
i
i

i
i

i
i

i
i

Attributed Vertex Clouds
Willy Scheibel, Stefan Buschmann,

Matthias Trapp, and Jürgen Döllner

1.1 Introduction

In todays computer graphics applications, large 3D scenes are rendered
which consist of polygonal geometries such as triangle meshes. Using state-
of-the-art techniques, this geometry is often represented on the GPU using
vertex and index buffers, as well as additional auxiliary data such as tex-
tures or uniform buffers [Riccio and Lilley 13]. It is usually loaded or
generated on the CPU and transferred to the GPU for efficient render-
ing using the programmable rendering pipeline. For polygonal meshes of
arbitrary complexity, the described approach is indispensable. However,
there are several types of simpler geometries (e.g., cuboids, spheres, tubes,
or splats) that can be generated procedurally. For scenes that consist of a
large numbers of such geometries, which are parameterized individually and
potentially need to be updated regularly, another approach for representing
and rendering these geometries may be beneficial.

In the following, we present an efficient data representation and render-
ing concept for such geometries, denoted as attributed vertex clouds (AVCs).
Using this approach, geometry is generated on the GPU during execution
of the programmable rendering pipeline. Instead of the actual geometry,
an AVC contains a set of vertices which describe the target geometry. Each
vertex is used as the argument for a function that procedurally generates
the target geometry. This function is called a transfer function, and it is
implemented using shader programs and therefore executed as part of the
rendering process.

This approach allows for compact geometry representation and results
in reduced memory footprints in comparison to traditional representations.
Also, AVCs can be rendered using a single draw call, improving rendering
performance. By shifting geometry generation to the GPU, the resulting
volatile geometry can be controlled flexibly, i.e., its position, parameteri-
zation, and even the type of geometry can be modified without requiring
state changes or uploading new data to the GPU. Furthermore, the concept
is easy to implement and integrate into existing rendering systems, either
as part of or in addition to other rendering approaches.

1

i
i

i
i

i
i

i
i

2 1. Attributed Vertex Clouds

Input Data

... Transfer Function

Attributed Geometry

G0

(a, b, c, d, …)

Rendering

(x, y, z)

...

Gn

Attributed Vertex Clouds

Buffer Object B0

Buffer Object Bm

...

P0

Rasterization...

Pk

Attributed Primitives

Tessellation Shader

Vertex Shader

Geometry Shader

Figure 1.1. Concept overview of attributed vertex clouds. Data points with
arbitrary attributes are passed to a transfer function that creates attributed
geometry (attributed vertices arranged in primitives). More specific, one data
point of an attributed vertex cloud is passed through the programmable rendering
pipeline and transformed into attributed vertices and primitives.

1.2 Concept

An attributed vertex cloud consists of a number of vertices, each of which
describes one instance of the target geometry. A single vertex can thereby
contain either a parameterized description of the geometry [Overvoorde 14]
(e.g., a cuboid can be specified by center point, extent, and orientation),
or more generally an arbitrary data point, which by some function can be
transformed into the desired geometry parameterization. For each vertex,
a transfer function is applied, that converts the vertex into a parame-
terized description of the target geometry. This function determines the
type and configuration of the target geometry based mainly on the input
vertex, but it can also take into account other parameters such as global
configuration, camera position, or interaction states. Finally, a geometry
generation function is invoked with the selected parameters, creating the
actual geometry [Kemen 12] which is then rasterized and rendered to the
screen.
The AVC concept consists of the following parts:

Attribute Vertex Cloud. The AVC is a vertex buffer that contains a
set of data points which are rendered as the geometry of a scene. Each
vertex thereby represents one instance of the target geometry and provides
all relevant attributes needed to select and configure the target geometry.
However, the actual definition of one vertex may vary widely depending on
the use case. A vertex can already contain a detailed configuration of the

i
i

i
i

i
i

i
i

1.3. Applications for Attributed Vertex Clouds 3

geometry (e.g., it may describe a cube by its center position, extents, ori-
entation, and color). In other use cases, a vertex may contain a data point
of the target domain (e.g., a tracking point in a movement trajectory, con-
sisting of the current geo-location, speed, and acceleration) or compressed
attributes [Purnomo et al. 05]. The AVC is represented on the GPU as
a vertex array buffer, consisting of several vertex attributes. It may also
reference other buffers by index. This can be used to represent shared data
between vertices, such as per-group, per-batch, or global attributes.

Transfer Function. The transfer function selects the configuration of
the output geometry for each vertex. It is usually implemented in either
the vertex or the geometry shader, taking a data point of the AVC as input
and creating a geometry configuration vector as its output. The transfer
function can depend not only on the values of the vertex itself, but other
parameters can be used as well to influence the target geometry. For ex-
ample, the current camera position can be used to determine the distance
from the camera to the geometry that is about to be rendered. Based
on that distance, the type and style of the generated geometry can be al-
tered. This enables the implementation of level-of-detail and, to a certain
degree, level-of-abstraction techniques. Further, interaction and navigation
states (e.g., interactive filtering or selection by the user) can be applied to
parameterize geometry generation. Also, global configuration parameters
specified by the user can be taken into account, allowing the user to con-
trol or parameterize the generated geometry (e.g., select geometry types,
provide size factors or constraints, etc.).

Geometry Generation. In the last step, the actual geometry is gener-
ated according to the configuration previously selected by the transfer func-
tion. This is usually implemented using tessellation and geometry shaders.
Due to practical considerations, the implementations of transfer function
and geometry generation can sometimes be merged into one. Depending
on the use case, different types of geometries can be emitted for each in-
dividual vertex. Where applicable, vertices may also be culled [Rákos 10].
If such dynamic geometry generation is used, we suggest to separate the
draw calls to one geometry type per batch for optimized performance.

1.3 Applications for Attributed Vertex Clouds

As described above, data layout of the vertices, complexity of the transfer
function, and implementation of the geometry generation vary with the
specific use case in which attributed vertex clouds are applied. They also

i
i

i
i

i
i

i
i

4 1. Attributed Vertex Clouds

depend on the level of interactivity intended for the target application.
For our examples, the transfer function and geometry generation imple-
mentations are distributed over vertex, tessellation, and geometry shader
stages.

In the following, we present a number of use cases and explain the
different implementations of AVCs in these contexts. Also, we provide a
comparison of the proposed AVC approaches with an implementation of
the same example using hardware instancing techniques. To illustrate the
general concept, we present block worlds. As examples from the visualiza-
tion domain, cuboids, arcs, polygons, and trajectories are described. All
examples presented in this section can be accessed as code and executable
with the demos provided1. They are based on OpenGL 4.0 and GLSL as
shading language, some of them are compatible with OpenGL 3.2.

1.3.1 Block Worlds

The scene of our example block world contains equally-sized blocks of dif-
fering types that are arranged in a regular, three-dimensional grid. Con-
ceptually, each grid cell may contain a block, thus a block can be identified
through its position in the grid. Each block type is visually distinguishable
through a different texture that is applied on its surface.

An implementation using hardware instancing [Carucci and Studios 05]
would prepare a triangle strip with normalized positions and normal-vectors.
Per-instance data passes the block position in the grid and the type to the
rendering pipeline. During the vertex shader stage (Listing 1.1), each ver-
tex is converted into actual world space coordinates using the normalized
positions, the block position in the grid, and the size of each block (passed
as uniform). The normalized positions and the triangle normal-vectors are
also passed to the fragment shader to compute texture coordinates and
perform texture lookup and shading.

1 uniform mat4 viewProjection;
2 uniform float blockSize;
3 in vec3 in_vertex; // instancing template
4 in vec3 in_normal; // instancing template
5 in ivec4 in_positionAndType; // per instance data
6 flat out vec3 g_normal;
7 flat out int g_type;

1Hosted on https://github.com/hpicgs/attributedvertexclouds

https://github.com/hpicgs/attributedvertexclouds

i
i

i
i

i
i

i
i

1.3. Applications for Attributed Vertex Clouds 5

8 out vec3 g_localCoord;
9

10 void main() {
11 gl_Position = viewProjection
12 * vec4((in_vertex + vec3(in_positionAndType.xyz)) * blockSize, 1.0);
13

14 g_normal = in_normal;
15 g_type = in_positionAndType.w;
16 g_localCoord = in_vertex * 2.0;
17 }

Listing 1.1. Block world vertex shader using hardware instancing. The per-
instance data is packed into a single input.

To encode the same scene as an attributed vertex cloud, we use one vertex
per block. The vertex contains the block position in the grid and its type.
During the vertex shader execution (Listing 1.2), the center of the block is
computed by the position in the grid and the size of each block (passed as
uniform). In the geometry shader (Listing 1.3), the center and the size of
each block is used to compute the corners and emit the triangle strip for
the rasterization. This triangle strip has normal-vectors and normalized
positions attached and is thus usable for the same fragment shader.

1 in ivec4 in_positionAndType; // per instance data
2 out int v_type;
3

4 void main() {
5 gl_Position = vec4(in_positionAndType.xyz, 1.0);
6

7 v_type = in_positionAndType.w;
8 }

Listing 1.2. Block world vertex shader using AVCs. The per-instance data is
packed into a single input.

1 layout (points) in;
2 layout (triangle_strip, max_vertices = 14) out;
3 uniform mat4 viewProjection;
4 uniform float blockSize;
5 in int v_type[];
6 flat out vec3 g_normal;
7 flat out int g_type;
8 out vec3 g_localCoord;
9

10 void emit(in vec3 position, in vec3 normal, in vec3 localCoord) {
11 gl_Position = viewProjection * vec4(position, 1.0);
12 g_normal = normal;
13 g_type = v_type[0];
14 g_localCoord = localCoord;
15 EmitVertex();
16 }
17

18 void main() {
19 vec3 center = gl_in[0].gl_Position.xyz * blockSize;

i
i

i
i

i
i

i
i

6 1. Attributed Vertex Clouds

20 vec3 llf = center - vec3(blockSize) / vec3(2.0);
21 vec3 urb = center + vec3(blockSize) / vec3(2.0);
22

23 emit(vec3(llf.x, urb.y, llf.z), POSITIVE_Y, vec3(-1.0, 1.0, -1.0));
24 emit(vec3(llf.x, urb.y, urb.z), POSITIVE_Y, vec3(-1.0, 1.0, 1.0));
25 emit(vec3(urb.x, urb.y, llf.z), POSITIVE_Y, vec3(1.0, 1.0, -1.0));
26 emit(vec3(urb.x, urb.y, urb.z), POSITIVE_Y, vec3(1.0, 1.0, 1.0));
27 emit(vec3(urb.x, llf.y, urb.z), POSITIVE_X, vec3(1.0, -1.0, 1.0));
28 emit(vec3(llf.x, urb.y, urb.z), POSITIVE_Z, vec3(-1.0, 1.0, 1.0));
29 emit(vec3(llf.x, llf.y, urb.z), POSITIVE_Z, vec3(-1.0, -1.0, 1.0));
30 emit(vec3(llf.x, urb.y, llf.z), NEGATIVE_X, vec3(-1.0, 1.0, -1.0));
31 emit(vec3(llf.x, llf.y, llf.z), NEGATIVE_X, vec3(-1.0, -1.0, -1.0));
32 emit(vec3(urb.x, urb.y, llf.z), NEGATIVE_Z, vec3(1.0, 1.0, -1.0));
33 emit(vec3(urb.x, llf.y, llf.z), NEGATIVE_Z, vec3(1.0, -1.0, -1.0));
34 emit(vec3(urb.x, llf.y, urb.z), POSITIVE_X, vec3(1.0, -1.0, 1.0));
35 emit(vec3(llf.x, llf.y, llf.z), NEGATIVE_Y, vec3(-1.0, -1.0, -1.0));
36 emit(vec3(llf.x, llf.y, urb.z), NEGATIVE_Y, vec3(-1.0, -1.0, 1.0));
37 EndPrimitive();
38 }

Listing 1.3. Block world geometry shader using AVCs. The 14 emitted vertices
build a full block triangle strip.

When comparing the instancing implementation to the AVC implementa-
tion, the main difference is encoding and application of the cube template.
Using hardware instancing, the geometry is encoded using a vertex buffer
that is input to the vertex shader stage. Using AVCs, the geometry is gen-
erated during the geometry shader stage. This results in fewer attributes
passing the vertex shader stage.

1.3.2 Colored Cuboids

When using cuboids for rendering (e.g., for rectangular treemaps [Trapp
et al. 13]), these cuboids may contain a position, an extent, and a color.
The color is typically encoded as a scalar value that is converted to a color
using a gradient.

Similar to the blocks of a block world, an instancing implementation
would provide a cuboid triangle strip with normalized positions and normal-
vectors (refer to the vertex shader in Listing 1.4). However, the actual po-
sition, extent, and color value are per-instance data. The color is computed
using a texture lookup during the vertex shader stage. The inputs for the
rasterization are the triangle strip with the attached color and normal-
vector attributes.

The same scene encoded in an AVC would use the same per-instance
data with adjusted vertex shader (Listing 1.5), as the target geometry

i
i

i
i

i
i

i
i

1.3. Applications for Attributed Vertex Clouds 7

is generated during the geometry shader stage (Listing 1.6). Therefore,
the provided position and extent attributes are used to compute the eight
corners of the cuboid and a triangle strip is emitted containing the vertex
positions and the attached normal-vectors and color attributes (Figure 1.2).

Input Data Cuboids

(cx, cy, cz)0

(ex, ey, ez)0

(cx, cy, xz)1

...

e0
x

e0
y

e0
z

c0(r, g, b)0

Tessellation Shader

Vertex Shader

Geometry Shader

e1
y

e1
z

G0

G1

Figure 1.2. Concept of generating cuboids from an AVC. The center, extent, and
color of each attributed vertex is used to emit one triangle strip with attached
normal-vectors and colors.

1 uniform mat4 viewProjection;
2 in vec3 in_vertex; // instancing template
3 in vec3 in_normal; // instancing template
4 in vec3 in_position; // per instance data
5 in vec3 in_extent; // per instance data
6 in float in_colorValue; // per instance data
7 uniform sampler1D gradient;
8 flat out vec3 g_color;
9 flat out vec3 g_normal;

10

11 void main() {
12 gl_Position = viewProjection * vec4(in_vertex * in_extent + in_position, 1.0);
13 g_color = texture(gradient, in_colorValue).rgb;
14 g_normal = in_normal;
15 }

Listing 1.4. Cuboids vertex shader using hardware instancing.

1 in vec3 in_position; // per instance data
2 in vec3 in_extent; // per instance data
3 in float in_colorValue; // per instance data
4 uniform sampler1D gradient;
5 out vec3 v_extent;
6 out vec3 v_color;
7

8 void main() {
9 gl_Position = vec4(in_position, 1.0);

10 v_extent = in_extent;

i
i

i
i

i
i

i
i

8 1. Attributed Vertex Clouds

11 v_color = texture(gradient, in_colorValue).rgb;
12 v_height = in_heightRange.y;
13 }

Listing 1.5. Cuboids vertex shader using AVCs.

1 layout (points) in;
2 layout (triangle_strip, max_vertices = 14) out;
3 uniform mat4 viewProjection;
4 in vec3 v_extent[];
5 in vec3 v_color[];
6 in float v_height[];
7 flat out vec3 g_color;
8 flat out vec3 g_normal;
9

10 // Emits a vertex with given position and normal
11 void emit(in vec3 position, in vec3 normal);
12

13 void main() {
14 vec3 center = gl_in[0].gl_Position.xyz;
15 vec3 halfExtent = vec3(v_extent[0].x, v_height[0], v_extent[0].y) / vec3(2.0);
16 vec3 llf = center - halfExtent;
17 vec3 urb = center + halfExtent;
18

19 emit(vec3(llf.x, urb.y, llf.z), POSITIVE_Y);
20 // ...
21 // analoguous to geometry shader of the block world
22 // ...
23 emit(vec3(llf.x, llf.y, urb.z), NEGATIVE_Y);
24 EndPrimitive();
25 }

Listing 1.6. Cuboids vertex shader using AVCs. The emitted triangle strip is
created analoguous to the block world but without the local coordinates.

1.3.3 Colored Polygons

A polygon is a two-dimensional geometry type that has a number of ver-
tices larger than two. In visualization, this geometry type is often extruded
into the third dimension using the same polygon as bottom and top face,
assigning a uniform height and adding side faces. To encode such a ge-
ometry in a single vertex is not feasible as the number of vertices of the
polygon may differ between different polygons. However, we propose an
approach that stores a polygon using two buffers. The first contains at-
tributes that are common for the vertices of a single polygon (e.g., height,
center, color value). The second contains each vertex of the polygon with

i
i

i
i

i
i

i
i

1.3. Applications for Attributed Vertex Clouds 9

Vertex attributes for invocation 0...

Vertex attributes for invocation 0Vertex shader inputs for invocation 1

Vertex attributes for invocation 0Vertex shader inputs for invocation 0

i0 Vertex Buffer

Auxiliary Bufferpn
x pn

y pn
zpi

x pi
y pi

z

e0
x e0

y i0 e1
x e1

y i0 e2
x e2

y i0 e0
x e0

y i1... e4
x e4

y ...

p0
x p0

y p0
z p1

x p1
y p1

z

Figure 1.3. Polygon AVC buffer layout and vertex shader input management.
One vertex shader invocation consumes two adjacent vertices as input but ad-
vances the by just one vertex for the next vertex shader invocation.

pi

e2

Input Data Extruded Polygons

index0

(ex, ey)0

(hs, he)i

(px, py, pz)i

re
fe
re
nc
es Tessellation Shader

Vertex Shader

Geometry Shader

pi

e1
hs

he

G0

G1

e0

e1

Figure 1.4. Concept of generating polygon-wedges from an AVC. One wedge is
build up from the top and bottom triangle and the side face.

its two-dimensional position (the third dimension is stored as common at-
tribute in the first buffer) and a reference to the polygon for the attribute
fetching. The order of vertices in this buffer is relevant: adjacent ver-
tices in the buffer has to be adjacent vertices in the polygon. To allow a
closed looping over the vertices, we repeat the first vertex as the last one
(Figure 1.3).

With this structure, the AVC can be rendered using the second buffer
as vertex array buffer and the first buffer as auxiliary buffer that is ac-
cessed during the programmable rendering pipeline. We configure the ver-
tex pulling stage to fetch two adjacent vertices from the buffer (handled
as one vertex, refer to Listing 1.7), but advance only by one vertex for
the next invocation (Figure 1.3). This way, we have access to the current
and the next vertex and the common polygon data during the geometry
generation which enables us to generate a polygon-wedge (Listing 1.8). To
handle a pipeline start with two different referenced polygons for the two

i
i

i
i

i
i

i
i

10 1. Attributed Vertex Clouds

vertices we stop the pipeline during the geometry shader stage. By looping
over the complete list of vertices, all wedges of the polygon are generated
and, as a result, the full polygon is rasterized.

1 in vec2 in_start;
2 in int in_startIndex;
3 in vec2 in_end;
4 in int in_endIndex;
5 out vec2 v_start;
6 out vec2 v_end;
7 out int v_index;
8

9 void main() {
10 v_start = in_start;
11 v_end = in_end;
12 v_index = in_startIndex == in_endIndex ? in_startIndex : -1;
13 }

Listing 1.7. Polygon vertex shader using AVCs. The index of the referenced
polygon is checked to detect erroneuos wedge combinations and omit them in the
geometry shader.

1 layout (points) in;
2 layout (triangle_strip, max_vertices = 6) out;
3

4 uniform mat4 viewProjection;
5 uniform samplerBuffer centerAndHeights;
6 uniform samplerBuffer colorValues;
7 uniform sampler1D gradient;
8 in vec2 v_start[];
9 in vec2 v_end[];

10 in int v_index[];
11 flat out vec3 g_color;
12 flat out vec3 g_normal;
13

14 // Emits a vertex with given position and normal
15 void emit(in vec3 pos, in vec3 n, in vec3 color);
16

17 void main() {
18 // Discard erroneous polygons wedge combination
19 if (v_index[0] < 0) return;
20

21 vec4 centerAndHeight = texelFetch(centerAndHeights, v_index[0]).rgba;
22 vec3 color = texture(gradient, texelFetch(colorValues, v_index[0]).r).rgb;
23 vec3 cBottom = vec3(centerAndHeight.r, centerAndHeight.b, centerAndHeight.g);
24 vec3 sBottom = vec3(v_start[0].x, centerAndHeight.b, v_start[0].y);
25 vec3 eBottom = vec3(v_end[0].x, centerAndHeight.b, v_end[0].y);
26 vec3 cTop = vec3(centerAndHeight.r, centerAndHeight.a, centerAndHeight.g);
27 vec3 sTop = vec3(v_start[0].x, centerAndHeight.a, v_start[0].y);
28 vec3 eTop = vec3(v_end[0].x, centerAndHeight.a, v_end[0].y);
29 vec3 normal = cross(eBottom - sBottom, UP);
30

31 emit(cBottom, NEGATIVE_Y, color);
32 emit(sBottom, NEGATIVE_Y, color);
33 emit(eBottom, NEGATIVE_Y, color);
34 emit(sTop, normal, color);
35 emit(eTop, normal, color);
36 emit(cTop, POSITIVE_Y, color);

i
i

i
i

i
i

i
i

1.3. Applications for Attributed Vertex Clouds 11

37 EndPrimitive();
38 }

Listing 1.8. Polygon geometry shader using AVCs to generate one polygon wedge.

1.3.4 Colored Arcs

An arc is typically used in visualization, e.g., for sunburst views of file
systems. Such an arc can be represented using its center, inner and outer
radii, the height range, and a color value. Storing this information in an
AVC, we can generate a solid geometry that connects the side faces of the
arc directly. However, a rendering should regard the conceptually round
nature of an arc. As a GPU rasterizes planar primitives, the state-of-the-art
solution is subdivision of the curved surface to produce planar surfaces that
are arranged in a curve. This can be performed using the tessellation shader
stage. The result is a set of arc segments with different angle-ranges, which
the geometry shader can use to generate the target geometry (Figure 1.5).

Tessellation Control Shader. The output of the tessellation control
shader is the degree to which the input geometry should be tessellated. Ad-
ditionally, user-defined attributes (per-vertex and per-patch) can be speci-
fied and passed to the evaluation shader. We use this shader to tessellate
two vertices (conceptually a line, refer to Listing 1.9) with the start and

...

Input Data 3D Arc Segments

(cx, cy)0

(ri, ro)0

(hs, he)0

Tessellation Shader

Vertex Shader

Geometry Shader

(as, ae)0

c0

aeas

hs

hero-ri

...

Figure 1.5. Concept of rendering arcs using an AVC. The tessellation shader
creates arc lines that are extruded to arc segments using a geometry shader.

i
i

i
i

i
i

i
i

12 1. Attributed Vertex Clouds

end angles as per-vertex attributes and the remaining ones as per-patch
attributes. The use of both outer tessellation levels enables for higher
amounts of subdivision of the arcs. With this configuration, the tessellator
produces a set of subdivided lines.

1 layout (vertices = 2) out;
2

3 in Segment {
4 vec2 angleRange;
5 vec2 radiusRange;
6 vec2 center;
7 vec2 heightRange;
8 vec3 color;
9 int tessellationCount;

10 } segment[];
11

12 out float angle[];
13

14 patch out Attributes {
15 vec2 radiusRange;
16 vec2 center;
17 vec2 heightRange;
18 vec3 color;
19 } attributes;
20

21 void main() {
22 angle[gl_InvocationID] = segment[0].angleRange[gl_InvocationID==0?0:1];
23

24 if (gl_InvocationID == 0) {
25 float sqrtTesslevel =
26 clamp(ceil(sqrt(segment[0].tessellationCount)), 2.0, 64.0);
27 gl_TessLevelOuter[0] = sqrtTesslevel;
28 gl_TessLevelOuter[1] = sqrtTesslevel;
29

30 attributes.radiusRange = segment[0].radiusRange;
31 attributes.center = segment[0].center;
32 attributes.heightRange = segment[0].heightRange;
33 attributes.color = segment[0].color;
34 }
35 }

Listing 1.9. Arcs tessellation control shader using AVCs. A minimum of two
tessellation levels ensures that one segment cannot be both a left and right end.

Tessellation Evaluation Shader. This set of subdivided lines is rein-
terpreted as the start and end angles of an arc segment, interpolating the
per-vertex angles of the prior shader. The per-patch attributes are assigned
to each vertex of the resulting lines. Additionally, the first and last ver-
tex of the full arc are flagged to allow the geometry shader to generate
additional side-faces (Listing 1.10).

1 layout (isolines, equal_spacing) in;
2

3 in float angle[];

i
i

i
i

i
i

i
i

1.3. Applications for Attributed Vertex Clouds 13

4

5 patch in Attributes {
6 vec2 radiusRange;
7 vec2 center;
8 vec2 heightRange;
9 vec3 color;

10 } attributes;
11

12 out Vertex {
13 float angle;
14 vec2 radiusRange;
15 vec2 center;
16 vec2 heightRange;
17 vec3 color;
18 bool hasSide;
19 } vertex;
20

21 void main() {
22 float pos = (gl_TessCoord.x + gl_TessCoord.y * gl_TessLevelOuter[0])
23 / float(gl_TessLevelOuter[0]);
24

25 vertex.angle = mix(angle[0], angle[1], pos);
26 vertex.radiusRange = attributes.radiusRange;
27 vertex.center = attributes.center;
28 vertex.heightRange = attributes.heightRange;
29 vertex.color = attributes.color;
30 float threshold = 1.0/(gl_TessLevelOuter[0]*gl_TessLevelOuter[1]);
31 vertex.hasSide = pos<threshold || pos>1.0-threshold;
32 }

Listing 1.10. Arcs tessellation evaluation shader using AVCs. The position of
the generated vertex is projected and used to subdivide the arc segment. It is
also used to determine which vertices have side faces.

Geometry Shader. The geometry shader generates the arc segment tar-
get geometry. The start and end arc angles, inner and outer radii, as well
as the lower and upper height values are used to compute the eight vertices
of the arc segment (Listing 1.11). Depending on the hasSide property, the
required faces are generated and emitted.

1 layout (lines) in;
2 layout (triangle_strip, max_vertices = 12) out;
3

4 in Vertex {
5 float angle;
6 vec2 radiusRange;
7 vec2 center;
8 vec2 heightRange;
9 vec3 color;

10 bool hasSide;
11 } v[];
12

13 uniform mat4 viewProjection;
14 flat out vec3 g_color;
15 flat out vec3 g_normal;
16

17 // Emits a vertex with given position and normal

i
i

i
i

i
i

i
i

14 1. Attributed Vertex Clouds

18 void emit(in vec3 position, in vec3 normal);
19

20 vec3 circlePoint(in float angle, in float radius, in float height) {
21 return vec3(sin(angle), height, cos(angle))
22 * vec3(radius, 1.0, radius)
23 + vec3(v[0].center.x, 0.0, v[0].center.y);
24 }
25

26 void main() {
27 vec3 A = circlePoint(v[0].angle, v[0].radiusRange.x, v[0].heightRange.x);
28 vec3 B = circlePoint(v[1].angle, v[0].radiusRange.x, v[0].heightRange.x);
29 vec3 C = circlePoint(v[1].angle, v[0].radiusRange.y, v[0].heightRange.x);
30 vec3 D = circlePoint(v[0].angle, v[0].radiusRange.y, v[0].heightRange.x);
31 vec3 E = circlePoint(v[0].angle, v[0].radiusRange.x, v[0].heightRange.y);
32 vec3 F = circlePoint(v[1].angle, v[0].radiusRange.x, v[0].heightRange.y);
33 vec3 G = circlePoint(v[1].angle, v[0].radiusRange.y, v[0].heightRange.y);
34 vec3 H = circlePoint(v[0].angle, v[0].radiusRange.y, v[0].heightRange.y);
35

36 vec3 top = vec3(0.0, 1.0, 0.0);
37 vec3 bottom = vec3(0.0, -1.0, 0.0);
38 vec3 left = normalize(cross(E-A, D-A));
39 vec3 right = normalize(cross(F-B, C-B));
40 vec3 front = normalize(cross(B-A, E-A));
41 vec3 back = -front;
42

43 if (v[1].hasSide) {
44 emit(B, right);
45 emit(F, right);
46 }
47 emit(C, right);
48 emit(G, right);
49 emit(H, back);
50 emit(F, top);
51 emit(E, top);
52 emit(B, front);
53 emit(A, front);
54 emit(C, bottom);
55 emit(D, bottom);
56 emit(H, back);
57 if (v[0].hasSide) {
58 emit(A, left);
59 emit(E, left);
60 }
61

62 EndPrimitive();
63 }

Listing 1.11. Arcs geometry shader using AVCs. The code emits a triangle strip
with six full rectangles forming a distorted cuboid. As it is impossible for both
vertices of the input line to have the hasSide flag set, the maximum number of
emitted vertices is 12 nethertheless.

i
i

i
i

i
i

i
i

1.3. Applications for Attributed Vertex Clouds 15

1.3.5 Trajectories

For an information visualization example, we describe the application of
AVCs to a visualization of movement trajectories [Buschmann et al. 15]. A
trajectory consists of a number of connected tracking points, each of which
contains the current position, a time stamp, and additional attributes such
as the current speed or acceleration.

An interactive visualization of trajectories can be helpful for example
for developing analysis and decision support systems. In such a system, one
task would be to explore large data sets of trajectories, represented by plain
lines for simplicity. Subsequently, trajectories can be selected to examine
their movements in more detail. They are highlighted and displayed more
prominently, for example as extruded tubes. As a final step of analysis,
users might want to examine the attributes of individual tracking points.
This can be achieved by rendering them using individual spheres, mapping
color and radius to express attribute values.

The described use case can be implemented using AVCs as follows. The
vertex buffer contains the nodes with their attributes and a reference to
the the associated trajectory. In contrast to previous examples, a vertex
does not directly describe the target geometry, but contains a mere data
point which is transformed into a geometry later. In the tessellation and
geometry shaders, the type of geometry is selected based on three factors:
data attributes, distance to the camera, and interaction state. Unselected
trajectories which are far away from the camera will be transformed into
plain lines. Highlighted trajectories are tranformed into tubes, and for
selected trajectories, nodes are transformed into individual spheres for at-
tribute visualization. The current speed is mapped onto the color, while
acceleration is mapped onto the radius.

To render the trajectories, a similar approach to the polygon rendering
can be used. However, the vertex shader has three vertices as input, where
the first and the third are used to check for the trajectory reference and the
target geometry type. With these additional inputs, the tessellation and
geometry shader for the currently processed trajectory node can generate
geometry while taking the adjacent trajectory node geometries into account
(Figure 1.6). The use of the tessellation shader stages allows for a curved
appearance of the tube representation of trajectory nodes (refer to arc
rendering with AVCs).

i
i

i
i

i
i

i
i

16 1. Attributed Vertex Clouds

Input Data Trajectories

Tessellation Shader

Vertex Shader

Geometry Shader

...

(φ, λ , h, s)2

(φ, λ , h, s)3

(φ, λ , h, s)0

(φ, λ , h, s)1

G0

G1

G2

G3

Figure 1.6. Concept of rendering trajectories using an AVC. Each data point
gets tessellated and converted into splats, spheres, or tubes, depending on user
input.

Due to the reduced memory footprints of AVCs, large numbers of tra-
jectories can be rendered simultaneously. Also, the visualization is highly
configurable without requiring any buffer updates. Therefore, it can be
controlled by user interaction, e.g., by merely modifying uniform shader
variables which control the geometry generation.

1.4 Evaluation

AVCs can improve the rendering of several types of geometry in terms
of GPU memory usage, rendering and update performance. Therefore,
we compare AVCs to alternative geometry representations and rendering
pipelines for the same target geometry, namely full triangles lists (trian-
gles), triangle strips, and hardware instancing using vertex attribute divi-
sors (instancing). Specifically, evaluation is focused on the memory foot-
print of the geometry, the geometry processing performance, and the overall
rendering performance.

Test Setup. Our test setup for the presented performance measurements
is a Ubuntu 14.04 machine with a GeForce GTX 980 running at 1430 MHz
maximum clock and 4GB VRAM. We used the official Nvidia driver version
355.06. During the tests, the application ran in full-screen mode with the
native resolution of the monitor (1920 × 1200 pixels). The test scenes are
block worlds with different numbers of blocks, ranging from 4096 (grid size
of 16) to 106 (grid size of 100).

i
i

i
i

i
i

i
i

1.4. Evaluation 17

Technique Static Data Vertices Blocksize 106 blocks

Triangles ⊥ 36 1440 byte 1373 MiB
Triangle Strip ⊥ 14 560 byte 534 MiB

Instancing 336 byte 1 16 byte 15 MiB

AVC ⊥ 1 16 byte 15 MiB

Table 1.1. Memory consumption of different block world geometry representa-
tions. Each technique is compared regarding the required static data size, the
number of vertices to encode one block, the resulting memory size of one block
and a projection of the memory consumption of a block world with 106 blocks.

Technique Vertex Shader Stage Geometry Shader Stage Rasterizer Stage

Triangles 10 ⊥ 11
Triangle Strip 10 ⊥ 11

Instancing 10 ⊥ 11

AVC 4 5 11

Table 1.2. Input component count of the used stages of the programmable ren-
dering pipeline for the block world scene (e.g., a three-dimensional position has
a component count of three).

Memory Footprint. To encode a block of a block world with a fixed
size but differing type and position in a 3D grid, each of the four geome-
try representations have a differing space consumption on the graphics card
(Table 1.1). The triangles representation requires 36 vertices per block with
the position in the grid, a normal-vector, and the block type as attributes
(40 bytes per vertex, 1440 bytes per block). The triangle strip representa-
tion requires the same per-vertex attributes but uses 14 vertices to encode
the full block (40 bytes per vertex, 560 bytes per block). The instancing
representation uses one triangle strip as instancing geometry (containing
normalized vertex positions and normal-vectors) and passes the actual po-
sition in the grid and the block type as per-instance data (336 byte static
data and 16 byte per-instance data, resulting in 16 byte per block). An
AVC uses the same amount of per-instance data, but doesn’t require the
instancing geometry in memory as it is encoded in the geometry shader
(16 byte per-vertex data, 16 byte per block). Although the instancing and
the AVC representation share a small memory footprint of the geometry,
the passed data through the programmable rendering pipeline differs (Ta-
ble 1.2).

Rasterization Performance. To assess the overall performance of an
application that renders the same scene (e.g., a block world) with differ-
ent memory representations and rendering approaches, we use frames-per-
second as a measure. We measured the time to render 1000 full frames

i
i

i
i

i
i

i
i

18 1. Attributed Vertex Clouds

16 32 48 100
0

200

400

600

800

1,000

1,200

645

321

194

54

633

322

196

69

637

319

196

33

1,149

578

357

126

Grid size

fp
s

Triangles
TriangleStrip
Instancing
AVC

Figure 1.7. Frames per second comparison of block world implementations with
different number of blocks.

16 32 48 100

10

100

1,000

10,000

1.6

2.4

3

3.9

1.3

2.5

3

4

2

3

3.5

4.5

1.1

1.8

2.3

3.2

Grid size

µ
s

Triangles
TriangleStrip
Instancing
AVC

Figure 1.8. Geometry processing performance comparison of block world imple-
mentations with different number of blocks (logarithmic scale).

(same viewpoint, disabled vertical synchronization, disabled postprocess-
ing, enabled rasterizer). Our measurements indicate that AVCs are faster
to render in each scenario with up to doubled frames-per-second (Fig-
ure 1.7). The other techniques performs equally well for reasonable sized
block worlds. We measure similar results for the cuboids demo scenes, but

i
i

i
i

i
i

i
i

1.5. Conclusions 19

there is a bigger variation within the other techniques. Since rendering a
full frame requires additional work by both CPU and GPU that is equal be-
tween all techniques so we additionally measured the geometry processing
in isolation.

Geometry Processing Performance. In order to measure the timings
for the GPU to process the geometry and prepare the rasterization inputs,
we disable the rasterizer and measure the time required for the draw call
using query objects (Figure 1.8). We measured a significantly smaller pro-
cessing time for the AVC technique and highly differing times for the other
techniques where instancing performs worst. Although the times differ
they, seem to have only small impact on the overall rendering performance
(Figure 1.7). The results we measured for the cuboids scene were almost
identical.

1.5 Conclusions

We propose attributed vertex clouds (AVC) as an efficient alternative to
store geometry of simple gestalt for representation, rendering, and pro-
cessing on the GPU. The concept utilizes attribute buffers that describe a
target geometry. The attributes are processed and converted into the tar-
get geometry during the execution of the programmable rendering pipeline.
The general concept has various potentials for rendering techniques and en-
gines, since AVCs can be used in combination with explicit geometry rep-
resentations. The main hardware requirement of this technique is a GPU
with a programmable rendering pipeline that includes a geometry shader
stage. A tessellation stage can be used to enhance the results. Perfor-
mance measurements and comparisons using a block world test scene show
a significant performance improvement on consumer hardware compared
to explicit geometric representations and hardware instancing. With the
compact memory representation of an AVC, attribute updates via GPGPU
processing or buffer updates can be performed in the data domain instead
of the target geometry domain.

The concept of attributed vertex clouds can be applied in general for
all rendering techniques and domains in which image synthesis relies on
large amounts of simple, parameterizable geometry. This includes games
(e.g., block-worlds, vegetation rendering, sprite engines, particle systems),
interactive visualization systems [Scheibel et al. 16] (e.g., information vi-
sualization, or scientific visualization), as well as generic rendering com-
ponents (e.g., text rendering). Further improvement of this technique is
a generalized rendering pipeline with reoccurring stages to enable further
tessellation of the instantiated geometry.

i
i

i
i

i
i

i
i

20 BIBLIOGRAPHY

Acknowledgements

This work was funded by the German Federal Ministry of Education and
Research (BMBF) in the InnoProfile Transfer research group “4DnD-Vis”
(http://www.4dndvis.de/) and BIMAP (http://www.bimap-project.de).

Bibliography

[Buschmann et al. 15] Stefan Buschmann, Matthias Trapp, and Jürgen
Döllner. “Animated visualization of spatial–temporal trajectory data
for air-traffic analysis.” The Visual Computer, pp. 1–11.

[Carucci and Studios 05] Francesco Carucci and Lionhead Studios. “Inside
geometry instancing.” GPU Gems 2, pp. 47–67.

[Kemen 12] Brano Kemen. “Procedural Grass Rendering.”,
2012. Available online (http://outerra.blogspot.de/2012/05/
procedural-grass-rendering.html).

[Overvoorde 14] Alexander Overvoorde. “Geometry Shaders.”, 2014.
Available online (https://open.gl/geometry).

[Purnomo et al. 05] Budirijanto Purnomo, Jonathan Bilodeau,
Jonathan D. Cohen, and Subodh Kumar. “Hardware-compatible
vertex compression using quantization and simplification.” Proc.
ACM Graphics Hardware, pp. 53–61.

[Rákos 10] Daniel Rákos. “Instance Culling using Geometry Shaders.”,
2010. Available online (http://rastergrid.com/blog/2010/02/
instance-culling-using-geometry-shaders).

[Riccio and Lilley 13] Christophe Riccio and Sean Lilley. “Introducing the
Programmable Vertex Pulling Rendering Pipeline.” GPU Pro 4: Ad-
vanced Rendering Techniques, pp. 21–37.

[Scheibel et al. 16] Willy Scheibel, Matthias Trapp, and Jürgen Döllner.
“Interactive Revision Exploration using Small Multiples of Software
Maps.” Proc. of IVAPP, pp. 131–138.

[Trapp et al. 13] Matthias Trapp, Sebastian Schmechel, and Jürgen
Döllner. “Interactive rendering of complex 3d-treemaps.” Proc. of
GRAPP, pp. 165–175.

http://www.4dndvis.de/
http://www.bimap-project.de
http://outerra.blogspot.de/2012/05/procedural-grass-rendering.html
http://outerra.blogspot.de/2012/05/procedural-grass-rendering.html
https://open.gl/geometry
http://rastergrid.com/blog/2010/02/instance-culling-using-geometry-shaders
http://rastergrid.com/blog/2010/02/instance-culling-using-geometry-shaders

	Attributed Vertex Clouds
	Introduction
	Concept
	Applications for Attributed Vertex Clouds
	Evaluation
	Conclusions
	Bibliography

