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Fig. 1: Two-dimensional scatter plots derived from topic models and a subsequent dimensionality reduction algorithm. Each point
represents the merged source code files of a software project from GitHub. The color indicates the associated class of the software
project, e.g., shell, or frontend. The values α and β correspond to our aggregated accuracy and perception metric, respectively.

Abstract—Topic models are a class of unsupervised learning algorithms for detecting the semantic structure within a text corpus.
Together with a subsequent dimensionality reduction algorithm, topic models can be used for deriving spatializations for text corpora as
two-dimensional scatter plots, reflecting semantic similarity between the documents and supporting corpus analysis. Although the
choice of the topic model, the dimensionality reduction, and their underlying hyperparameters significantly impact the resulting layout, it
is unknown which particular combinations result in high-quality layouts with respect to accuracy and perception metrics. To investigate
the effectiveness of topic models and dimensionality reduction methods for the spatialization of corpora as two-dimensional scatter
plots (or basis for landscape-type visualizations), we present a large-scale, benchmark-based computational evaluation. Our evaluation
consists of (1) a set of corpora, (2) a set of layout algorithms that are combinations of topic models and dimensionality reductions,
and (3) quality metrics for quantifying the resulting layout. The corpora are given as document-term matrices, and each document
is assigned to a thematic class. The chosen metrics quantify the preservation of local and global properties and the perceptual
effectiveness of the two-dimensional scatter plots. By evaluating the benchmark on a computing cluster, we derived a multivariate
dataset with over 45 000 individual layouts and corresponding quality metrics. Based on the results, we propose guidelines for the
effective design of text spatializations that are based on topic models and dimensionality reductions. As a main result, we show that
interpretable topic models are beneficial for capturing the structure of text corpora. We furthermore recommend the use of t-SNE as a
subsequent dimensionality reduction.

Index Terms—Text visualization, spatialization, dimensionality reduction algorithms, topic modeling.
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1 INTRODUCTION

Text data is generated in large quantities in numerous application do-
mains, e.g., social media, news articles, scientific articles, and literature.
Given a set of documents, a so-called corpus, numerous text visual-
izations have been proposed to support users in various analytic tasks,
e.g., summarization, sentiment analysis, or exploration [42]. In order
to “leverage the cognitive benefits from cartography as an established
body of knowledge for information visualization”, many text visual-
ization techniques rely on a map-like metaphor, i.e., “a map imitation
that makes spatialized data appear more like a cartographic map by
emphasizing spatial context” [36]. To derive a spatialization, which
“encode[s] similarities, [by] mapping each data item to a point on the
visual space such that the relative pairwise proximities reflect at best the
corresponding pairwise similarities” [55], different Topic Models (TMs)
and Dimensionality Reductions (DRs) are applied for generating two-
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Table 1: Examples of text visualizations that rely on a two-dimensional
layout derived from a TM and a DR.

Visualization TM tf-idf DR linear combination

Skupin [66] VSM ✗ SOM ✗
Kuhn et al. [44] LSI ✗ MDS ✗
Fried et al. [31] LSI ✓ MDS ✗

Caillou et al. [13] LSI ✓ UMAP ✗
Kim et al. [40] NMF ✗ t-SNE ✗

Choo et al. [17] NMF ✗ t-SNE ✗
Linstead et al. [47] LDA ✗ MDS ✗
Gansner et al. [33] LDA ✗ MDS ✗

Atzberger et al. [7, 8] LDA ✗ MDS ✓
Kucher et al. [43] LDA ✗ t-SNE ✗

Yan et al. [80] LDA ✗ t-SNE ✗

dimensional layouts for a corpus. Starting from the Document-Term
Matrix (DTM) representation of a corpus, which stores the frequency
of the terms within each document, TMs aim to detect clusters within
the vocabulary, so-called topics, by analyzing patterns of co-occurring
words [19]. Thereby, TMs are specified by several hyperparameters that
control the underlying model and the training algorithm. As a result,
TMs yield a high-dimensional vector representation of the documents,
which are further projected to a lower-dimensional space by a DR for
visualization. Table 1 lists examples of text visualization techniques
using a two-dimensional spatialization derived from a TM and a DR.
To summarize, starting from a high-dimensional description of the
documents within a corpus that stores the term frequencies, combining
a topic model and a subsequent dimensionality reduction results in
a two-dimensional scatter plot, where each point represents a single
document.

A visualization designer has to select a TM and a DR and specify
the corresponding hyperparameters. Figure 1 shows exemplarily that
the concrete choice of the combination and assignment of the hyperpa-
rameters strongly influences the resulting layout regarding clustering
and global structure. TMs and DRs are often treated as a “black box”
without thoroughly investigating the effect of the hyperparameters. In
most cases, publications presenting a text visualization focus on the
visual mapping, whereas a comparison of several possible layouts is
usually omitted. Other studies that focus on deriving guidelines for the
effective use of DRs for visualization tasks have not yet considered
TMs. We close this gap by investigating the influence of TMs and DRs
on the spatialization of text visualizations. The research space of TM,
DR, and test data set is extensive. We narrow down this large exper-
imental space by means of a computing cluster and a representative
selection of relevant methods. This is, to the best of our knowledge, the
most comprehensible experimental evaluation in this area.

We present a benchmark B = (D,L,Q) composed of a set of cor-
pora D, layout algorithms L, and quality metrics Q. The set D contains
five corpora, each given by a DTM, with assigned class labels for each
document. Each layout in L emerges from a combination of a TM and
a subsequent DR. The set L comprises 52 different layout algorithms
composed of 13 TMs and 4 DRs. The metrics in Q quantify the preser-
vation of local and global structures of the high-dimensional corpora in
the two-dimensional layout and their cluster separation. We quantify
each layout and the influence of their hyperparameters by performing a
grid search using a computational cluster. We derived a tabular dataset
from the execution of the benchmark with more than 45 000 sampled
layouts and their quality scores. Based on the dataset, we show the
performances with respect to accuracy and the effectiveness to perceive
clusters and propose guidelines for the effective use of TMs and DRs
for the spatialization of corpora. To summarize, we make the following
contributions:

1. We provide a benchmark of five corpora, 52 layout algorithms,
and eight quality metrics for evaluating the use of TMs and DRs
for two-dimensional text spatialization. We provide our imple-

mentation as a Git repository1.

2. We generate a large multivariate dataset with more than 45 000
entries containing the quality score of different hyperparameter
configurations. We selected the range of the hyperparameters
following the recommendations of the used libraries.

3. We provide high-level insights into the aggregated performances
and propose guidelines for the practical use of TMs and DRs.

The remaining part is structured as follows: we present related work in
Section 2. The structure and composition of our benchmark, together
with technical details on the execution, are detailed in Section 3. In
Section 4, we analyze the resulting multivariate dataset. We discuss
the results and present guidelines together with threats to validity in
Section 5. We conclude this work and present directions for future
work in Section 6.

2 RELATED WORK

Several text analysis tasks, e.g., text classification [2], text summariza-
tion [54], or text clustering [3], rely on TMs for modeling documents
within a corpus. In most cases, TMs are evaluated using statistical
measures, e.g., perplexity or coherence scores [60], or by asking users
about the interpretability of the derived topics [48]. Although TMs are
often part of text visualizations or intended to be represented by a visu-
alization, e.g., for topic comparison [5, 64, 79], for topic evolution [21],
or corpus exploration [25, 58], in most cases TMs are not evaluated.
An exception is the work of Riehmann et al., who showed in an expert
study that the topics extracted by LDA do not match the list that experts
curated [59]. DRs are among the popular techniques for visualizing
high-dimensional data, e.g., by computing a set of scatter plots [46], or
by computing two-dimensional layouts as shown in Table 1. Thereby,
DRs are widely evaluated and discussed in previous surveys with dif-
fering foci: surveys that focus on the mathematical principles of DRs
and quantitative studies. In the latter, either the accuracy of DRs, i.e.,
the preservation of local and global structures, or the effectiveness of
the resulting layout for human perception are investigated.

2.1 Mathematical Surveys of Dimensionality Reductions
One of the earlier surveys on DRs with a mathematical introduction
was presented by Fodor [30]. Using a similar approach, Cunningham
and Ghahramani discussed several linear DRs [20]. Further, Engel
et al. presented a survey of basic DRs from a visualization point of
view [26]. In addition to the theoretical alignment of the individual
DRs, the authors also compare their underlying assumptions, online
compatibility, and computational cost. Nonato and Aupetit recently
presented a comprehensive survey of DRs specific to the visualization
domain [55]. In addition to a detailed taxonomy of DRs, distortion
types, analytics tasks, and layout enrichment methods, the authors
formulate guidelines on choosing a DR for a given analytics task.
Unlike our work, the authors additionaly formulate guidelines derived
from their proposed taxonomy and the constraints on mathematical
properties of the DRs, rather than from experimental results.

2.2 Evaluating Dimensionality Reductions for Accuracy
One method for assessing visualization techniques is to define aspects
of quality and derive quality metrics for quantitative measurements [11].
To derive guidelines for the effective use of DRs for visualization tech-
niques, benchmarks that evaluate a large number of different layouts
have been proposed. One quality aspect for DRs is the accuracy, i.e., the
preservation of local and global structures from the high-dimensional
dataset in the low-dimensional representation, for which different met-
rics have been developed [53]. For example, van der Maaten et al.
proposed a benchmark for comparing different DRs [68]. Their study
compared the quality of twelve non-linear methods with Principal Com-
ponent Analysis (PCA) on ten different datasets by measuring three
quality metrics. As a main result, the authors showed that the non-linear
methods did not outperform PCA. However, t-SNE and UMAP were
not included in the benchmark. One study by Gisbrecht and Hammer

1� hpicgs/Topic-Models-and-Dimensionality-Reduction-Benchmark
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Table 2: Characteristics for the five datasets in our benchmark containing
the number of documents m, the median size of the documents N, the
size of the vocabulary n and the number of categories k. The size repre-
sents the size of the raw dataset given by m ·n ·8 byte. This measurement
neglects program overhead and memory required by the DR and TM.

Dataset Size m N n k

20 Newsgroup 575.9MiB 11 314 176 6 672 20
Emails 486.0MiB 9 111 182 6 992 4

GitHub Projects 2 024.5MiB 653 52 635 405 117 8
Reuters 205.5MiB 9 122 102 2 953 65

Seven Categories 993.8MiB 3 127 396 11 373 7

presents the mathematical principles of non-linear DRs and an eval-
uation of their performance on three datasets [35]. In particular, the
authors investigate the influence of individual hyperparameters on the
quality of the resulting layouts. Recently, Espadoto et al. presented an
architecture for a DR benchmark to support users in selecting appro-
priate DRs and allow researchers to assess new methods [29]. Further,
the authors evaluated the benchmark to derive insights and best prac-
tices for the effective use of DRs for visualization tasks [28]. Their
benchmark comprises 18 datasets, 44 dimensionality reductions, and
seven quality metrics. Although the authors consider text data as one
of three types besides tabular and image data, their benchmark does
not consider TMs. Similarly, Vernier et al. followed this approach and
investigated which DRs are suitable for visualizing dynamic data [71].
For this purpose, the benchmark was extended by metrics that measure
the temporal stability of the generated layouts. Until then, the assess-
ment of temporal stability was approached by human judgement [34].
In a later work, Vernier et al. extended their benchmark by two versions
of t-SNE that improved spatial quality and temporal stability [70].

2.3 Evaluating Dimensionality Reductions for Perception
Complimentary to accuracy metrics, perception metrics quantify the
effectiveness of a two-dimensional layout for perceiving structures,
e.g., class separation [4, 62]. Morariu et al. presented a benchmark
for investigating how quality metrics are suitable to describe the visual
appearance of two-dimensional layouts derived from DRs [53]. For
this purpose, rankings provided by study participants were used as
labels to predict user preferences given quality metrics. Similarly,
Xia et al. presented a convolutional neural network for modeling the
human perception of visual clusters [77]. Their model is trained on a
human-labeled dataset and a qualitative study determining influence
factors for cluster perception. Using a similar approach, Wang et al.
combined quantitative measurements and human judgments to evaluate
their proposed perception-driven DR to maximize the perceived class
separation [73]. Xia et al. presented a contrastive DR approach that
considers accuracy metrics in addition to optimizing visual cluster
separation by measuring three perception metrics [76]. In addition to
a quantitative assessment through metrics, Xia et al. showed, through
a user study, that their approach outperformed t-SNE and UMAP in
the task of cluster identification. A further work that relies on a user
study was presented by Sedlmair et al. who investigated to what extent
3D scatter plots or scatter plot matrices improve the perception of
cluster separation, compared to 2D scatter plots [63]. Similarly, Xia
et al. conducted a user study to investigate which DRs are suitable for
visual cluster analysis tasks, e.g., cluster identification, membership
identification, distance comparison, and density comparison [78].

3 BENCHMARK B
Neither the surveys nor the evaluations of the existing benchmarks
consider TMs as components of the layout process. Even for DRs
developed for visualizing text corpora, TMs were not considered in
their evaluation [16, 37]. Our work addresses this gap by evaluating a
benchmark that explicitly considers text corpora and TMs as essential
layout components. The idea of such a benchmark was previously
proposed by Atzberger and Cech et al. [9]. The authors proposed
a benchmark B = (D,L,Q), consisting of a set of text corpora D,

a set of layouts L, and a set of quality metrics Q. We revised and
extended this approach with respect to the following three aspects: (1)
we only consider corpora in D, where the given categories correspond
to semantic concepts. (2) Our layouts L contain additional TMs but
focus on a subset of the proposed DRs. (3) In addition to accuracy
metrics, our set of quality metrics Q further contains measures for
quantifying the perceptual effectiveness of the resulting layout.

3.1 Datasets D
Our set D contains five corpora, whose characteristics are summarized
in Table 2. Each element D = (C,P) ∈D is given as a pair consisting
of a corpus C = {d1, . . . ,dm} and a partition P = {c1, . . . ,ck}, i.e., a
disjoint decomposition of C in k classes. The corpus C consisting of m
documents d1, . . . ,dm over a vocabulary VD of size n = |VD| is given
as a DTM, in which the entry in cell (i, j) indicates the frequency of
the term w j ∈ VD in document di. The elements in a class c ∈ P are
documents that belong to a higher-level concept.

Four of the five corpora in D are preprocessed versions of the com-
monly used datasets 20 Newsgroup2, Emails3, Reuters4, and Seven
Categories5. We applied standard preprocessing steps, e.g., removal
of stop words and the lemmatization of the vocabulary, and additional,
dataset-dependent steps, e.g., removing the email header in the 20
Newsgroup dataset. For details, we refer to our Git repository. Our fifth
dataset covers the domain of software visualization. Previous work has
shown that source code is suitable for text analysis by TMs [10, 15].
As one corpus on source code, we propose a GitHub Projects corpus
containing 653 documents from eight categories, i.e., where each docu-
ment contains the merged source code files of a software project that
belongs to one particular GitHub topic6. Based on the file extension,
we detect source code files written in one of the following languages:
C, C++, C#, Go, Java, JavaScript, Move, PHP, Python, Ruby, Rust, or
Solidity. Thereby, we collected the 100 most popular projects ranked
by stars7 for each of the following GitHub topics: cryptocurrency,
data-visualization, machine-learning, frontend, database, shell, server,
and 3d. As we assume a disjoint partitioning, we consider only the first
mention of a project within the query results. Most remarkable is the
large size of the vocabulary n as shown in Table 2. This is because,
before preprocessing, terms are included, such as short identifier names,
which do not occur in English. In addition to the usual preprocess-
ing, source code-specific operations are performed, such as separating
identifier names according to standard naming conventions and filter-
ing keywords of programming languages as they carry no semantic
meaning. Ideally, after preprocessing, the vocabulary contains all En-
glish language words that occur as comments or identifiers. However,
whether the term originates from a comment or an identifier name is
not distinguished. This procedure is typical for the application of topic
models to source code [15].

3.2 Layouts L
The elements of the set of layouts L originate from combinations
of a TM and a subsequent DR. Training a TM on a given corpus,
given by a DTM, yields a document representation in a Euclidean
standard space of dimensionality ≤ n. The high-dimensional document
representations are projected using a DR on a two-dimensional plane.
Particular combinations applied in existing visualization approaches
are summarized in Table 1.

3.2.1 Topic Models

From the DTM description of a corpus, each document is given as
an n-dimensional vector containing the absolute frequencies of each
term. Together with a similarity measure between documents, this

2scikit-learn.org/0.19/datasets/twenty_newsgroups.html
3kaggle.com/datasets/dipankarsrirag/topic-modelling-on-emails
4kaggle.com/datasets/nltkdata/reuters
5kaggle.com/datasets/deepak711/4-subject-data-text-classification
6github.com/topics
7docs.github.com/en/get-started/exploring-projects-on-github/saving-

repositories-with-stars

https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
https://www.kaggle.com/datasets/dipankarsrirag/topic-modelling-on-emails
https://www.kaggle.com/datasets/nltkdata/reuters
https://www.kaggle.com/datasets/deepak711/4-subject-data-text-classification
https://github.com/topics
https://docs.github.com/en/get-started/exploring-projects-on-github/saving-repositories-with-stars
https://docs.github.com/en/get-started/exploring-projects-on-github/saving-repositories-with-stars


representation is denoted as the Vector Space Model (VSM) [19]. In
our considerations, we use the cosine similarity for documents, as it
allows the comparison of documents of different lengths. However,
the DTM only contains the absolute frequencies of a term regardless
of whether the term is also frequently represented in other documents.
In practice, however, the terms represented in only a few documents
often indicate an underlying concept and are particularly relevant. By
weighting the entries in the DTM according to the term frequency-
inverse document frequency (tf-idf) scheme, the VSM can be modified
to incorporate this effect [3]. Specifically, the tf-idf of a term w in
document d ∈C is given by the product of the term-frequency of the
term w in d and the inverse-document-frequency of w in d, i.e.,

tf-idf(w,d) =
n(w,d)

∑
d′∈C

n(w,d′)
· log

(
|C|

|{d′ ∈C|w ∈ d′}|

)
, (1)

where n(w,d) denotes the frequency of term w in document d.
The DTM is a sparse matrix, i.e., most entries are zero, as documents

usually contain a small fraction of the entire vocabulary. Most TMs
aim to find a more compressed representation of the DTM by grouping
co-occurring words into topics. Algorithms that detect topics as part
of their results are called topic models. Topics are thereby given as
vectors of size n, with the ith entry containing a weight that describes
the impact of term wi for the topic. From the most relevant words,
a human-interpretable concept can be inferred in most cases. In that
sense, the VSM and its tf-idf weighted variant are not a topic model. In
our considerations, we will cover four different topic models described
below. However, in the following, when talking about the evaluation of
all TMs, we also include the VSM and its tf-idf weighted variant. For
example, Latent Semantic Indexing (LSI) is based on Singular Value
Decomposition (SVD), which results in a decomposition of a given
DTM into a document-topic matrix and a topic-term matrix [23]. In
practice, tf-idf weighting is often applied to increase the interpretability
of the topics. Another linear algebra approach for topic modeling is
Non-Negative Matrix Factorization (NMF), where the DTM or its tf-
idf-weighted variant is approximated as a product of two matrices, i.e.,
a document-topic matrix and a topic-term matrix [45]. Latent Dirich-
let Allocation (LDA) is a probabilistic approach for topic modeling
and is probably the most widely used TM in the visualization domain.
LDA is based on the assumption of a generative process underlying
a corpus. Training an LDA model results in topics that are given as
multinomial distributions over the vocabulary. Further, each document
is represented as a multinomial distribution over the topics [12]. As
documents are given as distributions, we specifically apply the Jensen-
Shannon distance for measuring the similarity between documents. As
LDA is a probabilistic model, we do not replace the DTM with the
tf-idf weighted entries. As the last TM, we integrated Bidirectional
Encoder Representations from Transformers (BERT), which is a deep
learning-based approach for topic modeling that is known to generate
easily interpretable topics [24]. Unlike the other TMs, each document
is described as a high-dimensional vector associated with exactly one
or zero topics. The topics are then derived from these associations
using a class-based tf-idf weighting. In the case of BERT, the similarity
between documents is again given by the cosine similarity. Accord-
ing to our survey of works, these methods are representative of topic
extraction in a significant part of the document visualization literature.

3.2.2 Dimensionality Reductions
As DRs, we consider t-SNE and UMAP, as they have shown promising
results in earlier studies [28]. We further consider MDS and SOMs,
as they are widely used in the text visualization domain, as shown in
Table 1. Although many more dimension reductions exist, we limit
our considerations to these four for capacity reasons. t-distributed
Stochastic Neighbor Embedding (t-SNE) is a DR designed to preserve
local structures within a dataset [67]. This is accomplished by assum-
ing a Gaussian distribution centered around each point in the given
high-dimensional space, representing the probability of picking another
point as a neighbor. The number of effective neighbors considered is

controlled by the perplexity hyperparameter, which allows to trade off
local and global properties. The main goal of t-SNE is the preservation
of neighborhoods in the low-dimensional representation with respect to
a t-distribution. The final layout is obtained by an iterative optimization
process that minimizes a stress function that measures the difference
in overall similarity scores derived from the respective distributions.
Uniform Manifold Approximation and Projection (UMAP) was devel-
oped to address the shortcomings of t-SNE, e.g., the distances between
clusters in a t-SNE plot allow no interpretation [50]. Conceptually
similar to t-SNE, UMAP differs in its mathematical details, e.g., it
relies on a stress function derived from Cross-Entropy rather than the
Kullback-Leibler divergence. UMAP has two hyperparameters: the
number of neighbors as a trade-off between preserving local and global
structures and the minimal distance that controls how close data points
can be grouped together in the two-dimensional layout. (Metric) Multi-
dimensional Scaling (MDS) operates on a dissimilarity matrix of the
dataset, i.e., a matrix that contains the pairwise distances between the
data points. MDS aims to compute a lower-dimensional representation,
such that the pairwise Euclidean distances between the points in the
layout reflect the entries in the dissimilarity matrix [18]. In particu-
lar, MDS allows for the visualization of abstract datasets that are not
embedded in the Euclidean space. The positions of the data points
are computed iteratively by optimizing a stress function, for example,
using the SMACOF algorithm. The number of iterations is the only
hyperparameter of the model. Self-Organizing Maps (SOMs) are a class
of fully-connected two-layered neural networks where the neurons of
the second layer are arranged on a two-dimensional grid, whose width
and height are given by two hyperparameters [41]. For a given input,
the neuron whose weight vector is most similar to the input is activated.
This so-called best matching unit determines the position of the given
input vector in the two-dimensional space. The weights are adjusted
during the training phase starting from random initialization in order
to minimize the sum of all quantization errors, i.e., the differences
between the input vectors and their best matching unit. In the case of
the SOM, we applied a PCA that captures 95% of the variance for a
given dataset to reduce computational efforts [39].

The combination of a TM with a DR allows for special considera-
tions. For example, in the case of LDA, the similarities between the
topics differ, as they are given by multinomial distributions over the
vocabulary. Applying a DR on the document-topic representation does
not consider those similarities, thus treating the topics as orthogonal
to each other. Atzberger et al. proposed an alternative by first apply-
ing the DR on the topics and then aggregating the positions of the
documents as linear combinations according to their document-topic
representation [7]. The position d̄ of document d is therefore given by

d̄ =
K

∑
j=1

θ jφ̄ j, (2)

where θ = (θ1, . . . ,θK) denotes the topic representation of d, and
φ̄1, . . . , φ̄K denotes the positions of the topics after application of a
DR.

3.3 Quality Metrics Q
The elements in the set Q are quality measures that quantify certain
layout aspects. Similar to previous benchmark studies, we measure the
quality of a layout with respect to the local and global structures of
a corpus by using several accuracy metrics. The Trustworthiness αT
measures the percentage of close points in the two-dimensional layout
that are also close in the VSM [69]. Vice versa, the Continuity αC
measures the percentage of points in the VSM that are also close in the
two-dimensional layout [69]. For both metrics, we refer to the seven
nearest neighbors, as suggested in previous studies [28, 70, 71]. The 7-
Neighborhood hit αNH requires labels for each document. It measures
the percentage of points with the same label among the seven nearest
neighbors, averaged over all points [57]. All three metrics have values
in the [0,1] range, with 1 being the optimal score. The last accuracy
metric is based on the Shephard Diagram, a two-dimensional scatter
plot that relates the pairwise distances in D to the Euclidean distances



Table 3: Range for the hyperparameters considered in our experiments.
Each configuration for one DR is combined with a dataset and TM.

DR Parameter Name Values

t-SNE learning_rate 250, 1000, 2000, 4000, 10000
t-SNE n_iter 10, 17, 28, 46, 77, 129, 215, 359, 599, 1000
t-SNE perplexity 5–50 step size 5

UMAP min_dist 0.0–1.0 step size 0.1
UMAP n_neighbors 2, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

SOM m 10–20 step size 1
SOM n 10–20 step size 1
MDS max_iter 300–900 step size 20

in the layout [38]. In an ideal scenario, the Shephard Diagram would be
a subset of the diagonal. Then, the Shephard Digram Correlation αSDC
is a measure for the deviation from the ideal scenario. It is given by
the Spearman Rank Correlation of the Shephard Diagram. The metric
ranges between [−1,1], with 1 being the optimal score.

As a second group of metrics, we approximate the effectiveness of
perceiving resulting clusters and existing categories. Following the
results of Sedlmair and Aupetit, we include the Distance Consistency
βDC [62]. It measures the percentage of points in the projected two-
dimensional space whose category center, i.e., the average of all points
in that category, is also its nearest category center [65]. The Silhouette
Coefficient βSC compares the mean intra-cluster distance a and the
mean inter-cluster distance b, where in our case, the cluster labels
are given by the categories [61]. By dividing the difference b−a by
max(a,b), the Silhouette Coefficient ranges between [−1,1], with 1
being the optimal score. We further apply the Calinski-Harabasz index
βCH [14] and the Davies-Bouldin-index DB [22]. In both cases, the
metric results in a non-negative value. In our benchmark, we normalize
both by dividing them by the maximal value achieved on a dataset-TM
combination, with 1 being the optimal score for βCH and 0 being the
optimal score for βDB.

3.4 Experimental Setup & Implementation
We implemented this benchmark using Python 3 and state-of-the-art
libraries for all TMs and DRs. Regarding deployment, the implementa-
tion was designed for concurrent execution on a computational cluster.
The source code of the benchmark, including the scripts to generate the
GitHub Projects dataset, is available in a Git repository1.

3.4.1 Hyperparameter Settings
For each dataset, we consider precisely one version of each TM, using a
fixed hyperparameter configuration chosen using best practices [72]. In
the case of just a few categories k, i.e., for the Emails corpus, the Seven
Categories corpus, and the GitHub Projects corpus, we set the number
of topics K = 2k. For the 20 Newsgroup corpus and the Reuters corpus,
we set K = k. As a general check for plausibility, we further inspected
the most relevant words for each topic with respect to interpretability.
We limited the benchmark regarding the TMs as iterating over the
hyperparameters of each TM, e.g., the number of topics, or the Dirichlet
priors of the LDA model, would enlarge the benchmark by multiple
orders of magnitude. The ranges for the hyperparameters of the four
different DRs are summarized in Table 3. In principle, the validation
of the individual hyperparameters follows a grid search, resulting in
above 45 000 different hyperparameter configurations. However, the
order of the layout computation is random to ensure that representative
results are available during preliminary analysis.

3.4.2 Software Dependencies
Our implementation is based on Python 3.10 and several actively main-
tained and widely used third-party libraries. For LDA, LSI, and NMF,
we have chosen the Gensim library (4.2.0), and for BERT, the Sen-
tence Transformer library (2.2.2). As the application of BERT relies
on pretrained word embeddings, it is a deterministic approach to topic
modeling. The algorithms provided by the Gensim implementation are

also deterministic after initialization. We have chosen the distilbert-
base-nli-mean-tokens as Sentence Transformer8. For t-SNE and MDS,
we use Scikit-Learn (1.2.1) for the Silhouette Coefficient, the Calinski-
Harabasz index, and the Davies-Bouldin index as well. For UMAP, we
use the UMAP-Learn library (0.5.3). For the SOM, we have chosen the
implementation provided by Sparse-SOM (0.6.1) [51]. Furthermore,
our preprocessing is based on the libraries NLTK (3.7), e.g., for removal
of stop words, and Spacy (3.4.3) for lemmatization.

3.4.3 Computational Cluster
We set up the benchmark on a computational cluster with Simple Linux
Utility for Resource Management (SLURM) [81] for concurrent ex-
ecution. This cluster allowed for a large speed-up while requiring
special handling for the software deployment and job scheduling. We
had access to the AMD x64 nodes, which came in two kinds of hard-
ware configurations: (1) HPE XL225n Gen10 machines with 2 AMD
EPYC 7742 processors, 512GiB RAM, and 64 cores, and (2) Fu-
jitsu RX2530 M5 machines with 2 Intel Xeon Gold 5220S processors,
96GiB RAM, and 32 cores. From the HPE XL225n Gen10 nodes,
we regularly used 11, and from the Fujitsu RX2530 M5, we regularly
used 10. The SLURM setup on each node required to use an Enroot9
container with the benchmark. We derived this Enroot container from a
Docker10 container using Pyxis11 and reused the container via caching.

Scheduling a job via SLURM requires explicit specification of re-
quired resources, e.g., RAM, as upper limits. Given our heterogeneous
dataset sizes (Table 2), we decided to split up job allocations into
two running sets, a memory-heavy and a memory-moderate one. The
memory-heavy set covers the evaluation for the GitHub Projects dataset
with a RAM allocation of 200GiB. The memory-moderate set covers
the other datasets with a RAM allocation of 40GiB. Overall, using this
design, we ran thousands of jobs corresponding to ten thousands of
different layouts on the cluster. On average, a job of the memory-heavy
set had an execution time of 12hours with a maximum of 36hours.
For the memory-moderate set, the average execution time was around
2hours, with a maximum of 10hours.

4 RESULTS

We evaluated 46 311 samples, which corresponds to ≈94.7% of tar-
geted layouts. The remaining 5.3% of targeted layouts could not be
computed due to exceeding memory consumption. The corresponding
quality metrics are stored as a tabular dataset. Further, the dataset is
augmented with two additional aggregated quality metrics concerning
accuracy and perception. The aggregated quality metrics are given as
linear combinations of the accuracy and perception metrics, respec-
tively, taking into account a correlation analysis to limit the influence
of strongly correlated quality metrics. We then performed an analysis
of this dataset with respect to four specific questions:

1. Do the tf-idf weighting scheme and Equation (2) improve the
results?

2. Which layout achieves the best result for a given dataset with
respect to accuracy or perception?

3. How sensitive are the DRs with respect to their hyperparameters?

4. What is the performance of the default hyperparameters?

4.1 Correlation of Quality Metrics
Previous ad-hoc formulations of aggregated metrics relied on the arith-
metic mean of the individual metrics, i.e., each metric is weighted
equally [28,53,70,71]. Instead, we target a correlation-adjusted weight-
ing that groups strongly correlated quality metrics using a threshold of
0.8. Specific to the correlation analysis, the David-Bouldin index βDB
has been replaced by 1−βDB to achieve its optimal score at 1. The pair-
wise correlations are shown in Figure 2. For the accuracy metrics, we

8metatext.io/models/sentence-transformers-distilbert-base-nli-stsb-mean-
tokens

9� NVIDIA/enroot
10docker.com
11� NVIDIA/pyxis

https://metatext.io/models/sentence-transformers-distilbert-base-nli-stsb-mean-tokens
https://metatext.io/models/sentence-transformers-distilbert-base-nli-stsb-mean-tokens
https://github.com/NVIDIA/enroot
https://www.docker.com/
https://github.com/NVIDIA/pyxis
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Fig. 2: Heatmap showing the pairwise correlations between the eight
quality metrics using a diverging color scheme.

observe that the three metrics αT , αC, and αSDC are strongly positively
correlated. We, therefore, merge them into a single quality metric using
their average. Conversely, the three metrics correlate weakly with αNH .
Overall, we define the aggregated accuracy metric α as

α =
1
2

αNH +
1
2

(
αT +αC +0.5 · (αSDC +1)

3

)
, (3)

where we replace the Shephard Diagram Correlation αSDC by 0.5 ·
(αSDC + 1) such that it ranges between 0 and 1. Our metric α is in
the value range [0,1], with 1 being the optimal score. Regarding the
perception metrics, the only strong correlation occurred between βDC
and βSC. The other pairwise correlations do not allow for further
grouping. The aggregated perception metric β is defined as

β =
1
3
(1−βDB)+

1
3

βCH +
1
3

(
0.5 · (βSC +1)+βDC

2

)
. (4)

As before, the single metrics are modified such that the aggregated
metric β ranges between [0,1] with 1 being the optimal score.

In our benchmark, we selected datasets with predefined categories.
As the predefined labels indicate a “higher-level” concept, i.e., semantic
themes within the documents, we assume that such a higher-level
concept shows relations to the vocabulary, and therefore a TM would
yield topics that can be associated with the predefined categories. A
good layout algorithm with respect to the accuracy metric α would
result in a two-dimensional scatter plot so that documents that share
the same "dominant" topic form a cluster. Concerning the perception
metric, these clusters should be separated well. Our scatter plots of the
best results support this conjecture.

4.2 Binary Decisions
The choice of weighting the VSM according to the tf-idf scheme is
binary. Using a binary test12, we investigate whether the tf-idf weight-
ing improves the accuracy metric α and the perception metric β . We
extract pairs of layouts from our result dataset where the tf-idf scheme
has been applied in one case but not the other, while all the other hy-
perparameters are the same. The number of pairs in which the tf-idf
improves the results is denoted as k. The p-values and the lower bounds
for the confidence intervals (the upper bound is always one since our
unknown parameter is the probability that the tf-idf weighting improves
the result) for the confidence level of 0.99 are shown in Table 4. The
p-values of the complete set of pairs, i.e., named Total in Table 4, show
that the layout algorithms significantly improve the results concerning
α and β . However, different results might occur on selected datasets,
e.g., in the case of the 7 Categories dataset concerning β .

Also, the application of Equation (2) is a binary choice. Analogously
to before, we applied a binary test. The results are shown in Table 5.
From the p-values of the complete set of pairs, i.e., the total case in
Table 5, we conclude that Equation (2) improves the results concerning
accuracy and perception.

12docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binomtest.html

Table 4: Results of the binary test for the null hypothesis “The tf-idf
weighting scheme does not improve the results according α , or β respec-
tively.” As the p-values (Total) are 0.00, we reject the zero hypotheses.

Accuracy Metric α Perception Metric β

Dataset n k p-value Conf. k p-value Conf.

20 Newsgroup 2842 2577 0.00 0.89 2839 0.00 1.00
7 Categories 2897 1894 0.00 0.63 655 1.00 0.21

Emails 2909 2667 0.00 0.90 2516 0.00 0.85
GitHub 2629 2344 0.00 0.88 2370 0.00 0.89
Reuters 2895 1454 0.41 0.48 1450 0.47 0.48

Total 14172 10936 0.00 0.76 9830 0.00 0.68

Table 5: Results of the binary test for the null hypothesis “Equation (2)
does not improve the results according α, or β respectively.” As the
p-values (Total) are 0.00, we reject the zero hypotheses.

Accuracy Metric α Perception Metric β

Dataset n k p-value Conf. k p-value Conf.

20 Newsgroup 3594 2404 0.00 0.65 1734 0.98 0.46
7 Categories 3651 2117 0.00 0.56 2057 0.00 0.54

Emails 3660 2122 0.00 0.56 1753 0.99 0.46
GitHub 3124 1898 0.00 0.59 1745 0.00 0.54
Reuters 3646 2532 0.00 0.68 1841 0.28 0.49

Total 17675 11073 0.00 0.62 9130 0.00 0.51

4.3 Optimal Results
We first consider the optimal values for α and β for each layout on each
dataset. The results are summarized in Figure 3. Some layouts could
not be computed (grey cells) due to exceeding memory consumption.
For example, BERT is based on a pre-trained embedding, which has not
been shown suitable for modeling source code. This is because the use
of identifiers in source code differs from natural language as identifiers
without vocals might have a semantic meaning, e.g., “ccxt” has no
vocal and is, therefore, no “natural” word but refers to a cryptocurrency
trading API that is well known among practitioners.

We assigned each layout algorithm an identifier given as a quadruple.
The first entry indicates the TM. The second entry indicates whether the
tf-idf weighting was applied (+), or not (-), or could not be considered
for the specific TM (X). The third entry contains the DR. The fourth
entry indicates whether the position of the documents was computed
according to Equation (2) as a linear combination (+), or not (-), or
could not be considered, as no topics were extracted (X).

4.3.1 What Layouts perform best for a given dataset?
The optimal results for each dataset are summarized in Table 6. No
layout algorithm scores best over all datasets with respect to α . In any
case, the first two entries of the quadruple are either given by (LSI,+),
(LSI,-), or (LDA, X). We suspect the reduction in dimensionality within
LSI and LDA to be an advantage for a subsequent DR compared to
the VSM and BERT. The last two entries specifying the best DR are
either given by (t-SNE,+), (t-SNE,-), or (UMAP,+). This observation is
aligned with the results of Espadoto et al. in the case of the VSM [28].
However, most of the layout algorithms perform similarly. Only MDS
shows a generally lower performance compared to the other DRs. The
optimal results with respect to β are summarized in Table 7. As before,
the best results are achieved when t-SNE is applied. However, con-
trary to our observations on α , LDA and LSI perform inferior to the
baseline VSM approach. As our metric β mainly quantifies the cluster
separation, this observation confirms the prevailing opinion that t-SNE
produces well-separated clusters.

4.3.2 What is the influence of the parameters n, m, k?
Regarding α , in 71.2% of the cases, the best result for a given layout
is achieved on the Seven Categories corpus, which is characterized by
a small number of documents m. In 28.8% of the cases, the layout

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binomtest.html


Table 6: Layout algorithms resulting in the best result with respect to the
accuracy metric α for each dataset.

Dataset Layout α

20 Newsgroups (LSI,+,t-SNE,-), (LSI,+,t-SNE,+) 0.79
Emails (LSI,+,t-SNE,-), (LSI,+,t-SNE,+) 0.76

GitHub Projects (LSI,+,t-SNE,-),(LSI,+,t-SNE,+) 0.75
Reuters (LDA,X,t-SNE,+) 0.66

Seven Categories (LSI,-,t-SNE,-), (LSI,-,t-SNE,+)
(LSI,+,t-SNE,-), (LSI,+,t-SNE,+)
(LSI,-,UMAP,-), (LSI,+,UMAP,-)

0.78

Table 7: Layout algorithms resulting in the best result with respect to the
perception metric β for each dataset.

Dataset Layout β

20 Newsgroups (VSM,+,t-SNE,X), (LSI,+,t-SNE,+) 0.80
Emails (VSM,+,t-SNE,X) 0.87

GitHub Projects (VSM,-,t-SNE,X) 0.77
Reuters (VSM,+,t-SNE,X) 0.69

Seven Categories (VSM,+,t-SNE,X) 0.80

does not perform best on the Seven Categories corpus. In that case,
86.7% use MDS as DR. Although the GitHub Projects corpus contains
fewer documents, we suspect its high dimensionality n is why the best
result for a layout is never achieved on the GitHub Projects corpus.
With respect to β in 44.3% of the rows, the Seven Categories corpus
achieves the optimal result, followed by the Reuters (36.5%) and 20
Newsgroup corpora (19.2%), and the Emails (3.8%). In no case, the
optimal result is achieved on the GitHub Projects dataset. This order
does not correspond to the increasing number of categories k. We
assume Seven Categories performs best because of its small number of
documents. We suspect that in these cases, the vocabulary has a more
direct relationship to the topics, and thus more distinct clusters emerge
when modeling the corpora using TMs.

4.3.3 Which DR technique performs best for a given TM?
Regarding α , for any of the given TMs, the best performing DR is
either UMAP in 27.0% of the cases or t-SNE in 81.0% of the cases.
A similar trend is obtained with respect to β . Here, t-SNE achieves
the optimal result in 84.1% of the cases and UMAP in 23.8% of
the cases. However, in the cases where UMAP is superior to t-SNE,
their difference is negligible. With respect to α , in 47.5% of the
cases, the layout algorithms applying a linear combination according
to Equation (2) perform equally to the direct application of the DR
on the document representation. In 36.6% of cases, using the linear
combination improves the result, and in 15.9% of cases, it performs
less. Similar results are observed with respect to β . In 31.2% of the
cases, it improves the results. In 44.5% of the cases, it matches the
results and performs less in the remaining 24.3% of the cases.

4.4 Influence of the Hyperparameters
In addition to the optimal values, it is particularly relevant how sensitive
the DRs are to their hyperparameters. Figure 4 and Figure 5 show the
five-number summaries for the quality metrics α and β merged over the
datasets. The TMs are specified as a triple analogous to the description
from above but with no indication of the DR. Figure 4 shows that for
all layout algorithms that rely on MDS, α takes on values within a
small range. Figure 5 shows the same pattern with respect to β . Even
though a small range is desirable, MDS performs worse than the other
DRs. For layouts derived from a SOM, α varies within a large range.
The first and third quartiles are usually centered in the middle of the
entire value range. Therefore, it is difficult to achieve good results
when using a SOM. The range of values for β is more restricted in
most cases. However, in cases of considerable variation, especially
(LSI,-,-) and (LSI,-,+), the unfavorable location of the first and third
quartiles can again be observed. For t-SNE, α also varies within a
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Fig. 3: Heatmap showing the best results for the layout algorithms on
each dataset. The grey cells indicate combinations, where the TM could
not be applied on the dataset. The second entry of quadruple specifying
the layout indicates, whether the tf-idf weighting was applied (+), or
not (-), or could not be applied (X). The fourth entry in the quadruple
indicates whether Equation (2) was applied (+), or not (-), or could not
be applied (X). (Left) Optimal values for the accuracy metric α, (Right)
Optimal values for the perception metric β .
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Fig. 4: Boxplots showing the summary statistic of the quality metric α.

wide range. For all TMs, we observe that values above the first quartile
are close to the optimum. From this, we conclude that with a high
probability, any chosen hyperparameter setting achieves good results.
Concerning β , the situation is different. Values below the third quartile
are usually close to the minimum. Although the values for the first and
third quartiles are similar to those of the SOMs, t-SNE shows more
upside potential with respect to β . For UMAP, we observe similar
patterns as for t-SNE with respect to α , albeit less pronounced and
with apparent exceptions, e.g., (VSM,+,X). Regarding β , the location
of the first and third quartiles resembles those of t-SNE. Concerning β ,
UMAP, and t-SNE perform similarly.

4.5 Performance of Default Hyperparameters
In typical application scenarios, the hyperparameters for a DR are left
at their default values. Therefore, we analyzed the quality scores of
the respective layouts compared to the other scores within our dataset.
For each combination of TM, DR, and dataset, we determined the
proportion of hyperparameter settings that yield better results for the
metrics α and β than the default settings. The results, averaged over
datasets, are summarized in Figure 6 for MDS, t-SNE, and UMAP.
As the Sparse-SOM library has no default value for the number of
neurons, we omitted this DR. MDS only requires the specification
of the number of iterations. The implementation provided by Scikit-
Learn specifies 300 as the default value. Across all TMs, we ob-
serve values close to the optimum. This indicates that MDS con-
verges to a stable layout already after 300 iterations. t-SNE is known
for being sensitive to its hyperparameters. Scikit-Learn specifies the
default hyperparameters as perplexity = 30, n_iter = 1000, and
learning_rate = max(m/48,50), where m is the number of docu-
ments in our case. Only 13% of the hyperparameter settings perform
better than the default values with respect to α . With respect to β only
15% achieve better results. UMAP-Learn specifies the default values to
n_neighbors= 15 and min_dist= 0.1. In any case, maximal 13%
of the layouts perform better than the default settings with respect to
α . With respect to β , maximal 16% of the hyperparameter settings
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achieve better results. Overall, the default values achieve good results.

5 DISCUSSION

From the results of our evaluation, we derive user guidelines for the
effective combination of TMs and DRs. However, our benchmark, and
the guidelines strictly derived from it, are subject to threats to validity.

5.1 Guidelines

One of the main goals for two-dimensional layouts for text corpora is
the preservation of structures within the high-dimensional representa-
tion, and the separability of clusters in the low-dimensional representa-
tion. We captured both the accuracy metric α and the perception metric
β , respectively. The tf-idf weighting is often applied on the DTM as
an additional preprocessing step. Our first experiment indicates, on a
formal statistical justification, that the tf-idf weighting tends to improve
both the accuracy and the perception.

G1 When applying the LSI, NMF, or no TM, the DTM should be
weighted according to the tf-idf scheme.

Analogously our binary tests revealed that applying Equation (2) im-
proves the results.

G2 When applying the LSI, NMF, or LDA, the document positions
should be aggregated according to Equation (2).

For each dataset, we trained exactly one version for each TM. Even
without adjusting the hyperparameters of the TM, e.g., the number
of topics, our second experiment showed that better results could be
achieved when using a TM rather than solely relying on the VSM
concerning α . Concerning β , a consecutive TM did not show improve-
ments. However, as we did not investigate the full capabilities of the
TM, we can not conclude whether TM can improve the results con-
cerning β . Furthermore, the tf-idf weighting showed improvements
concerning α , and usually the tf-idf weighting results in better inter-
pretable topics. We deduce:
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Fig. 6: Heatmap showing the percentage of resulting layouts that perform
better than the default configuration for a given layout algorithm. (Left)
Results according to the accuracy metric α , (Right) Results according to
the perception metric β .

G3 A interpretable TM will probably improve the quality of a layout
with respect to α .

For both α and β best results were achieved using t-SNE. Furthermore,
our third experiment revealed that with respect to α most hyperparame-
ter settings result in layouts near the optimum. The default values result
in high-quality layouts.
G4 We recommend the use of t-SNE as DR with its default values.

In particular, the use of t-SNE is also recommended by Nonato and
Aupetit for the analytics task “Explore Items in Base Layout” [55] and
previous benchmarks [28].

5.2 Threats to Validity
Our design of the benchmark, its execution, the analysis of the results,
and the derived guidelines are subject to internal and external threats to
validity. We identify two kinds of internal threats to validity. The first
concerns errors that may have occurred in evaluating the benchmark
(Instrumentation). For example, our results may be subject to human
errors in software development. For one, the risk is mitigated by using
actively maintained open-source libraries for all algorithmic aspects
that are often used in the ML community. Further, the source code was
reviewed by at least one additional co-author. Last, we publish our
entire implementation to allow for future improvements. The second
internal threat concerns errors that may be caused by the adjustments
made during the execution of the benchmark (Attrition). The layouts
could be computed in ≈94.7% of targeted cases. Those cases can be
attributed to exceeding memory consumption. Even using the entire
RAM of a node (≈400GiB) has not prevented an out-of-memory event.

As the main external threat to validity, we identify the sampling
bias. Our benchmark is subject to sampling bias with respect to our
selection of datasets, TMs, DRs, hyperparameters, their value range,
and quality metrics. In particular, it is unclear how our proposed guide-
lines are generalizable to other datasets according to the no free lunch
theorem [1]. Furthermore, we trained one TM for each dataset with
fixed hyperparameters. Even though we manually viewed the result-
ing topics and followed best practices, it is unclear how the choices
of hyperparameters for the TM, e.g., the number of topics, affect the
results. Furthermore, many of the layout algorithms sampled are not
deterministic. It is unclear to what extent this affects the generated
layouts. To mitigate this, we plan to evaluate multiple runs for a fixed
hyperparameter configuration and evaluate average values with confi-
dence intervals. Our choice of quality metrics was heavily influenced
by previous benchmarking studies. However, we did not consider the
Normalized Stress because, in many cases, it exceeds the range from 0
to 1, denoted as the value range in [28, 70]. To address the sampling
bias, the benchmark is designed to be extensible with respect to D, L,

and Q. Furthermore, we see great potential in quantifying the quality
of our benchmark, e.g., by measuring the Data Quality Index proposed
by Mishra et al. [52].

6 CONCLUSIONS & FUTURE WORK

Many visualizations for text corpora rely on a two-dimensional spa-
tialization derived from combining a TM and a subsequent DR. Even
though the choice of the TM, DR, and their respective hyperparameters
significantly impacts the resulting layout, it is unknown how to obtain a
two-dimensional layout reflecting both the structure within the corpus
and the cluster separation between categories. We proposed a bench-
mark B= (D,L,Q) consisting of a set of text corpora D, a set of layout
algorithms L that are combinations of TMs and DRs, and a set of qual-
ity metrics Q. We published our benchmark, which is also designed to
be extensible for further experiments. By analyzing the correlation be-
tween the quality metrics, we defined an accuracy metric α , capturing
preservation of high-dimensional structures in the layout, and a percep-
tion metric β , capturing separability between clusters. By extensive
analysis, we discussed the results after executing our benchmark and
derived guidelines for the effective use of TMs and DRs for generating
two-dimensional layouts for text corpora. We recommend the use of
LSI or the VSM, depending on whether the aggregated accuracy metric
α or the aggregated perception metric β is to be optimized. The results
can further be improved by applying the tf-idf weighting scheme. In
our experiments, t-SNE has shown the overall best performance. In any
case, the layout originating from the default hyperparameters is among
the top 20%. Unfortunately, none of the visualization approaches spec-
ified in Table 1 used our recommended layout algorithm. We hope
practitioners and researchers consider our results and guidelines in their
visualization design or extend the benchmark for a more evaluation.

For future work, we see different promising directions. We plan to
expand our benchmark to address the major threats to validity. Also, we
see potential in evaluating more variants of a TM, i.e., by iterating over
its hyperparameter, or new variants of the BERT model, e.g., specialized
for the case of source code. Furthermore, the temporal stability of
a layout is particularly interesting for streaming text corpora, e.g.,
from social media. Our benchmark could be extended to incorporate
time stability as proposed by Vernier et al. [70]. In addition to the
quality metrics, the layouts are saved as well. We plan to analyze
the relationship between DRs and their generated shapes in the two-
dimensional representation. For this, we measure metrics related to the
shape, e.g., the popular scagnostics [74, 75] or measures presented by
Xia et al. [77]. This results in a dataset where each point describes the
shape of a single scatter plot. By clustering this dataset and labeling the
categories according to their visual characteristics, one can determine
which DR will likely result in a specific shape, as recently presented
by Machado et al. [49], and whether it is beneficial for a particular
text visualization task. It would also be interesting to do a coding of
resulting scatter plot patterns by means of an open coding study [56].
For a large corpus, computational costs are relevant. We consider
evaluating the runtime of different layout algorithms. To improve
computation times for layouts, neural networks can be trained on a
set of precomputed layouts to approximate a given DR [27]. This, in
particular, enables applications such as interactive exploration of the
hyperparameter space of DR [6] or comparative analysis [32]. We plan
to analyze to what extent our dataset is suitable for training a neural
network that predicts layouts based on TMs for text corpora.
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A TOPICS

Table 1 – Table 29 show the top ten words for selected topics of all
considered Topic Models.

B EXAMPLE LAYOUTS

Figure 1 shows the layouts generated from (LSI,+,TSNE,+) and
(VSM,+,TSNE,X) for all datasets respectively using the default
parameters of t-SNE. The color represents the class label.



Table 1: Top ten words for ten selected topics for the LSI model for
the 20 Newsgroups dataset.

0 1 2 3 4 5 6 7 8 9

would window key key drive god card drive car space
use file game god window gun driver gun window file
get god chip game file car drive window bike henry

people card team team ide card file file god gun
one drive clipper chip car key gun ide key sale
say driver encryption clipper controller game video disk driver zoo

window people player encryption card drive disk sale gun window
know disk win player disk ide window mail space car

go video play window program bike mouse monitor mouse god
think color escrow escrow win chip diamond god ride mail

Table 2: Top ten words for the eight topics for the LSI model for the
Emails dataset.

0 1 2 3 4 5 6 7

key key bit key stratus phone access gun
chip chip government stratus transfer tap net genocide

encryption clipper encryption bit key public pat turk
government encryption space net rocket clipper key chip

clipper escrow key access gun line stratus clipper
use bit law encryption message encryption encryption soviet

would gun stratus gun bit serial chip stratus
people algorithm clipper clipper distribution warrant escrow firearm
phone phone gun technology carl file reference bony
system serial privacy host encrypt security space law

Table 3: Top ten words for ten selected topics for the LSI model for
the GitHub projects dataset.

0 1 2 3 4 5 6 7 8 9

texture texture tensor webpack price mut mut wallet webpack react
prototype vec torch react market webpack webpack blockchain react webpack

vec shader train chart candle pub pub transaction err err
webpack vertex np vue trade err chart mut syscall jest

vertex mesh webpack pub exchange wallet err boost sqlite sqlite
mesh err shape mut buy react plot err plot vue
tensor gl tf vec binance crate crate chart jest syscall
model geometry react texture mut func axis std std eslint
shader material err wallet pub chart fn pub prop sql

std tensor model err symbol vec react block vue chart

Table 4: Top ten words for ten selected topics for the LSI model for
the Reuters dataset.

0 1 2 3 4 5 6 7 8 9

loss loss net div billion profit share bank split split
net net div billion share loss billion rate dividend gain

profit billion record prior profit billion split oil quarter quarter
nine profit loss record stock tax stock sale rise oil
year div prior pay div bank rate prime offer stock
sale record pay net offer loan bank split year exclude
note prior dividend bank net nil dividend money corp crude

billion nine set quarterly rise net common price group sale
include pay march dividend say share oil year stake include

gain sale quarterly say common three rise billion div tax

Table 5: Top ten words for ten selected topics for the LSI model for
the Seven Categories dataset.

0 1 2 3 4 5 6 7 8 9

instruction share share war share cache cell debenture charge fraction
register instruction debenture charge debenture instruction cache cash motion decimal
memory register allotment soviet cash miss debenture sale wave number

bit debenture instruction magnetic purchase block plant account magnetic bit
address memory cash united account register cash cell particle lesson
cache cash charge party sale memory charge purchase field exponent
branch bit application government allotment page water plant electric denominator
charge address money president balance branch organism redemption current instruction
cycle allotment capital field redemption charge miss error velocity multiply
clock charge force electric book hierarchy magnetic issue cell review

Table 6: Top ten words for ten selected topics for the LSI model with
tfidf weighting for the 20 Newsgroups dataset.

0 1 2 3 4 5 6 7 8 9

would window key key drive god card drive car space
use file game god window gun driver gun window file
get god chip game file car drive window bike henry

people card team team ide card file file god gun
one drive clipper chip car key gun ide key sale
say driver encryption clipper controller game video disk driver zoo

window people player encryption card drive disk sale gun window
know disk win player disk ide window mail space car

go video play window program bike mouse monitor mouse god
think color escrow escrow win chip diamond god ride mail

Table 7: Top ten words for the eight topics for the LSI model with tfidf
weighting for the Emails dataset.

0 1 2 3 4 5 6 7

key key bit key stratus phone access gun
chip chip government stratus transfer tap net genocide

encryption clipper encryption bit key public pat turk
government encryption space net rocket clipper key chip

clipper escrow key access gun line stratus clipper
use bit law encryption message encryption encryption soviet

would gun stratus gun bit serial chip stratus
people algorithm clipper clipper distribution warrant escrow firearm
phone phone gun technology carl file reference bony
system serial privacy host encrypt security space law

Table 8: Top ten words for ten selected topics for the LSI model with
tfidf weighting for the GitHub projects dataset.

0 1 2 3 4 5 6 7 8 9

texture texture tensor webpack price mut mut wallet webpack react
prototype vec torch react market webpack webpack blockchain react webpack

vec shader train chart candle pub pub transaction err err
webpack vertex np vue trade err chart mut syscall jest

vertex mesh webpack pub exchange wallet err boost sqlite sqlite
mesh err shape mut buy react plot err plot vue
tensor gl tf vec binance crate crate chart jest syscall
model geometry react texture mut func axis std std eslint
shader material err wallet pub chart fn pub prop sql

std tensor model err symbol vec react block vue chart

Table 9: Top ten words for ten selected topics for the LSI model with
tfidf weighting for the Reuters dataset.

0 1 2 3 4 5 6 7 8 9

loss loss net div billion profit share bank split split
net net div billion share loss billion rate dividend gain

profit billion record prior profit billion split oil quarter quarter
nine profit loss record stock tax stock sale rise oil
year div prior pay div bank rate prime offer stock
sale record pay net offer loan bank split year exclude
note prior dividend bank net nil dividend money corp crude

billion nine set quarterly rise net common price group sale
include pay march dividend say share oil year stake include

gain sale quarterly say common three rise billion div tax

Table 10: Top ten words for ten selected topics for the LSI model with
tfidf weighting for the Seven Categories dataset.

0 1 2 3 4 5 6 7 8 9

instruction share share war share cache cell debenture charge fraction
register instruction debenture charge debenture instruction cache cash motion decimal
memory register allotment soviet cash miss debenture sale wave number

bit debenture instruction magnetic purchase block plant account magnetic bit
address memory cash united account register cash cell particle lesson
cache cash charge party sale memory charge purchase field exponent
branch bit application government allotment page water plant electric denominator
charge address money president balance branch organism redemption current instruction
cycle allotment capital field redemption charge miss error velocity multiply
clock charge force electric book hierarchy magnetic issue cell review



Table 11: Top ten words for ten selected topics for the LDA model for
the 20 Newsgroups dataset.

0 1 2 3 4 5 6 7 8 9

gun say would subject use use drive go game god
space people write line line line organization say team church
year one think organization window subject subject one year henry

weapon know subject system subject organization line would player believe
firearm would article post organization get get get good subject
orbit time like book file need university people subject say

control see organization use card one post know organization line
rate think line mail problem also would well line organization
use come make university bit look write make write one
new write say computer get write article think get write

Table 12: Top ten words for the eight topics for the LDA model for the
Emails dataset.

0 1 2 3 4 5 6 7

write write people president would homosexual would would
gay article write government one write use write
say post right say make one one one

think get say new go use government year
one say gun people write article law article
go would article go people bit make make
use go would use know health key soviet
see host think human think get write use

article one one would article know people apartment
people fire go write say would say million

Table 13: Top ten words for ten selected topics for the LDA model for
the GitHub projects dataset.

0 1 2 3 4 5 6 7 8 9

get get view type type type builder wx resource sph
webpack type value boost webpack get info model name gl

value string pyx get get value get i get get
type value get err node model protobuf d value value
node size object value order size com string xamarin type
set node set name i data outer get set set

name set type string module name grasscutter std type index
key name insert i io gl net mm ly size
ag std d d value input google item droid name
i d name set d set emu event wd string

Table 14: Top ten words for ten selected topics for the LDA model for
the Reuters dataset.

0 1 2 3 4 5 6 7 8 9

oil stock billion say say rate say say price price
energy say profit rate company debenture talk would raise official

say cocoa net currency year standard fire official oil japan
pipeline buffer year market quarter effective ship oil crude output
barrel delegate loss dollar earning say preliminary meeting barrel chip
crude buy sale bank share split company make soviet say
day manager company west first discount south plan increase reed
spot rule note exchange expect plan cause take say cut
ford consumer nine monetary report treasury bankruptcy import post market
york purchase operating german result balance report country west fall

Table 15: Top ten words for ten selected topics for the LDA model for
the Seven Categories dataset.

0 1 2 3 4 5 6 7 8 9

number page mass city cache address bit execution clock instruction
point hazard energy state memory force reg program instruction memory

magnetic memory nucleus war miss block register branch use time
field performance atom new datum particle one file cycle pipeline
two use two also use body use designer one bit
use time error two write system time address figure computer

force program electron country time register figure system memory motion
time code decay form address mass two also state use

vector system neutron wave register data also force exception load
direction force page south water procedure call state two two



Table 16: Top ten words for ten selected topics for the NMF model for
the 20 Newsgroups dataset.

0 1 2 3 4 5 6 7 8 9

use ax god use file would health year ax file
argument di write say gun one would good di image

one ey subject one firearm people center line um mail
drive biz people time control say medical get ey use
make ex organization people bill know use output mu send

fallacy mu article year handgun make os well ah graphic
would ne father health law think cancer write mi gun
post mi say get united write mu use ex format
see om son work weapon well tobacco program pu system

problem ah make go crime use new file biz ray

Table 17: Top ten words for the eight topics for the NMF model for the
Emails dataset.

0 1 2 3 4 5 6 7

one may say anonymous health use privacy key
say address go use year law file bit
go anonymous president service disease government computer one

people user know posting child encryption information planet
would people think post number chip network first

get anonymity work user report technology electronic block
come system well anon medical new security earth
see right take server state clipper mail chip
like identity make message patient would public message

could many key version study key policy system

Table 18: Top ten words for ten selected topics for the NMF model for
the GitHub projects dataset.

0 1 2 3 4 5 6 7 8 9

type ly type type type get flow flow flow flow
boost get flow boost flow ly direction type type direction
get qp get value boost type ptr name direction type

value type name get get qp uint direction name ptr
size vl ptr d name vl name ptr boost uint

result wd value pp ptr wd type get ptr name
pp d op i direction value get uint get get

string value uint result uint set count d uint count
d i size string pp ul summary i pp summary

set err direction set value d vtbl ly value vtbl

Table 19: Top ten words for ten selected topics for the NMF model for
the Reuters dataset.

0 1 2 3 4 5 6 7 8 9

company source profit currency march say year price rise barrel
say oil loss exchange week billion last new fall crude
corp official net market rise sale one pact year west
unit would share say fed end price rubber month raise

business crude note foreign compare gas say world adjust grade
sell tax nine mark quarter expect growth cent index light

expect last include rate bill total market reference output posting
operation could company system gain early economic conference production oil

year export sale bank first rise expect may seasonally contract
product plan gain west drop low economy month say petroleum

Table 20: Top ten words for ten selected topics for the NMF model for
the Seven Categories dataset.

0 1 2 3 4 5 6 7 8 9

author war force share force charge water energy share vector
book cash motion call use wave surface particle light cell
write soviet two chromosome body field point per united use

movement also body capital time electric air time new also
include united state figure power point pressure mass world system

new state change two memory time plant share call human
many government law issue war two ocean point war organism
soviet union velocity become friction direction call work account time

national new acceleration year would give due potential use two
country become fig population china surface movement surface also animal

Table 21: Top ten words for ten selected topics for the NMF model
with tfidf weighting for the 20 Newsgroups dataset.

0 1 2 3 4 5 6 7 8 9

sun food chip god people space file drive thank team
de arbor clipper believe kill government window disk please player

objective ann encryption faith turk bony win floppy file game
tu thing escrow atheist say jake run hard mail hockey

font disease boston hell right president program boot advance play
graphic name key say fire center directory problem anyone season
value mark algorithm atheism attack launch manager controller duke league

display mi machine existence turkey book server monitor hi win
motif question privacy belief country shuttle buffalo switch know ca

program level government exist war moon version se state ranger

Table 22: Top ten words for the eight topics for the NMF model with
tfidf weighting for the Emails dataset.

0 1 2 3 4 5 6 7

clipper chip phone get pat space government key
encryption device trust drug bit stratus algorithm bit

phone encryption government go access university encryption public
key algorithm security want net mail patent session
chip use president fire run post secret encrypt

system clipper privacy good give news people escrow
escrow voice ensure tell thing please right number

use technology care system two world public serial
right datum omission would think thank law chip

criminal privacy law gun go year say block

Table 23: Top ten words for ten selected topics for the NMF model
with tfidf weighting for the GitHub projects dataset.

0 1 2 3 4 5 6 7 8 9

candle table sql vue react wallet webpack wallet pyx chart
shardingsphere db summary texture node mut plot gl wallet sqlite

glew column sprite webpack model std torch train serie torch
prop client player xonsh style pub kwargs axis err price
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Table 24: Top ten words for ten selected topics for the NMF model
with tfidf weighting for the Reuters dataset.
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Table 25: Top ten words for ten selected topics for the NMF model
with tfidf weighting for the Seven Categories dataset.
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Table 26: Top ten words for ten selected topics for the BERT model
for the 20 Newsgroups dataset.
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Table 27: Top ten words for the eight topics for the BERT model for
the Emails dataset.
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Table 28: Top ten words for ten selected topics for the BERT model
for the Reuters dataset.
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Table 29: Top ten words for seven selected topics for the BERT model
for the Seven Categories dataset.
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(LSI,+,TSNE,+) (VSM,+,TSNE,X)

(a) 20 Newsgroups

(b) Emails

(c) GitHub Projects

(d) Reuters

(e) Seven Categories

Figure 1: Layout examples for LSI and VSM with applied t-SNE
dimensionality reduction for the five datasets.
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