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Abstract
A convenient post-production video processing approach is to apply image filters on a per-frame basis. This allows the flexibility
of extending image filters—originally designed for still images—to videos. However, per-image filtering may lead to temporal
inconsistencies perceived as unpleasant flickering artifacts, which is also the case for dense light-fields due to angular inconsis-
tencies. In this work, we present a method for consistent filtering of videos and dense light-fields that addresses these problems.
Our assumption is that inconsistencies—due to per-image filtering—are represented as noise across the image sequence. We
thus perform denoising across the filtered image sequence and combine per-image filtered results with their denoised versions.
At this, we use saliency based optimization weights to produce a consistent output while preserving the details simultaneously.
To control the degree-of-consistency in the final output, we implemented our approach in an interactive real-time processing
framework. Unlike state-of-the-art inconsistency removal techniques, our approach does not rely on optic-flow for enforcing
coherence. Comparisons and a qualitative evaluation indicate that our method provides better results over state-of-the-art
approaches for certain types of filters and applications.

CCS Concepts
• Computing methodologies , . . . , Image processing; Computational photography;

1. Introduction

Due to rapid advancements in the field of visual computing in the
past few decades, a plethora of image-processing techniques have
been developed that deal with manifold applications, such as tone-
mapping, contrast enhancement, color constancy, color grading,
and style transfer. However, extending such techniques for video is
not a trivial task. The difficulty arises due to an extra temporal di-
mension in the input data. The local image-processing methods—
generally implemented in the form of 2D kernels—often lead to
spatial and temporal inconsistencies when extended to 3D ker-
nels [BTS∗15, LHW∗18]. These inconsistencies may appear due
to two main reasons: 1) different distributions of image features
between adjacent video frames, and 2) considering only a small
temporal window when filtering. The extension of global image
processing methods would require processing a video as a whole,
which might not be feasible in real-time using conventional hard-
ware or in streaming scenarios.

One naive, yet generic way of extending image-based filter-
ing techniques for video is to apply them individually on a
per-frame basis. However, this approach may lead to temporal

incoherences (Fig. 1(b)). A more sophisticated approach is to
implement application-specific techniques for video, e.g., tone-
mapping [ASC∗14], color grading [BSPP13, YCC16], color con-
stancy [FL11,BT17], intrinsic decomposition [BST∗14,MZRT16],
where application-specific constraints are employed. At this, how-
ever, one needs to be familiar with the particular filtering technique,
and specific approaches might not be applicable to other filters.

A more generalized approach is followed in previous methods
that are agnostic to the type of filtering [Par08, LWA∗12, BTS∗15,
YCC17, LHW∗18]. These works are based on the idea of per-
forming per-frame filtering and applying temporal consistency as
a constraint during processing or as a post-processing step. Most of
these techniques implicitly require optic-flow. For instance, Bon-
neel et al. [BTS∗15] use flow-based image warping in a gradient-
domain-based optimization to enforce consistency between neigh-
boring views, and Lai et al. [LHW∗18] use optic-flow to train a
neural network by minimizing short-term and long-term temporal
loss for enforcing consistency—which also applies to neural style
transfer (e.g., [GEB16, JAFF16]) for video.
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However, optic-flow computations may be expensive and/or po-
tentially inaccurate especially in case of disocclusion [FBK15]. In
this work, we present a consistent filtering technique for image se-
quences that does not rely on optic-flow and still can attain tem-
poral consistency in a generalized way (Fig. 1). In particular, we
show that a careful combination of low-frequency content from the
temporally denoised output and high-frequency content from the
per-frame result can significantly reduce temporal flickering. We
use saliency-based weights for such an adaptive combination, i.e.,
to identify and preserve visually important details.

Unlike most of the previous methods, our algorithm is well
suited for image-abstraction applications e.g., neural style trans-
fer. Moreover, our method is applicable to filter dense light-
fields, which gained major attention in the past decade [WMJ∗17,
OEE∗18] with the advent of Virtual Reality (VR). Manifold image
processing methods [WMJ∗17] have been extended to dense light-
fields for applications such as denoising [AS17,WG14,MV12], in-
trinsic decomposition [AG16, GEZ∗17, BSM∗18], and depth esti-
mation [JPC∗15, JHG∗17, SDRJ18]. Our video-based solution is
applicable to a wide variety of image filters and can be easily ex-
tended to dense light-fields. To summarize, this work makes the
following contributions:

1. A method that makes per-image filtered image sequences con-
sistent by denoising image slices across the sequence without
using optic-flow.

2. An interactive real-time processing framework that enables di-
rect control of the amount of temporal or angular consistency,
based on image saliency, thus producing user-defined outputs.

3. Applications demonstrate the versatile usage of our method to a
wide-range of image filters for video and dense light-fields such
as color grading, color constancy, dehazing, colorization, and
neural style transfer.

2. Related Work

2.1. Task-Specific Consistent Video Filtering

Many application-specific techniques have been extended to
achieve temporal consistency based on the type of image filter.
For instance, Aydin et al. [ASC∗14] propose to use edge-aware
spatio-temporal filtering of High Dynamic Range (HDR) videos
to obtain base and detail layers and perform coherent video tone-
mapping. Temporal coherence is a particular challenge for video
tone-mapping as surveyed by Eilertsen et al. [EMU17]. For the
application of color grading, Bonneel et al. [BSPP13] employ
an approximate curvature-flow technique to enforce temporal con-
sistency in a post-processing step. In the context of color con-
stancy, Farbman et al. [FL11] use the tonal settings of few an-
chor frames to process in-between frames to ensure consistency. In
case of video stylization optic-flow is typically used for automated
coherent parameterization, e.g., in bi-directional texture advection
of watercolor stylizations [BNTS07], to compute object flow—
robust against inaccurate optic-flow—for generalized video styl-
ization [LXT17], and in machine learning for coherent style trans-
fer [RDB18]. For intrinsic decomposition Meka et al. [MZRT16]
use a global spatio-temporal reflectance consistency prior ensur-
ing temporal consistency. The above application-specific examples
show the variety of techniques used to overcome the common un-
derlying problem of temporal inconsistency. Most of them utilize
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Figure 1: Comparison of angular (in-)consistency for (a) Lego light-
field (taken from [VA08]) processed with (b) per-frame water-color
stylization using the method of Bousseau et al. [BNTS07]. As can
be observed in this example, (c) the output produced with the tech-
nique of Lai et al. [LHW∗18] introduce visible artifacts as com-
pared to (d) our approach that provides more consistent result.

optic-flow to enforce temporal coherence. Unlike the above ap-
proaches, we develop a generic algorithm that is filter or task ag-
nostic. Moreover, our method does not rely on optic-flow.

2.2. Task-Agnostic Consistent Video Filtering

Apart from application-specific approaches, generic methods have
been proposed that solve the problem of temporal inconsistency
for various filters. Paris [Par08] extends image-based isotropic dif-
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Figure 2: Flowchart of our system for consistent filtering of an image sequence as described in Sec. 3.

fusion and Gaussian convolution for video streams with an appli-
cation towards bilateral filtering, anisotropic diffusion, and mean-
shift segmentation. Lang et al. [LWA∗12] create motion paths us-
ing dense optic-flow, which are then filtered after undergoing a
1D domain transform. Dong et al. [DBZY15] divide individual
frames of a video into multiple regions and perform a region-based
spatio-temporal optimization. Bonneel et al. [BTS∗15] combine
the high-frequency gradients from the per-frame processed output
and the low-frequency content from the warped version of the pre-
vious frame using a gradient-domain based optimization scheme.
Yao et al. [YCC17] use key frames to avoid the inconsistency prob-
lem that occur due to occlusion. Finally, Lai et al. [LHW∗18] use
a machine-learning technique and introduce short-term and long-
term temporal losses as well as a perceptual loss to balance tem-
poral coherence between frames and perceptual similarity with the
individually processed frames. Our method also belongs to this cat-
egory of generic approaches to attain the goal of temporal consis-
tency, but—unlike previous methods—does not require optic-flow.

2.3. Light-Field Filtering

Many generic methods have been recently proposed to propa-
gate per-view edits consistently across dense light-fields [JMG11,
AZJ∗15, FG17]. Jarabo et al. [JMG11] downsample the light-field
data based on an affinity function. The edits are propagated in the
downsampled domain. Ao et al. [AZJ∗15] build upon the work of
Jarabo et al. and perform an improved downsampling and upsam-
pling on reparameterized light-fields to explicitly enforce consis-
tency between views. Frigo et al. [FG17] perform diffusion in the
Epipolar Plane Images (EPIs) for an angularly-coherent light-field
editing. In a follow-up work, Bonneel et al. [BTS∗17] extend their
previous work [BTS∗15] on single-camera videos to multi-camera
array videos, which is also applicable to light-fields.

These techniques are examples on how to approach the common
problem of angular inconsistency. However, for light-fields we aim
to preserve angular consistency analogous to temporal consistency
in videos. Our approach for the removal of temporal inconsisten-
cies can be extended to achieve angular consistency for light-field
filtering with only minor modifications. Moreover, in case of light-
fields, our denoising step corresponds to EPI denoising and such
EPI manipulation is an integral aspect of various light-field pro-
cessing methods [WMJ∗17].

3. Method

For an input image sequence {Ii | i = 1 . . .N}, its per-image pro-
cessed version {Pi | i = 1 . . .N}, and per-image saliency map

(a) Processed Image Pi (b) Denoised Image Ci

(c) Perceptually-salient Weight ws (d) Output Oi

Figure 3: Adaptive combination of a per-frame processed image
and its denoised version using perceptually-salient weights. Note
how the perceptually salient face details in foreground are pre-
served in the output while the background is temporally smoothed.

{Si | i = 1 . . .N}, we seek to find a consistent output {Oi | i =
1 . . .N}. Our method is agnostic to the filter f applied on each im-
age. As an intermediate step, Pi is denoised across the image se-
quence (Secs. 3.1 and 3.2) to obtain {Ci | i = 1 . . .N}. We then
solve a gradient-domain optimization scheme in the image do-
main Ω (Fig. 2),

E(Oi) =
∫

Ω

(
||∇Oi−∇Pi||2︸ ︷︷ ︸

data

+ ws||Oi−Ci||2︸ ︷︷ ︸
smoothness

)
dΩ (1)

The data term in this optimization approach enforces similarity
with the per-image processed result Pi in the gradient-domain.
Thus, only the high-frequency details are taken from Pi. The
low-frequency consistent content is taken from the denoised im-
age Ci. The influence of smoothness term is controlled by per-pixel
saliency weights ws (Fig. 3).

3.1. Temporal Denoising

Our assumption is that the temporal inconsistencies in a video are
represented as temporal noise across a given scanline. We arrange
the video frames of Pi to form an image sequence where—apart
from the spatial dimension—the third dimension represents time.
The image sequence is horizontally sliced across a given scanline
to obtain a respective TSI (Fig. 4). The temporal inconsistencies in
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Figure 4: Exemplary processed image sequence and its correspond-
ing Temporal-Slice Image (TSI).

the video can be seen as noise in the TSI (Fig. 5b). A straightfor-
ward approach to remove inconsistencies is to perform denoising in
the TSI domain (Fig. 5). A side-effect of the denoising step is the in-
troduction of motion blur along the horizontal direction (Fig. 3b). It
is also possible to slice the image sequence vertically, thereby caus-
ing blur in the vertical direction. However, the direction of slicing
does not affect the final output noticeably (Fig. 6). Our approach
of denoising image slices is inspired from the work of Khazdan
et al. [KBK∗13], where the authors use a similar technique for the
denoising of electron microscopy image stacks.

In order to denoise a temporal slice, a method of choice should
be the one that reduces temporal inconsistencies without introduc-
ing motion-blur in the image sequence. We experimented with four
image denoising methods for this purpose: naive Gaussian smooth-
ing, Bilateral filtering [TM98], BM3D [DFKE07], and FFDNet
[ZZZ17]. In comparison to others the learning-based denoising of
FFDNet can handle spatially variant noise, wide range of noise lev-
els and is also fast. It is based on an end-to-end trainable deep CNN
that incorporates residual learning. Moreover, we empirically iden-
tified FFDNet to be the best choice for our use case w.r.t the above
mentioned criteria (Fig. 5).

3.2. Angular Denoising

In case of dense light-fields, the third dimension in the stacked im-
age sequence represents the angular dimension. The sequence of
processed sub-aperture views are traversed in horizontal and ver-
tical directions from the top-left to bottom-right to obtain horizon-
tally and vertically traversed image-sequences respectively (Fig. 7).
Each of these image sequences is sliced along a given scanline
to obtain an Angular-Slice Image (ASI) comprising of multiple
EPIs (Fig. 8). The sliced images—representing the EPI domain—
are denoised for removing angular inconsistencies. The denoised
horizontal and vertical traversed image sequences are averaged to
obtain the final angularly-denoised light-field. We employ the same
denoising algorithm as in case of temporal denoising.

(a) Input TSI (b) Processed TSI

(c) Denoised TSI: Gaussian (d) Denoised TSI: Bilateral Filter

(e) Denoised TSI: BM3D (f) Denoised TSI: FFDNet

Figure 5: Example of a TSI for the correspondent (a) input,
(b) processed, and denoised videos. Compared denoised versions:
(c) Gaussian, (d) Bilateral Filter, (e) BM3D, and (f) FFDNet.
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Figure 6: Comparing the outputs after denoising (top row) and out-
puts after consistent filtering (bottom row) with respect to comput-
ing horizontal and vertical TSIs.

3.3. Saliency Weight

The minimization of the energy function in Eqn. (1) aims to achieve
two main goals: (a) perceptual-similarity with the per-image pro-
cessed result and (b) reduced inconsistencies. The consistent im-
age Ci is smoothed due to denoising; however, such smoothing
also blurs image details. To enforce consistency and also preserve
important details, we make use of a per-pixel perceptually salient
weight ws. The idea is to allow for more smoothing in those re-
gions that are either not salient (1− Si) or where the difference in
intensities of Pi and Ci is not noticeable (1−Di) (Eqns. (2) to (3)).
The scaling and offset parameters β∈ [0.1,10.0] and ε∈ [0.02,1.0]
facilitate tuning the weight, respectively:

ws = β[(1−Si)(1−Di)+ ε] (2)

The definition of the binary just-noticeable-difference function Di
uses a diff value threshold. The threshold parameter µ∈ [0.01,10.0]
provides further tuning control. The diff function (Eqn. (4)) is
based on the definition of Weber contrast and uses image intensity
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Figure 7: Schematic overview of how the image sequences are hor-
izontally and vertically traversed.

Figure 8: Exemplary overview of an input, processed and denoised
ASI. The inset shows an enlarged EPI.

as a measure [Web96]. In this respect, we observe that the image
intensity measure (Eqn. (5)) empirically performs better than the
luminance for the purpose of consistency [NB17].

Di =

{
1, if diff ≥ µ
0, otherwise

(3)

diff =
|In(Pi)− In(Ci)|

In(Pi)
(4)

In( Ii ) =
√

r2 +g2 +b2 (5)

In order to compute saliency maps, we experimented with (1) the
image-based method of Liu et al. [LHY18] and (2) the video-based
method of Wang et al. [WSS18]. Here, we observe that the spatial
resolution of saliency maps are better with (1) while the temporal
consistency is better with (2), we thus favor the technique of Wang
et al. for our purposes. The resultant weight is smoothed with a
Gaussian filter (σ ∈ [0.1,5.0]) to improve its spatial consistency.
By tuning the parameters we make sure that saliency weights vary
smoothly between frames.

Algorithm 1 Consistent Filtering of a Video-Sequence

1: for i← 1 to N do . N number of images
2: Pi← f (Ii) . Per-image filtering
3: for k← 1 to H do . H is height (in pixels) of each image
4: TSIk← Slice({Pi | i = 1 . . .N}) . Slice across Pi sequence
5: Denoise(TSIk)

6: for i← 1 to N do
7: Ci←MergeSlices({T SIk | k = 1 . . .H})
8: Si← ComputeSaliency(Ii)
9: ws← ComputeSaliencyWeights(Si,β,ε)

10: Oi← SolveOptimization(Pi,Ci,ws)

3.4. Optimization Solver

The output Oi, which minimizes the energy E(Oi) in Eqn. (1), must
satisfy Eqn. (6) as per the Euler-Lagrange formulation [Wei74]:

ws ·Oi−∆Oi = ws ·Ci−∆Pi (6)

For solving the system of linear equations represented by Eqn. (6),
we use the iterative scheme of Stochastic Gradient Descent (SGD)
with momentum [Qia99]. By choosing an iterative solver, we over-
come the limitation of storing a large matrix in memory and cal-
culating its inverse. Moreover, with an iterative scheme we can
stop the solver once we have achieved a solution without notice-
able inconsistencies. At this, our interactive interface allows users
to control the degree of convergence by providing the number of
iterations. In practice, with a fast convergence rate of SGD with
momentum, 20 - 30 iterations are sufficient for a consistent out-
put. Our technique for consistent filtering, summarized in Algo. 1,
does not require optic-flow. However, we can extend our optimiza-
tion (Eqn. (1)) to include potentially accurate flow information (see
supplementary material).

4. Results

Our approach is independent of the underlying image filtering ap-
plied on the video frames or light-field sub-aperture views, and is
suitable for a wide range of applications (Fig. 10 and Fig. 12).

Neural Style Transfer. We apply the feed-forward neural style
transfer of Johnson et al. [JAFF16] per video frame. Using our con-
sistent filtering approach, high-frequency temporal flickering can
be reduced in the stylized output. Recent works argue that many
filtering approaches have become too successful at coherent styl-
ization, as the outputs loose the “visual richness comparable to real
artwork” [FLJ∗14] or have “the uncanny and unappealing effect of
a 3D world covered in paint” [DBH19]. In this respect, the pro-
posed interactive framework and saliency maps can help to locally
control the amount of temporal or angular consistency, and thus
preserve detail of the transferred style.

Image enhancement. In order to enhance individual images,
we use the low-light image enhancement technique by Chen
et al. [WWYL18]. The per-image operation introduces high-
frequency flickering like film-grain noise. Our method provides in-
herent denoising and is able to provide a consistent output.

Colorization. We use the image colorization algorithm of
Zhang et al. [ZIE16] to colorize individual frames of a video.
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Table 1: Statistics of the Likert scale score for evaluated techniques

[BTS∗15] [LHW∗18] Ours
Mean (µ) 2.49 3.06 3.56

Std. Error of Mean (σµ) 0.10 0.08 0.06

The temporal flickering is caused due to color variations between
frames as well as color bleeding within scene objects. Our methods
is able to significantly reduce these artifacts.

Color Grading. Applying the first part of the color grading algo-
rithm proposed by Bonneel et al. [BSPP13] to videos results in ob-
vious temporal inconsistencies. These can be noticeably removed
using our method.

HDR Toning. We apply tone-mapping using the method of
Paris et al. [PHK11] on a per-frame basis. The toning technique—
based on subband decomposition—causes flickering in consecutive
frames due to different high and low frequency luminance details.
Our algorithm is able to rectify these luminance variations between
separately tone-mapped images.

4.1. Comparative Evaluation

We compare our algorithm with the previous methods of Bon-
neel et al. [BTS∗15] and Lai et al. [LHW∗18] for the above men-
tioned applications (Fig. 10 and Fig. 12). In case of videos, we use
the test dataset provided by Lai et al. for relative comparison and
for light-fields we generate the corresponding results. We observe
that the method of Bonneel et al. is not suitable for applications
where new image edges are generated as part of the filtering pro-
cess, e.g., stylization and neural style transfer. Moreover, since their
method is based on the accuracy of the optic-flow, they suffer from
artifacts when occlusion occurs in large spatial regions (Fig. 12(b)).
Since our approach does not require optic-flow, it is robust to prob-
lems due to occlusion and can also handle creation of new edges.
The approach of Lai et al. addresses the problem of occlusions by
introducing a long-term temporal loss. However, such long-term
loss also propagates the inconsistencies from temporally or angu-
larly distant frames. We observed such inconsistency propagation
in the form of subtle luminance or color variations (Fig. 1 and
Fig. 10). In comparison, our approach is based on denoising of TSI
or ASI images using a local-denoising method that does not affect
regions that are spatially distant in the TSI or ASI domain.

4.2. User Study

We conducted a user study to qualitatively evaluate the output of
our approach. We ask the participants to watch the consistent out-
puts and rate them on a Likert scale.

Setup. For each scenario we show a participant five videos,
two on the top row and three on the bottom. On the top row,
we have the original video and its per-frame processed version.
We make the per-frame processed video consistent using our,
Boneel et al. [BTS∗15], and Lai et al. [LHW∗18] methods and
place them in the bottom row. The order of videos in the bottom
row is randomized for each sample. At first the videos in the top
row are played while those in the bottom row are stopped. After the
user has seen the top row videos, bottom row videos are played. The
videos are played continuously in a playback loop. For each case,

Figure 9: Likert scale score of ours and previous methods as per the
user study (Sec. 4.2).

participants were asked to rate the overall visual quality of outputs
on a Likert scale from 1 (low) to 5 (high) based on two criteria:
(1) the consistency of the output and (2) its resemblance with the
per-frame result. A total of 18 people (4 female, 13 male, 1 no an-
swer) within an age group of 20 - 40 participated in the above study
and each looked at 10 (6 video and 4 light-field) filtering examples.
The distance between the screen and the observer was fixed to 1 m
for all participants. The group of participants included users with
and without prior knowledge of image and video processing.

Analysis. In comparison to others, our method was able to im-
prove over the per-frame result for most of the cases (Fig. 9). In
case of light-fields, we perform significantly better than the previ-
ous methods (see supplementary material). We compute mean and
standard error of mean of Likert scale scores (Table 1) and perform
“Two-Sample t-Test for Equal Means” for validation. We observe a
significant difference between the average scores of our method vs
Lai et al. and Boneel et al. (p < 0.005, t-test) respectively.

4.3. Performance

All our experiments were performed on a PC using Microsoft Win-
dows 7 as operating system, with a 3.5 GHz CPU, 16 GB of RAM,
and a Nvidia GTX 1050 Ti graphics card with 4 GB VRAM. The
processed images are denoised to obtain Ci and the saliency maps
Si are computed in a pre-processing step. The denoising of image
slices is implemented in Python using the PyTorch [TDV19] refer-
ence implementation of the FFDNet [ZZZ17]. For a video sequence
of 219 frames, each with a spatial resolution of 1024×576 pixels,
computing Ci takes approx. 50 seconds for all frames. The dynamic
video saliency map is computed using the original implementa-
tion by Wang et al. [WSS18], which takes approx. 135 seconds
for all frames. Our interactive system is able to perform steps 6 to
10 of Algo. 1 in real-time for each frame. It is implemented with
C++ and CUDA (v10.0) and takes 30 to 35 milliseconds per-frame
to perform 30 iterations of SGD with momentum to solve Eqn. (6).

5. Discussion

Our findings suggest that a careful combination of per-image pro-
cessed results and their temporal/angular denoised versions can be
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Figure 10: Comparison of our video consistency filtering technique with previous methods by applying per-frame (a) Neural Style transfer
by Johnson et al. [JAFF16] (b) Color constancy by Gijsenij et al. [GGvdW12] (c) Image-colorization by Zhang et al. [ZIE16] (d) HDR
Toning by Paris et al. [PHK11]. Please refer to supplementary video for better visualization. Input videos are taken from the work of Bonneel
et al. [BTS∗15] and the DAVIS dataset [PPTM∗16].

used to generate perceptually consistent outputs. It implies that se-
lective denoising of a processed image sequence is effective in re-
moving noticeable inconsistencies. In comparison, previous meth-
ods mainly relied on optic-flow based image warping of consec-
utive frames for enforcing consistency. The image-based warping
technique might not be effective for cases where optic-flow com-
putation is challenging.

Our algorithm performs consistent filtering based on denois-
ing of TSI or ASI images. The above denoising step requires
the complete sequence as an input and can only be applied as a
post-processing step. Thus, our approach is not suitable for video
streaming applications. We use carefully designed optimization
weights to strike a balance between preserving details and enforc-
ing consistency. However, we believe that this trade-off can be fur-
ther improved by performing a thorough analysis of the spatio-
temporal/spatio-angular contrast sensitivity [DAC10]. We believe
that a saliency-map which has a higher spatial resolution and better
temporal consistency can further enhance our results.

We perform horizontal slicing of image and also evaluate vertical

slicing in the denoising step. As part of future work, we would an-
alyze stochastic sampling of both the horizontal and vertical neigh-
borhood to avoid any potential residual bias. In case of large or ar-
bitrary movement of objects the denoising approach cannot avoid
introducing noticeable motion blur Fig. 11. However, even in such
cases we perform relatively better than previous methods (see sup-
plementary material).

6. Conclusions

In this work, we propose an algorithm to reduce incoherencies in
per-frame filtering of image sequences without relying on optic-
flow. At this, denoising is performed across image sequences in
a pre-processing stage and a least-squares energy minimization is
solved in real-time. By carefully designing optimization weights,
the algorithm is able to preserve visual details and maintain co-
herence in videos and dense light-fields. Our results for image and
video processing techniques demonstrate that our approach is filter-
agnostic and indicate improved output quality over state-of-the-art
methods for certain types of filters and popular applications. As part
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Figure 11: The per-frame processed and denoising output where
objects are moving in arbitrary trajectory. We observe motion arti-
facts similar to ghosting along the trajectory of spheres.

of future work, we plan to make our approach causal and applicable
to streams of image sequences.
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Figure 12: Comparison of our light-field consistency filtering technique with previous methods by applying per-frame (a) Low-light image
enhancement by Chen et al. [WWYL18] (b) Neural Style Transfer by Johnson et al. [JAFF16] (c) Water-color stylization with pigment
dispersion as proposed by Bousseau et al. [BNTS07]. Please refer to supplementary video for better visualization. Input light-fields are
taken from the work of Shekhar et al. [SBZ∗18] and the Stanford light-field archive [VA08].
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