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Abstract. During the software development process, occurring problems
are collected and managed as bug reports using bug tracking systems.
Usually, a bug report is specified by a title, a more detailed description,
and additional categorical information, e.g., the affected component or the
reporter. It is the task of the triage owner to assign open bug reports to de-
velopers with the required skills to fix them. However, the bug assignment
task is time-consuming, especially in large software projects with many
involved developers. This observation motivates using (semi-)automatic
algorithms for assigning bugs to developers. Various approaches have been
developed that rely on a machine learning model trained on historical bug
reports. Thereby, the modeling of the textual components is mainly done
using topic models, mainly Latent Dirichlet Allocation (LDA). Although
different variants, inference techniques, and libraries for LDA exist and
various hyperparameters can be specified, most works treat topic models
as a black box without exploring them in detail. In this work, we extend
a study of Atzberger and Schneider et al. on the use of the Author-Topic
Model (ATM) for bug triaging tasks. We demonstrate the influence of
the underlying topic model, the used library and inference techniques,
and the hyperparameters on the bug triaging results. The results of our
conducted experiments on a dataset from the Mozilla Firefox project
provide guidelines for applying LDA for bug triaging tasks effectively.

Keywords: Bug Triaging · Topic Models · Latent Dirichlet Allocation ·
Inference Techniques.

1 Introduction

The complexity of modern software development processes requires the systematic
coordination of the communication and work steps of the involved stakeholders.
For example, changes to the source code are managed within a version control
system, tasks are coordinated in issue tracking systems, or occurring errors are
documented in bug tracking systems. Therefore, throughout the entire develop-
ment process, data is generated and archived in the various repositories. The
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a former publication of the two main authors and their co-authors and the master
thesis of the second author.
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Mining Software Repositories research field is now concerned with gaining insights
from this data, e.g., by applying algorithms from the machine learning domain.
One issue that is often addressed in related work is the aim to increase efficiency
during the software development process is the (semi-)automatic assignment of
open bug reports to suitable developers. This is especially of interest in large
distributed development teams, where the triage owner may not be informed
about the specific skills of each developer. Here and in the following, we always
refer to bug reports, though the assignment of issue reports or change requests are
treated equally in our considerations. Precisely, we refer to the problem defined
as follows: “Given a new bug report, identify a ranked list of developers whose
expertise qualifies them to fix the bug” [27].

Various approaches for automatic bug triaging have been proposed utilizing
different data sources, e.g., source code [11,13,14,17,31], question-and-answer
platforms [26], or solely historical bugs [6]. Thereby the textual components of
the bug reports are usually modeled using LDA [6]. LDA is a probabilistic topic
model proposed by Blei et al., often used to capture a intrinsic semantic structure
of a collection of documents [5]. Given a set of documents, a so-called corpus,
LDA detects patterns of co-occurring words and derives topics as multinomial
distributions over the vocabulary. An underlying human-understandable concept
of a topic can then often be derived from its most probable words, thus supporting
explainability to the user. Furthermore, the semantic structure of a document is
modeled as a distribution over the extracted topics, thus allowing a mathematical
treatment of the documents. When applying topic models, different specifications
can be made by the user:

Variant of LDA. The baseline LDAmodel can be extended by meta-information
about the documents, e.g., the ATM, which incorporates knowledge about the
authorship of the documents [25], or Labeled LDA for documents associated
with discrete categories [23].

Inference Technique. Since exact inference for LDA is intractable, an approx-
imation algorithm has to be taken into account when training LDA, e.g.,
Collapsed Gibbs Sampling (CGS) [9] or Variational Bayes (VB) [5].

Implementation. Different software libraries implement different inference
algorithms and also differ in their default settings.

Hyperparameters. Besides the number of topics, the Dirichlet priors for the
document-topic distribution and the topic-term distribution can be specified
by the user.

Though the application of LDA incorporates many specifications by the user, in
most related work, the model is treated as a black box without fully exploring
the effect of the parameters [6].

Atzberger and Schneider et al. proposed three novel bug triaging algorithms
that rely on the ATM, a variant of LDA, and compared them against an approach
proposed by Xie et al. [2]. In their work, the authors evaluated the effect of
the inference technique, as well as the Dirichlet prior and the number of topics
as hyperparameters of the underlying LDA model. We extend their work by
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additionally comparing the effect of an online training method with the batch
training algorithm and detailing the effect of the used topic modeling library. We
further discuss statements made by Xie et al. about a hyperparameter in their
proposed approach. Our results are derived from experiments on a large dataset
of bug reports from the Mozilla Firefox project. As a result of our work, we
formulate different guidelines for applying LDA effectively for the bug triaging
task, which can be seen as a starting point for other software engineering tasks
that rely on topic models.

The remainder of this work is structured as follows: Section 2 presents existing
bug triaging approaches utilizing probabilistic topic models. The techniques of Xie
et al. and Atzberger and Schneider et al. are explained in Section 3, together with
an introduction to LDA and the ATM. Our experimental setup for conducting
our study is shown in Section 4. The results of our experiments are presented
in Section 5 and their implications are discussed in Section 6. We conclude this
work and point out directions for future work in Section 7.

2 Related Work

In this section, we present existing approaches for assigning bug reports to
developers. We focus our presentation of related work on approaches that rely
on LDA for modeling the textual components of a bug report as this is the
focus of our work and therefore ignore approaches utilizing information from the
version control system [11,13,14,17,31], or question-and-answer platforms [26].
An overview of the approaches that we consider is shown in Table 1.

Xie et al. were the first who applied LDA for the bug triaging task [39].
Their approach Developer Recommendation based on Topic Models (DRETOM)
comprises three parts. First, an LDA model is trained on a corpus of historical bug
reports with known resolvers. Then, for an incoming bug report, for each developer,
a score is computed that is meant to capture their familiarity with the dominant
topic of the bug report. In the last step, the developers are ranked according to
their scores. In a later work, Atzberger and Schneider et al. built up on the idea of
Xie et al. and proposed three algorithms based on the ATM. An advantage of the
ATM is its interpretability, as each developer can be modeled as a distribution
over the topics. This sort of explainability is particularly interesting for its use in
real-world settings [1,45]. The modifications Developer Recommendation based on
the Author-Topic Model (DRATOM) and Developer Recommendation based on
the Author-Topic Model and Bayes Formula (DRATOMBayes) replace the LDA
core with the ATM. Their third approach Developer Recommendation based on
Author Similarity (DRASIM) exploits the fact that the ATM can describe bug
reports and developers in a joint feature space and thus allows them to draw
associations direct from the model itself.

The approach presented by Xia et al. takes a bug report’s title and description
as textual components, the product and component affected by the bug, and
the developers who participated in resolving the bug into account [38]. For an
incoming bug report, similar historical bug reports are detected based on an
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Table 1: Comparison of related work that used probabilistic topic models.
All approaches (in chronological order) used the natural language title and description for topic
modeling (LDA). Further attributes are used to improve the predictions of ground truth developers
with regard to the chosen evaluation scheme and metrics covered in Section 4. We also examined
the work in relation to the following aspects: (Q1) Mentioned inference technique, (Q2) Optimized
number of Gibbs iterations, (Q3) Optimized number of topics K, and (Q4) Optimized Dirichlet
priors (α, β). Depending on whether it is true or not, we use ✓or ✗, respectively. ✍ denotes that the
authors claimed but did not report this optimization and ? that the publication did not report the
parameters at all.
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abstraction based on the terms occurring in the bug textual components, its topic
distribution derived from LDA, and both the categorical features component and
product. The developers are then associated with an affinity score. Similarly, a
second affinity score is derived from comparing the new bug report with developers
by considering their past activities. Combining the two affinity scores results in a
list of potential developers.

Naguib et al. presented an approach for bug triaging based on LDA and
the affected system component [20]. In their approach, each developer’s activity
profile is computed based on past activities as an assignee, reviewer, or resolver
of a bug. Given the topic distribution of a new bug, the developers are then
ranked according to their activity profiles.

Zhang et al. proposed an algorithm utilizing the textual components of a bug
and the developers’ social network [43]. First, an LDA model is trained, which
allows for comparing a new bug report with a historical data basis. A developer’s
expertise in a topic is modeled from past bug reports’ activities. Besides actual
assignments, also comments are taken into account. Furthermore, a metric is
derived that represents the role of a developer in the social network by relating a
potential candidate to the most active reporter. The combination of both metrics
leads to a ranking for a new bug based on its semantic composition.

The approach of Yang et al. also trains an LDA model on a corpus of historical
bug reports [40]. Their approach detects similar bug reports for a new incoming
bug report by considering its topics, product, component, severity, and priority.
Then, from those similar bug reports, their approach extracts potential candidates.
Based on the number of assignments, attachments, commits, and comments, the
candidates are ranked according to their potential to fix the bug.

Zhang et al. presented BUTTER, another approach based on training an LDA
model on a corpus of historical bug reports [44]. For each developer, a score in a
topic is derived from a heterogeneous network consisting of submitters, developers,
and bugs using the RankClass model. Combining the topic distribution from the
RankClass model with the topic distribution derived from the LDA model, a
candidate list of developers for a new bug is computed.

Nguyen et al. translated the task of assigning a bug report to the task of
predicting the resolution time for fixing a bug report [22]. By assuming a log-
normal regression model for the defect resolution time, their approach predicts a
bug report’s resolution time based on its topic distribution along with the bug
fixer and the severity level [22]. Also in their approach, the topic distribution of
a bug is inferred from a previously trained LDA model. The bug report is then
assigned to the developer, who is most likely the fastest to fix the bug.

Similar to Xia et al. [38], the approach presented by Zhang et al. detects the K-
nearest neighbors for a new bug report based on its textual components, product
and component, and its topic distribution [42]. From the K most similar bug
reports, the developers are then ranked according to their activities as assignees
and commenters. The approach allows for the choice of 18 hyperparameters,
of which only the number of topics concerns the underlying LDA model, the
remaining hyperparameters of the LDA model remain on the default settings.
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This is an example of a general trend whereby the algorithm for developer
recommendations is becoming more complex, but the underlying topic models
remain unchanged. Researchers usually treat topic models as black boxes without
fully exploring their underlying assumptions and hyperparameter values [6]. The
approaches presented so far used LDA without considering the impact of all of
its hyperparameters or the used inference technique.

A significant exception is the work by Xia et al., who extend the basic topic
modeling algorithm LDA and propose the Multi-feature Topic Model (MTM) [37].
The MTM includes a bug report’s feature combination, e.g., its product and
component, as an additionally observed variable and models the topic distributions
for each feature combination. They recommend the developers based on the affinity
scores of a developer towards a topic and the feature combination. Although they
systematically evaluated the number of topics and iterations required for Gibbs
sampling, they omit the influence of the Dirichlet priors, which remain at the
tool’s default settings.

All presented works use Gibbs sampling as the inference technique for LDA,
although most do not mention it, only the used topic modeling tool. Therefore,
it is likely that this choice was made unconsciously, especially since the authors
often explicitly emphasize using the default hyperparameters for LDA. Only two
of the previous works reported the influence of the most critical hyperparameter
– the number of topics – on the quality of the developer recommendations [37,42].
Others set this value arbitrarily [22,38,39], kept the number of topics at the
default value of the used implementation [40,43], or did not report this value [20].

Although much of the work compares directly with the basic DRETOM
approach by Xie et al. , comparability of study results is limited due to different
definitions of ground truth developers, evaluation setups, evaluation metrics,
varying projects selected for evaluation, and chosen preprocessing techniques.
Among those works that reimplement DRETOM [40,42,43,44], none of them
describe how DRETOM’s trade-off parameter θ was chosen. In contrast, these
approaches introduce their own hyperparameters to weigh various influencing
factors. The impact of their hyperparameters on the quality of developer rec-
ommendations is considered and optimized for, but not those of the methods
compared with, let alone the hyperparameters of LDA. Therefore, in our work,
we put particular emphasis on the influence of the hyperparameters of LDA and
the ATM as well as the used inference techniques on the hyperparameters of the
proposed approaches.

A detailed overview of how topic models are used for software engineering
tasks, in general, is presented by Chen et al. [6]. In this systematic literature
study, the authors show that only a small number of related work fully uses the
possibilities of tuning the hyperparameters of a topic model or its implementation.
Our work follows their suggestion of reimplementing existing approaches and
taking various preprocessing steps and hyperparameter tuning into account.
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3 Assigning Bug Reports using LDA

In this section, we present four approaches proposed by Xie et al. and Atzberger
and Schneider et al. for assigning bug reports to developers. Both works rely solely
on analyzing bug reports’ textual components using probabilistic topic models. We,
therefore, present details about the preprocessing steps, the underlying structure
of the topic model, and its hyperparameters before detailing the ranking schemes
in the different bug triaging approaches.

3.1 Preprocessing

We combine each bug report’s title and more detailed description to form a
document. The resulting corpus D = {d1, . . . , dM} consists of documents that
contain the textual components of the given bug reports. In our considerations,
we ignore the discussions attached to a historical bug report as they are not
available at the time when a bug report is assigned. In order to remove words
that carry no meaning, we need to undertake the corpus D several preprocessing
steps. The work of Atzberger and Schneider et al., follows the best practices
studies by Schofield et al. [28,29,30], specifically:

1. Removal of URL, hex code, stack trace information, timestamps, line numbers,
tokens starting with numerics, tokens consisting of only one character and
punctuation,

2. Lower casing the entire document,
3. Removal of all words from the English NLTK Stopwords Corpus1

4. Removal of words with a frequency less than 5 as well as a maximum word
occurrence of no more than 20% across all bug reports.

In contrast to Xie et al., we intentionally do not apply stemming. Topic model
inference often groups words sharing morphological roots in the same topics,
making stemming redundant and potentially damaging to the resulting model [29].
After preprocessing, we store each document as a Bag-of-Words (BOW), i.e.,
we neglect the ordering of the terms within a document and only keep their
frequencies. The entire corpus D is written as a document-term matrix, whose
rows are the BOW vectors of the documents.

3.2 Latent Dirichlet Allocation and its Variants

Starting from the document-term matrix, whose rows contain the term frequen-
cies of the corresponding preprocessed documents, LDA detects clusters within
the vocabulary by observing patterns of co-occurring words [5]. These clusters
φ1, . . . , φK are called topics and are formally given by multinomial distributions
over the vocabulary V. Here K, denotes the number of topics and is a hyperpa-
rameter of the model which needs to be set by the user initially. Table 2 shows
three exemplary topics extracted from the Mozilla Firefox dataset that will be

1 http://www.nltk.org/nltk data/

http://www.nltk.org/nltk_data/
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Table 2: Three extracted topics with the highest probability from the exemplary
bug report. The example is taken from Atzberger et al. [2].

Topic #1 Topic #2 Topic #3

private preferences bar
browsing pref url
mode options location
clear dialog autocomplete

cookies default text
history set address
window prefs results
data option type
cookie preference enter
cache change result

presented in detail in Section 4.1. From its ten most probable words, we derive
that topic #1 concerns browsing in private mode, topic #2 concerns preference
settings, and topic #3 is about the user interface. Besides a description of the
topics, LDA results in a document-specific topic distributions θ1, . . . , θM that
capture the semantic composition of a document in a vector of size K. LDA
assumes a generative process underlying a corpus D, which is given by:

1. For each topic φ1, . . . , φK choose a distribution according to the Distribution
Dirichlet(β)

2. For each document d in the corpus D
(a) Choose a document-topic distribution θ according to Dirichlet(α)
(b) For each term w in d

i. Choose a topic z ∼ Multinomial(θ)
ii. Choose the word w according to the probability p(w|z, β)

The generative process as a graphical model is shown in Figure 1.
Here, α and β denote the Dirichlet priors for the document-topic and topic-

term distribution, respectively. The meaning of the parameter α = (α1, . . . , αK),
where 0 < αi for all 1 ≤ i ≤ K, is best understood when written as the
product α = ac ·m of its concentration parameter ac ∈ R and its base measure
m = (m1, . . . ,mK), whose components sum up to 1. Depending on whether the
base measure is uniform, i.e., m = (1/K, . . . , 1/K), or not, we call the Dirichlet
distribution symmetrical or asymmetrical, respectively. In the case of a symmetric
prior, small values of ac, the Dirichlet distribution would favor points in the
simplex that are close to one edge, i.e., LDA would try to describe a document
with a minimum of topics. The larger the value of ac, the more likely that LDA
is to fit all topics with a non-zero probability for a document. Figure 2 illustrates
the effect of the chosen concentration parameter of a symmetric prior.

A symmetrical prior distribution of topics within documents assumes that all
topics have an equal prior probability of being assigned to a document. However,
setting a symmetrical α prior ignores that specific topics are more prominent



Evaluating Probabilistic Topic Models for Bug Triaging Tasks 9

α θ

z

wϕβ
N

M
K

LDA

α θ x

am

z

wϕβ
N

M

A

K

ATM

Fig. 1: (Left) Graphical model underlying LDA in plate notation, (Right) Graph-
ical model underlying the ATM in plate notation. The shaded circles denote
observed variables.

(a) ac = 3 (b) ac = 30 (c) ac = 0.3

Fig. 2: 2,000 randomly sampled topic distributions θ using varying concentration
parameters ac for symmetrical Dirichlet prior α. We illustrate the distributions
for K = 3 topics in the three-dimensional topic space θ = (θ1, θ2, θ3). The base
measure m = (1/3, 1/3, 1/3) is uniform for every symmetrical Dirichlet distribution.

in a corpus and, therefore, would naturally have a higher probability of being
assigned to a document. Conversely, some topics that are less common and,
thus, not appropriately reflected with a symmetrical prior for the document-
topic distributions. In contrast, an asymmetrical β prior over the topic-term
distributions is not beneficial [32,35]. The case of an asymmetric Dirichlet prior
is shown in Figure 3.

The goal of fitting such a model is to infer the latent variables from the
observed terms. However, since exact inference is intractable, approximation
algorithms need to be taken into account [5], e.g., CGS [9], batch VB [5], and its
online version Online Variational Bayes (OVB) [10]. Geigle provides a comparison
of these techniques [8].

Different variants of LDA have been developed for the case, where additional
meta-information to the documents is available. One such variant is the ATM,
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(a) α = αcm with αc = 3 (b) α = αcm with αc = 30 (c) α = αcm with αc = 0.3

Fig. 3: 2,000 randomly sampled topic distributions θ using varying concentration
parameters ac for an asymmetrical Dirichlet prior α. We illustrate the distributions
for K = 3 topics in the three-dimensional topic space θ = (θ1, θ2, θ3). The base
measure m = (1/12, 1/4, 2/3) defines the asymmetry where the third topic is most
likely independent of the concentration parameter.

proposed by Rosen-Zvi et al. [25]. By observing the authors of a document, it
assumes a generative process underlying a corpus, which is given by:

1. For each author a ∈ {a1, . . . , aA}:
(a) Choose a distribution over topics θa ∼ Dirichlet(α),

2. For each topic φ1, . . . , φK choose a distribution according to the distribution
Dirichlet(β)

3. For each document d in the corpus D:
(a) Given a group of authors, am ⊆ {a1, . . . , aA}, for document d,
(b) For the nth word wm,n of the N words to be generated in document m:

i. Choose an author xm,n ∼ Uniform(am),
ii. Choose a topic zm,n ∼ Multinomial(θxm,n),
iii. Choose a word wm,n ∼ Multinomial(φzm,n

).

Its generative process is shown in Figure 1. Rosen-Zvi et al. provided the
CGS algorithm for fitting an ATM model, the batch and online VB algorithm
were presented by Mortensen [19].

3.3 Ranking Developers

DRETOM. After training a LDA model on a corpus of historical bug reports
with known resolvers, each bug report is associated with its dominant topic. The
aptitude P (d|b) for a developer d to solve a bug report b can be computed using
the sum rule of conditional probabilities

P (d|b) =
∑
z

P (d|z) · P (z|b), (1)

where P (d|z) denotes the skill level of the developer d in the respective topic
z, and P (z|b) is the probability of the topic in the given bug report. In the
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considerations of Xie et al. the skill of a developer d in topic z is composed by
two parts, which are balanced by a trade-off parameter θ ∈ [0, 1]:

P (d|z) = θP (d → z) + (1− θ)P (z → d), (2)

where P (d → z) is called interest and P (z → d) is called expertise. Given the
number of bug reports Nd,z of developer d that belong to topic z, and the number
of bugs Nd, where d has contributed, the interest part is computed as

P (d → z) =
Nd,z

Nd
, (3)

Given the total number Nz of bug reports that are associated with topic z, the
expertise component is computed as

P (z → d) =
Nd,z

Nz
. (4)

For an incoming bug report, its topic distribution is inferred using the trained LDA
model and the developers are ranked according to their conditional probabilities
from Equation (1).

DRATOM & DRATOMBayes. Atzberger and Schneider et al. proposed two adap-
tions of DRETOM by utilizing the ATM [2]. Their first modification DRATOM
simply replaces the LDA core of DRETOM by the ATM, i.e., only the probability
P (z|b) is derived from another model.

Their second modification DRATOMBayes circumvents the choice of the
trade-off parameter θ by taking the description of a developer as distribution
over topics, learned from the ATM, into account. From the Bayes’ formula, we
derive

P (d|z) = P (z|d) · P (d)

P (z)
. (5)

The probability P (d) is approximated by the fraction

P (d) =
Nd

Ntotal
, (6)

where Ntotal denotes the number of all bug reports in the training corpus. The
marginal probability P (z) is approximated from the base measure of the Dirichlet
prior α, i.e.,

m = (m1, . . . ,mK) = (P (z1), . . . , P (zK)). (7)

DRASIM. Linstead et al. were the first to apply the ATM for software engineering
tasks [15]. Atzberger and Schneider et al. adopted this approach for the case of
bug reports, which results in a joint embedding of developers and bug reports
in a common feature space. Their approach DRASIM therefore reduces the bug
triaging tasks to a Nearest Neighbor (NN) search, i.e., for an incoming bug report
the developers are ranked according to a measure D(b, d), where D denotes a
chosen similarity measure, e.g., the Jensen-Shannon distance, the cosine similarity,
or the Manhattan distance.
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4 Experimental Setup

In our experiments, we investigate the effect of the underlying topic model, the
inference technique, the topic modeling library used, and the hyperparameters on
the results of the presented bug triaging algorithms. In this section, we present
details on our experimental setup. The dataset on which the experiments are
carried out contains bugs from the Mozilla Firefox project for over 15 years.
To take into account this long development history, we chose the Longitudinal
Evaluation Scheme for quantifying the bug triaging algorithms. To compare
different topic modeling libraries, we have chosen the three actively maintained
libraries Gensim, MALLET, and Vowpal Wabbit. We present details regarding
their implementations at the end of the section.

4.1 Dataset

Xie et al. evaluated their approach on a data set from the Mozilla Firefox and the
Eclipse projects, which are widely used in related work [3,4,7,16,20,36,37,42,43].
For the Mozilla Firefox project, their corpus contains 3005 bug reports, collected
between September 2008 to July 2009, with 96 involved developers. In contrast, we
compare the approaches DRETOM, DRATOM, DRATOMBayes, and DRASIM
on a dataset published by Mani et al., which contains bug reports of the Mozilla
Firefox project collected between July 1999 until June 2016 [16]. In contrast to
Xie et al., we only train our model on bug reports with an assigned developer, and
a status marked as verified fixed, resolved fixed, or closed fixed. The final assignee
is considered as ground truth. As our experiments depend on the Author-Topic
Model, we ensure that each training set has at least 20 bug reports per developer.
In total, our dataset contains 18,269 bug reports with 169 bug resolvers.

4.2 Evaluation Scheme

In our experiments, each bug triaging algorithm is evaluated on ten runs. For this
purpose, the bug reports are ordered chronologically and divided into 11 equally
sized disjoint subsets. In the k-th run, where 1 ≤ k ≤ 10, the k first subsets are
used for training, and the (k + 1)-th subset is used for testing. This evaluation
scheme is known as the longitudinal evaluation scheme and has been shown
to increase internal validity [4,12,16,33,37]. Furthermore, the time allocation
considers that the available developers change throughout the project. As Xie
et al. only train on bug reports collected within one year, this circumstance is
not critical for their work.

Like most related work, Xie et al. evaluate their approach using the metrics
Recall@k and Precision@k. Both metrics only consider if the ground-truth assignee
is among the top k recommendations but do not consider the actual position.
However, a good bug triaging algorithm should place the real assignee at a higher
rank, as the triager usually checks the higher positions first. In our experiments,
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we consider the Mean Reciprocal Rank (MRR)@10 as an evaluation metric, which
is affected more by a hit in the first rank. The MRR@10 is given by

MRR@10 =
1

#bug reports

#bug reports∑
i=1

(RR@10)i, where (8)

(RR@10)i =

{
1

ranki
, if ranki ≤ 10

0, otherwise
(9)

and RR denotes the reciprocal rank and ranki is the rank position of the real
assignee for the ith bug report.

4.3 Topic Modeling Implementations

Xie et al. used the LDA implementation provided by the Stanford Topic Modeling
Toolbox (STMT) [23]. In our work, we use more recently maintained libraries.
Among the most widely used topic modeling libraries are MALLET [18] for Java,
Gensim [24] for Python, and Vowpal Wabbit1 for C++. The LDA implementation
of the Gensim library is based on the VB algorithm proposed by Blei et al. [5]
and offers its online version presented by Hoffman et al. [10]. In the single-
threaded mode, Gensim allows the automatic adjustment of both Dirichlet
priors. However, in the multi-core version, this feature is not available. For
the ATM we refer to Gensim’s implementation of the ATM, which applies
VB and OVB respectively. The Vowpal Wabbit implementation is written in
C++ and implements the same OVB as Gensim, though it supports neither
parallelization nor hyperparameter optimization. It only allows specifying the
LDA hyperparameter, i.e., the number of topics and symmetrical Dirichlet priors
α and β, as well as the hyperparameters necessary for OVB. In contrast,MALLET
is the most advanced topic modeling toolkit of those we consider. It implements
the simple parallel threaded implementation proposed by Newman et al. [21]
with the SparseLDA Gibbs scheme and the data structure introduced by Yao
et al. [41]. Based on the work of Wallach, MALLET implements several strategies
for hyperparameter optimizations of Dirichlet priors [34].

5 Results

In this section, we give details on the conducted experiments and present their
results. In their study, the Xie et al. evaluated their proposed approach DRETOM
regarding its potential for recommending bug resolvers and the influence of the
hyperparameter θ on the bug triaging results. In our first three experiments, we
compare different implementations of LDA and inference techniques for replicating
the DRETOM approach. With the DRETOM approach, we want to discuss our
first research question:

1 https://hunch.net/?p=309

https://hunch.net/?p=309


14 D. Atzberger and J. Schneider et al.

Table 3: DRETOM’s default parameter settings for LDA in Gensim, Vowpal
Wabbit and MALLET.

Gensim Vowpal Wabbit MALLET

α alpha = 0.01 --lda alpha = 0.01 --alpha = 0.22

β alpha = 0.01 --lda rho = 0.01 --beta = 0.01
K num topics = 20 --lda = 20 --num-topics = 20

iCGS n/a n/a --num-iterations = 100
P workers = 6 n/a --num-threads = 6

Random seed random state = 42 --random seed = 42 --random-seed = 42

RQ1: To what extent does the chosen implementation of LDA and inference
technique affect results for the bug triaging task?

In the next step, we compare DRETOM with the three approaches presented by
Atzberger and Schneider et al. based on the ATM. Precisely, we want to answer
the following research question:

RQ2: Are the approaches based on the ATM able to outperform DRETOM?

Both topic models, LDA and the ATM, require to specify the number of topics
K and the Dirichlet prior α for the document-topic distribution. In our fifth
experiment, we varied the possible hyperparameters to address the following
research question:

RQ3: How far do the choice of hyperparameter, i.e., the number of topics and
the Dirichlet prior, affect the approaches for bug triaging tasks?

Our results further allow us to discuss statements made by Xie et al. on the
hyperparameter θ, that will be discussed in the fourth research question:

RQ4: What is the influence of the hyperparameter θ for the quality of the
recommendation results?

5.1 Naive Replication Study of DRETOM

In the first three experiments, we want to investigate how the chosen LDA im-
plementation and the underlying inference technique affect the results of a bug
triaging algorithm. In our first experiment, we therefore replicated the study
by Xie et al. and adopt their parameter configurations. We assume symmetric
distributions for both Dirichlet priors α and β, each with a concentration param-
eter of 0.01. The number of latent topics is set to K = 20, and the number of
iterations in the Gibbs sampling is set to iCGS = 100. To reduce computation
time, we resort to the parallelized variants in Gensim and MALLET and set
the number of parallel threads to 6. Vowpal Wabbit does not allow the use of
hardware acceleration. All remaining parameters are set to their default values
defined by the library. The parameter values are summarized in Table 3.

2 MALLET expects the concentration parameter, i.e., 0.01 ·K = 0.2, for K = 20.
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Table 4: Impact of underlying inference techniques using default parameters
for LDA implementations on MRR@10 obtained on the Mozilla Firefox project
with 10-fold cross validation. The mean over the cross validation and standard
deviation are reported. The optimal hyperparameter setting for θ is highlighted.

Model θ #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Average

DRETOM
Gensim
(parallel)

0.0 8.5 6.8 9.2 13.0 9.4 4.4 10.2 6.9 8.4 6.1 8.3 ± 2.4
0.1 7.6 6.6 8.4 12.5 9.0 4.4 9.2 7.0 8.8 6.2 8.0 ± 2.2
0.2 7.0 6.0 7.6 11.6 6.3 4.0 7.7 6.2 7.3 5.4 6.9 ± 2.0
0.3 6.2 5.5 6.7 9.7 5.4 3.9 7.0 5.4 5.7 5.1 6.1 ± 1.5
0.4 5.8 5.6 5.8 7.5 4.6 3.7 6.1 4.5 4.4 4.4 5.2 ± 1.1

DRETOM
Gensim

0.0 8.4 6.6 9.4 13.5 12.7 5.3 10.1 7.0 9.0 6.4 8.8 ± 2.7
0.1 7.7 6.4 9.1 13.3 13.2 5.6 10.6 7.3 8.9 6.5 8.9 ± 2.8
0.2 6.9 5.5 8.4 12.1 10.8 4.5 9.3 6.3 8.4 6.3 7.8 ± 2.4
0.3 6.2 5.5 7.3 10.5 8.6 4.3 7.6 4.9 7.2 5.7 6.8 ± 1.9
0.4 5.8 5.3 6.4 8.9 6.8 3.7 6.2 4.0 6.5 4.9 5.9 ± 1.5

DRETOM
MALLET

0.0 9.0 9.8 15.0 16.0 14.3 8.5 13.7 8.8 13.1 13.1 12.1 ± 2.8
0.1 8.8 10.6 16.5 16.7 15.1 9.8 13.9 9.7 15.0 14.8 13.1 ± 3.0
0.2 8.0 11.1 15.5 16.3 12.9 9.0 10.8 8.6 13.5 14.8 12.0 ± 3.0
0.3 7.1 11.6 13.5 15.6 10.3 7.8 8.4 7.6 12.1 14.1 10.8 ± 3.0
0.4 6.4 11.0 12.2 13.0 7.8 6.6 6.5 7.0 10.0 13.1 9.4 ± 2.8

DRETOM
Vowpal
Wabbit

0.0 9.0 7.1 7.9 14.5 8.4 5.5 8.1 7.0 7.7 6.9 8.2 ± 2.4
0.1 8.3 7.1 8.7 15.2 8.5 4.7 7.1 6.2 7.1 6.5 7.9 ± 2.8
0.2 8.2 6.3 7.3 16.8 7.5 3.2 5.6 4.7 6.0 5.2 7.1 ± 3.7
0.3 5.7 5.2 4.6 16.0 4.5 2.0 4.2 3.2 5.7 3.1 5.4 ± 3.9
0.4 6.7 4.5 4.0 8.1 3.2 1.5 3.3 2.5 3.9 2.3 4.0 ± 2.0

We report the results of the first experiments over all ten runs according to
the longitudinal evaluation scheme in terms of the MRR@10 in Table 4. As the
optimal value for θ never exceeds a value more than 0.3, we only present the
results for values θ ≤ 0.4. In nearly every run, the single-threaded variant of
Gensim (8.9%) is superior to its multi-threaded version (8.3%). On average, the
single-threaded variant outperforms the multi-threaded variant by 7.2%. The
MALLET -based implementation (13.1%) outperforms all other versions in nearly
every run. 47,2% gives the average advantage against the single-threaded Gensim
implementation, 57,8% against the multi-threaded Gensim implementation, and
59,8% against the Vowpal Wabbit implementation (8.2%). This indicates the
supremacy of the CGS against the VB. Furthermore, the trade-off parameter θ
seems to influence all implementations strongly. Xie et al. report that the average
precision and recall peak at θ = 0.6 for the Mozilla Firefox project, which favors
the developer’s interest slightly more than a developer’s expertise. Surprisingly,
regardless of the LDA implementation, DRETOM never reaches an optimal
value of θ greater than 0.3 in the first experiment of our reproduction study.
The developer’s expertise is much more critical concerning the bug assignment
prediction accuracy measured with the MRR@10 compared to a developer’s
interest. Across all cross-validation splits, the MRR@10 peaks at θ = 0.0 in
47.5% of the cases, which means that the recommendation is wholly based on a
developer’s expertise.

5.2 Multi-pass Online Variational Bayes Inference

In the second experiment, we investigated to what extent the inferiority of the
VB implementations in the first experiment is because the LDA model has not
converged. To determine whether the frequently used default value iCGS = 100 is
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Table 5: Additional LDA learning parameters for Gensim, Vowpal Wabbit and
MALLET.

Gensim Vowpal Wabbit MALLET

S chunksize = 2000 --minibatch = 2000 n/a
κ decay = 0.5 --power t = 0.5 n/a
τ0 offset = 1.0 --initial t = 1.0 n/a
δ gamma threshold = 0.001 --lda epsilon = 0.001 n/a

passes passes = 10 --passes = 10 n/a
iV B iterations = 400 n/a3 n/a
iCGS n/a n/a --num-iterations = 1000

sufficient, we increase the number of Gibbs iterations to iCGS = 1000. Furtermore,
we increase the number of iterations for Gensim’s number of variations to
iV B = 400. Vowpal Wabbit does not offer a parameter to modify this stopping
criterion and runs as many iterations as required to reach the convergence
threshold δ. Both libraries use the learning parameters κ and τ set to 0.5 and
1.0 to guarantee convergence [10]. To allow a more direct comparison between
both libraries implementing OVB we increase the batch size for Vowpal Wabbit
from 256 to match the default value of Gensim, which results in updating the
topic-term distributions in the M-step after processing 2,000 documents. In both
tools, the parameter passes controls how many passes will be used to train
the topic models. The remaining parameters for the LDA model are unchanged.
Table 5 summarizes the parameters changed to our first experiment. The results
of our second experiment are presented in Table 6.

On average, the result of the MALLET -based implementation does not
improve. This shows that a number of iCGS = 100 iterations is sufficient to
guarantee the convergence of the LDA model. As expected, all implementations
based on VB improved. The gains here are 36.1% on average for the parallelized
version of Gensim (11.3%), 5.6% for its single-threaded version (9.4%), and
12.2% for Vowpal Wabbit (9.2%). On average, however, all are still worse than
the CGS-based variant and inferior by at least 15.9%.

5.3 Multi-pass Batch Variational Bayes Inference

Our third experiment investigates how batch VB LDA differs from online VB
LDA in their results. The primary motivation for using online VB is to study
large data sets that can no longer be processed in a single step. However, using
online VB entails three additional hyperparameters (S, τ0, κ), which need to be
optimized for. Moreover, OVB is not able to handle a changing vocabulary. In
our case, where we analyze bug reports of more than 15 years, this might be
problematic. In addition, we evaluate DRETOM based on the batch variant
of Gensim. However, since Vowpal Wabbit does not allow batch learning, and
its online variant is inferior to Gensim’s, we neglect this setup. We keep the

3 Vowpal Wabbit does not offer this parameter to stop earlier, i.e., it is implicitly set
to ∞.
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Table 6: Impact of underlying inference techniques using multi-pass VB on
MRR@10 obtained on the Mozilla Firefox project with 10-fold cross validation
The mean accuracy over the cross validation and standard deviation are reported.
The best hyperparameter setting for θ is highlighted.

Model θ #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Average

DRETOM
Gensim
(parallel)

0.0 8.6 7.2 11.5 15.2 14.5 8.5 14.2 9.4 10.9 9.1 10.9 ± 2.8
0.1 8.6 7.3 11.8 15.2 14.8 9.6 15.2 10.0 11.2 9.7 11.3 ± 2.9
0.2 8.3 6.6 10.9 14.5 12.9 8.2 12.8 8.9 9.2 9.1 10.1 ± 2.5
0.3 8.4 6.3 9.9 13.6 10.8 6.8 9.8 7.5 7.5 8.6 8.9 ± 2.2
0.4 8.7 6.4 8.1 11.6 8.7 6.1 8.5 6.2 5.9 7.5 7.8 ± 1.8
0.5 9.0 5.9 7.2 9.6 7.4 5.3 7.1 4.9 4.8 6.8 6.8 ± 1.6
0.6 9.3 5.9 6.2 8.6 6.2 5.0 6.3 4.3 4.4 6.5 6.3 ± 1.6
0.7 9.5 5.7 5.6 7.3 5.3 4.4 5.8 4.0 4.0 6.2 5.8 ± 1.7

DRETOM
Gensim

0.0 8.7 7.0 10.2 15.0 11.3 5.8 10.1 7.4 8.8 6.3 9.1 ± 2.8
0.1 8.7 7.0 10.6 15.5 12.4 6.1 10.3 7.6 9.1 6.5 9.4 ± 2.9
0.2 8.2 6.7 10.0 14.8 10.7 4.7 9.7 6.6 8.6 6.6 8.7 ± 2.8
0.3 8.4 6.3 8.6 13.3 8.6 3.9 8.5 5.5 7.6 6.3 7.7 ± 2.5
0.4 8.8 6.4 7.2 11.2 7.1 3.5 7.0 4.5 6.4 5.5 6.8 ± 2.2
0.5 8.8 6.1 6.5 9.1 5.9 3.0 5.9 3.9 5.1 4.7 5.9 ± 1.9
0.6 9.2 5.9 5.6 7.4 4.8 2.6 4.7 3.4 4.2 4.1 5.2 ± 2.0
0.7 9.4 6.0 5.1 6.3 4.0 2.3 4.2 3.0 3.7 3.9 4.8 ± 2.0

DRETOM
MALLET

0.0 8.9 9.7 15.3 15.9 14.7 7.8 14.6 10.0 13.4 12.0 12.2 ± 2.9
0.1 8.9 10.4 16.8 16.3 16.0 8.8 15.0 10.7 14.3 13.7 13.1 ± 3.1
0.2 8.0 11.3 15.5 15.7 13.1 7.3 13.1 9.3 12.6 13.5 11.9 ± 2.9
0.3 7.4 11.5 12.7 14.7 10.5 6.0 10.4 8.1 11.1 13.0 10.5 ± 2.7
0.4 7.0 11.2 10.9 12.1 8.6 5.0 8.5 7.3 9.5 12.1 9.2 ± 2.4
0.5 7.0 11.0 9.8 10.2 7.4 4.2 7.6 6.3 8.4 11.3 8.3 ± 2.2
0.6 6.8 10.5 9.2 9.3 6.1 3.8 6.9 5.8 8.0 10.7 7.7 ± 2.2
0.7 6.9 9.9 8.8 8.3 5.3 3.4 6.3 5.3 7.6 10.2 7.2 ± 2.2

DRETOM
Vowpal Wabbit

0.0 9.0 6.2 11.3 14.4 8.0 6.4 8.1 7.4 9.6 11.6 9.2 ± 2.6
0.1 8.2 6.6 10.8 15.3 6.8 5.9 8.9 8.8 8.6 9.2 8.9 ± 2.7
0.2 5.6 6.5 8.3 14.7 4.1 4.8 6.5 8.4 6.9 7.0 7.3 ± 3.0
0.3 4.8 6.4 6.3 15.2 2.9 3.3 5.5 6.1 4.8 5.4 6.1 ± 3.4
0.4 4.7 8.1 5.1 8.3 2.5 2.7 4.7 3.3 3.6 3.9 4.7 ± 2.0
0.5 5.2 8.5 3.8 6.3 2.0 2.2 1.9 2.2 2.7 3.3 3.8 ± 2.2
0.6 5.1 8.8 4.1 5.7 1.4 1.5 1.3 1.8 2.5 3.1 3.5 ± 2.4
0.7 5.1 9.0 3.9 5.6 1.0 1.3 1.1 1.6 2.3 2.6 3.4 ± 2.6

parameters the same as in the first two experiments. The results of this experiment
are shown in Table 7.

The results show that the OVB variant (9.4%) performs worse than the batch
VB variant (10.8%) in every run. The only exception is the first run, where OVB
and batch VB practically match since the number of documents was set to 2000.
On average, batch VB performs 14.9% better than its online version. Despite
all the optimizations, MALLET (13.1%) still outperforms Gensim; on average,
MALLET outperforms Gensim by 21.3%. In the following two experiments, we
neglect OVB.

5.4 Learning Asymmetrical Dirichlet Priors

In the first three experiments, we investigated the underlying inference technique’s
influence on the bug triaging algorithm’s results using DRETOM as an example.
In the remaining two experiments, we compared DRETOM with DRATOM,
DRATOMBayes, and DRASIM, all of which are based on the ATM. In particular,
we want to investigate the influence of the common hyperparameters α and K.
In most existing work, a symmetric Dirichlet prior α is assumed, for which the
default value of the respective implementation is mainly used. However, work by
Wallach et al. shows that an asymmetric Dirichlet prior in combination with a
symmetric beta prior has advantages over the default setting [35]. To evaluate the
impact, we set the parameter alpha = ’auto’ in the Gensim implementation
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Table 7: Impact of underlying inference techniques using batch VB on MRR@10
obtained on the Mozilla Firefox project with 10-fold cross validation The mean
accuracy over the cross validation and standard deviation are reported. The best
hyperparameter setting for θ is highlighted. Vowpal Wabbit does not implement
batch VB LDA.

Model θ #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Average

DRETOM
Gensim using
online VB LDA

0.0 8.7 7.0 10.2 15.0 11.3 5.8 10.1 7.4 8.8 6.3 9.1 ± 2.8
0.1 8.7 7.0 10.6 15.5 12.4 6.1 10.3 7.6 9.1 6.5 9.4 ± 2.9
0.2 8.2 6.7 10.0 14.8 10.7 4.7 9.7 6.6 8.6 6.6 8.7 ± 2.8
0.3 8.4 6.3 8.6 13.3 8.6 3.9 8.5 5.5 7.6 6.3 7.7 ± 2.5
0.4 8.8 6.4 7.2 11.2 7.1 3.5 7.0 4.5 6.4 5.5 6.8 ± 2.2
0.5 8.8 6.1 6.5 9.1 5.9 3.0 5.9 3.9 5.1 4.7 5.9 ± 1.9
0.6 9.2 5.9 5.6 7.4 4.8 2.6 4.7 3.4 4.2 4.1 5.2 ± 2.0
0.7 9.4 6.0 5.1 6.3 4.0 2.3 4.2 3.0 3.7 3.9 4.8 ± 2.0

DRETOM
Gensim using
batch VB
LDA

0.0 8.7 7.2 10.8 15.1 13.0 7.4 13.8 9.1 10.9 7.4 10.3 ± 2.9
0.1 8.7 7.0 10.4 15.7 13.6 8.1 14.8 9.9 12.0 7.9 10.8 ± 3.1
0.2 8.2 6.5 9.2 15.6 11.0 7.7 12.6 8.8 10.2 6.8 9.7 ± 2.8
0.3 8.4 6.1 7.7 13.6 8.9 6.5 9.6 7.9 9.0 5.9 8.4 ± 2.2
0.4 8.8 5.9 6.3 11.5 7.8 5.7 8.1 6.6 8.1 5.2 7.4 ± 1.9
0.5 8.8 5.7 5.4 10.3 6.5 5.2 6.9 6.0 7.0 4.5 6.6 ± 1.8
0.6 9.2 5.7 4.5 9.2 5.8 4.9 5.9 5.6 6.6 4.1 6.2 ± 1.8
0.7 9.4 5.6 4.1 8.2 4.9 4.7 5.5 5.3 6.3 4.0 5.8 ± 1.8

DRETOM
Mallet

0.0 9.0 9.8 15.3 15.9 14.5 7.9 14.7 10.0 13.6 12.0 12.3 ± 2.9
0.1 8.9 10.4 16.7 16.2 15.8 9.0 15.0 10.8 14.2 13.7 13.1 ± 3.0
0.2 8.1 11.4 15.6 15.8 13.1 7.4 12.9 9.4 12.6 13.5 12.0 ± 2.9
0.3 7.4 11.6 12.6 14.8 10.6 6.1 10.4 8.0 11.6 13.0 10.6 ± 2.7
0.4 6.9 11.3 10.9 12.2 8.6 5.0 8.5 7.2 9.9 12.0 9.3 ± 2.4
0.5 7.0 10.9 9.9 10.3 7.4 4.2 7.5 6.4 9.0 11.3 8.4 ± 2.3
0.6 6.8 10.5 9.1 9.3 6.2 3.8 6.9 5.7 8.5 10.8 7.8 ± 2.2
0.7 6.9 9.9 8.7 8.4 5.4 3.4 6.2 5.4 8.2 10.2 7.2 ± 2.2

for LDA and the ATM. Starting from the symmetrical standard α prior, we
let MALLET optimize the hyperparameters every 20 iterations after a burn-in
period of 50 iterations following David Mimno’s advice4. The results of the fourth
experiment are reported in Table 8.

Changing the symmetric α prior to an asymmetric one has little effect in either
implementation of DRETOM. Concretely, the Gensim-based implementation
improves by about 0.9% and the MALLET -based implementation by about 4.6%.
However, the selected topic model seems to have a more significant impact. The
results show that DRATOM (14.2%) achieves significantly better results than
DRETOM. Specifically, DRATOM outperforms the Gensim variant (10.9%) by
about 30.3% and the MALLET variant (13.7%) by 3.6%. It is worth mentioning
here that MALLET implements CGS inference, which was superior in earlier
experiments. In all three cases, the ideal value for theta changes abruptly. The
DRATOMBayes approach (13.3%) overcomes this problem and still outperforms
the DRETOM variant based on Gensim by about 22.0%. Regardless of the
distance metric, DRASIM seems practically unusable, as it is inferior to all three
comparison methods.

5.5 Increasing the Number of Topics

It remains to investigate the effect of the hyperparameter K. Following Griffiths
and Steyvers, Xie et al. fixed the number of topics to 20 [9]. However, the optimal

4 https://stackoverflow.com/questions/47310137/mallet-hyperparameter-
optimization

https://stackoverflow.com/questions/47310137/mallet-hyperparameter-optimization
https://stackoverflow.com/questions/47310137/mallet-hyperparameter-optimization
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Table 8: Impact of an optimized, asymmetric α prior on MRR@10 obtained on the
Mozilla Firefox project with 10-fold cross validation. DRATOM, DRATOMBayes
and DRASIM use the same trained ATM. The mean accuracy over the cross-
validation and standard deviation are reported. The best hyperparameter setting
for θ and the best distance metric for DRASIM are highlighted.

Model θ #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Average

DRETOM
Gensim

0.0 8.8 7.4 10.7 15.2 12.8 7.3 13.5 9.3 11.3 7.3 10.4 ± 2.8
0.1 8.7 7.3 10.8 16.0 13.5 7.9 14.5 9.9 12.1 8.0 10.9 ± 3.0
0.2 8.2 7.3 10.1 15.7 11.0 7.5 12.4 8.9 10.2 7.0 9.8 ± 2.7
0.3 8.2 6.9 8.9 14.0 8.2 6.4 9.3 7.9 8.8 6.1 8.5 ± 2.2
0.4 8.6 6.9 7.8 11.4 7.2 5.7 7.9 6.9 7.9 5.2 7.5 ± 1.7
0.5 8.5 6.7 6.8 9.9 6.5 5.3 6.5 6.4 6.9 4.5 6.8 ± 1.5
0.6 9.0 6.6 5.7 8.7 5.6 5.1 5.6 5.8 6.5 4.0 6.3 ± 1.5
0.7 9.0 6.7 5.2 7.8 4.7 4.9 5.1 5.5 6.2 4.0 5.9 ± 1.5
0.8 8.9 6.7 4.6 7.2 4.1 4.7 4.9 5.3 6.2 3.8 5.6 ± 1.6
0.9 9.1 6.7 4.2 6.7 4.0 4.4 4.6 5.1 5.8 3.7 5.4 ± 1.7
1.0 8.3 6.7 3.9 6.5 3.7 4.3 4.4 4.8 5.7 3.7 5.2 ± 1.5

DRETOM
MALLET

0.0 9.1 9.3 14.8 15.9 16.8 9.3 16.9 9.3 13.5 12.0 12.7 ± 3.3
0.1 9.4 10.0 16.3 16.7 17.7 10.1 17.9 10.8 14.3 13.6 13.7 ± 3.4
0.2 9.4 10.2 14.3 16.8 16.0 9.7 17.6 10.6 13.6 14.4 13.3 ± 3.1
0.3 9.8 10.7 12.1 16.5 13.3 7.6 14.5 9.2 12.0 14.3 12.0 ± 2.7
0.4 9.9 10.4 10.6 14.2 8.5 6.3 11.7 8.4 10.7 12.8 10.4 ± 2.3
0.5 10.7 10.3 9.2 12.0 6.7 5.3 10.0 7.7 9.4 11.9 9.3 ± 2.2
0.6 11.4 10.1 8.1 10.3 5.7 4.8 8.9 7.2 8.3 11.1 8.6 ± 2.2
0.7 11.5 9.8 7.1 8.9 4.9 4.4 8.1 6.5 7.7 10.2 7.9 ± 2.3
0.8 11.5 9.4 6.6 8.3 4.3 4.2 7.3 6.1 7.4 9.6 7.5 ± 2.3
0.9 11.5 9.2 6.2 7.8 3.9 4.1 6.8 5.9 7.1 9.2 7.2 ± 2.4
1.0 10.6 9.0 5.9 7.0 3.8 3.9 6.5 5.8 6.9 8.8 6.8 ± 2.2

DRATOM

0.0 11.3 11.8 13.6 15.8 17.0 10.9 17.2 11.1 14.3 17.3 14.0 ± 2.7
0.1 11.2 12.3 12.9 15.4 18.0 12.0 17.5 11.7 14.1 17.2 14.2 ± 2.6
0.2 11.0 12.6 12.3 15.6 18.2 12.3 16.6 11.5 13.7 17.0 14.1 ± 2.6
0.3 10.9 12.7 11.7 15.3 17.9 12.0 14.9 11.6 13.4 16.5 13.7 ± 2.4
0.4 10.8 12.7 11.1 14.9 17.7 11.6 13.9 11.1 12.7 16.5 13.3 ± 2.4
0.5 10.6 12.3 9.5 15.0 16.9 10.6 13.2 10.9 13.1 16.0 12.8 ± 2.5
0.6 10.5 12.2 8.9 14.9 17.2 10.3 11.8 10.3 12.7 16.3 12.5 ± 2.8
0.7 10.3 11.1 8.2 11.1 16.6 9.7 10.7 10.0 12.4 15.8 11.6 ± 2.7
0.8 10.0 10.2 7.6 10.0 15.3 9.5 8.8 9.5 10.4 14.5 10.6 ± 2.4
0.9 10.2 9.9 6.5 9.2 12.9 9.4 8.2 9.1 10.2 13.1 9.9 ± 2.0
1.0 9.7 8.5 6.2 8.7 13.1 9.2 8.0 8.8 9.6 12.2 9.4 ± 2.0

DRATOMBayes n/a 11.2 13.9 12.9 15.0 16.6 10.1 15.3 10.6 12.8 15.0 13.3 ± 2.2

DRASIM
Jensen-Shannon 10.2 7.8 8.6 6.1 6.7 3.8 5.6 6.2 5.0 5.3 6.5 ± 1.9

Cosine 10.2 7.9 6.8 6.4 6.8 3.8 5.3 6.2 5.0 5.1 6.3 ± 1.8
Manhattan 6.0 7.3 7.3 4.6 5.2 3.0 6.3 3.0 3.7 3.2 5.0 ± 1.7

choice of topics is an open research question. Table 9 shows the results for an
increasing number of topics. We do not present the results of the individual ten
runs here and only give the mean values.

First, it can be observed that in almost all cases, an increase in the number of
topics is accompanied by an improvement in the results, except DRATOMBayes,
when changing from 40 to 50 topics. In all cases, DRATOM is superior to all
other cases. In all other cases, DRATOMBayes is superior to DRETOM based
on Gensim but does not reach the quality of the MALLET variant. The θ-
independent variant can outperform the MALLET variant only for K = 30 and
K = 40. Also, with an increasing number of topics, DRASIM is inferior, but this
approach benefits most from an increase of K.

6 Discussion

In this section, we recapitulate the results of our previous experiments to answer
the four research questions stated at the beginning of Section 5. This leads to
guidelines for applying topic models for bug triaging tasks. We further discuss
internal and external threats to validity.
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Table 9: Impact of a varying number of topics K on MRR@10 obtained on the
Mozilla Firefox project with 10-fold cross validation. DRATOM, DRATOMBayes
and DRASIM use the same trained ATM. The mean accuracy over the cross-
validation and standard deviation are reported. The best hyperparameter setting
for θ and the best distance metric for DRASIM are highlighted.

Model Parameter K=20 K=30 K=40 K=50 K=60

DRETOM
Gensim

θ=0.0 10.4 ± 2.8 11.1 ± 2.7 11.6 ± 2.7 11.9 ± 3.2 11.9 ± 2.6
θ=0.1 11.0 ± 3.0 11.6 ± 2.9 12.0 ± 2.8 12.3 ± 3.4 12.2 ± 2.8
θ=0.2 10.1 ± 2.7 11.3 ± 2.9 11.8 ± 2.9 12.1 ± 3.5 12.3 ± 2.9
θ=0.3 8.7 ± 2.1 10.3 ± 2.9 11.0 ± 2.7 11.5 ± 3.4 11.7 ± 2.8
θ=0.4 7.7 ± 1.6 9.3 ± 2.7 10.0 ± 2.4 10.8 ± 3.1 10.9 ± 2.7
θ=0.5 6.9 ± 1.3 8.4 ± 2.5 9.0 ± 2.0 9.7 ± 2.7 10.0 ± 2.3
θ=0.6 6.4 ± 1.3 7.6 ± 2.1 8.1 ± 1.7 8.7 ± 2.3 9.1 ± 2.0
θ=0.7 6.0 ± 1.4 6.9 ± 1.7 7.4 ± 1.5 8.0 ± 1.9 8.2 ± 1.7
θ=0.8 5.7 ± 1.4 6.4 ± 1.6 6.8 ± 1.5 7.3 ± 1.6 7.5 ± 1.4
θ=0.9 5.5 ± 1.5 6.1 ± 1.6 6.3 ± 1.6 6.7 ± 1.5 6.9 ± 1.3
θ=1.0 5.3 ± 1.4 5.7 ± 1.5 6.0 ± 1.5 6.4 ± 1.5 6.4 ± 1.2

DRETOM
MALLET

θ=0.0 12.7 ± 3.3 13.4 ± 3.1 14.3 ± 3.6 15.0 ± 3.9 15.8 ± 3.7
θ=0.1 13.7 ± 3.4 14.2 ± 3.1 15.1 ± 3.8 15.8 ± 4.1 16.6 ± 3.9
θ=0.2 13.2 ± 3.1 14.1 ± 2.7 15.1 ± 3.7 15.8 ± 3.9 16.7 ± 3.9
θ=0.3 12.0 ± 2.7 13.1 ± 2.2 14.3 ± 3.4 15.0 ± 3.3 16.4 ± 3.6
θ=0.4 10.3 ± 2.3 11.9 ± 2.0 13.0 ± 2.9 14.0 ± 2.5 15.6 ± 3.1
θ=0.5 9.3 ± 2.2 10.9 ± 1.7 11.9 ± 2.5 12.8 ± 2.0 14.6 ± 2.6
θ=0.6 8.6 ± 2.2 9.9 ± 1.5 10.7 ± 2.2 11.7 ± 1.5 13.5 ± 2.2
θ=0.7 7.9 ± 2.3 9.1 ± 1.6 9.8 ± 2.1 10.7 ± 1.3 12.3 ± 1.8
θ=0.8 7.5 ± 2.3 8.5 ± 1.9 9.3 ± 2.1 9.9 ± 1.5 11.3 ± 1.9
θ=0.9 7.2 ± 2.3 8.2 ± 2.0 8.7 ± 2.1 9.3 ± 1.6 10.5 ± 2.0
θ=1.0 6.8 ± 2.2 7.7 ± 2.1 8.2 ± 2.0 8.8 ± 1.6 9.9 ± 2.3

DRATOM

θ=0.0 14.0 ± 2.7 15.5 ± 3.8 15.8 ± 3.8 15.5 ± 3.8 16.0 ± 3.3
θ=0.1 14.2 ± 2.6 15.8 ± 3.8 16.5 ± 3.8 16.1 ± 3.9 16.6 ± 3.4
θ=0.2 14.0 ± 2.5 15.9 ± 3.8 16.9 ± 3.9 16.5 ± 3.9 17.1 ± 3.4
θ=0.3 13.7 ± 2.4 15.8 ± 3.7 16.9 ± 3.7 16.7 ± 3.8 17.4 ± 3.3
θ=0.4 13.2 ± 2.4 15.6 ± 3.6 16.8 ± 3.6 16.7 ± 3.6 17.6 ± 3.2
θ=0.5 12.8 ± 2.5 15.2 ± 3.3 16.7 ± 3.5 16.7 ± 3.5 17.6 ± 3.2
θ=0.6 12.4 ± 2.7 14.9 ± 3.3 16.4 ± 3.4 16.3 ± 3.4 17.5 ± 2.9
θ=0.7 11.6 ± 2.7 14.3 ± 3.2 15.7 ± 3.1 16.1 ± 3.2 17.0 ± 2.7
θ=0.8 10.6 ± 2.4 13.3 ± 2.4 14.6 ± 2.2 15.5 ± 2.6 16.3 ± 2.1
θ=0.9 9.9 ± 2.2 12.2 ± 2.3 13.7 ± 1.9 14.9 ± 2.2 15.5 ± 2.0
θ=1.0 9.3 ± 2.0 11.4 ± 2.2 13.0 ± 1.5 14.2 ± 2.2 14.6 ± 1.8

DRATOMBayes n/a 13.3 ± 2.3 14.9 ± 2.9 16.0 ± 4.2 15.8 ± 4.2 16.1 ± 3.7

DRASIM
Jensen Shannon 6.7 ± 2.0 8.6 ± 1.5 10.8 ± 2.6 12.0 ± 2.4 12.7 ± 2.1

Cosine 6.6 ± 2.0 8.6 ± 1.6 10.9 ± 2.7 12.0 ± 2.3 12.6 ± 2.0
Manhattan 5.1 ± 1.9 6.9 ± 1.7 8.5 ± 2.3 10.1 ± 2.5 10.8 ± 2.3

6.1 Main Findings

The first research question concerns the influence of the topic modeling imple-
mentation and inference technique for the bug triaging algorithm. In our first
experiment, we compared three topic modeling libraries written in different pro-
gramming languages. The results indicate that the CGS-based implementation
MALLET is superior to the VB-based implementations Vowpal Wabbit and
Gensim. The difference between the VB-based implementations is neglectable in
our experiments. We thus recommend choosing a topic modeling library based
on its underlying inference technique rather than its programming language. In
our second experiment, we investigated whether the inferior results of the VB-
based implementations are due to the non-convergence of the training algorithm
and thus increased the number of iterations. It turned out that all VB-based
implementations benefit from adjusting the parameter. Therefore, we conclude
that the default values in the topic modeling libraries might not be ideal for
sufficiently training a topic model. In our third experiment, the batch variant of
VB outperforms its online version. We, therefore, recommend the usage of the
batch variant if possible and only suggest the use of the online variant for text
corpora that are too large to process.
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In our fourth and fifth experiments, we compared DRETOM with the three
approaches based on the ATM. We referred to Gensim’s implementation of the
ATM based on VB. Though VB was inferior to CGS in the first three experiments,
our approach DRATOM outperformed the DRETOM implementation based on
MALLET. This effect can be traced back to the underlying topic model. The
approach, DRATOMBayes, outperforms the DRETOM variant based on Gensim
and achieves similar results as the MALLET implementation. However, the
DRASIM approach is inferior to all algorithms compared in our study.

The last two experiments also investigate the influence of the hyperparameters
α and K on the results of the bug triaging algorithms. The asymmetric Dirichlet
prior α led to only a slight quality improvement in DRETOM. In contrast, all
methods benefited significantly from an increasing number of topics. Overall,
we conclude that the hyperparameter K significantly influences the results and
should therefore be given special attention.

Xie et al. reported that their approach DRETOM is sensitive to its hyper-
parameter θ. Based on their experimental results, they formulated statements
about its influence on the bug triaging task. As a further result of our study, we
revisit four statements about the trade-off parameter θ made by Xie et al. Their
first statement reads “The smaller the size of the set of recommended developers
is, the larger θ should be.” In our experiments, the number of developers is
more likely to increase over time, because the training set grows monotonically.
However, we do not observe that the parameter θ decreases. Furthermore, the
evaluation of a bug triaging technique should be independent of the number
of recommended developers [27]. Xie et al. evaluated the effectiveness of their
proposed approach DRETOM using Precision@k, Recall@k, and its harmonic
mean F1 score [39]. Although those metrics allow taking multiple ground truth
assignees into account, they do not penalize mistakes in the first ranks more than
in the following ranks. Therefore, we suspect that the statement depends on the
chosen evaluation metric.

The second statement is given by “The shorter the duration of a project’s bug
repository is, the larger θ should be.” Examining this statement independently
of the other parameters that affect the optimal value for θ is not easy. We see
counterindications with this statement using the hyperparameters for DRETOM
used by Xie et al. Because of the evaluation scheme we have chosen, we let
the duration, and thus the size of the project’s bug repository, grow with each
cross-validation fold. Thus, a clear decreasing trend of the optimal θ should
be found in the experiments. However, we observe this only very sporadically,
e.g., for DRETOM using Gensim, but inconsistently between the individual
implementations and used inference techniques. Although some experiments
suggest such a relationship, a more thorough evaluation would be needed to rule
out other influencing factors.

A further statement about θ reads “Prior to putting DRETOM into practice,
some trials should be conducted to find out the optimal θ.” This recommenda-
tion includes the hidden assumption that DRETOM has an optimal value for
θ, although this is admittedly dependent on the chosen project. However, our
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experiments clearly show that the identification of this optimal value depends
several different factors, including the chosen implementation, the used infer-
ence technique and its hyperparameters, the LDA hyperparameters, and most
importantly, even if we leave all other factors aside, the point in time during the
project.

The last statement is given by “Setting θ in the range from 0.2 to 0.8 is
appropriate.” Following this recommendation, neither the developer expertise nor
the interest of a developer alone is sufficient to make the best possible developer
recommendation using DRETOM. However, as long as we do not adjust for the
number of topics according to the dataset, on average, across all experiments
and all cross-validation folds, the developer expertise has to be weighted much
more to make the best possible predictions. During the experiments, the on
average optimal value of θ with regard to the MRR@10 is less or equal to 0.1 for
DRETOM and DRATOM. Only if we choose an appropriate number of topics,
the optimal value of θ is, on average, within the recommended range. Due to the
inconsistent and partially conflicting choice of an optimal value for θ, we refer to
the more robust DRATOM and DRASIM, which do not require an additional
trade-off hyperparameter.

6.2 Threats to Validity

The internal threat to validity mainly consists in the implementation of the studied
baseline approach DRETOM. For comparison purposes, we reimplemented the
algorithm DRETOM, as there is no implementation publicly available. Although
we have implemented the algorithm true to the best of our knowledge, there
could be some minor deviations from the original approach.

In our experiments, we were able to access three different LDA libraries. It
turned out that MALLET generates better results than Gensim and Vowpal
Wabbit. In contrast, we evaluated only a single implementation of ATM. Thus,
an accurate comparison is only possible with the LDA of Gensim. Based on the
results of the first three experiments, we expect that a CGS-based implementation
of ATM would yield better results.

The main threat to external validity is the used dataset. Additional research on
other projects, such as Chromium or Eclipse, should be consulted to reinforce the
generalizability of our conclusions. Furthermore, we assume the final assignee as
the ground truth in our experiments. However, bug triaging is a collaborative task
involving various stakeholders, e.g., the reporter or other developers participating
in the discussion. We see no clear way to generalize to a setting where more than
one developer can be seen as ground truth.

7 Conclusions and Future Work

The analysis of software data by machine learning techniques promises to provide
insights that will make future development processes more efficient. One concrete
task that is particularly important in the maintenance phase of a software project
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is the automated assignment of pending bugs to suitable developers. Numerous
approaches apply topic models, which analyze the textual components of a bug
report, and thus allow for a formal treatment of the bug triaging task. Topic
models differ among themselves, their underlying inference algorithm, the software
libraries used, and the choice of their hyperparameters. To deduce guidelines
for the effective use of topic models for bug triaging tasks, we compared four
bug triaging algorithms based on LDA and its variant ATM proposed by Xie
et al. [39] and Atzberger and Schneider et al. [2]. In our experiments on a dataset
taken from the Mozilla Firefox project, we evaluated the influence of the chosen
topic modeling library and its inference technique, the influence of the topic
model itself, the role of the Dirichlet prior α, and the number of topics K.

Our study results show that the topic modeling library should be chosen based
on the implemented inference technique rather than its programming language.
In our concrete case, the LDA implementation provided by MALLET achieved
better results than the implementations provided by Gensim and Vowpal Wabbit.
As the approach DRATOM that relies on the ATM was superior to the baseline
approach DRETOM, we observe that the choice between LDA and the ATM
has a significant effect. In our experiments, the choice of the Dirichlet prior
α led to no significant improvement, whereas the number of topics K had a
large effect on the bug triaging results. In addition to the specific use case of
automated assignment of bug reports, our experiments show that a closer look at
the topic models used when examining textual components of software data have
the potential to improve the analyses significantly. Instead of considering topic
models as black boxes, the used implementations and hyperparameters should
be compared and adapted for the individual use case.

One approach for future work is to extend the presented methods by adding
categorical attributes of bug reports, for example, by developing novel topic
models. Alternatively, it would be conceivable to integrate other repositories, such
as coding activities, into the triaging process in addition to ticket management
systems. A particular challenge here is the modeling of heterogeneous data
sources. To increase the acceptance of the processes in the application, thoughts
should also be given to how the results can be made explainable. Although the
application of ATM enables a description of developers as a distribution over the
topics, concrete conclusions about the data basis have not yet been implemented.
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