
Hephaistos: A Management System for Massive
Order Book Data from Multiple Centralized Crypto

Exchanges with an Internal Unified Order Book
Robert Henker1, Daniel Atzberger2, Jan Ole Vollmer, Willy Scheibel2, Jürgen Döllner2, Markus Bick3

1XU Exponential University, Potsdam, Germany
2Hasso Plattner Institute, Digital Engineering Faculty, University of Potsdam, Germany

3ESCP Business School, Berlin, Germany
mail@roberthenker.com, janolevollmer@web.de, mbick@escp.eu

{daniel.atzberger, willy.scheibel, juergen.doellner}@hpi.uni-potsdam.de

Abstract—Offers to buy and sell cryptocurrencies on exchanges
are collected in an order book as pairs of amount and price
provided with a timestamp. Contrary to tick data, which only
reflects the last transaction price on an exchange, the order
book reflects the market’s actual price information and the
available volume. Until now, no system has been presented that can
capture many different order books across several markets. This
paper presents Hephaistos, a system for processing, harmonizing,
and storing massive spot order book data from 22 centralized
crypto exchanges and 55 currency pairs. After collecting the
data, Hephaistos aggregates several order books in a so-called
Unified Order Book, which is the foundation for a Smart Order
Routing algorithm. As a result an order is splitted across several
exchanges, which results in a better execution price. As component
of a high-frequency trading system, Hephaistos captures 32% of
the total daily spot trading volume. We provide examples with
data from two exchanges that show that the Smart Order Routing
algorithm significantly reduces the slippage.

Index Terms—Cryptocurrencies, Centralized Exchanges, Order
Book Data, Big Data, Stream Processing

I. INTRODUCTION

Since the launch of the first and most famous cryptocurrency,
Bitcoin, more than 9 000 other cryptocurrencies have been
created that can be traded on more than 240 specialized crypto
exchanges [1]. In contrast to the frequently used closing prices,
so-called tick data, which reflect the price at which the last
transaction was executed in the past, order book data also make
available the prices at which buyers and sellers would now
buy and sell, but whose orders have not yet been executed
due to a lack of matching complementary orders and will not
necessarily have to be executed in the future [2]. The order
book totals the volumes of all existing buy and sell orders
at a given price and compares the totals sorted by amount
as supply and demand. Besides fiat currencies such as EUR
and USD, other cryptocurrencies can be used for trading a
cryptocurrency, thus resulting in a variety of pairings. The
exchange maps the currently available price from the offered,
so-called maker orders, lowest selling price and the highest

buying price. If a buyer, so-called taker orders, buys equal
to or higher than the lowest offered selling price or places
an order equal to or lower than the highest offered buying
price, the crypto exchange forms a transaction from the highest
possible matching volume of the maker and taker orders. This
transaction’s price is then added as the latest tick to the tick data.
In illiquid market phases or in the case of larger transactions,
close observation of the order book is necessary, as the actual
price available in the order book may deviate significantly from
the last tick price [3].

Order Book Data is an example of Big Data using a taxonomy
following Jin et al. [4]:

Volume: The collected order books within three years are
stored as a multivariate dataset with a total size of 55TB.

Velocity: At liquid exchanges, an order book has an update
frequency of only a couple of milliseconds.

Veracity: Order book entries sometimes contain non-sensible
entries that have to be detected and filtered.

Variety: Some exchanges provide additional data besides the
amount and price in an order book, e.g., notional volume,
time of entry, time of last change, or order type.

Value: Knowledge of historical order book data is necessary
for evaluating quantitative investment strategies in back-
tests [5], analyzing market structures [3], [6], or locating
fraud activities [7], [8].

These characteristics of order book data cause, among other
factors, a high level of technical complexity in their processing,
storing, and analysis. To the best of our knowledge, there is
no free service that provides real-time access to order books
across several exchanges in a unified data scheme. Therefore
our goal was to design and implement a customized solution.

In this paper, we present the design and technical imple-
mentation of a system, named Hephaistos, that collects data
from the order books of multiple exchanges by accessing
their respective public APIs. After checking each entry in the
order book for errors, the accepted entries are stored in a
uniform multivariate data scheme. In a further step the single
order books are aggregated in a single Unified Order Book979-8-3503-1019-1/23/$31.00 ©2023 IEEE

(UOB). By applying a Smart Order Routing (SOR) algorithm,
an incoming order is split across several exchanges to achieve
a better execution price. To summarize, our work makes the
following contributions:

1) We built a fully working system that is integrated in a
high-frequency trading system, which captures 32% of
the total daily spot trading volume.

2) We present design considerations and details on its
implementation.

3) We present a UOB that aggregates the collected data within
a single data structure, which allows the application of a
SOR algorithm to reduce slippage.

The remainder of this work is structured as follows: In
Section II we present existing works for mining financial data
for the cryptocurrency domain. The concept of our system, our
data base scheme, and implementation details are described
in Section III. As an use case for storing order books across
several exchanges, we present a SOR algorithm together with
an example for reducing slippage in Section IV. Our results
are discussed in Section V. We conclude this work and point
out directions for future work in Section VI.

II. RELATED WORK

Our consideration of the related work comprises three parts.
First, we present papers that ignore order books and include
only tick data in their considerations. However, different studies
show that liquidity is a crucial aspect when investing in any
asset, particulary in digital assets or cryptocurrencies, thus
requiring knowledge about order book data [3]. We then
proceed with a presentation of existing solutions for crawling
order book data from crypto exchanges, and finally present
different applications that rely on order book data.

A. Applications relying on tick data

Most related work focusses on tick data when analyzing
cryptocurrencies. Ho et al. studied trading strategies for 23
cryptocurrencies, that are derived from candlestick patterns [9].
Their analysis is limited to aggregated daily price data and
only requires the past opening, closing, high, and low prices,
but ignores intraday price fluctuation. McNally et al. trained
recurrent neural networks for price prediction based on histori-
cal daily closing prices and compared them with the classical
ARIMA model for time series analysis [10]. Another popular
research direction is the combination of tick data with text data
obtained from Twitter for predicting price movements [11],
[12].

None of the presented methods considers the underlying
order book in their studies. Accordingly, only explicit costs
are taken into account in backtests, e.g., trading fees of the
exchanges or clearing fees, whereas implicit costs are neglected.
However, considering the order book is indispensable, espe-
cially in the operational implementation of a trading strategy,
since dealing with the slippage effect during the execution
of an order is a challenge. The slippage effect occurs when
one sell/buy order is executed against multiple buy/sell orders
in the order book. As a result, the effective price where the

resulting trades were executed deviate significantly from the
initially assumed price. A study on the impact of implicit costs
measured by several liquidity measures for different crypto
exchanges is provided by Angerer et al. [3]. To adress this
issue, we propose a SOR algorithm that reduces the implicit
costs, which is a common technique in traditional financial
markets [13].

B. Existing systems

Existing work on analysis and visualization of crypto data is
limited to a small amount of data at a time, usually comprising
only one currency pair and collected within a short time period
such as one year. Moreover, the papers do not present any
software implementation capable of managing order book data
as Big Data. An exception is made by Dilbagi, who presents a
hybrid persisted cloud approach for collecting order book data
from Binance [14].

Another system architecture for collecting order book data
from crypto exchanges using a GPU-accelerated processing
pipeline, was proposed by Burján and Gyires-Tóth [15]. Their
system collects data from Coinbase and stores the data for
further analysis using neural networks. Our work goes further
and collects order book data from more than one exchange
and several currency pairs. This extension requires a more
advanced system for processing, harmonizing, and storing the
data. In our work, we therefore focus on the development of
an infrastructure that is capable of creating a comprehensive
data basis of order books for many cryptocurrency pairs from
multiple exchanges over a long period of time that enables
downstream analyses. To the best of our knowledge, we are
the first to present a work in that direction.

C. Applications reyling on order book data

Puljiz et al. presented a work for detecting fraud activities in
the cryptocurrency domain [6]. Their work relies on the order
book of the BTC/USD pair collected at one exchange within
300 hours. In their work, the authors apply a continuous-time
stochastic model to investigate the dynamics underlying an
order book. A main result of their work was the evidence of
widespread use of frontrunning, which is one among various
market manipulation techniques [7], [16]. Front running refers
to exploiting insider information in securities transactions by
a stockbroker. It is assumed, for example, that the insider first
buys these securities for his own portfolio before placing a large
buy order to profit from the price increase of the subsequent
order.

Besides fraud detection, the analysis of quantitative trading
strategies is a relevant application relying on order book data.
Raheman et al. presented a market-making strategy that uses
multiple independent agents, each with different strategies [5].
Their strategy increased returns in backtests on two order books
and in a real-world setting.

III. ARCHITECTURE

Figure 1 outlines the components of our system and their
distribution across servers. The order book reconstruction and

Exchange A

Exchange B

Exchange C

Exchange D

...

Order Book
Reconstruction

Order Book
Reconstruction

Order Book
Reconstruction

Order Book
Reconstruction

...

Websocket

Websocket

Websocket

Websocket

Message
Broker

Unified Order
Book Builder

Unified Order Book

Archiver

. .
.

Database
...

Fig. 1. System overview with the different components, instances, and their distribution across servers (grey rectangles).

archiving components are implemented in Python and we use
two independent PostgreSQL databases on separate servers for
redundancy.

A. Order Book Reconstruction

Most exchanges offer a Websocket or FIX API to receive
updates to the order book incrementally. The typical process
starts with receiving or fetching a snapshot of the complete
order book and then subscribing to a stream of incremental
updates, where each update contains only the price levels that
have changed since the preceding update. Three update cases
can occur: (1) add a new price level, (2) change the volume of
an existing price level, (3) delete a price level, though often
the same representation of a (price, volume)-tuple is used for
all three cases with a volume of 0 denoting the deletion of a
level.

It is up to the client to correctly reconstruct the order book
from the stream of incremental updates by applying each update
to their local state and ensure their local order book is fully in-
sync with the source exchange’s order book. There are different
options to verify the integrity of the reconstructed order book,
whose availability differ by exchange:
Update timestamps are the most basic variant and allow

verifying that updates have at least been received in the
correct order.

Update sequence numbers can be considered extension of
update timestamps and are expected to be strictly incre-
mental, thus additionally allow the detection of missing
updates.

Checksums are the most comprehensive approach that not
only allows verifying the correct receiving of updates, but
also the correctness of the reconstructed order book. They
are computed over the first n levels of the order book
after applying the respective update.

Our system applies all three integrity checks as far as
provided by the different exchanges. The reconstruction compo-
nent of our system encapsulates all exchange-specific message
parsing and API behavior, such as the handling of maximum
order book depth, where some exchanges send explicit deletions
for levels that exceed the maximum depth due to intermediately
inserted levels, while others rely on the client to discover
this. The reconstruction component outputs streams of fully
reconstructed order book snapshots in a harmonized format.

Our system runs one or more reconstruction processes per
connected exchange to distribute the computational workload

over multiple CPU cores, all of which feed the resulting
snapshots into a central message broker.

B. Message Broker

We introduced a central Apache Kafka message broker
following the publisher-subscriber model to allow flexible
scaling-out and distribution across servers on both ends.
This avoids n:m connections between publishers (order book
reconstruction) and subscribers (such as archiving) as well
as having to perform the reconstruction of the same order
book multiple times in different processes. Kafka offers low-
enough end-to-end latency as well as an intermediate storage
with guaranteed message ordering, which can act as cache
and bridge load spikes as well as outages of the database and
archiving services, thus ensuring completeness of the archived
data. We use separate Kafka topics for each trading pair on
each exchanges to allow consumers to selectively subscribe to
required markets only, thus reducing the overall message load
on the broker as well as the consumer.

C. Archiving

We archive all received order book data without any
aggregation or reduction for later analysis. The archiving
component subscribes to all Kafka topics and encodes the
received data into the database storage format described in
section III-D, which involves deriving incremental changes
again from the stream of snapshots in order to reduce the
required storage space. The archiver keeps the current state
in memory and only outputs a new database entry once a
level has been removed or replaced and thus the valid until
timestamp is know. This reduces the number of write operations
to the database and ensures consistency compared to saving
every level as soon as it arrives and filling in the valid until
timestamp later. The disadvantage of this approach is that it can
take considerable time until the full snapshot for a particular
point in time is available in the database as levels further down
in the order book change less frequently.

The resulting table rows are committed in batches to reduce
the transaction processing overhead in the database. Together
with each batch, the archiving service stores the latest message
id whose data is included in the batch for every Kafka topic
in the same transaction. This ensures that in the event of a
crash or restart, the archiving service can find the exact place
in the order book stream where the archiving needs to continue
without any data loss or integrity violations.

v: 5.5 v: 3.2 v: 0.4

v: 0.1

v: 2.0

v: 0.76 v: 1.0 v: 0.5 v: 3.3

v: 2.67 v: 2.54 v: 0.32

v: 1.43 v: 0.62

valid from valid until

v: 0.02

Snapshot at tx Time

Price Level

19995

19996

19997

19998

19999

20000

v: volume

Fig. 2. Conceptual visualization of order book level changes over time.

The workload of the archiving can be easily distributed over
multiple processes along different Kafka topics since encoding
and database writes for different streams do not conflict.

D. Database Storage

Our database storage concept combines three aspects to
maximize space efficiency while maintaining acceptable speed
for typical workloads.

Validity Timestamps: Figure 2 shows a contrived example
of an order book and the changes to its levels over time. Each
entry for a specific price level has a specific volume and exists
for a specific timeframe until it is either replaced with an entry
of a different volume or deleted. We denote the lifetime of
such an entry using two timestamps: valid from for when
an entry first enters the order book and valid until for when
the entry is replaced or removed. The complete snapshot of
the order book at any point in time tx consists of all entries
with valid from ≤ tx and valid until > tx.

The key idea to our storage format is to store each entry as a
separate row including the valid until timestamp. This allows
directly fetching the order book snapshot for any point in time
without requiring a starting snapshot and replaying incremental
updates as received by the exchanges while maintaining the
space efficiency compared to storing full order book snapshots
after every update.

Table Partitioning: Based on observations of use cases
and queries run on the data, we determined that the majority of
queries involve data from only small subset of markets (most
often just one) and never merge bids and asks. This allows the
use of table partitioning to reduce the query response time [17].
When using magnetic hard disks, the disk response time is a
major factor in the total time required to filter a large table.
To reduce the amount of data that needs to be searched and
therefore loaded from disk, we use completely separate tables
for bids and asks. Each of these two tables further uses Postgres’
built-in table partitioning mechanism to physically store data
from different markets at separate locations on the disk. Queries
can directly access the required partition or use the parent table
with a filter for the market, in which case the query planner
automatically determines the appropriate partition(s). In both
cases, the amount of data that needs to be loaded from disk
is drastically reduced, thus reducing the query response time
accordingly. In addition, this speeds up sequential accesses

of specific tables (such as occurs when exporting data for a
timerange or replaying it during backtesting) even further due
to the improved spatial locality on disk.

BRIN Indexes: The search for a particular point in time
or timerange using the valid from and valid until fields is
a common filter criterion in our queries. While it is possible
to use traditional b-tree indexes to accelerate the search of a
table for a particular value, they generally require as much
disk space as the target column(s) since they need to contain
the value of every row and thus exhibit a considerable space
overhead for tables with a few columns but many rows.

Due to the way the archiver works, the tables are effectively
insert-only tables, i.e., data is only ever inserted, but never
modified or deleted. Further, on a large scale view, the order
of rows inserted into the tables and thus their order on disk
correlates with the valid from and valid until timestamps.
The Block Range Index (BRIN) index is a highly specialized
index for exactly such cases where the target column correlates
with the order on disk [18]. It divides the set of table rows into
blocks and stores the value range (minimum and maximum)
for the target columns in every block. The lookup consist of a
linear search of block summaries for blocks whose value range
covers the value in question, followed by linear searches of
every block found for the exact matches. This type of index
provides sufficient speed-up for our use case with minimal
space overhead for storing the index data.

E. Unified Order Book Builder

The key idea of a UOB is that it includes price levels and the
related volumes from several exchanges that list a given pair.
Each price level of the UOB includes the exchange it originated
from in addition to price and volume. If multiple exchanges
offer the same price level, they are not aggregated but included
separately to allow subsequent separation again. The UOB
thus diverges from traditional representations in that it is only
monotonically in/decreasing, but not strictly monotonically,
i.e., if two different exchanges contain two levels with the
same price they will occur as separate entries within the UOB.
An example of the UOB originating from two order books is
shown in Table I.

The building of the UOB is a separate component. It is
implemented as a stream processor, i.e., a separate process
receives individual order book updates from Kafka, builds
the UOB, and feeds the result back into Kafka. This has
the advantage that the calculation is done only once, and
multiple engine instances may use the same result. However,
it has the drawback that it results in higher latency and overall
computation effort if only one instance uses the result

IV. SMART ORDER ROUTING

In illiquid market phases or when placing large orders,
several levels of the order book are required for execution.
The associated implicit costs lead to a higher average purchase
or lower average selling price. In the following, we present
a SOR algorithm that splits an order and distributes it across
multiple exchanges to minimize the implicit costs. The SOR

TABLE I
FIRST TEN LEVELS OF THE ASK SIDE OF TWO ORDER BOOK SNAP SHOTS FROM CEXIO AND Kraken TOGETHER WITH THE RESULTING UOB.

CEXIO Kraken Unified Order Book
Price Volume Price Volume Price Volume Exchange

20 078.3 $ 0.001BTC 20 092.6 $ 0.004BTC 20 078.3 $ 0.001BTC CEXIO
20 132.3 $ 0.410BTC 20 098.9 $ 0.647BTC 20 092.6 $ 0.004BTC Kraken
20 132.4 $ 0.573BTC 20 105.2 $ 0.619BTC 20 098.9 $ 0.647BTC Kraken
20 132.6 $ 0.900BTC 20 115.3 $ 0.486BTC 20 105.2 $ 0.619BTC Kraken
20 137.7 $ 0.498BTC 20 136.2 $ 0.400BTC 20 115.3 $ 0.486BTC Kraken
20 187.9 $ 1.000BTC 20 191.0 $ 5.289BTC 20 132.3 $ 0.410BTC CEXIO
20 321.9 $ 0.148BTC 20 200.9 $ 0.124BTC 20 132.4 $ 0.573BTC CEXIO
20 322.0 $ 2.000BTC 20 228.8 $ 0.100BTC 20 132.6 $ 0.900BTC CEXIO
20 500.0 $ 0.250BTC 20 238.1 $ 0.003BTC 20 136.2 $ 0.400BTC Kraken
20 966.4 $ 0.001BTC 20 254.8 $ 0.001BTC 20 137.7 $ 0.498BTC CEXIO

Fig. 3. Procedure of the SOR Algorithm. An order might require several
levels in an order book to be executed. The blue boxes group the required
levels within a single order book that belong to such a trade. The orange
boxes indicate the levels of the splitted order.

algorithm follows three steps as shown in Figure 3. First,
the UOB is created for the exchanges under consideration.
Secondly, the splitted orders are computed by considering the
UOB. In the third step, the single orders are executed on the
single exchanges.

To illustrate the effectiveness of our approach, we consider
the concrete example from Table I. In Table II the average buy
prices and the slippage, i.e., the relative distance to the first
order book level, are summarized. By construction, the SOR
algorithm consistently achieves the lowest average price. The
difference to the respective price on one of the two alternative
exchanges increases with growing investment volume and
amounts to up to 0.38%. The UOB also has the smallest best
ask price, which means that for small investment volumes, the
slippage on a single exchange, specifically Kraken in this case,
is smaller. However, from an investment volume of 3.0BTC,
the relative slippage in the UOB is the smallest. The difference

increases with growing investment volumes, For an investment
of 5.0BTC, the implied cost is 158% higher on CEXIO and
28% higher on Kraken. It is worth mentioning that we are only
looking at two exchanges here. With a growing number, the
reduction of the slippage effect by the SOR can be expected
to increase significantly.

V. RESULTS & DISCUSSION

The Hephaistos system is tailored to handle order book data
from several crypto exchanges and is effective regarding this
approach with the current setup. Currently, it collects the order
books of 22 exchanges and 55 currency pairs, representing
1 210 individual markets (unique pairs per exchange). Accord-
ing to CoinMarketCap those markets represent 32% of the
total daily spot trading volume.In September 2022 alone, the
1 210 unique markets generated 32 043 446 130 price updates,
which corresponds to 1.7TB additional storage volume in the
system.

However, the trading of traditional assets, e.g., stocks, and
alternative assets, e.g., commodities or energy, is also organized
via order books. Providing this data is an essential part of the
business model of traditional exchange operators. An extension
of Hephaistos to more liquid markets will have impact regarding
the scalability of the architecture and the adaptability to other
exchanges and their APIs.

Scalability: Regarding scalability, the processing of a
larger trade throughput is required. Using parallelization across
multiple CPUs, the system can scale up on order book
reconstruction accordingly. Archiving only requires the addition
of more storage.

Extensibility to other Exchanges: The respective ex-
changes allow access to the order books of the respective
markets via an API interface. These APIs are handled using
corresponding new implementations of order book reconstruc-
tions and therefore do not require any architectural changes.
Although each exchange can communicate more data in their
order book updates, we don’t expect data structure mismatches
with our unified storage scheme.

VI. CONCLUSIONS

Centralized exchanges enable the trading of cryptocurrencies.
Buy and sell orders are managed in the order book and thus

TABLE II
AVERAGE PRICE FOR BUYING ONE BITCOIN FOR DIFFERENT ORDER VOLUMES. THE SLIPPAGE MEASURES THE RELATIVE DISTANCE BETWEEN THE

RESULTING AVERAGE PRICE AND THE FIRST LEVEL IN THE RESPECTIVE ORDER BOOK.

CEXIO Kraken Unified Order Book
Volume Avg. Price Slippage Avg. Price Slippage Avg. Price Slippage

0.5BTC 20 132.21 $ 0.27% 20 098.85 $ 0.03% 20 098.80 $ 0.10%
1.0BTC 20 132.31 $ 0.27% 20 101.07 $ 0.04% 20 101.05 $ 0.11%
1.5BTC 20 132.41 $ 0.27% 20 104.00 $ 0.05% 20 103.97 $ 0.13%
2.0BTC 20 132.75 $ 0.27% 20 109.37 $ 0.08% 20 108.87 $ 0.15%
2.5BTC 20 136.10 $ 0.29% 20 122.28 $ 0.15% 20 113.57 $ 0.18%
3.0BTC 20 144.74 $ 0.33% 20 133.73 $ 0.20% 20 116.73 $ 0.19%
3.5BTC 20 155.42 $ 0.38% 20 141.91 $ 0.25% 20 119.00 $ 0.20%
4.0BTC 20 176.25 $ 0.48% 20 148.05 $ 0.28% 20 121.02 $ 0.21%
4.5BTC 20 192.44 $ 0.57% 20 152.82 $ 0.30% 20 122.86 $ 0.22%
5.0 BTC 20 205.40 $ 0.63% 20 156.64 $ 0.32% 20 128.98 $ 0.25%

form the basis for price formation. The retrieval of order
book data across multiple exchanges and currency pairs, poses
great challenges for its technical implementation. To overcome
these challenges, we developed Hephaistos, a system and
infrastructure for processing, harmonizing, and storing massive
order book data. The system is able to reconstruct an order
book in real time and allows to archive this data in an UOB.
As one possible application of the UOB, we presented a SOR
algorithm to execute one order across multiple marketplaces
resulting in multiple transactions to counteract the slippage
effect and thus achieving a better execution price.

Our next step is to investigate to what extent the use of the
SOR helps to improve the return on quantitative investment
strategies. For this purpose, simple trading strategies, e.g., based
on chart signals, will be simulated. In this context, the necessity
of knowledge of the order book can also be demonstrated.

One of the observations on the UOB is that a negative
spread might occur, i.e., the best ask price can be lower than
the best bid price on another exchange. Such a situation offers
an arbitrage opportunity in which an asset can be bought on
one exchange and simultaneously sold on another exchange
with profit. It is necessary to investigate to what extent the
market data show such theoretical opportunities and if these
can be actually exploited.

Another possible direction for future work is to apply existing
approaches relying on order book data, e.g., fraud detection, on
a larger dataset. Also, a comparison to the state of UOB and
SOR in traditional financial markets, e.g. in terms of technical
architecture, data throughput, and latency, would be beneficial.

REFERENCES

[1] CoinMarketCap. Top cryptocurrency spot exchanges. 2023. URL: coin-
marketcap.com/rankings/exchanges/.

[2] Martin D Gould, Mason A Porter, Stacy Williams, Mark McDonald,
Daniel J Fenn, and Sam D Howison. Limit order books. Quantitative
Finance, 13(11):1709–1742, 2013.

[3] Martin Angerer, Marius Gramlich, and Michael Hanke. Order book
liquidity on crypto exchanges. In Proceedings of the 3rd Crypto Asset
Lab Conference, CAL ’21. Crypto Asset Lab, 2021.

[4] Xiaolong Jin, Benjamin W Wah, Xueqi Cheng, and Yuanzhuo Wang.
Significance and challenges of big data research. Big Data Research,
2(2):59–64, 2015.

[5] Ali Raheman, Anton Kolonin, Ben Goertzel, Gergely Hegyközi, and
Ikram Ansari. Architecture of automated crypto-finance agent. In
Proceedings of the International Symposium on Knowledge, Ontology,
and Theory, KNOTH ’21, pages 10–14. IEEE, 2021.

[6] Mate Puljiz, Stjepan Begušic, and Zvonko Kostanjcar. Market microstruc-
ture and order book dynamics in cryptocurrency exchanges. pre-print,
URL: www.bib.irb.hr/952865, 2018.

[7] Felix Eigelshoven, Andre Ullrich, and Douglas A Parry. Cryptocurrency
market manipulation: A systematic literature review. In Proceedings of
the International Conference on Information Systems, ICIS ’21. AIS,
2021.

[8] Friedhelm Victor and Andrea Marie Weintraud. Detecting and quantifying
wash trading on decentralized cryptocurrency exchanges. In Proceedings
of the Web Conference 2021, WWW ’21, pages 23–32. ACM, 2021.

[9] Kin-Hon Ho, Tse-Tin Chan, Haoyuan Pan, and Chin Li. Do candlestick
patterns work in cryptocurrency trading? In Proceedings of the
International Conference on Big Data, BigData ’21, pages 4566–4569.
IEEE, 2021.

[10] Sean McNally, Jason Roche, and Simon Caton. Predicting the price of
bitcoin using machine learning. In Proceedings of the 26th Euromicro
International Conference on Parallel, Distributed and Network-based
Processing, PDP ’18, pages 339–343. IEEE, 2018.

[11] Jethin Abraham, Daniel Higdon, John Nelson, and Juan Ibarra. Cryp-
tocurrency price prediction using tweet volumes and sentiment analysis.
SMU Data Science Review, 1(3), 2018.

[12] Shubhankar Mohapatra, Nauman Ahmed, and Paulo Alencar. KryptoOr-
acle: A real-time cryptocurrency price prediction platform using twitter
sentiments. In Proceedings of the International Conference on Big Data,
BigData ’19, pages 5544–5551. IEEE, 2019.

[13] Xiaoyun Wang and Tu Lai Huan. Bnp paribas: Equity smart order router.
Electionic Projects Collection, 2010.

[14] Arsh Dilbagi. Infrastructure and techniques to collect data and detect
market manipulation on crypto-exchanges. Master’s thesis, Operations
Research and Financial Engineering, Princeton University, New Jersey,
USA, 2021.

[15] Viktor Burján and Bálint Gyires-Tóth. Gpu accelerated data preparation
for limit order book modeling. In International Conference on Machine
Learning, Optimization, and Data Science, pages 385–397. Springer,
2020.

[16] Massimo Bartoletti, Barbara Pes, and Sergio Serusi. Data mining for
detecting bitcoin ponzi schemes. In Proceedings of the Crypto Valley
Conference on Blockchain Technology, CVCBT ’18, pages 75–84. IEEE,
2018.

[17] PostgreSQL. Documentation table partitioning. 2023.
URL: postgresql.org/docs/12/ddl-partitioning.html.

[18] PostgreSQL. Documentation brin indexes. 2023.
URL: www.postgresql.org/docs/12/brin.html.

https://coinmarketcap.com/rankings/exchanges/
https://coinmarketcap.com/rankings/exchanges/
https://www.bib.irb.hr/952865
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/brin.html

	Introduction
	Related Work
	Applications relying on tick data
	Existing systems
	Applications reyling on order book data

	Architecture
	Order Book Reconstruction
	Message Broker
	Archiving
	Database Storage
	Unified Order Book Builder

	Smart Order Routing
	Results & Discussion
	Conclusions
	References

