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Abstract: Text spatializations for text corpora often rely on two-dimensional scatter plots generated from topic models
and dimensionality reductions. Topic models are unsupervised learning algorithms that identify clusters,
so-called topics, within a corpus, representing the underlying concepts. Furthermore, topic models transform
documents into vectors, capturing their association with topics. A subsequent dimensionality reduction creates
a two-dimensional scatter plot, illustrating semantic similarity between the documents. A recent study by
Atzberger et al. has shown that topic models are beneficial for generating two-dimensional layouts. However,
in their study, the hyperparameters of the topic models are fixed, and thus the study does not analyze the
impact of the topic models’ quality on the resulting layout. Following the methodology of Atzberger et
al., we present a comprehensive benchmark comprising (1) text corpora, (2) layout algorithms based on
topic models and dimensionality reductions, (3) quality metrics for assessing topic models, and (4) metrics
for evaluating two-dimensional layouts’ accuracy and cluster separation. Our study involves an exhaustive
evaluation of numerous parameter configurations, yielding a dataset that quantifies the quality of each dataset-
layout algorithm combination. Through a rigorous analysis of this dataset, we derive practical guidelines for
effectively employing topic models in text spatializations. As a main result, we conclude that the quality of a
topic model measured by coherence is positively correlated to the layout quality in the case of Latent Semantic
Indexing and Non-Negative Matrix Factorization.

1 INTRODUCTION

Topic Models (TMs) are a class of unsupervised learn-
ing algorithms for analyzing the semantic structure of
collections of documents, so-called text corpora (Crain
et al., 2012). By analyzing patterns of co-occurring
words within the documents, TMs extract concepts
– so-called topics – as clusters in the vocabulary.
Thereby, topics are given as vectors, whose compo-
nents express the relevance of the respective term
for the topic; in many cases, a human-interpretable
concept can be derived from the most relevant words
within a topic. Furthermore, TMs represent each docu-
ment as a vector that describes its semantic composi-
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tion. Besides their wide use in the NLP domain, e.g.,
for text classification (Aggarwal and Zhai, 2012a), text
summarization (Nenkova and McKeown, 2012), or
text clustering (Aggarwal and Zhai, 2012b), TMs are
also used for the visualization of text corpora using a
map-metaphor (Kucher and Kerren, 2019). The under-
lying two-dimensional scatter plot, which determines
the position for each document, originates from apply-
ing a dimensionality reduction (DR).

The quality of the two-dimensional layout de-
pends on the choice of the TM, the DR, and the re-
spective hyperparameters. Existing works dealing
with the representation of high-dimensional data by
two-dimensional scatter plots usually do not consider
TMs (Espadoto et al., 2021; Vernier et al., 2020), even
though TMs are essential in many visualizations. Con-
trasting this, Atzberger et al. (2023) showed in their
benchmark study, that applying a TM for text corpora
as a particular case of high dimensional data can lead



to higher quality layouts. However, in their experi-
ments, the hyperparameters of the TM are fixed for
each dataset. Therefore, the full potential of TMs and
the impact of their quality for text spatializations re-
mains unclear.

This paper presents an extension of the benchmark
proposed by Atzberger et al. (2023). The new bench-
mark is given by a quadruple B = (D,L ,QT M,QDR)
containing (1) a set of text corpora D , (2) a set of lay-
out algorithms L that are combinations of TMs and
DRs, (3) a set of quality metrics QT M that capture qual-
ity aspects of TMs, and (4) a set of quality metrics QDR
that capture aspects related to the accuracy and percep-
tion. By evaluating the benchmark on a computational
cluster, we generate two datasets: one containing the
quality scores of 35 topic models and one containing
the quality scores of more than 6000 different layouts.
By analyzing the result datasets, we investigate the
impact of the quality of TMs on the quality of the lay-
out. Our analysis shows that a higher quality score for
TMs result in better layouts concerning accuracy and
perception in case of Latent Semantic Indexing and
Non-Negative Matrix Factorization.

The remaining part of this work is structured as
follows: we give an overview of the related work in
Section 2. Our benchmark is detailed in Section 3, and
implementation details are presented in Section 4. The
results are analyzed in Section Section 5 and discussed
in Section 6. We conclude this work and present direc-
tions for future work in Section 7.

2 RELATED WORK

We cover three aspects that are related to our considera-
tions: (1) benchmark studies that evaluate the accuracy
of DRs, (2) benchmark studies that evaluate the per-
ception capabilities of DRs, and (3) approaches for
quantifying and exploring the quality of TMs.

Benchmarking Dimensionality Reductions for Ac-
curacy. Different benchmarks have been proposed
to derive guidelines for the effective use of DRs for vi-
sualization tasks. Those benchmarks usually comprise
a set of datasets, DRs, and quality metrics for quan-
tifying the accuracy of DRs. Thereby, accuracy ap-
proximates how well high-dimensional structures, e.g.,
neighborhoods, are preserved in the lower-dimensional
representation (Behrisch et al., 2018). The execution
of a benchmark results in a dataset, which is then the
subject of further analysis, e.g., which DR shows the
best results for a given dataset.

van der Maaten et al. (2009) were the first to apply
this methodology to compare non-linear DRs’ perfor-

mance with PCA. In a similar study, Gisbrecht and
Hammer (2015) focused on the performance of non-
linear DRs. Espadoto et al. (2021) introduced the first
large-scale study, comprising 18 datasets, 44 DRs,
and seven quality metrics for capturing the accuracy.
From the results, the authors deduced that t-SNE over-
all shows the best performance. In a similar study,
Vernier et al. (2020) analyzed the temporal stability us-
ing customized quality metrics. Furthermore, Vernier
et al. (2021) developed two modifications of t-SNE
that show great results with respect to temporal stabil-
ity.

Even though these benchmarks contain text cor-
pora as datasets, TMs are not considered as part of the
layout algorithms. Atzberger et al. (2023) presented a
benchmark containing five different text corpora and
52 layout algorithms originating from combining a
TM and a subsequent DR. As a main result, the au-
thors show that applying a TM improves the overall
accuracy of the resulting layout. However, in their
benchmark, the hyperparameters of each TM are fixed,
and only the hyperparameters of the DRs are varying.
Although best practices were applied and the results
of the TMs were manually inspected, the potential of
TMs remains unclear.

Benchmarking Dimensionality Reductions for Per-
ception. Besides the accuracy, Atzberger et al. also
analyze the perception capabilities of the resulting scat-
ter plots. Thereby perception refers to the capability of
a user to perceive clusters as introduced by Sedlmair
et al. (2013).

The first benchmark that measures cluster separa-
tion metrics was proposed by Xia et al. (2023). Be-
sides a purely quantitative assessment, the authors also
performed a user study to compare DRs concerning
different cluster analysis tasks, e.g., cluster identifica-
tion, as done in a previous work (Xia et al., 2022).

Morariu et al. (2023) investigated in a user study
whether quality metrics can describe the visual appear-
ance of two-dimensional scatter plots. In a similar
approach, Xia et al. (2021) collected a human-labeled
dataset to train a neural network for modeling the hu-
man perception of visual clusters. A further work that
relies on human judgments was presented by Wang
et al. (2018), who developed a DR that aims at max-
imizing the perceived class separation. Our experi-
ments follow the methodology proposed by Atzberger
et al., who solely relied on class separation metrics
and no human judgment.

Evaluating Topic Models. In most cases, TMs are
evaluated using quantitative measures, e.g., perplexity
or coherence measures (Röder et al., 2015). Alter-



natively, topics can be judged according to their in-
terpretability by inspecting their most relevant words.
An example of a visualization work that analyzes the
quality of TMs that way is presented by Riehmann
et al. (2019). Furthermore, visualization tools have
been developed to support users in interpreting topics
and discovering relations between them. For example,
Sievert and Shirley (2014) presented LDAvis, which
consists of a bubble chart together with a bar chart
for exploring the topics of an LDA model. However,
in most visualization papers that rely on TMs, TMs
are treated as a “black box”, without considering the
results concerning quality measures or interpretability.

3 BENCHMARK

Our benchmark B = (D,L ,QT M,QDR) extends the
benchmark proposed by Atzberger et al. by quality
metrics for TMs. In the following we will present
details on each of the four components.

Datasets. The set D contains four text corpora. The
20 Newsgroup, Reuters, Seven Categories, and Emails
datasets are standard datasets from Kaggle1 and widely
used to evaluate NLP algorithms. The GitHub Projects
dataset that contains the source code of 653 soft-
ware projects on GitHub, where all source code files
have been merged into one document, presented by
Atzberger et al., could not be included in our bench-
mark, as the computation of the coherence value for
a TM would exceed the memory consumption. Var-
ious preprocessing operations are performed to re-
move words that do not have semantic meaning. Be-
sides generic steps, e.g., removing stop words, dataset-
specific actions are performed. After preprocessing,
the text corpora are available as a Document-Term Ma-
trix (DTM), i.e., the entry in cell (i, j) indicates the
absolute frequency of the j-th word in the i-th doc-
ument. Furthermore, each document is assigned to
a unique category describing a higher-level concept.
Details on the processing and implementation of the
datasets can be found in our repository2. The charac-
teristics of the four text corpora, containing the number
of documents m, the size of the vocabulary n, and the
number of categories k, are summarized in Table 1.

Layout Algorithms. In the DTM, each row de-
scribes a document, i.e., each document is represented
as an n-dimensional vector containing the absolute
frequencies of the words in the document. Since the

1www.kaggle.com/
2DOI: 10.5281/zenodo.10040858

Table 1: Characteristics for the four datasets in our bench-
mark containing the number of documents m, the size of the
vocabulary n and the number of categories k.

Dataset m n k

20 Newsgroup 11 314 6 672 20
Emails 9 111 6 992 4

Reuters 9 122 2 953 65
Seven Categories 3 127 11 373 7

semantic similarity between documents should be in-
dependent of their length, the similarity is measured by
the cosine similarity. This basic document comparison
model is called the Vector Space Model (VSM). The
VSM only considers the absolute frequency of a term
within a document and thus neglects the distribution of
the word across all documents. By weighting the DTM
according to the term frequency-inverse document fre-
quency (tf-idf) scheme, terms that occur in only a few
documents, and are thus of particular relevance to a
document, are given a higher weight (Aggarwal and
Zhai, 2012b). Specifically, the tf-idf of a term w in
document d is given by

tf-idf(w,d) =
n(w,d)

∑
d′∈C

n(w,d′)
· log

(
|C|

|{d′ ∈C|w ∈ d′}|

)
,

(1)

where n(w,d) denotes the frequency of term w in doc-
ument d. Typically, only a few terms from the vocab-
ulary occur in a single document., the DTM is thus
sparse. The basic idea of TMs is to detect clusters in
the vocabulary that occur together in documents (Crain
et al., 2012). Latent Semantic Indexing (LSI) is a TM
that decomposes the (mxn)-dimensional DTM as the
product of an (mxK)-dimensional document-topic ma-
trix and a (Kxn)-dimensional topic-term matrix by ap-
plying a Singular Value Decomposition (SVD) (Deer-
wester et al., 1990). The number of topics K is a
hyperparameter of the model. Similarly, Non-Negative
Matrix Factorization (NMF) decomposes the DTM as
a product of two matrices (Lee and Seung, 1999). Both
methods can be applied to the tf-idf weighted DTM.
The cosine similarity captures the similarity between
the documents. Latent Dirichlet Allocation (LDA) is
a probabilistic TM that assumes a generative process
underlying a corpus (Blei et al., 2003). Each document
is described as a distribution over the topics, which are,
in turn given as distributions over the vocabulary. In
addition to K, LDA requires the specification of two
Dirichlet priors, α and β, which encode assumptions
about the document-topic distribution and topic-word
distribution, respectively. Since the documents are de-
scribed as distributions, they are compared using the
Jensen-Shannon distance.

https://www.kaggle.com/
https://zenodo.org/records/10040859


By applying a TM, each document is represented
as a K-dimensional vector describing the expression
in the topics. Thus, it requires a subsequent DR
to represent the corpus as a two-dimensional scatter
plot. Multidimensional Scaling (MDS) iteratively com-
putes the positioning of the documents, which should
represent the pairwise distances between the docu-
ments (Cox and Cox, 2008). t-distributed Stochastic
Neighbor Embedding (t-SNE) is considered the best-
known manifold learning algorithm and is known for
preserving local structures well (van der Maaten and
Hinton, 2008). Besides the specification of the learn-
ing rate and the number of iterations in the training
algorithm, it requires the specification of the perplex-
ity, which controls the trade-off between local and
global structures. Uniform Manifold Approximation
and Projection (UMAP) extends t-SNE to preserve
global structures (McInnes et al., 2020). UMAP re-
quires the specification of two hyperparameters, the
number of neighbors as a trade-off between preserving
local and global structures, and the minimal distance
that controls how close data points can be grouped
together in the two-dimensional layout. In any case,
the DR can also be applied to the topics, and the doc-
ument position aggregated according to its document
representation (Atzberger et al., 2021).

Quality Metrics for Topic Models. According to
Röder et al. (2015), “a set of statements or facts is
said to be coherent, if they support each other”, i.e.,
they seem to belong to each other concerning human
interpretation. In the case of TMs, a statement is given
by the most relevant terms within a topic. As human
evaluations are expensive to produce, several coher-
ence measures have been proposed to quantify a TM’s
quality concerning human interpretability. Röder et al.
(2015) developed a four-stage pipeline that categorizes
existing coherence measures and allows their com-
bination, i.e., a quadruple specifies each coherence
measure. In the first stage, the set of words is seg-
regated into smaller pieces, e.g., word pairs. In the
second stage, word probabilities are computed using a
reference corpus, e.g., by dividing the number of doc-
uments in which the word occurs by the total number
of documents. In the third stage, a confirmation mea-
sure derives how strongly a pair of words or subsets of
words belong to each other based on their probabilities,
which results in a vector description. Finally, the vec-
tor entries are aggregated to a final coherence score in
the fourth stage. Our experiments evaluate the TMs us-
ing the pipeline CV . The metric CV has shown the best
results in the study of Röder et al. (2015), which com-
pares the coherence scores for topics that have been
rated by humans in previous experiments (Aletras and

Table 2: Libraries used in our benchmark. Besides libraries
providing TMs and DRs, we also rely on libraries for text
preprocessing, e.g., the removal of stop words or lemmatiza-
tion.

Algorithm Library Version

LSI, NMF, LDA Gensim 4.2.0
Coherence Measures Gensim 4.2.0

t-SNE, MDS Scikit-Learn 1.2.1
UMAP UMAP-Learn 0.5.3

General Text Preprocessing NLTK 3.7
Lemmatization Spacy 3.4.3

Stevenson, 2013; Chang et al., 2009; Lau et al., 2014).

Quality Metrics for Dimensionality Reductions.
To evaluate the effectiveness of DRs to preserve lo-
cal and global structures of a given input data set in a
two-dimensional scatter plot, different quality metrics
have been proposed and utilized in several benchmark
studies (Behrisch et al., 2018). In our study, we refer
to the metrics that have also been used by Atzberger
et al. (2023). The Trustworthiness αT measures for
each point in the 2D layout the percentage of points
among the seven nearest neighbors (NN) that also be-
long to the seven NN in the input space, averaged over
all points (Venna and Kaski, 2006). Vice versa, the
Continuity αC measures for each point in the input
space the percentage among the seven NN that are
also among the seven NN in the projected space, av-
eraged over all points (Venna and Kaski, 2006). The
7-Neighborhood hit αNH measures the percentage of
points with the same label among the seven NN, aver-
aged over all points (Paulovich and Minghim, 2006).
Our fourth metric is derived from the Shephard Dia-
gram, a two-dimensional scatter plot that relates the
pairwise distances in the high-dimensional input space
to the Euclidean distances in the layout (Joia et al.,
2011). The Shephard Digram Correlation αSDC is
given by the Spearman Rank Correlation of the Shep-
hard Diagram and thus captures the global structure.

Unlike Atzberger et al. (2023), we only rely on the
Distance Consistency βDC to measure perception, as it
reflects the idea of cluster separation better than com-
bined with other metrics and has furthermore shown as
most relevant in previous studies Sedlmair and Aupetit
(2015). It measures the percentage of points whose
category center, i.e., the average of all points in that
category, is also its nearest category center in the input
space (Sips et al., 2009). In an ideal scenario, the clus-
ters are well separated to support cluster perception.



Table 3: Number of topics for each dataset evaluated in our
experiments.

Dataset k K ∈ {a,b,c,d,e}
20 Newsgroup 20 20, 25, 30, 35, 40

Emails 4 8, 10, 12, 14, 16
Reuters 65 65, 82, 98, 114, 130

Seven Categories 7 14, 17, 21, 24, 28

Table 4: Range for the hyperparameters considered in our
experiments.

DR Parameter Name Values

t-SNE n iter 250, 1000, 4000
t-SNE learning rate 28, 129, 599
t-SNE perplexity 10–40 step size 10

UMAP min dist 0.25–0.75 step size 0.25
UMAP n neighbors 5, 10, 15, 20

MDS max iter 300

4 IMPLEMENTATION DETAILS

Our implementation is based on Python 3 and actively
maintained libraries for topic modeling and DR, as
listed in Table 2. Our computations are carried out
on a computational cluster comprising ten AMD x64
HPE XL225n Gen10 (2 AMD EPYC 7742 processors,
512GiB RAM, and 64 cores) and eleven AMD x64
Fujitsu RX2530 M5 (2 Intel Xeon Gold 5220S pro-
cessors, 96GiB RAM, and 32 cores). The cluster is
managed using Simple Linux Utility for Resource Man-
agement (SLURM). For more details on our imple-
mentation, we refer to our repository.

The most relevant hyperparameter of a TM is the
number of topics K, which depends on the dataset, as
summarized in Table 3. In the case of the Emails and
Seven Categories dataset, the number of categories k
is relatively low. We therefore set the lower bound
of K to 2k and its upper bound to 4k. In the case of
the 20 Newsgroups and Reuters dataset, in an ideal
scenario of K = k, each topic would represent one
category. We therefore set the lower bound to k and
the upper bound to 2k. LDA furthermore requires the
specification of its two Dirichlet priors α and β. We let
α vary over the values {symmetric, asymmetric, auto}
as specified by Gensim and set β constant as suggested
in the guidelines of Wallach et al. (2009). We apply
LSI and NMF on the DTM and its tf-idf weighted
variant. The value ranges for the hyperparameters for
the DRs are specified in Table 4. By iterating over
each combination of datasets, TM, and DR in a grid
search, we generate a dataset comprising 6346 layouts.

Figure 1: Heatmap showing the pairwise Pearson correla-
tions between the five layout quality metrics using a diverg-
ing color scheme.

5 RESULTS

Evaluating our benchmark on a computational cluster
results in a dataset containing more than 6000 layouts.
For each entry, the accuracy and perception metrics
are stored together with the coherence value of the
underlying TM. We analyze the dataset in three steps:
(1) we investigate the correlation of different quality
metrics, (2) we investigate the impact factors on the
topic model coherence, and (3) we show whether the
coherence influences the quality of the resulting layout.

5.1 Correlation Analysis

Figure 1 shows the pairwise Pearson correlation be-
tween the metrics in QDR. The Trustworthiness αT ,
Continuity αC, and Shephard Diagram Correlation
αSDC show a strong correlation but do not correlate
with the 7-Neighborhood hit αNH . To weight both as-
pects of the accuracy equally, we define the aggregated
accuracy metric α as:

α =
1
2

αNH +
1
2

(
αT +αC +0.5 · (αSDC +1)

3

)
, (2)

where 0.5 · (αSDC + 1) has replaced αSDC to modify
the value range from [−1,1] to [0,1]. The Distance
Consistency βDC strongly correlates to αNH , whereby
both metrics are label-based. Since βDC is the only
perception metric we consider, we define

β = βDC. (3)

To illustrate α and β, Figure 2 shows four plots each
for the 20 Newsgroup dataset. The four coherence
measures strongly correlate. However, instead of ag-
gregating them to a single metric, we solely rely on the
coherence measure CV as it has shown the best results
in the study of Röder et al. (2015).



Effect of overall accuracy

Effect of overall perception

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Scatter plots for the 20 Newsgroup corpus. The color represents the category of each document. The first row
shows the effect of the overall accuracy ((a) α = 0.34, (b) α = 0.47, (c) α = 0.59, (d) α = 0.71); the second row illustrates the
distance consistency ((e) β = 0.05, (f) β = 0.22, (g) β = 0.40, (h) β = 0.56).

5.2 Impact on Coherence

When applying TMs for NLP tasks, the concrete hy-
perparameter setting of the TM is often chosen based
on a coherence value, i.e., different hyperparameter
settings are evaluated, and the highest-scoring one is
chosen. Figure 3 shows the quality of the TMs consid-
ered in our study in a bar chart. The height represents
the value CV of a TM for a specified number of topics
K ∈ {a,b,c,d,e} averaged over all four datasets. The
number of topics K ∈ {a,b,c,d,e}, where a < · · ·< e
depends on the dataset, e.g, the value a is given by 20
in the case of 20 Newsgroup, 8 for the Emails dataset,
65 for the Reuters dataset, and 14 for the Seven Cate-
gories dataset.

For K ≥ b, both variants of NMF perform best,
followed by LDA and its versions and LSI performing
worst. Only the case K = a shows a different order.
For LSI and its tf-idf weighted variant, the coherence
strictly decreases with an increase of K. In the case
of NMF and its tf-idf weighted variant, the coherence
has a significant “jump” from K = a to K = b but then
seems stable over K. LDA shows no clear pattern but
stays within a small value range under variations of K.
For every K, the LDA model with a symmetric prior α

outperforms the version with the automatically learned
one, and except for K = e also the asymmetric one.

To summarize, when applying NMF, the tf-idf
weighting does not improve the results; the best results

are achieved for K = b. In the case of LSI and LDA, it
is recommended to set K = a. Even though this does
not significantly improve the coherence for LDA, it
speeds up the training. The observation that K should
be set to a also confirms the basic idea of a coherence
measure to reflect the interpretability of a model, as
we set K = a to be the number of categories k (or in
the particular case of very few categories 2k) so that
every topic could be linked to exactly one category.

5.3 Impact of Coherence on Layout
Quality

We analyze the relationship between the coherence
and the accuracy metric α and perception metric β,
respectively; i.e., we explore whether the layout qual-
ity depends on the quality of the underlying TM. Our
analysis relies on Kendall’s tau, a correlation measure
for ordinal data (Noether, 1981). Different from the
Pearson correlation, Kendall’s tau is a non-parametric
measure that does not make assumptions on the under-
lying distribution of the data. Given two ordered sets
x=(x1, ...,xn) and y=(y1, ...,yn), the pairs (xi,yi) and
(x j,y j) are said to be concordant if xi > x j and yi > y j,
and discordant otherwise. Let P denote the number of
concordant pairs, Q the number of discordant pairs, T
the number of ties in x, and U the number of ties in y;
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Kendall’s tau is defined as

τ =
P−Q√

(P+Q+T ) · (P+Q+U)
. (4)

Kendall’s tau ranges between [−1,1], with 1 meaning
that the two sequences have the same rankings.

For a given TM T ∈ {LDA,LSI,NMF}, and
DR P ∈ {MDS,SOM, t-SNE,UMAP}, let xT,P =
(x1, . . . ,xn) denote the sequence of coherence values
of fully parametrized TMs, which underly a layout
of a dataset that originates from applying T as TM
and P as DR. The length n is the number of evaluated
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Figure 5: Kendall’s tau for the sequences xT,P and yβ

T,P,
for three different TMs and four different DRs shown as a
heatmap with a diverging color scheme.

hyperparameter combinations.Analogously, we define
yα

T,P = (yα
1 , . . . ,y

α
n ) as the sequence of accuracy values

α and yβ

T,P = (yβ

1 , . . . ,y
β
n) as the sequence of percep-

tion values β, where we assume the exact ordering as
in the sequence x. The results of Kendall’s tau captur-
ing the relationship between coherence and accuracy
are shown in Figure 4, and the values of Kendall’s
tau capturing the relationship between coherence and
perception are shown in Figure 5.

Concerning the accuracy α, LDA shows a very
high (|τ|< 0.7) negative to no (|τ|< 0.1) correlation



with any DR. However, as shown in Figure 3, the coher-
ence for LDA models ranges within a very small range,
which is neglected by the measure tau. Therefore,
other changes to the model, e.g., the implementation
or training method, could result in different observa-
tions. Concerning the perception β, LDA shows a low
(0.1 < |τ| < 0.3) negative to no correlation with any
DR.

The coherence of an LSI model in combination
with SOM, t-SNE, or UMAP shows a medium (0.3 ≤
|τ| ≤ 0.5) to a high (0.5 ≤ |τ| ≤ 0.7) positive corre-
lation with the accuracy. Concerning perception, we
observe a low (0.1 ≤ |τ| ≤ 0,3) to a medium positive
correlation. Surprisingly, LSI combined with MDS
shows a very high correlation concerning β. How-
ever, as the results of Atzberger et al. (2023) showed,
MDS performs worse than t-SNE and UMAP, and we
therefore consider this observation as less relevant.

For NMF, the same basic pattern as for LSI is ob-
served, but attenuated in the expressions of τ. We
assume that this is because the coherence for topics
K ∈ {b,c,d,e} lies in a narrow range of values.

6 DISCUSSION

Based on our results, we formulate our main findings
and discuss the threats to validity that underlie our
argumentation.

Main Findings. Using Kendall’s tau, we showed
that the coherence of a TM is positively correlated
with the accuracy and perception of the resulting lay-
outs in the case of LSI and NMF in combination with
t-SNE, UMAP, and SOMs. MDS shows a different
pattern but is neglected, as the study of Atzberger et al.
(2023) has shown that MDS performs worse than the
others. For LDA, our experiments indicate a negative
correlation. However, we suspect that this is because
the coherence of the LDA models ranges within a small
value range. This conjecture is emphasized by the ob-
servation that NMF shows a weaker correlation than
LSI and also ranges in a smaller value range. Combin-
ing our findings with Atzberger et al.’s guidelines, we
recommend using LSI in combination with t-SNE such
that the coherence of the LSI model is maximized. In
our experiments, LSI achieves its maximal coherence
for K = a, i.e., when the number of topics matches the
number of categories. This also aligns with the idea
of a coherence metric to measure interpretability, as
in the case K = k each topic can be assigned to pre-
cisely one pre-defined category, which allows the user
to cross-check the model by inspecting the topics.

Threats to Validity. Our major internal threat to va-
lidity lies in the design of our benchmark. For example,
by only evaluating four datasets, it is unclear how trans-
ferable the results are for larger sets of text corpora.
Vice versa, it is still being determined to what extent
the results apply to specific datasets. Furthermore, the
results depend on the chosen quality metrics, e.g., by
selecting the distance consistency as the only percep-
tion metric, we have not considered other measures
like the silhouette coefficient. Even though we eval-
uated different parametrizations of the layouts, other
hyperparameters, e.g., the specific implementation and
training method, might lead to other results. Also, the
quality metrics have hyperparameters that need to be
set by the user, e.g., the number of neighbors for the
accuracy metrics. We consider implementation errors
as the main external threat to validity. Even though we
rely on actively maintained and widely used libraries,
reviewed code, and did pair programming, we can not
guarantee the absence of errors. To make our work
more accessible and transparent and enable others to
reproduce our results more quickly, we make our im-
plementation open source.

7 CONCLUSIONS

Many text spatializations rely on a two-dimensional
scatter plot, representing each document as a single
point. Usually, these layouts are derived from apply-
ing a TM and a subsequent DR. Previous benchmark
studies have shown that the generated layout of a text
corpus layout differs strongly between the different
DRs. Even though it is known that a TM can im-
prove the layout algorithm, it is still being determined
to what extent the quality of the TM affects the re-
sulting layout. To address this issue, we proposed a
benchmark (D,L ,QT M,QDR) given as a quadruple of
a set of text corpora D, a set of layout algorithms L
that originate from combining a TM and a DR, a set
of coherence measures QT M to evaluate the quality
of a TM, and a set of metrics QDR that quantify the
accuracy and perception capabilities of a layout algo-
rithm. By evaluating more than 6000 hyperparameter
configurations, we derived a multivariate dataset for
further analysis. Our results indicate that coherence
is positively correlated to the accuracy metric α and
the perception metric β in the case of LSI and NMF,
in combination with t-SNE, UMAP, and SOMs. We
see different directions for future work. Primarily, we
plan to extend our benchmark to address our major
internal threat to validity by including more datasets
and layout algorithms. Besides accuracy and percep-
tion, other aspects of quality, e.g., temporal stability,



could be quantified and taken into account, too. Fur-
thermore, besides a quantitative study of text layout
algorithms, a qualitative approach, which categorizes
layouts according to their topological and geometrical
properties, would be interesting. We expect that such
a categorization would be beneficial for choosing DRs
for specific analytics tasks.
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