client devices with different computation capabilities. To facilitate
a collaborative inspection and to highlight task-relevant aspects of
the data, different point-based rendering and interaction techniques
are implemented that can be combined and configured by the user.
In addition, the system can take advantage of per-point attributes
generated by additional point-cloud analysis services. We evaluate
our system with real-world data sets containing up to 120 billion
points. Results show that the system is capable to provide a powerful

2019-05-01 21:56. Page 1 of 1–13.

https://doi.org/10.1145/3208806.3208816
https://doi.org/10.1145/3208806.3208816

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

VSI:Web3D 2018, , Sören Discher, Rico Richter, and Jürgen Döllner

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Figure 1: Example of a massive 3D point cloud rendered with our web-based system. Context-providing geodata such as 2D
maps and 3D terrain models can be integrated into the visualization.

component in production workflows to manage, distribute and
share 3D point clouds.

2 RELATEDWORK
3D point clouds represent a universal data category for a large
number of geospatial applications [Eitel et al. 2016; Rüther et al.
2012]; many approaches exist to enhance information implicitly
contained in 3D point clouds by deriving information about sur-
face categories for each point, typically based on local topological
analysis [Chen et al. 2017] or by deep learning concepts [Boulch
et al. 2017; Huang and You 2016]. [Richter et al. 2013b] show how
to efficiently identify changes in multi-temporal data sets, which
contain data acquired at different points in time. [Awrangjeb et al.
2015] combine surface categories and change detection results to
filter detected changes based on semantics. Our approach provides
efficient means to integrate such analyses as separate web process-
ing services [Müller and Pross 2015]. Furthermore, analysis results
can be shared, explored and inspected.

A general overview of point-based rendering techniques is pro-
vided by [Gross and Pfister 2011]. High-quality rendering tech-
niques [Preiner et al. 2012; Schütz and Wimmer 2015a] focus on
minimizing artifacts such as visual clutter or visible holes between
neighboring points by applying appropriate size, orientation, tex-
tures and color schemes to each rendered primitive. Often, such
techniques apply surface splatting [Botsch et al. 2005], rendering
not the points themselves but rather a set of arbitrary-shaped sur-
face patches that approximate the underlying surface of a 3D point
cloud.While surface splatting typically requires some preprocessing
(e.g., to consolidate redundant surface patches or to apply texturing
[García et al. 2015]), it can significantly increase the realism of
a point cloud depiction. Non-photorealistic rendering techniques

[Simons et al. 2014; Zhang et al. 2014], on the other hand, deal with
the fuzziness of a 3D point cloud and highlight edges and struc-
tures, commonly without requiring any preprocessing or additional
attributes apart from a point’s spatial position [Boucheny 2009;
Pintus et al. 2011]. In our approach, we implement high-quality
as well as non-photorealisitic rendering techniques. They can be
switched and configured at runtime.

Out-of-core rendering concepts for massive 3D point clouds were
initially introduced by [Rusinkiewicz and Levoy 2000]. State-of-the-
art techniques typically use spatial data structures such as layered,
regular grids [Deibe et al. 2019], quadtrees [Gao et al. 2014], octrees
[Elseberg et al. 2013; Wand et al. 2008], or KD-trees [Goswami et al.
2013] to subdivide the data into smaller subsets that can be selected
dynamically, e.g., based on the current view frustum and memory
budget.

Recent approaches combine out-of-core and web-based render-
ing concepts to enable a ubiquitous visualization of 3D point clouds
[Rodriguez et al. 2012]. With Potree, [Schütz and Wimmer 2015b]
propose a thick client approach for arbitrary large data sets, which
is adapted by [Martinez-Rubi et al. 2015] to interactively present
a massive data set of the Netherlands. An alternative thick client
renderer for 3D point clouds named Plasio was introduced by [But-
ler et al. 2014]: Using open-source libraries such as Entwine and
Greyhound massive data sets can be streamed interactively. GVLi-
DAR [Deibe et al. 2017] and ViLMA [Deibe et al. 2019] constitute
thick client rendering approaches that focus on geospatial analysis
and measurement tools. While all four frameworks provide effec-
tive interaction and inspection techniques specifically for 3D point
clouds, they offer only minimal support to integrate additional,
context-providing geodata (e.g., shapes, 2D maps). The Cesium 1

1https://cesiumjs.org
2019-05-01 21:56. Page 2 of 1–13.

https://cesiumjs.org

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Concepts and Techniques for Web-based Visualization and Processing of Massive 3D Point Clouds with Semantics VSI:Web3D 2018, ,

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: System architecture showing data flow between integration, processing, visualization, and interaction components.

framework on the other hand aims to provide a generalized thick
client rendering solution for arbitrary types of geodata (e.g., 3D
point clouds, 3D meshes, 2D maps). Our approach is in parts based
on that framework, expanding it by several semantics-dependent
rendering techniques and a set of interaction techniques for the
collaborative inspection of 3D point clouds (e.g., to share, query,
and annotate).

In addition, our approach also provides a thin client renderer,
allowing to optionally reduce the performance impact on client-
side by delegating the rendering to the server side. Compared to
the aforementioned frameworks, we can thus adapt to a broader
range of computing and graphics capabilities on client side. Sim-
ilar approaches have been successfully implemented in the past
[Christen and Nebiker 2015; Döllner et al. 2012; Gutbell et al. 2016]
but typically focus on mesh-based geometry rather than 3D point
clouds. To generate stereoscopic panoramas we implemented the
theoretical concepts described by [Peleg et al. 2001] by means of
modern 3D computer graphics.

Systems for the efficient management of massive 3D point clouds
have been recently presented and evaluated by [Cura et al. 2017],
[van Oosterom et al. 2017], and [Poux et al. 2016]. However, those
contributions focus on the efficient storage, retrieval and processing
of the stored data sets. Less emphasis is put on the collaborative
exploration, inspection and manipulation of the stored data sets.

3 REQUIREMENTS
We have identified the following requirements that need to be
addressed by a system for the web-based visualization and collabo-
rative exploration of massive 3D point clouds:

R1 Use of 3D point clouds as a fundamental geometry type
instead of generalized mesh-based representations to enable
a direct and unfiltered provision of the data.

R2 No limitations regarding used acquisition methods as well
as density, resolution, and scale of the data (e.g., hundreds
of billions of points, complete countries).

R3 Support for varying hardware platforms and computation
capabilities, ranging from high-end desktop computers to
low-end mobile devices.

R4 Distributed data storage to enable load balancing and to
adjust for data specific requirements (e.g., certain 3D point
clouds might have to be stored on a specific server).

R5 Capabilities to prepare and clean up 3D point clouds for the
visualization (e.g., noise and outlier removal).

R6 Capabilities to conduct task and data specific analyses on
3D point clouds (e.g., surface category extraction) to provide
adaptive and task specific content.

R7 Visualization of analysis results (e.g., surface categories) to
enable task specific highlighting and filtering.

R8 Capabilities to compare and show differences between 3D
point clouds from different points in time of the same site
(i.e., change detection).

R9 Integration of supplementary, context-providing geodata
such as 2D maps.

R10 Provision of interaction techniques to inspect (e.g., mea-
suring of distances, areas, volumes) and annotate 3D point
clouds.

R11 Basic user management to customize data access.
R12 Capabilities to share specific rendering configurations, an-

notations and measurements with others (e.g., via link).

4 CONCEPTS
We have addressed the aforementioned requirements in the design
and implementation of our web-based system that seamlessly com-
bines functionality to integrate, process, and collaboratively explore
massive, heterogeneous 3D point clouds as well as supplementary,
context-providing geodata. The proposed system (Fig. 2) consists
of the following major components:

4.1 Point Cloud Manager
In our approach, 3D point clouds are organized in a single, ho-
mogeneous spatial data model. Access to that model is handled
by the point cloud manager storing spatial information and addi-
tionally provided or computed per-point attributes (e.g., temporal
information or surface categories) (R1). Level-of-detail represen-
tations [Elseberg et al. 2013; Goswami et al. 2013] are required to
efficiently access arbitrary data subsets of any size based on spatial,
temporal or any other attributes. These representations as well as
additional per-point attributes can be generated by the processing
engine (Section 4.4) (R2). While the point cloud manager logically
acts as a singular component, the data itself may be stored in a
distributed infrastructure, e.g., to maximize data throughput and

2019-05-01 21:56. Page 3 of 1–13.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

VSI:Web3D 2018, , Sören Discher, Rico Richter, and Jürgen Döllner

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

network transfer rates or to account for data specific requirements
regarding server location and data security (R4).

4.2 Workspace Manager
Theworkspacemanager handles information specific to aworkspace,
i.e., each user‘s private view of a specific data subset containing
custom selections, measurements, annotations, view positions, and
angles. Per default, each user operates in its own private workspace
rather than sharing one globally with everyone else to avoid con-
flicting modifications (R11). However, a given workspace may be
shared via links (R12). Each usermay also ownmultipleworkspaces.

4.3 Geodata Manager
By application-specific geodata, we refer to additional geodata that
should be used and rendered in combination with a 3D point cloud
to provide application-specific information layers (R9). Examples
are digital terrain models, aerial images, BIM models, or 3D city
models. Similar to 3D point clouds, these data types also require
supplemental level-of-detail representations to allow for an inter-
active visualization. Application-specific geodata can be stored and
provided by independent geospatial databases or geodata services,
access to which is handled by the geodata manager.

4.4 Processing Engine
The processing engine conducts task and data specific operations
on a given data subset. These operations range from (a) essential
preprocessing steps (e.g., converting input data sets into a homo-
geneous georeference system or generating level-of-detail repre-
sentations), over (b) simple point cloud filtering (e.g., noise and
outlier removal (R5)) to (c) more complex analyses (e.g., surface
category extraction and change detection (R6)) deriving additional
per-point attributes. The operations can be accessed via web pro-
cessing services implemented as separate web services that are
individually combined and scheduled by the processing engine.
Thus, existing web processing services for 3D point clouds can be
easily integrated into the system. The results of each operation
are automatically stored by the point cloud manager and can be
seamlessly integrated by the rendering engine (Section 4.5) into
depictions of the corresponding site (R7).

4.5 Rendering Engine
Providing the core functionality of our system, the rendering en-
gine is responsible for interactively visualizing three types of data:
(a) 3D point clouds featuring a varying number of per-point at-
tributes, (b) task-specific geodata providing context (e.g., maps
(R9)), and (c) workspace elements resulting from user interactions
(e.g., annotations or selection and measurement indicators (R10)).
For each of those data types the corresponding manager is queried,
retrieving only data subsets that are relevant for the current view
and task. To highlight certain aspects of the data (e.g., temporal
changes or surface categories in an area), different point-based
rendering techniques and post processing effects can be combined
(R8). Changes to the currently applied render configuration can be
made dynamically via the interaction handler) (Fig. 4). In general,
retrieved data subsets will be transferred to and rendered on client
side, which minimizes the workload on the server (i.e., thick clients).

As an alternative, server-side rendering can be applied to reduce
the performance impact for clients (i.e., thin clients). Thus, the
system scales for a broad range of devices, ranging from high-end
workstations to mobile devices (R3).

4.6 Interaction Handler
The interaction handler is responsible for handling user interactions
as well as for updating the rendered data and workspace elements
accordingly (R10). Users may

• define or load workspaces,
• select which data subsets to render,
• configure the presentation of the data (with regards to ap-
plied rendering techniques),

• select, query and highlight individual points or groups of
points,

• measure distances and areas between selected points,
• annotate selected points or areas,
• modify annotations,
• saving and loading view positions and angles.

5 PROCESSING ENGINE IMPLEMENTATION
Data and use case specific operations on 3D point clouds typically
combine several atomic processing steps (e.g., determining a point’s
closest neighbor or aggregating attribute values within the local
neighborhood of a point) that can be executed independently on a
small area around each point [Boulch et al. 2017; Chen et al. 2017;
Richter et al. 2013a,b]. Therefore, the processing performance can
be significantly increased by applying parallel computing concepts,
either based on a CPU or a GPU. Different processing and analysis
operations can be efficiently chained together by interleaving them.
Instead of executing each operation one at a time for the complete
data set, processed subsets are immediately subjected to subsequent
operations. Since 3D point clouds commonly exceed available ca-
pacities of main or GPUmemory, these parallel computing concepts
need to combined with out-of-core approaches that subdivide the
overall data set into sufficiently small subsets.

The processing engine uses a modular pipeline architecture (Fig-
ure 5) that combines parallel computing and out-of-core concepts:
Basic processing and analysis operations can be freely combined
and applied to arbitrary large data sets, making optimal use of
available hardware resources by parallelizing, interleaving, and
distributing operations alongside corresponding data subsets be-
tween computing resources (e.g., different servers in a distributed
environment). The processing and analysis operations involved are
described via processing pipelines that can be reconfigured and
replaced at runtime. We allow for an efficient retrieval of arbitrary
subsets by means of a multi-layer hierarchical subdivision: For
each 3D point cloud, a separate spatial data structure is generated
that best compliments the spatial distribution of the corresponding
points (e.g., quadtrees for airborne data sets, octrees or kd-trees
for terrestrial data sets). In turn, those spatial data structures are
integrated into an overarching quadtree, allowing to efficiently
answer queries stretching across multiple data sets. Compared to
uniform, single-layer spatial data structures (e.g., as they are used
by [Schütz and Wimmer 2015b]), this avoids a time consuming re-
balancing when new 3D point clouds are added to the system while

2019-05-01 21:56. Page 4 of 1–13.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Concepts and Techniques for Web-based Visualization and Processing of Massive 3D Point Clouds with Semantics VSI:Web3D 2018, ,

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

(a) Measuring of distances between points. (b) Measuring of areas defined by multiple points.

(c) Annotation of selected points or areas. (d) Selecting areas of interest.

Figure 3: Overview of implemented interaction techniques for 3D point clouds.

simultaneously ensuring balanced tree structures and minimal data
access times. Context providing geodata and workspace elements
are organized in similar fashion.

5.1 Pipeline Architecture
The applied pipeline architecture is based on the concept of so-
called processing pipelines, each of which described by a pipeline
plan defining a specific combination of basic input, processing and
output operations. To be more precise, a pipeline plan may contain
the following elements (also referred to as pipeline nodes):

• Importers, i.e., pipeline nodes that import 3D point clouds,
either file based or directly from the point cloudmanager. For
each data source and file format (e.g., LAS, E57) a separate
importer is provided. Each importer prepares data packages.
If the input data exceeds the maximum data package size,
the importer prepares subsets by splitting the data.

• Exporters, i.e., pipeline nodes that export pipeline results.
This can refer to Level-of-Detail representations, additional
point attributes or artificially generated 3D point clouds,
but also to additional geodata (e.g., shape files, CityGML,
GeoTIFFs). All results are then stored by the corresponding
manager, allowing to seamlessly integrate them into the
visualization.

• Tasks, i.e., pipeline nodes that implement a specific process-
ing or analysis algorithm. Some algorithms operate on mul-
tiple data sets simultaneously (e.g., to compare or to merge
them). Similarly, algorithms may split incoming data sets or
yield multiple results (e.g., additional per-point attributes
and corresponding shapes). Hence, multiple incoming and
outgoing connections may be defined per task.

• Connections, i.e., links between two pipeline nodes for the
transfer of data packages. They define the order of execution.
A given connection transfers only packages of a specific type
(e. g., 3D point clouds or shapes). Depending on the pipeline
nodes being connected, various constraints may be defined,
such as defined per-point attributes that are required.

• Data Packages, i.e., data subsets that are transferred be-
tween pipeline nodes via connections. Similar to connec-
tions, a given data package may only contain a specific type
of geodata. Also, the size of the corresponding data subset
may not exceed a specific maximum defined by the resource
manager.

Pipeline plans are executed by the pipeline engine. Several pipeline
plans can be executed in parallel; every single one can also be dy-
namically started, paused and stopped. At runtime, each active
pipeline node gets assigned its own set of resources by the resource

2019-05-01 21:56. Page 5 of 1–13.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

VSI:Web3D 2018, , Sören Discher, Rico Richter, and Jürgen Döllner

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Colors extracted from aerial imagery. (b) Height-based gradient from black to white.

(c) Colorization based on surface categories, i.e., green for vegetation,
red for buildings, and brown for ground.

(d) Colors from aerial imagery combined with change detection re-
sults, i.e., gradient from yellow to red indicates the degree of change.

Figure 4: Different point-based rendering styles can be selected and configured at runtime.

manager, responsible for monitoring and distributing memory and
processing usage within a system. Processed data packages are
immediately transferred to subsequent pipeline nodes. Pipeline
nodes manage a queue of incoming data packages for each incom-
ing connection, whose size is restricted to a maximum number of
data packages that can be defined at runtime. If a queue reaches
its maximum capacity, no additional data packages are accepted
and preceding nodes are not executed. To improve their runtime
performance, the most time-consuming pipeline nodes are executed
in parallel by adaptively assigning additional resources (e.g., CPU
or GPU cores).

5.2 Memory and Resource Management
The resources of a system may be distributed across several servers
in a network, each featuring different memory capacities (i.e., size
of secondary storage, main memory, and GPU memory) and com-
puting capabilities (e.g., number and clock speed of CPU and GPU
cores, memory transfer rates). Servers and their resources are added
to a global resource pool that is monitored by the resource manager
of the system. Whenever a pipeline node needs to be executed, the
resource manager assigns resources based on available memory and
processing capabilities. After the execution is finished, all assigned
resources are released to the resource pool and become available for

Figure 5: Overview of the pipeline architecture and pipeline
elements.

other nodes (Figure 5). Distributing resources requires the resource
manager to make a trade-off between several, often contradicting
optimization goals:

• Exclusivity. Exclusive access to a resource (e.g., storage or
GPU) significantly improves the runtime performance of a
pipeline node (e.g., by minimizing cache misses and seek
times).

2019-05-01 21:56. Page 6 of 1–13.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Concepts and Techniques for Web-based Visualization and Processing of Massive 3D Point Clouds with Semantics VSI:Web3D 2018, ,

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

• Transfer Costs. Frequently transferring data packages via
connections may notably reduce the performance if subse-
quent pipeline nodes operate on different servers. This can
be avoided by executing them on the same server.

• Parallelization. Executing pipeline nodes in parallel or in-
terleaved is an essential mechanism to improve the overall
performance of the system. Thus, available resources and
servers should be shared among as many pipeline nodes as
possible.

The runtime of nodes may vary significantly depending on the
operation. An adaptive resource scheduling allows to handle bottle-
necks in processing pipeline. The execution time is tracked for each
node and the number of assigned resources is adjusted dynamically.

6 RENDERING ENGINE IMPLEMENTATION
To seamlessly combine 3D point clouds, context providing geodata
and interactive workspace elements into a homogeneous visualiza-
tion, a multi-pass rendering pipeline is used that consists of three
distinct stages (Fig. 6):

6.1 Level-of-Detail and Data Subset Selection
While 3D point clouds may easily contain billions of points, only a
fraction of that data is required to render a frame. Subsets of the 3D
point cloud that are manageable by available CPU and GPU capa-
bilities can be queried dynamically from the point cloud manager
by specifying the current view frustum, main and GPU memory
budgets as well as task specific qualifiers (e.g., value ranges for
selected per-point attributes) to filter the corresponding data sets.
In particular, we use the resulting screen-space error as a metric to
evaluate potentially fitting subsets, optimizing towards amaximum
allowed screen-space error : The higher the allowed screen-space
error, the less points need to be queried and rendered, albeit at the
cost of further reducing precision and density of the point cloud
depiction. To accommodate for changing network latencies, the
maximum can be adjusted at runtime. Since hardware specifica-
tions of clients can not be queried from a web browser, main and
GPU memory budgets need to be specified manually. To assist users
in specifying a reasonable budget, we optionally provide a set of
predefined budget configurations that have been tested for a va-
riety of common hardware setups. To enable an efficient subset
retrieval, the data is hierarchically subdivided in a pre-processing
step (Section 5) before being made accessible by the point cloud
manager. Context providing geodata and workspace elements are
handled similarly and can be queried simultaneously from their
respective manager when required.

6.2 Rendering
After being queried from the respective managers, 3D point clouds,
context providing geodata and interactive workspace elements
are rendered into separate g-buffers [Saito and Takahashi 1990],
i.e., specialized frame buffer objects (FBO) combining multiple 2D
textures for, e.g., color, depth, normal, or id values. The use of id
values is important to separate point clouds from context data. Each
rendered point has a unique identifier, stored in an id texture, to
allow for an efficient point selection, e.g., to implement interaction
features (Section 6.3). In addition, different rendering styles can

Rendering Technique
Repository

3D Point Clouds

GPU Memory

(VBO)

GPU Memory

(FBO)

Screen

RendererRendererRenderer
Interaction

Handler
Image

Compositer
Level-of-Detail &
Memory Manager

Server ComponentServer Component Client/Server ComponentClient/Server Component Client ComponentClient Component

Rendering

Engine

Additional
Geodata

Workspace
Elements

G-
Buffer
G-

BufferG-Buffer

G-
Buffer
G-

BufferG-Buffer

G-
Buffer
G-

BufferG-Buffer

G-
Buffer
G-

BufferG-Buffer

G-
Buffer
G-

BufferG-B uffer

G-
Buffer
G-

BufferG-B uffer

Figure 6: Overview of the rendering pipeline. Each data type
is managed and rendered separately.

Figure 7: Post-processing effects such as Eye Dome Lighting
facilitate visual filtering and highlighting.

be configured and applied at runtime. As an example, size and
color of each point can be modified based on selected per-point
attributes (e.g., surface categories, topological metrics) to enable
task specific visual filtering and highlighting (Fig. 4). Similarly,
several options exist to dynamically adjust the appearance of mesh-
based geometry, ranging from transparency settings to changeable
texture mappings.

6.3 Image Compositing
A final image compositing stage is used to merge the separate g-
buffers, i.e., to combine several independently generated views of
3D point sub-clouds into a final image. For example, image-based
post processing effects emphasizing edges and depth differences
(e.g., Screen Space Ambient Occlusion [Mittring 2007] or Eye Dome
Lighting [Boucheny 2009]) can be applied at that stage to improve
the visual identification of structures within 3D point cloud de-
pictions (Fig. 7). The id textures stored by the g-buffers provide
efficient means to identify which point was rendered at a specific
pixel. Thus, individual points can be selected in real-time, which is
an essential requirement to support annotating points or measuring
distances and areas.

2019-05-01 21:56. Page 7 of 1–13.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

VSI:Web3D 2018, , Sören Discher, Rico Richter, and Jürgen Döllner

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 1: Devices used to evaluate the rendering engine. All web browsers were updated to the latest version as of 04/20/2018.

Client Device CPU Main Memory GPU Evaluated Web Browsers
Lenovo M710t Intel Core i7-6700 32GB GeForce GTX 1050Ti Chrome, Firefox, Opera, Edge

Macbook Pro 13” Intel Core i5-4278U 16GB Intel Iris 5100 Safari, Chrome, Firefox
iPhone SE Apple A9 @ 1.84 GHz 2GB PowerVR GT7600 Safari Mobile, Chrome Mobile
Galaxy s7 Samsung Exynos 8890 4GB ARM Mali-T880 MP12 Samsung Internet Browser, Chrome Mobile

Database

Thin

Client
Rendered
Images

Rendered
Images

Database

Thick

Client

Server ComponentServer Component Client ComponentClient Component

Selection Rendering Display

Selection Rendering Display

Relevant
Data

Figure 8: Comparison of web-based rendering concepts:
Thin clients vs thick clients

6.4 Web-based Rendering
To accommodate for client devices with varying computation ca-
pabilities, different web-based rendering concepts are combined
with the presented rendering pipeline (Fig. 8). We provide a thick
client application that uses a central server infrastructure to or-
ganize, process, select and distribute the data, but delegates the
actual rendering of selected data subsets to the clients. This ap-
proach significantly reduces workload on server side, allowing to
serve massive numbers of clients simultaneously. Transferred data
subsets are cached on client side up to a device specific limit, thus,
minimizing the frequency of data requests for subsequent frames.
In fact, additional data subsets are only required if the view frus-
tum changes significantly, whereas inspecting the transferred data
or changing the applied rendering style triggers no such requests.
Alternatively, in the sense of a thin client approach, the data can
be rendered directly on the server, supplying only the resulting
images. While this comes with the drawback of increased work-
load on server side as any user interactions trigger a new data
request, hardware requirements for clients are notably reduced. A
common optimization for such thin client applications is to render
and transfer cube-maps or virtual panoramas instead of individual
images [Döllner et al. 2012; Hagedorn et al. 2017]. This provides
clients with efficient means to locally reconstruct the 3D scene for
a specific view position. Thus, the data only has to be rendered
anew whenever the view center or the rendering style are modified,
which significantly reduces the frequency of data requests for sub-
sequent frames. Our system provides a thin client application that
expands that concept, distributing not only traditional 2D panora-
mas but also stereoscopic panoramas. Thus, emerging virtual reality
technologies allowing for an immersive exploration of 3D point
clouds even on mobile devices can be easily integrated. We generate
those stereoscopic panoramas by rendering several equally-sized
image strips along a viewing circle that are stitched together in a
post-processing step [Peleg et al. 2001]. The visual quality of the

(a) Terrestrial indoor scan. (b) Mobile mapping scan.

(c) Airborne scan of a city
(zoomed out)

(d) Airborne scan of a city
(zoomed in)

Figure 9: Scenes used during the intial performance tests.

Table 2: Average data throughput of the processing engine.

Processing Operation Average Data Throughput
Noise & Outlier Filtering 1.26B pts/hour

Surface Category Extraction 0.10B pts/hour
Change Detection 1.42B pts/hour
Kd-Tree Generation 4.85B pts/hour

panoramas depends on the requested resolution as well as the num-
ber of image strips; both settings can be specified upon requesting
a new panorama. To further reduce overall network load, both ap-
plications dynamically compress and decompress the transferred
data, using common standards such as gzip (for thick clients) and
png (for thin clients), respectively. We decided against using any
lossy compression standards (e.g., jpeg compression) to maximize
visual quality.

7 EVALUATION
We have implemented the presented concepts on the basis of several
C++ and Javascript libraries. The processing engine uses CUDA 2

and the Point Cloud Library 3. Regarding the rendering engine, we
useWebGL and Cesium 4 for thick client applications. For thin client

2https://developer.nvidia.com/cuda-zone
3http://pointclouds.org
4https://cesiumjs.org

2019-05-01 21:56. Page 8 of 1–13.

https://developer.nvidia.com/cuda-zone
http://pointclouds.org
https://cesiumjs.org

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Concepts and Techniques for Web-based Visualization and Processing of Massive 3D Point Clouds with Semantics VSI:Web3D 2018, ,

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

applications, server-side rendering is based on OpenGL, glbinding 5

and GLFW 6. On client-side, Three.js 7, WebGL, and WebVR Poly-
fill 8 are combined to display 2D as well as stereoscopic panoramas.
For data compression we use gzip 9 and lodePNG 10, respectively.
Evaluated 3D point clouds are represented by separate kd-trees,
that in turn are integrated into an overarching quadtree. We opted
to use kd-trees to optimize the balancedness of the tree structures,
speeding up the subset retrieval, albeit at the cost of a prolonged
preprocessing. Those spatial data structures and corresponding
data subsets are serialized into files acting as a point cloud data-
base. Similar, file-based approaches are applied to store and access
context-providing geodata and workspace elements.

7.1 Performance Tests
A desktop computer featuring an AMD Ryzen 7 1700 CPU, 32 GB
main memory and an NVIDIA GeForce GTX 1070 with 8 GB device
memory was used as a server for the initial performance tests. The
test data sets included a terrestrial, indoor scan of an individual
site (1.33 billion points), a mobile mapping scan (2.57 billion points)
and a massive, multi-temporal data set of an urban region (120
billion points) captured by airborne devices. For all data sets es-
sential preprocessing steps (i.e., spatial data structure generation)
and filtering (i.e., noise and outlier removal) were performed by
the processing engine. In addition, surface categories (i.e., ground,
building, vegetation) and changes in comparison to earlier scans
were extracted for the airborne data set, allowing to evaluate the
system’s ability to dynamically combine different rendering styles.
The average data throughput for the applied processing operations
is listed in Table 2.

The rendering engine was evaluated based on four different
scenes (Fig. 9) with client applications running on a number of dif-
ferent devices and web browsers (Table 1). As opposed to aforemen-
tioned state-of-the-art rendering frameworks for 3D point clouds
such as Potree, Plasio, GVLiDAR or ViLMA, our rendering engine
provides both, a thick client and a thin client renderer. Thus, the
rendering process can be shifted dynamically between client and
server side depending on network conditions and a client’s com-
puting and graphics capabilities, allowing us to support a broader
range of hardware platforms.

Our Cesium-based thick client implementation allows to render
several millions of points simultaneously at interactive frame rates
(i.e., >30 fps) on standard desktop computers and notebooks (Ta-
ble 4). On mobile devices, frame rates are significantly lower due to
the more limited computing capabilities. However, arbitrary large
data sets can be visualized on all evaluated devices by assigning
device-specific memory budgets, thus, limiting the density of the
point cloud depiction. Overall, rendering performance and visual
quality are similar to what can be achieved by aforementioned state-
of-the-art approaches such as Potree, Plasio, GVLiDAR or ViLMA.

5https://github.com/cginternals/glbinding
6http://www.glfw.org
7https://threejs.org
8https://github.com/immersive-web/webvr-polyfill
9http://www.gzip.org
10http://lodev.org/lodepng/

However, our thick client implementation allows to seamlessly in-
tegrate additional geodata as well as analysis results which greatly
facilitates an in-depth inspection.

On the other hand, our thin client implementation provides a
uniform rendering quality on all client devices since the panoramas
are generated on server side, minimizing workload on client side.
On all evaluated devices we measured frame rates close to the
corresponding display’s refresh rate (e.g., 60 fps on the Galaxy
S7), making our approach applicable to state-of-the-art VR devices
such as GearVR or Oculus Rift. The performance of the panorama
generation is primarily influenced by the requested resolution and
to a lesser degree on the number of image strips used (Table 5).

For all evaluated scenes, thick client applications require to trans-
fer significantly more data for an individual scene than thin clients
as long as no reusable data subsets have been cached from previous
requests, even if gzip compression is applied (Table 3). However,
they do not require all those data subsets at once, allowing to up-
date the scene progressively. Furthermore, while exploring a 3D
point cloud, the view will usually change only gradually across
subsequent frames, allowing for thick clients to reuse many of the
previously transferred data subsets, thus, resulting in smaller and
faster scene updates over prolonged explorations. Changes to the
rendering style as well interaction techniques such as picking, se-
lecting or measuring don’t trigger any additional data requests at
all and can be applied even under unstable network conditions. For
thin client applications on the other hand, no parts of the previously
transferred data can be reused if the currently used panorama be-
comes invalid: Navigating -apart from merely looking around from
a fixed position- as well as rendering style adjustments require the
server to generate and transfer a new panorama as a replacement.
Similar to thick clients however, picking, selecting or measuring
can be conducted on the already transferred data and does not
trigger any new data requests.

7.2 Case Studies
The initial performance evaluation was followed up by two case
studies to demonstrate the scalability of our approach with regards
to user base, data size as well as available computing and graphics
capacities.

The first case study focused on the collaborative interaction
with 3D point clouds in the context of a large-scale infrastructure
project involving up to 10 concurrent users representing different
stakeholders spread across Germany. The infrastructure project
comprised several individual sites that were captured by air or – in
the case of some especially relevant building complexes – via terres-
trial scanning. In total, the scans amounted to 5.31 TB of raw data
(E57 or las format) distributed across 144 individual data sets, each
of which containing between 18 million to 4.1 billion points at an
average point density of 6.1 points/m2 (airborne scans) and 1.2 mil-
lion points/m2 (terrestrial scans), respectively. Via a web frontend
(Fig. 10) users were able to (1) upload data sets asynchronously,
(2) georeference them individually and (3) restrict data access to
specific users. Simultaneously – given corresponding data access
rights – users could collaboratively inspect and annotate 3D point
clouds that have already been added to the system as described in
Section 4. Rendering performance on client devices was consistent

2019-05-01 21:56. Page 9 of 1–13.

https://github.com/cginternals/glbinding
http://www.glfw.org
https://threejs.org
https://github.com/immersive-web/webvr-polyfill
http://www.gzip.org
http://lodev.org/lodepng/

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

VSI:Web3D 2018, , Sören Discher, Rico Richter, and Jürgen Döllner

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Table 3: Average data throughput of the rendering engine based on the scenes defined in Fig. 9. For thin clients, a stereoscopic
panorama was created per request. While the same, device-dependent resolution was requested for each scene, different en-
tropies affected the compressed image size.

Scene Thick Client Thin Client
Transferred Data Transfer Time Transferred Data Panorama Generation Time Transfer Time

Terrestrial 156.2 MB 16.18s 4.68 MB 5.27s 1.36s
Mobile Mapping 140.7 MB 14.15s 4.16 MB 5.05s 1.27s

Airborne (zoomed out) 16.1 MB 3.43s 4.15 MB 4.96s 1.22s
Airborne (zoomed in) 82.4 MB 8.09s 4.54 MB 5.13s 1.32s

Table 4: Average performance rate of the thick client for different point budgets based on the airborne data set (Fig. 9d).

Number of Points Transferred Data Transferred Data Lenovo M710t Macbook Pro 13” iPhone SE Galaxy s7(uncompressed) (compressed)
2M pts 29.5 MB 26.2 MB 122.63fps 53.85fps 41.83fps 39.96fps
4M pts 57.4 MB 50.9 MB 84.48fps 45.63fps 36.44fps 35.29fps
6M pts 85.6 MB 76.1 MB 63.23fps 39.08fps 26.36fps 24.83fps
8M pts 113.6 MB 100.7 MB 56.87fps 35.83fps 19.65fps 18.43fps

Table 5: Panorama generation time for different configurations based on the terrestrial data set (Fig. 9a).

Resolution Transferred Data Panorama Generation Time
90 image strips 120 image strips 160 image strips

2360x1600 px 2.33 MB 1.88s 2.26s 2.29s
2360x3200 px 4.68 MB 4.20s 4.68s 5.27s
2360x6400 px 9.35 MB 6.17s 7.14s 7.88s

with the results presented in 7.1. A dedicated server featuring an
Intel Core i7-8700 CPU, 64 GB main memory and 12 TB secondary
storage was used to host uploaded data sets and conduct necessary
pre-processing operations. The applied processing pipeline was
rather simplistic, combining just three pipeline nodes (Fig. 11): An
importer and an exporter, connected via a kd-tree generator task. To
speed up performance, each kd-tree generator uses a main memory
cache. In the context of this case study, the maximum cache size was
set to 16 GB, thus, the number of kd-trees that could be generated
in parallel was limited to four in the worst case (Fig. 12). However,
even for the largest uploaded data sets pre-processing times stayed
below 60 minutes. Furthermore, they were added only gradually
which further minimized the delay noticeable by the users.

For the second case study, emphasis was put onto the processing
engine’s performance and scalability in more computation intense
scenarios. Hosted on an Oracle Server – featuring an Intel Xeon
Gold 5120M CPU, 192 GB main memory, 8 TB secondary storage,
and two NVIDIA Tesla P100 with 16 GB device memory – we con-
ducted a change detection as well as a surface category extraction
for all uploaded data sets using the processing pipeline depicted in
Fig. 11. Users were then able to interactively inspect the processing
results by switching between different rendering styles as described
in Section 4. Test data for that case study consisted of two different
airborne scans of a rural area of 270 km2 featuring 4 points/m2

(1.012 billion points in total) and 9 points/m2 (2.474 billion points

in total), respectively. The computation time of both processing
operations was notably reduced by increasing the number of CPU
threads used in parallel (Fig. 13 and Fig. 14) which underlines the
scalability of our approach. The performance of the change detec-
tion could be improved further by increasing the number of GPUs
used during the computation (Fig. 15), whereas that had only a
neglectable effect on the – in that case – mostly CPU based surface
category extraction.

7.3 Expandability
The proposed web-based system can be easily adapted for specific
applications by adding custom visualization techniques or algo-
rithms for data analysis: Per-point attributes as well as the pipeline
nodes used by the processing engine share common interfaces
which facilitates the implementation of additional importers, ex-
porters or tasks. The corresponding pipeline plans are defined via
JSON files and can thus be easily customized. Similiarly, the ren-
dering engine allows to define and apply custom GLSL shaders to
adapt the visualization.

8 CONCLUSION AND FUTUREWORK
Web-based visualization and exploration of massive 3D point clouds
from aerial, mobile, or terrestrial data acquisitions represent a key
feature for today’s and future systems and applications dealing
with digital twins of our physical environment. In our web-based

2019-05-01 21:56. Page 10 of 1–13.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Concepts and Techniques for Web-based Visualization and Processing of Massive 3D Point Clouds with Semantics VSI:Web3D 2018, ,

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

(a) File selection and upload. (b) Definition of meta data such as data access rights.

(c) Definition of EPSG codes to georeference uploaded data sets. (d) Visualization of the uploaded and configured data.

Figure 10: Web frontend used during the first case study allowing users to upload, prepare and explore 3D point clouds.

Figure 11: Processing pipelines as they have been used for
the presented case studies.

approach, we show a system architecture that scalably visualizes
massive 3D point clouds to web-based client devices. To cope with
extremely large number of points, the implementation relies on
spatial data structures and level-of-detail representations, combined
with different out-of-core rendering and web-based rendering con-
cepts. Since the rendering process can be shifted from client side to
server side, the system can be easily adapted to varying network
conditions and to clients with a broad range of computing and
graphics capabilities. Tests and case studies on data sets with up to
120 billion points show the usability of the system and the feasibility
of the approach. As future workwe plan additional case studies with
regard to our system’s performance in distributed server environ-
ments. Various rendering techniques allow us to filter and highlight
subsets of the data based on any available per-point attributes (e.g.,
surface categories or temporal information), which is required to

Figure 12: Cache size was limited to 16 GB per kd-tree gener-
ator for the case study. Hence, the number of kd-trees that
could be generated in parallel (blue) varied depending on the
overall size of the corresponding raw data (orange).

build task-specific or application-specific tools. Various interaction
methods (e.g., for collaborative measurements and annotations),
built-in support to display context-providing, mesh-based geodata,
and the possibility to conduct different processing and analysis
operations provide additional features. Our system could be further
extended by integrating additional analyses (e.g., for asset detec-
tion, or surface segmentation) [Jochem et al. 2012; Teo and Chiu
2015] as well as by specialized interaction techniques. For example,
[Scheiblauer and Wimmer 2011] and [Wand et al. 2008] propose

2019-05-01 21:56. Page 11 of 1–13.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

VSI:Web3D 2018, , Sören Discher, Rico Richter, and Jürgen Döllner

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Figure 13: Computation time inminutes of the change detec-
tion for different numbers of CPU cores used (for one GPU).

Figure 14: Computation time in minutes of the surface cat-
egory extraction for different numbers of CPU cores used
(for one GPU).

Figure 15: Computation time inminutes of the change detec-
tion for different numbers of GPUs used (for 28 CPU cores).

spatial data structures that allow for an interactive editing of 3D
point clouds. In addition, sophisticated visualization techniques
for multi-temporal 3D point clouds are becoming more and more
important to understand captured environments.

ACKNOWLEDGMENTS
We thank Pawel Böning and Pascal Führlich for their contributions
to the thin client implementation as well as Heiko Thiel, Marcel
Wendler and Pawel Glöckner for their input on the thick client im-
plementation. Presented data sets have been provided by Illustrated
Architecture, SHH sp. z o.o. and virtualcitySYSTEMS.

REFERENCES
Mohammad Awrangjeb, Clive S Fraser, and Guojun Lu. 2015. Building change detection

from LiDAR point cloud data based on connected component analysis. ISPRS Annals
of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2 (2015),
393–400.

Matthew Berger, Andrea Tagliasacchi, Lee Seversky, Pierre Alliez, Joshua Levine,
Andrei Sharf, and Claudio Silva. 2014. State of the art in surface reconstruction
from point clouds. In EUROGRAPHICS star reports, Vol. 1. 161–185.

Mario Botsch, Alexander Hornung, Matthias Zwicker, and Leif Kobbelt. 2005. High-
quality surface splatting on today’s GPUs. In Proceedings Eurographics/IEEE VGTC
Symposium Point-Based Graphics, 2005. 17–141.

Christian Boucheny. 2009. Interactive Scientific Visualization of Large Datasets: To-
wards a Perceptive-Based Approach. Ph.D. Dissertation. Université Joseph Fourier,
Grenoble.

Alexandre Boulch, Bertrand Le Saux, and Nicolas Audebert. 2017. Unstructured
point cloud semantic labeling using deep segmentation networks. In Eurographics
Workshop on 3D Object Retrieval, Vol. 2. 1.

Howard Butler, David C Finnegan, Peter J Gadomski, and Uday K Verma. 2014. plas.
io: Open Source, Browser-based WebGL Point Cloud Visualization. In AGU Fall
Meeting Abstracts.

Dong Chen, Ruisheng Wang, and Jiju Peethambaran. 2017. Topologically aware
building rooftop reconstruction from airborne laser scanning point clouds. IEEE
Transactions on Geoscience and Remote Sensing 55, 12 (2017), 7032–7052.

Martin Christen and Stephan Nebiker. 2015. Visualisation of complex 3D city models
on mobile webbrowsers using cloud-based image provisioning. ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information Sciences 2 (2015), 517–522.

Rémi Cura, Julien Perret, and Nicolas Paparoditis. 2017. A scalable and multi-purpose
point cloud server (PCS) for easier and faster point cloud data management and
processing. ISPRS Journal of Photogrammetry and Remote Sensing 127 (2017), 39–56.

David Deibe, Margarita Amor, and Ramón Doallo. 2019. Supporting multi-resolution
out-of-core rendering of massive LiDAR point clouds through non-redundant data
structures. International Journal of Geographical Information Science 33, 3 (2019),
593–617.

David Deibe, Margarita Amor, Ramón Doallo, David Miranda, and Miguel Cordero.
2017. GVLiDAR: an interactive web-based visualization framework to support
geospatial measures on lidar data. International journal of remote sensing 38, 3
(2017), 827–849.

Jürgen Döllner, Benjamin Hagedorn, and Jan Klimke. 2012. Server-based rendering of
large 3D scenes for mobile devices using G-buffer cube maps. In Proceedings of the
17th International Conference on 3D Web Technology. 97–100.

Jan UH Eitel, Bernhard Höfle, Lee A Vierling, Antonio Abellán, Gregory P Asner,
Jeffrey S Deems, Craig L Glennie, Philip C Joerg, Adam L LeWinter, Troy S Magney,
et al. 2016. Beyond 3-D: The new spectrum of lidar applications for earth and
ecological sciences. Remote Sensing of Environment 186 (2016), 372–392.

Jan Elseberg, Dorit Borrmann, and Andreas Nüchter. 2013. One billion points in
the cloud–an octree for efficient processing of 3D laser scans. ISPRS Journal of
Photogrammetry and Remote Sensing 76 (2013), 76–88.

Zhenzhen Gao, Luciano Nocera, Miao Wang, and Ulrich Neumann. 2014. Visualizing
aerial LiDAR cities with hierarchical hybrid point-polygon structures. In Proceedings
of Graphics Interface 2014. 137–144.

Sergio García, Rafael Pagés, Daniel Berjón, and Francisco Morán. 2015. Textured
splat-based point clouds for rendering in handheld devices. In Proceedings of the
20th International Conference on 3D Web Technology. 227–230.

Prashant Goswami, Fatih Erol, Rahul Mukhi, Renato Pajarola, and Enrico Gobbetti.
2013. An efficient multi-resolution framework for high quality interactive rendering
of massive point clouds using multi-way kd-trees. The Visual Computer 29, 1 (2013),
69–83.

Markus Gross and Hanspeter Pfister. 2011. Point-based graphics. Morgan Kaufmann.
Ralf Gutbell, Lars Pandikow, Volker Coors, and Yasmina Kammeyer. 2016. A framework

for server side rendering using OGC’s 3D portrayal service. In Proceedings of the
21st International Conference on Web3D Technology. 137–146.

2019-05-01 21:56. Page 12 of 1–13.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Concepts and Techniques for Web-based Visualization and Processing of Massive 3D Point Clouds with Semantics VSI:Web3D 2018, ,

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Benjamin Hagedorn, Simon Thum, Thorsten Reitz, Volker Coors, and Ralf Gutbell.
2017. OGC 3D Portrayal Service 1.0. OGC Implementation Standard 1.0. Open
Geospatial Consortium.

Jing Huang and Suya You. 2016. Point cloud labeling using 3d convolutional neural
network. In Proceedings of the 23rd International Conference on Pattern Recognition.
2670–2675.

Andreas Jochem, Bernhard Höfle, Volker Wichmann, Martin Rutzinger, and Alexander
Zipf. 2012. Area-wide roof plane segmentation in airborne LiDAR point clouds.
Computers, Environment and Urban Systems 36, 1 (2012), 54–64.

Thomas P Kersten, Heinz-Jürgen Przybilla, Maren Lindstaedt, Felix Tschirschwitz, and
Martin Misgaiski-Hass. 2016. Comparative geometrical investigations of hand-held
scanning systems. ISPRS Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences (2016).

Tobias Langner, Daniel Seifert, Bennet Fischer, Daniel Goehring, Tinosch Ganjineh,
and Raúl Rojas. 2016. Traffic awareness driver assistance based on stereovision,
eye-tracking, and head-up display. In Proceedings of ICRA 2016. 3167–3173.

Oscar Martinez-Rubi, Stefan Verhoeven, Maarten Van Meersbergen, M Schûtz, Peter
Van Oosterom, Romulo Gonçalves, and Theo Tijssen. 2015. Taming the beast:
Free and open-source massive point cloud web visualization. In Proceedings of the
Capturing Reality Forum 2015.

Martin Mittring. 2007. Finding next gen: Cryengine 2. In ACM SIGGRAPH 2007 courses.
ACM, 97–121.

Matthias Müller and Benjamin Pross. 2015. OGC WPS 2.0 interface standard. Open
Geospatial Consortium Inc. (2015).

Stephan Nebiker, Susanne Bleisch, and Martin Christen. 2010. Rich point clouds in
virtual globes–A new paradigm in city modeling? Computers, Environment and
Urban Systems 34, 6 (2010), 508–517.

Steve Ostrowski, Grzegorz Jóźków, Charles Toth, and Benjamin Vander Jagt. 2014.
Analysis of point cloud generation from UAS images. ISPRS Annals of the Pho-
togrammetry, Remote Sensing and Spatial Information Sciences 2, 1 (2014), 45–51.

Viorica Pătrăucean, Iro Armeni, Mohammad Nahangi, Jamie Yeung, Ioannis Brilakis,
and Carl Haas. 2015. State of research in automatic as-built modelling. Advanced
Engineering Informatics 29, 2 (2015), 162–171.

Shmuel Peleg, Moshe Ben-Ezra, and Yael Pritch. 2001. Omnistereo: Panoramic stereo
imaging. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 3 (2001),
279–290.

Ruggero Pintus, Enrico Gobbetti, and Marco Agus. 2011. Real-time Rendering of Mas-
sive Unstructured Raw Point Clouds Using Screen-space Operators. In Proceedings
of VAST 2011. 105–112.

Florent Poux, Pierre Hallot, Romain Neuville, and Roland Billen. 2016. Smart point
cloud: Definition and remaining challenges. ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences 4 (2016), 119–127.

Reinhold Preiner, Stefan Jeschke, and Michael Wimmer. 2012. Auto Splats: Dynamic
Point Cloud Visualization on the GPU.. In Proceedings of the EGPGV. 139–148.

Fabio Remondino, Maria Grazia Spera, Erica Nocerino, Fabio Menna, Francesco Nex,
and Sara Gonizzi-Barsanti. 2013. Dense image matching: comparisons and analyses.
In Proceedings of DigitalHeritage 2013, Vol. 1. 47–54.

Rico Richter, Markus Behrens, and Jürgen Döllner. 2013a. Object class segmentation of
massive 3D point clouds of urban areas using point cloud topology. International
Journal of Remote Sensing 34, 23 (2013), 8408–8424.

Rico Richter, Sören Discher, and Jürgen Döllner. 2015. Out-of-core visualization of
classified 3d point clouds. In 3D Geoinformation Science. Springer, 227–242.

Rico Richter, Jan E Kyprianidis, and Jürgen Döllner. 2013b. Out-of-Core GPU-based
Change Detection in Massive 3D Point Clouds. Transactions in GIS 17, 5 (2013),
724–741.

Marcos B Rodriguez, Enrico Gobbetti, Fabio Marton, Ruggero Pintus, Giovanni Pin-
tore, and Alex Tinti. 2012. Interactive Exploration of Gigantic Point Clouds on
Mobile Devices.. In 13th International Conference on Virtual Reality, Archaeology
and Cultural Heritage. 57–64.

Szymon Rusinkiewicz andMarc Levoy. 2000. QSplat: A multiresolution point rendering
system for large meshes. In Proceedings of the 27th annual conference on Computer
graphics and interactive techniques. 343–352.

Heinz Rüther, Christoph Held, Roshan Bhurtha, Ralph Schroeder, and Stephen Wessels.
2012. From point cloud to textured model, the zamani laser scanning pipeline in
heritage documentation. South African Journal of Geomatics 1, 1 (2012), 44–59.

Takafumi Saito and Tokiichiro Takahashi. 1990. Comprehensible rendering of 3-D
shapes. In ACM SIGGRAPH Computer Graphics, Vol. 24. ACM, 197–206.

Claus Scheiblauer and Michael Wimmer. 2011. Out-of-core selection and editing of
huge point clouds. Computers & Graphics 35, 2 (2011), 342–351.

Markus Schütz and Michael Wimmer. 2015a. High-quality point-based rendering using
fast single-pass interpolation. In Proceedings of Digital Heritage 2015. 369–372.

Markus Schütz and Michael Wimmer. 2015b. Rendering large point clouds in web
browsers. Proceedings of CESCG (2015), 83–90.

Lance Simons, Stewart He, Peter Tittman, and Nina Amenta. 2014. Point-based ren-
dering of forest LiDAR. In Workshop on Visualisation in Environmental Sciences
(EnvirVis), The Eurographics Association. 19–23.

Tee-Ann Teo and Chi-Min Chiu. 2015. Pole-like road object detection from mobile
lidar system using a coarse-to-fine approach. IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing 8, 10 (2015), 4805–4818.
Peter van Oosterom, Oscar Martinez-Rubi, Theo Tijssen, and Romulo Gonçalves. 2017.

Realistic benchmarks for point cloud data management systems. In Advances in 3D
Geoinformation. Springer, 1–30.

Michael Wand, Alexander Berner, Martin Bokeloh, Philipp Jenke, Arno Fleck, Mark
Hoffmann, BenjaminMaier, Dirk Staneker, Andreas Schilling, andHans-Peter Seidel.
2008. Processing and interactive editing of huge point clouds from 3D scanners.
Computers & Graphics 32, 2 (2008), 204–220.

Long Zhang, Qian Sun, and Ying He. 2014. Splatting lines: an efficient method for
illustrating 3D surfaces and volumes. In Proceedings of the 18th meeting of the ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games. 135–142.

2019-05-01 21:56. Page 13 of 1–13.

	Abstract
	1 Motivation
	2 Related Work
	3 Requirements
	4 Concepts
	4.1 Point Cloud Manager
	4.2 Workspace Manager
	4.3 Geodata Manager
	4.4 Processing Engine
	4.5 Rendering Engine
	4.6 Interaction Handler

	5 Processing Engine Implementation
	5.1 Pipeline Architecture
	5.2 Memory and Resource Management

	6 Rendering Engine Implementation
	6.1 Level-of-Detail and Data Subset Selection
	6.2 Rendering
	6.3 Image Compositing
	6.4 Web-based Rendering

	7 Evaluation
	7.1 Performance Tests
	7.2 Case Studies
	7.3 Expandability

	8 Conclusion and Future Work
	Acknowledgments
	References

