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Self-Supervised Network Projections (SSNP) are dimensionality reduction algorithms that produce low-
dimensional layouts from high-dimensional data. By combining an autoencoder architecture with neighbor-
hood information from a clustering algorithm, SSNP intend to learn an embedding that generates visually sep-
arated clusters. In this work, we extend an approach that uses cluster information as pseudo-labels for SSNP
by taking outlier information into account. Furthermore, we investigate the influence of different autoencoders
on the quality of the generated two-dimensional layouts. We report on two experiments on the autoencoder’s
architecture and hyperparameters, respectively, measuring nine metrics on eight labeled datasets from differ-
ent domains, e.g., Natural Language Processing. The results indicate that the model’s architecture and the
choice of hyperparameter values can influence the layout with statistical significance, but none achieves the
best result over all metrics. In addition, we found out that using outlier information for the pseudo-labeling

approach can maintain global properties of the two-dimensional layout while trading-off local properties.

1 INTRODUCTION

Dimensionality reduction algorithms (DR) are a class
of unsupervised learning methods that aim to find
a low-dimensional layout for a high-dimensional
dataset. They are used as a basis for the visualiza-
tion of high-dimensional data in various application
domains (Espadoto et al., 2021b). Ideally, local prop-
erties, e.g., cluster membership, and global proper-
ties, e.g., cluster separation, of the high-dimensional
dataset are preserved by a DR. In the case of datasets
that carry an intrinsic dimensionality, manifold learn-
ing approaches are the preferred DR, as linear ap-
proaches, such as Principal Component Analysis
(PCA), cannot meaningfully represent the data with
only two or three dimensions (Jolliffe, 2005). Among
the most popular manifold learning approaches are ¢-
distributed Stochastic Neighbor Embedding (t-SNE)
and Uniform Manifold Approximation and Projection
(UMAP), as they are known to generate segregated
clusters of high visual quality (van der Maaten and
Hinton, 2008; Mclnnes et al., 2020).

However, those methods have limitations that
make their application difficult (Espadoto et al.,
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2021a). For example, the results are highly suscep-
tible to the choice of parameters and do not allow
inverse mapping. Deep Learning methods, such as
autoencoder or Neural Network Projections (NNP),
emerged from the field of artificial intelligence and
offer alternative dimensionality reduction approaches
for creating layouts (Hinton and Salakhutdinov, 2006;
Espadoto et al., 2020b). They are compelling due to
their ease of use and the possibility of handling data
outside the training data. Self-Supervised Network
Projections (SSNP), presented by Espadoto et al.
(2021a), combine the qualities of manifold learning
approaches and deep learning methods by incorpo-
rating neighborhood information of data points into
the architecture of an autoencoder. For it, two kinds
of data are combined: the feature data and pseudo-
labels. In this work, pseudo-labels are labels deter-
mined by another machine learning algorithm. For the
original SSNP, the pseudo-labels result from a clus-
tering on the high-dimensional data space. Extending
the loss function of an autoencoder, which reflects the
preservation of the pseudo-labels, a two-dimensional
representation of the data points is learned. Although
the specific autoencoder architecture shows convinc-
ing results, it is an open question how the choice of
pseudo-labels and the hyperparameters of the individ-
ual layers influence the results.



In this work, we evaluate different architectures
and parameters for SSNP. In the work of Espadoto
etal. (2021a), the pseudo-labels encode neighborhood
information resulting from the cluster membership of
a point. However, besides obtaining larger clusters, it
is also desirable for a DR to obtain outliers. There-
fore, we combine cluster membership and outlier in-
formation into an alternative pseudo-label approach.
Through a random search, we further test the hyper-
parameters of the model, e.g., the number of training
epochs or the size of the layers, on the results. We
evaluate the influence of the parameters in two exper-
iments on eight datasets using nine quality metrics.

2 RELATED WORK

Widespread DR are computationally intensive and
require extensive hyperparameter tuning (Yang and
Shami, 2020). Espadoto et al. (2020b) showed that
a neural network can approximate a given DR. The
neural network can be trained by a test dataset, and
the results after applying a DR. Those approaches are
called Neural Network Projections (NNP). The ap-
proximation by the neural network is faster, easier to
use, and allows to map data points outside the train-
ing basis. The quality of the NNP can be improved by
tuning the hyperparameters of the model (Espadoto
et al., 2020a), taking neighborhood information, e.g.,
from a clustering algorithm, into account (Espadoto
et al., 2021a), or sharpening the data distribution be-
fore applying the DR (Kim et al., 2022). Our work
follows the idea of investigating the effect of the un-
derlying architecture and parameters of the model on
the results of the DR and mainly builds upon an NNP
technique presented by Espadoto et al. (2021a). The
authors suspected that Deep Learning algorithms pro-
duce worse cluster separation than traditional man-
ifold learning approaches, as they do not consider
neighborhood information. To address this issue,
SSNP relies on an autoencoder that considers neigh-
borhood information. Among the main advantages of
autoencoders are their ease of use and their compu-
tational efficiency (Fournier and Aloise, 2019). Each
data point is assigned a pseudo-label derived from a
clustering algorithm in the first step. By modifying
the loss function of an autoencoder, the encoder net-
work is trained to learn a low-dimensional represen-
tation of the dataset that separates the clusters well,
taking the pseudo-label into account.

Another desirable property of dimensionality re-
duction is the stability of the results under changes in
the model’s parameters and small changes in the data
basis. Becker et al. (2020) verified the first property

(a) t-SNE for DR. (b) SSNP with ground truth

labels for reference.

(¢) SSNP with KM as
pseudo-labeling strategy.

(d) SSNP with AG and IF as
pseudo-labeling strategy.

Figure 1: Example layouts for different configurations of
the ag-news dataset. The color is derived from the ground
truth labels. Figure 1b, and Figure 1a shows two reference
images. Figure 1b is the result of SSNP with the ground
truth labels followed by t-SNE. Figure 1c uses the simple
KM pseudo-label strategy, and Figure 1d the complex KM
with both AG and IF pseudo-label strategy. We see that
the choice of the pseudo-labeling strategy can influence the
layout considerably.

for Deep Learning approaches. Bredius et al. (2022)
investigated stability with respect to changes in the
data points. Explicitly, the authors evaluated Deep
Learning algorithms after the data was undertaken
different perturbations, e.g., translations, scaling, or
permutations of dimensions of the dataset (Bredius
etal., 2022). Their results showed that NNP can adapt
to data modifications.

3 GRAY-BOX SSNP

Hyperparameters can influence the layout generated
by an autoencoder considerably, as shown in Figures
Ic and 1d. Therefore, we investigate, how the choice
of hyperparameters influences the result (gray box).
For it, we implemented a processing pipeline which
enables us to perform experiments for evaluating the
influence of several kinds of hyperparameters on spe-
cific datasets. In this section, we review the concepts
we used in our processing pipeline (Figure 2). For it,
we used standard techniques such as term frequency-
inverse document frequency transformation (tf-idf).
Additionally, we extended the pseudo-labeling ap-
proach proposed by Espadoto et al. (2021a) by com-
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Figure 2: Our processing pipeline shows which preprocessing steps are undertaken before passing it to an autoencoder. The

code layer represents the resulting projection.

bining the cluster information with outlier informa-
tion via the Cantor pairing function.

Autoencoders. Autoencoders are a neural network
architecture belonging to the self-supervised learn-
ing algorithms class, first presented by Hinton and
Salakhutdinov (2006). They comprise three parts:
an input layer, a set of hidden layers usually smaller
than the input layer, and an output layer of the same
size as the input layer. The inner state of the hidden
layer is called the code. Figure 2 shows the gen-
eral architecture of an autoencoder. The map that
maps the input layer to the code is called the encoder,
whereas the map that maps the hidden layer to the
output layer is called the decoder. Given a training set
D ={xi,...,xn} C R", the parameters of the model
need to be adjusted in such a way that the compo-
sition g o f of the encoder f : R" — R* and the de-
coder g : R¥ — R” approximates the identity map on
R”". This adjustment is usually made by applying the
backpropagation algorithm to the loss function

N

Y (xi— (g0 f)(xi))? (1)

i=1

Usually, the dimension k of the code is much smaller
than the dimension n of the input layer. Therefore
the image f(x) of a data point x € R”" can be seen as
a lower-dimensional representation of x. We choose
k = 2 and interpret the encoder function results as a
projection. For k = 2, the code can be visualized as a
scatter plot to explore high-dimensional datasets.

Hyperparameter Tuning. We investigate the influ-
ence of hyperparameters on our researched datasets.
We restrict our considerations to the hyperparameters
which were explicitly set in the initial work of Es-
padoto et al. (2021a). We consider three kinds of hy-
perparameters: (1) hyperparameters that only influ-
ence the training of the autoencoder, such as patience,
minimum delta, the number of training epochs and the
pseudo-labeling strategy, (2) backpropagation-related
hyperparameters, e.g., layer activation functions or
optimizers, and (3) architecture-related hyperparame-
ters, e.g., the number of layers. We used a grid search

for the pseudo-labeling strategy and the model archi-
tecture. For all other hyperparameters, we used a ran-
dom search.

Clustering and outlier mining techniques. Clus-
tering describes finding structures of dense data points
in unlabeled data that are well separated. Specifically,
a clustering algorithm learns a discrete function that
maps similar data points to the same category (Es-
padoto et al., 2021a). Espadoto et al. (2021a) used the
k-Means algorithm (KM) and agglomerative cluster-
ing (AG) for their pseudo-labeling approach. Besides
pure clustering, we propose using labels from an out-
lier mining technique. In contrast to classical cluster-
ing, which measures the similarity between samples,
outlier mining techniques find samples that are con-
sidered very unusual for the remaining data distribu-
tion (Liu et al., 2008).

We consider two outlier mining algorithms: Isola-
tion Forests (IF) and the Local Outlier Factor (LOF).
The LOF is an outlier mining technique focused on
the sample’s environment (Breunig et al., 2000). If a
sample is very dissimilar to its k nearest neighbors, it
is classified as an anomaly. An IF is an outlier mining
technique presented by Liu et al. (2008) that is similar
to a Random Forest. For it, an attribute is repeatedly
randomly selected and split so that, if possible, a sam-
ple is isolated. Samples that could already be isolated
with a relatively shallow depth of the tree are consid-
ered outliers. In contrast to the LOF, the global prop-
erties of the dataset are also considered (Liu et al.,
2008).

Pseudo-labels and Cantor pairings. To provide
the autoencoder with neighborhood information, Es-
padoto et al. (2021a) provided the data points with
pseudo-labels resulting from the application of a clus-
tering algorithm. We extend this idea by sampling
different approaches to pseudo-labeling that emerge
from clustering or outlier mining algorithms. We con-
sider up to three different views on our data combined
in one pseudo-label: The top-down k-Means view,
the bottom-up agglomerative clustering view, and the
view of an outlier mining technique. All possible
combinations are listed in Table 1. By combining dif-



Table 1: List of attributes with all possible values. We only
show attributes that are subject to the random search. The
initializer values use the following abbreviations: U for uni-
form distributed and N for normal distributed.

Attribute Search Investigated parameter values

Number of epochs Random 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200,
300, 400, 500, 600, 700, 800, 900, 1000

Random 1,2,3,4,5,6,7,8,9,10

Random 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07,
0.08, 0.09, 0.1

Clusters per class  Random 1,2,3,4,5

Random Glorot U, Glorot N, random U, random N,
truncated N, He U

Random linear, tanh, sigmoid, softmax, softplus,

Patience
Min. delta

Initializers

Layer activation

function softsign, elu, exponential

Code layer Random linear, tanh, sigmoid, softmax, softplus,
activation function softsign

Optimizer Random Adam, SGD, RMSprop, Adadelta, Ada-

grad, Adamax, Nadam
Random 0.0, 0.01, 0.1
L2 regularizer Random 0.0, 0.01, 0.1
Pseudo-label Grid KM, AG, KM/AG with IF/LOF, KM with
AG and IF/LOF

L1 regularizer

ferent techniques, the pseudo-labels describe a more
comprehensive view of the data. For reference, we
capture the result of a basic autoencoder without any
pseudo-labeling. For it, given the class labels x and
y from two algorithms, we create a new pseudo-label
by using the bijective Cantor pairing function (Lisi,
2007), given by:

(x+y)2+3x+y
— s O
In the case of three labels, x,y, and z, we ap-
ply the Cantor pairing function first on x and y
and then analogously pair the result with z, i.e.,
Pair(Pair(x,y),z).

Pair:N? 5 N, (x,y) —

4 EXPERIMENTS

We investigate how the hyperparameters, model ar-
chitectures, and pseudo-labels influence the result ac-
cording to our evaluation metrics. We performed two
experiments. First, we focused on how the pseudo-
labels and the training duration influenced our result.
For it, we investigated only hyperparameters that in-
fluence the training but not the model definition. Our
second experiment investigates different model archi-
tectures and their related hyperparameters. We used
the SSNP implementation most recently published by
Kim et al. (2022). For more implementation details,
we refer to our auxiliary material.

Training-related Hyperparameters. In this first
experiment, we study training-related parameters. In

detail, we will sample from four hyperparameters
with the values shown in Table 1. The number of
epochs describes how often the training data is fed
to the model. Too few epochs lead to underfitting
while too many epochs can result in the overfitting
problem without proper regularization. Patience de-
scribes a parameter that — together with the minimum
delta — influences if the training is stopped early. If
the model cannot improve over minimum delta accu-
racy over patience number of epochs the training is
stopped. The cluster per class parameter times the
number of classes determines how many cluster la-
bels are present for our cluster-based pseudo-labeling
strategy. Additionally, we perform a grid search on
the pseudo-labeling strategy. In summary, we tested
100 different parameter configurations with a random
search strategy (Bergstra and Bengio, 2012).

Backpropagation-related and  Architecture-
related Hyperparameters. We test seven model
architectures with a grid search and sample
backpropagation-related  hyperparameter config-
urations with values as shown in Table 1 in this
second experiment. In detail, we consider the follow-
ing hyperparameters: (1) number of layers and their
(2) number of nodes, (3) initializer, (4) layer acti-
vation function, (5) optimizer, and (6) regularizers.
A larger number of layers offers more abstraction
potential but is harder to train. The initializer sets
the initial weights and biases for each node in the
model. The layer activation function depends on the
current state of the signal from the previous layer is
fed into the next layer. For the code layer, we may
use another activation function similar to the output
layer of a neural network (Espadoto et al., 2021a).
The optimizer determines how the model weights
and biases are updated dependent on the old state
of each node and the activation function. It guides
the backpropagation of the model. Regularizers also
influence the backpropagation and systematically
force the network to not use information in order
to avoid overfitting. We differentiate between an 11
(linear) and 12 (quadratic) regularization. The details
of the seven model architectures can be found in the
auxiliary material. We tested ten randomly selected
parameter configurations according to the random
search strategy (Bergstra and Bengio, 2012).

Evaluation Datasets. In our experiments, we ex-
tend the datasets provided by Espadoto et al. (2021a)
by datasets provided by Atzberger et al. (2022) to val-
idate the former results and shift the focus to natural
language processing (NLP). In detail, the datasets are
given by Table 2.



Table 2: Details of the evaluation datasets. We use the ab-
breviation FGI for “flatten grayscale image”.
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20-newsgroups tf-idf 16 695 23959 20 tf-idf
ag-news tf-idf 19175 20860 4 tf-idf

fashion-MNIST 60000 784 10 FGI

har 10299 561 6 -

hatespeech tf-idf 24783 8176 2 tf-idf
imdb tf-idf 13177 30354 2 tf-idf

MNIST 60000 784 10 FGI
reuters tf-idf 8432 5000 6 tf-idf

Evaluation Metrics. Here and in the following, we
always refer to the cosine distance for distance mea-
surement, as not otherwise mentioned, because — es-
pecially for very high-dimensional data — it usually
captures the similarity between data samples better
than euclidean distances (Atzberger et al., 2022). Es-
padoto et al. (2021a) used the following four metrics
for evaluating a DR:

* Trustworthiness measures the number of points
that are close to each other in the original dataset
and after projection (Espadoto et al., 2021a).

 Continuity measures the number of points that are
close to each other after projection, and which are
also close to each other in the original dataset (Es-
padoto et al., 2021a).

* The 7-Neighborhood-Hit counts how much data
points the closest seven data points in the pro-
jection have the same label as the data point
weighted by the overall presence of the label in
the dataset (Kim et al., 2022).

* The Shepard Diagram Correlation measures how
well, the dissimilarity matrix is preserved by the
DR (Joiaet al., 2011).

We furthermore capture the normalized stress, which
approximates the squared error between the dissimi-
larity matrices in the high and low-dimensional space.
Those metrics focus on the neighborhood of data
samples and are therefore more concerned with lo-
cal properties of the projection. In addition, we also
measure more global properties of the data, which can
be captured by clustering metrics (Kwon et al., 2018),
specifically:

» The Calinski-Harabasz index measures the ra-
tio of the mean of inter-cluster dispersion and
the mean of intra-cluster dispersion (Calirfiski and
Harabasz, 1974). The index requires the usage of
euclidean metrics.

* The Davies-Bouldin index compares the similarity
of each cluster to its most similar cluster (Davies
and Bouldin, 1979). The index requires the usage
of euclidean metrics.

* The silhouette coefficient of a data sample mea-
sures the maximal ratio between the mean dis-
tance of all data points within its cluster to the
mean distance of all data points in the next nearest
cluster (Rousseeuw, 1987).

* The s4py, validity index takes the cluster compact-
ness, separation, and density of clusters into ac-
count (Halkidi and Vazirgiannis, 2001).

We measured how well the data was clustered in the
original data space using their ground truth labels and
if the projection could preserve this clustering. We
normalize and invert the measurements to the [0, 1]
interval with 1 as the best possible result.

Statistical Tests. The choice of a statistical test is
dependent on the data distribution. For it, we have to
verify whether or not the quality metrics are normally
distributed. For it, we used the Quantile-Quantile-Plot
(QQ-Plot), which can be found in our auxiliary mate-
rial. The QQ-Plot reveals that the normal assumption
is invalid. We, therefore, choose statistical tests that
do not make any assumption on the underlying distri-
bution. We test two different kinds of null hypotheses:

Hy, : The pair of metric values and the increase of
a parameter occurs at random.

To verify this null hypothesis, we apply the Spear-
man correlation test (Myers and Sirois, 2004). We
can argue that the parameter significantly influences a
metric by rejecting the null hypothesis.

Hy,: The underlying distribution of metric values
and parameter distribution is the same.

For the second null hypothesis, we use the Wilcoxon
(Gehan, 1965), the U-test (MacFarland and Yates,
2016) and the sign test (Hodges, 1955). In this case,
we aim to fail to reject the null hypothesis. In gen-
eral, this does not imply that the null hypothesis is
true but only implies insufficient evidence to reject it
(Saxena et al., 2011). But in cases, where we already
rejected the first null hypothesis and have a large sam-
ple size for each of our evaluation datasets, failing
to reject the null hypothesis consistently may provide
additional verification that the two samples are likely
to originate from the same distribution (Makuch and
Johnson, 1986).



S RESULTS

Our results reveal that the choice of hyperparame-
ters, especially the pseudo-labeling strategy, number
of clusters, and regularizers, can significantly impact
the layout. Therefore, they should be chosen care-
fully. In our first experiment, a more complex pseudo-
labeling strategy that considered outlier information
improved global metrics but decreased metrics related
to neighborhood information. In our second experi-
ment, the pseudo-labeling strategy had a weak neg-
ative correlation with the sgp,, validity index. The
number of clusters had a modest impact on evaluation
metrics, while regularization terms were mostly neg-
atively correlated with evaluation metrics, suggesting
that no regularization is needed. The best model ar-
chitecture was found to be the one previously pro-
posed by Espadoto et al. (2021a). For the full eval-
uation material we refer to our auxiliary material.

Training-related hyperparameters. First, consid-
ering Hy,, we observe that different pseudo-labeling
strategies influence the projections, as shown in Fig-
ures 1lc, and 1d. The autoencoder was trained 400
epochs, using 20 clusters per class with seven epochs
and a minimum delta of 0.02 for early stopping. The
deep learning approaches differ more from non-deep
learning approaches as t-SNE, as shown in Figure 1a.
Our metrics indicate that, in this specific case, the best
pseudo-labeling strategy (besides using t-SNE) was
SSNP with KM and IF.

In the first experiment, the number of clusters per
class and the pseudo-labeling strategy were the most
influential parameters, as shown in Table 3 (top). In-
creasing the number of clusters was correlated sig-
nificantly with 8 out of 9 of our evaluation metrics
(p < 0.1%). The one metric that was correlated
without significance was the Calinski-Harabasz in-
dex. The correlation was not positive in each case,
meaning that a higher number of clusters positively
influences the trustworthiness, continuity, Shephard
diagram correlation, silhouette coefficient, Davies-
Bouldin index, and sgp,, validity index while nega-
tively impacting the 7-neighborhood hit and the nor-
malized stress. Making the pseudo-labeling strategy
more complex was significantly correlated to 5 out of
9 of our evaluation metrics at a significance level of
0.1%. Again, the correlation was not positive in each
case. The pseudo-labeling strategy was positively
correlated with the Shephard diagram correlation, the
Calinski-Harabasz index, and the sgp,, validity in-
dex. Therefore, those metrics are positively influ-
enced by choosing a more complex pseudo-labeling
strategy that also considers outlier information. The

Table 3: Full list of significantly correlated parameter-
metric pairs at significance level 0.1% (top) and excerpt
from the significantly correlated parameter-metric list of our
second experiment (bottom). Abbreviations: The parame-
ter value n_cluster refers to the number of clusters per class,
11 refers to 11 regularization, 12 to 12 regularization, and la-
bel to our pseudo-labeling strategy. The metric C refers to
to the continuity metric, D to the Davies-Bouldin index, H
to the Calinski-Harabasz index, N to the 7-Neighborhood
hit, S to the normalized stress, SDC to the the Shephard di-
agram correlation, SC to the silhouette coefficient, s_dbw to
the sg4p,, validity index and T to trustworthiness.
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Experiment 1
n_cluster C 0.00 000  0.00 0.36
n_cluster D 0.00 000  0.00 0.24
n_cluster N 0.00 0.00 0.00 —0.13
n_cluster S 0.00 000 000 —0.27
n_cluster SC 0.00 000  0.00 0.18

n_cluster SDC 0.00  0.00 0.00 0.27

n_cluster s_dbw 0.00  0.00 0.00 0.30
ncluster T 0.00  0.00 0.01 0.25
label H 0.03 001 0.00 0.15
label N —0.19
label S —0.10
label SDC 0.06
label s_dbw 0.04

Experiment 2

11 C 0.31 —0.26
11 N 0.39 —0.18
11 s.dbw 001 @ 025 003 —0.13
12 C 0.14 029 —0.12
12 N —0.12
12 s_dbw —0.06
12 SDC —0.07
12 T 0.04 0.13 —0.10
label C 055 e .10
label N 0.49 024 —0.13

label H 0.01 0.00 0.00 0.08
label SDC 0.09 —0.08
label T —0.09

Sapyw validity index was maximized when using the
complex SSNP with KM and both AG and IF or SSNP
with KM, AG, and LOF pseudo-labeling strategy. In
contrast, the other positively correlated metrics were
mainly maximized by using the strategy that involves
KM and LOF. In contrast, the normalized stress and
the 7-neighborhood hit were negatively impacted by
choosing a more complex pseudo-labeling strategy.
The 7-neighborhood hit was optimized using a simple
pseudo-labeling strategy, and the normalized stress
was optimized using no pseudo-labeling strategy.




Architecture-related hyperparameters. Consid-
ering Hy,, the pseudo-labeling strategy remains sig-
nificant at a 0.1% significance level for the Shephard
diagram correlation and the sgp,, validity index. For
higher significance levels, they also agree for patience
together with the 7-neighborhood hit or trustworthi-
ness at a significance level of 1%. The other corre-
lation tests, especially the sign test, differ with the
remaining tests and would reject the null hypothesis
for any correlation between the number of clusters per
class and metric.

In our second experiment, we found out that the
model architecture did not significantly correlate with
any evaluation metric for the tested parameter con-
figuration for a significance level of at least 10%.
The best results were achieved with the architecture
already proposed by Espadoto et al. (2021a). Fur-
thermore, we found out that other model-related pa-
rameters, like the amount of 11 or 12 regularization,
are (mostly negatively) significantly correlated with
many evaluation metrics, as shown in Table 3 (bot-
tom). The amount of 11 regularization correlated sig-
nificantly (p < 0.1%) with 7 out of 9 evaluation met-
rics. The 12 regularization was even for 8 out of 9
evaluation metrics (p < 0.1%). Both regularization
terms did not correlate with the Calinski-Harabasz in-
dex. The 12 regularization term additionally did not
correlate with the silhouette coefficient. In contrast
to our first experiment, our second type of hypothe-
sis test agreed with more cases of correlation found.
The 11 and 12 regularization still correlated signifi-
cantly (p < 0.1%) with 5 out of 9 of our evaluation
metrics. For one up to three evaluation metrics, the
choice of the optimizer, the layer activation function,
and the initializers correlated significantly. As before,
the pseudo-labeling strategy significantly influenced
many evaluation parameters Table 3 (bottom). No-
tably, the choice of hyperparameters may lead to a
degenerated projection where all data points are pro-
jected around a single point, which makes the points
impossible to differentiate.

Threats to Validity. Several internal threats of va-
lidity limit the results presented above. First, we have
focused our investigations on hyperparameters that
were also present in previous work — mainly from
Espadoto et al. (2021a) — and the tested number of
hyperparameter configurations was limited by the de-
sign of our experiments. In particular, we introduced
a bias into our experiments for the chosen hyperpa-
rameter values. Second, our results are limited to the
tested data sets. Following the no-free-lunch theorem,
our results may not be applicable in another domain
for other datasets (Adam et al., 2019). Third, our

choice of statistical tests introduced further bias be-
cause three out of our four statistical tests aimed at
failing to reject the null hypothesis instead of proving
the alternative hypothesis. But following Makuch and
Johnson (1986), a reasonably large sample size would
allow us to deduce that the null hypothesis could be
true. We mitigated this bias by establishing a signif-
icant correlation according to the Spearman correla-
tion test. Furthermore, we used a reasonably large
sample size of over 200 000 samples.

External factors could also threaten our results.
First, our implementation and analysis may be sub-
ject to software bugs. However, we mitigate this risk
by inheriting publicly available source code and soft-
ware. Second, the used model relies on random num-
ber generators. We mitigated this risk by setting the
random seed everywhere applicable.

6 CONCLUSIONS

In this work, we reiterated the SSNP approach for
dimensionality reduction. For one, we extended
the original pseudo-labeling approach by consider-
ing outlier labels and pairing them with clustering la-
bels. Furthermore, we designed two experiments test-
ing different hyperparameter configurations, includ-
ing the extended pseudo-labeling approach. We mea-
sured nine evaluation metrics, i.e., five local and four
global metrics that consider local neighborhood and
global clustering properties, respectively.

Our results indicate that the architecture chosen by
Espadoto et al. (2021a) is adequate. Furthermore, the
choice of a pseudo-labeling strategy, regularization,
and the number of clusters per class influence evalu-
ation metrics significantly. However, the correlation
is ambiguous. Most of the time, global metrics are
optimized by using a more complex pseudo-labeling
strategy while local metrics are traded-off.

We propose that future work investigates further
hyperparameter configurations, especially additional
compounded pseudo-labeling strategies. Further, we
aim to build a visualization that guides the user in
choosing a hyperparameter configuration.
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APPENDIX

The auxiliary material is available under 10.5281/zen-
0do0.7501914 and contains implementation details,
the QQ-Plots, and all evaluation results.
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