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ABSTRACT:

In this work, we present an approach that uses an established image recognition convolutional neural network for the semantic
classification of two-dimensional objects found in mobile mapping 3D point cloud scans of road environments, namely manhole
covers and road markings. We show that the approach is capable of classifying these objects and that it can efficiently be applied on
large datasets. Top-down view images from the point cloud are rendered and classified by a U-Net implementation. The results are
integrated into the point cloud by setting an additional semantic attribute. Shape files can be computed from the classified points.

1. INTRODUCTION

Point clouds are widely used for storing geospatial information.
They have proven to be a valuable data source for analyses as
they are easy to handle and hold great detail of the captured
environment (Vosselman et al., 2004). Technically, they are
stored as an unordered collection of measurement points each
featuring three-dimensional coordinates and additional attrib-
utes, e. g., intensity values when being measured via LIDAR
(Richter et al., 2013). The unordered and unstructured points of
a point cloud usually require a semantic classification for suc-
cessive usage (Niemeyer et al., 2012). Semantic classification is
the process of assigning each object an additional attribute that
describes the type of the object, such as “Car”, “Lamp post” or
“Traffic sign – turn right”. Once individual objects and their se-
mantic classes have been identified, they can be used for, e. g.,
road cadastre creation or renewal (Caroti et al., 2005), clearance
area checks (Mikrut et al., 2016), and 3D modeling (Vossel-
man, 2003). Typical semantic classes enable a basic distinction
between ground, vegetation, and buildings, but many additional
and very detailed classes might be needed for individual use
cases, such as cars, road markings, traffic signs or curbstones
(Pu et al., 2011). Figure 1 shows a point cloud for which se-
mantic classes have been determined and are highlighted by as-
signing each semantic class an individual color.

In this work, we focus on a semantic classification using con-
volutional neural networks for visual recognition in images. In
the past, many techniques for the automated analysis of images
have been made and popular frameworks have been developed
(Pulli et al., 2012). We show that those can also be used for the
classification of point clouds in certain use cases. Some objects
in road environments do not extend in three dimensions or have
one dimension hidden below ground. Road markings and man-
hole covers are located flat on the ground and their height, if at
all, differs only in a very small extent compared to their envir-
onment. These objects are predestined for visual recognition as
they can easily be represented in two-dimensional images.
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2. RELATED WORK

Point clouds are a valuable tool to automatically create 3D city
models (Schwalbe et al., 2005) and landscape models for many
different use cases in urban planning for local authorities, com-
panies, or individuals (Vosselman et al., 2001). Cadastral data
can be combined with point clouds to create interactive visual-
ization tools for analysis and exploration (Aringer, Roschlaub,
2014). High density point information can be analyzed and cre-
ating large models gets possible even without a lot of human
involvement (Richter, Döllner, 2013). Besides aerial captures
of point clouds, mobile mapping techniques are widely used
(Li, 1997). Mobile mapping scans can be used to, e. g., auto-
matically extract road networks, or to analyze road surfaces
(Jaakkola et al., 2008), as well as for the reconstruction of build-
ing facades.

For many use cases the automated analysis of point clouds is
a mandatory preparation. Semantic classification can be per-
formed by two fundamentally different approaches: Semantic
per-point surface category information can be derived by ana-
lyzing a point cloud’s topology (Chen et al., 2017) or by apply-
ing deep learning concepts (Boulch et al., 2017).

Traditionally, explicit rules are defined to distinguish semantic
classes by geometric attributes (Grilli et al., 2017). Point clouds
can be segmented into local groups of points with, e. g., similar
surface directions (Rabbani et al., 2006). Each of these seg-
ments can then be analyzed with regard to their size and orient-
ation. Large, vertical surfaces can then, for example, be identi-
fied as building facades, whereas groups of points whose corres-
ponding surface normals are pointing into many different direc-
tions are usually part of vegetation (Wolf et al., 2019). An al-
ternative approach uses machine learning techniques to identify
the semantic classes of objects by using previously trained neural
networks (Zhou, Tuzel, 2018). Such networks use an already
classified dataset for training and learn to predict the semantic
class for individual points or groups of points in new, unknown
datasets. In recent years, using the internal structure of the point
clouds themselves has become increasingly popular, as exem-
plified by PointNet and similar networks (Qi et al., 2017). How-
ever, they often focus on small datasets of separated objects and
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Figure 1. Point cloud colored based on semantic class: Ground (brown), vegetation (green), buildings (red), vehicles (orange),
pole-like structures (blue).

require large training datasets.

Detecting objects in images is a well known research area that
attracts great interest since many years. Viola et al. present
an often cited image object detection algorithm which can be
used to detect, e. g., faces in images (Viola et al., 2001). U-Net,
originally developed in a medical context, is nowadays widely
used for image segmentation (Ronneberger et al., 2015). It en-
ables the automated detection of specific areas in images, such
as cancer cells but also roads in aerial images (Zhang et al.,
2018).

3. DATASETS

The datasets used in this work are mobile mapping scans from
three different cities in Germany. They vary with respect to
point densities and the number of cars, pedestrians, and other
objects blocking the view. However, the trained network can
detect objects in all datasets with similar accuracy. Different
areas of the datasets were used for training and evaluation.

A typical street from a dataset is shown in Figure 2. The point
cloud shown consists of 29 000 000 points and covers about 670
meters road with several crossings.

To create a training set for a U-Net-based neural network that is
able to detect manhole covers, 300 images with manhole covers
have been manually classified to create positive training data.
Some images contain multiple instances. Several thousand road
markings in 600 images have been marked as well. The training
data set was completed with more than 16 000 images contain-
ing no manhole covers or road markings. Data augmentation, in
this case rotation and mirroring, was used to enlarge the dataset
even further.

4. CONCEPT AND IMPLEMENTATION

Our approach uses the abilities of image object detection al-
gorithms to automatically classify certain objects in point clouds.
We are focusing on manhole covers and road markings because
they are clearly visible in a top-down view of the point cloud
data. In Figure 3 the detected structures are highlighted.

We implemented a pipeline concept capable of automatically
rendering large datasets, detecting objects in the created im-
ages, and mapping the results back into the original point clouds.
Both object types were trained and detected separately.

First, all input point clouds are filtered as described in Section
4.1. A renderer then creates square images of these filtered
point clouds as described in Section 4.2.

The rendered images are then classified with the previously
trained neural networks and the results are integrated back into
the point cloud, which is described in Section 4.3. Section 4.4
describes the creation of shapes for the individual objects.

4.1 Point cloud preprocessing

We aim to detect objects in billions of points of whole cities, so
data reduction is an important aspect. To detect road markings
and manhole covers, only the road itself along the captured path
is required. During the scan of the point cloud data, a traject-
ory is captured, which describes the exact path of the measuring
vehicle. The point cloud of interest can now be cropped along
this trajectory, e. g., 10 meters to its left and right. If the re-
cording path should not be available, relevant areas can also be
filtered by analyzing the local point density, because regions
close to the measuring vehicle have a much higher density than
areas further away. In the remaining data, outliers are removed
by simple outlier filtering. This is done to remove noise within
the data that might affect the top-down rendering of the point
cloud. All points with less than, e. g., five neighboring points
within a distance of 0.5 meters can be marked as outliers. The
approach can be sped up by using a heuristic search based on a
spatial data structure such as a three-dimensional grid in which
all points are placed. All points in cells which hold less than
a certain number of points can be marked as outliers. For the
specific use case of this work such a heuristic approach is suf-
ficient, because the objects of interest are all located in dense
areas of the point cloud.

A ground detection step identifies ground points based on their
relative height and orientation (Meng et al., 2009). Higher points
can be removed, so points representing buildings or high veget-
ation will not be analyzed. The algorithm divides the area that
is to be analyzed into a regular two-dimensional grid. For each
grid cell, the lowest of all z-values of the points falling into
this cell, is stored. This represents a simplified terrain model.
After the grid has been initialized, scan lines are used to find all
ground points of the point cloud. These scan lines move axis-
aligned in positive and negative direction as well as diagonally
through the grid. The algorithm takes into account, which slope
is determined in the different scanning directions and how the
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Figure 2. Point cloud of a street used as input for the object detection.

Figure 3. Point clouds with detected manhole covers (orange)
and road markings (green) represented as shapes rendered on top

of the point cloud.

elevation differs between points and the minimum elevation in
their local neighborhood. For each scan line, potential ground
points are determined separately. Following that, a majority
voting is used to classify points as ground.

The remaining point cloud only consists of ground points along
the measuring vehicle’s trajectory without outliers. Following
this preprocessing step, point clouds of our test dataset have on
average about 60% of their original points left.

4.2 Image rendering

For the region of interest, images of the point cloud can now be
rendered in a top-down view and are subsequently processed by
the neural network.

Our renderer uses a point cloud as input and generates a series
of images of 128x128 pixels in orthogonal projection, as shown
in Figure 5. The visualized area has a size of about 4.5x4.5
meters. The positions of the images are selected in such a way
that the complete area of the previously filtered point cloud is
covered and that the images are overlapping. Each image con-
tains a channel storing the intensity value of the point visible in
each individual pixel as well as a channel storing the ID of the

point that was rendered in this position. The latter is needed for
projecting the classification results back into the point cloud.

For best results, the points from the point cloud are rendered as
paraboloids, of which only the tips are visible in dense areas.
Rendering with different primitives is shown in Figure 4. Using
paraboloids will fill more pixels in areas with lower density to
avoid holes in the resulting image, while preserving sharp edges
of individual structures, as shown in Figure 4g.

(a) Small points (2 pixels). (b) Large points (6 pixels).

(c) Small circles (1x1 cm). (d) Large circles (3x3 cm).

(e) Small quads (1x1 cm). (f) Large quads (3x3 cm).

(g) Paraboloids.

Figure 4. Point cloud rendered with different primitives.

4.3 Classification

The rendered images are used as input for the previously trained
neural networks. The result is an output mask for each input im-
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Figure 5. Left: Examples of rendered images and manually trained segmentation results for manhole covers. Right: Detected manhole
covers projected back into the original point cloud.

age in which black pixels mark a detected object of the current
type and white pixels everything else, similar to the training
data shown on the left in Figure 5. After U-Net determined
which pixels in an image belong to manhole covers, the asso-
ciated points can be identified via the point ID layer. These
points will get assigned an additional attribute referencing their
semantic class. The number of points in the region covered
by an image is often higher than the number of pixels in that
image. Several points of the point cloud are therefore occluded
and their IDs cannot be determined from the segmented images.
Thus, points in the direct neighborhood of identified points will
also receive the attribute value in a postprocessing step.

4.4 Generating shapes

For each group of adjacent points of a certain semantic class a
shape can be created (ESRI, 1998). A convex hull or the best fit-
ting rectangle is spanned around the points, resulting in shapes
for road markings and manhole covers as shown in Figure 3.
The resulting files can be used in various GIS applications for
subsequent tasks.

5. EVALUATION

The evaluation dataset was a set of mobile mapping point clouds,
captured with the same hardware setup in different areas of the
cities also used in the training data. The neural networks were
each trained for 5 hours on an Nvidia GeForce 1080 Ti. In an
evaluation, 94% of the manhole covers and 91% of the road
markings in the evaluation dataset were correctly identified and
throughput of 7.5 million points per minute was reached. This

number corresponds to approximately 300 meters of captured
road. The bottleneck of the analysis are the I/O operations
when rendering images of the point cloud and writing them to
storage—an in-memory solution would highly increase the pro-
cessing speed. Unidentified manhole covers usually had a low
contrast to the street which could be an explanation why they
have not been detected by the neural network. Road markings
in areas with overall high intensity values have often not been
found, especially in and around wet areas on the road.

6. CONCLUSION AND FUTURE WORK

We have shown that an established neural network for image
segmentation can be used in the classification of flat objects
such as manhole covers and road markings in mobile mapping
3D point clouds. By choosing an appropriate rendering tech-
nique, detailed images of the captured ground are created which
can then be used as input for a neural network. It is possible to
map the identified objects back into the point cloud as well as
to create shape files which can be used in GIS applications.

We expect a similar approach to work on three-dimensional ob-
jects such as cars or traffic signs as well, but a number of modi-
fications would be required that will be tested in future work.
Multiple images can be taken from different angles around pre-
viously determined segments in a horizontal projection instead
of a top-down view, e. g., four images from each side of the
segment’s bounding box. An additional depth channel can be
added to the rendered images which includes information about
the third dimension and allows for easy foreground/background
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separation. Such an approach could then classify many addi-
tional objects via image segmentation that are not yet covered
by the current analysis.

A combined network for multiple semantic classes would in-
crease the processing speed compared to applying them one
after another. Analyzing rendered images in memory without
writing them to the hard drive would again increase the number
of points that can be analyzed in the same amount of time.
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Wolf, J., Richter, R., Döllner, J., 2019. Techniques for auto-
mated classification and segregation of mobile mapping 3d
point clouds. Proceedings of the 14th International Joint Con-
ference on Computer Vision, Imaging and Computer Graphics
Theory and Applications, 201–208.

Zhang, Z., Liu, Q., Wang, Y., 2018. Road extraction by deep
residual u-net. IEEE Geoscience and Remote Sensing Letters,
15(5), 749–753.

Zhou, Y., Tuzel, O., 2018. Voxelnet: End-to-end learning
for point cloud based 3d object detection. Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
4490–4499.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W15, 2019 
14th 3D GeoInfo Conference, 24–27 September 2019, Singapore

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W15-111-2019 | © Authors 2019. CC BY 4.0 License.

 
115




