
Tooling for Time- and Space-efficient git Repository Mining
Fabian Heseding

fabian.heseding@student.hpi.uni-
potsdam.de

Hasso Plattner Institute, Digital
Engineering Faculty, University of

Potsdam
Potsdam, Germany

Willy Scheibel
willy.scheibel@hpi.uni-potsdam.de
Hasso Plattner Institute, Digital

Engineering Faculty, University of
Potsdam

Potsdam, Germany

Jürgen Döllner
juergen.doellner@hpi.uni-

potsdam.de
Hasso Plattner Institute, Digital

Engineering Faculty, University of
Potsdam

Potsdam, Germany

ABSTRACT
Software projects under version control grow with each commit,
accumulating up to hundreds of thousands of commits per reposi-
tory. Especially for such large projects, the traversal of a repository
and data extraction for static source code analysis poses a trade-off
between granularity and speed.

We showcase the command-line tool pyrepositoryminer that
combines a set of optimization approaches for efficient traversal
and data extraction from git repositories while being adaptable
to third-party and custom software metrics and data extractions.
The tool is written in Python and combines bare repository ac-
cess, in-memory storage, parallelization, caching, change-based
analysis, and optimized communication between the traversal and
custom data extraction components. The tool allows for both met-
rics written in Python and external programs for data extraction.
A single-thread performance evaluation based on a basic mining
use case shows a mean speedup of 15.6× to other freely available
tools across four mid-sized open source projects. A multi-threaded
execution allows for load distribution among cores and, thus, a
mean speedup up to 86.9× using 12 threads.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories; Softwaremaintenance tools; Software version control.

KEYWORDS
Mining Software Repositories, Python, Git
ACM Reference Format:
Fabian Heseding,Willy Scheibel, and Jürgen Döllner. 2022. Tooling for Time-
and Space-efficient git RepositoryMining. In 19th International Conference on
Mining Software Repositories (MSR ’22), May 23–24, 2022, Pittsburgh, PA, USA.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3524842.3528503

1 INTRODUCTION
With software playing a key role in the modern world, gaining
insights about software becomes crucial [9]. Such insights entail
quality metrics about the software as well as data about the devel-
opment process. One approach to gaining insights about software,
especially its source code, is deriving it from their repositories

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in 19th International
Conference on Mining Software Repositories (MSR ’22), May 23–24, 2022, Pittsburgh, PA,
USA, https://doi.org/10.1145/3524842.3528503.

that are governed by version control systems (VCS) such as git [2].
Mining Software Repositories (MSR) focuses on extracting and ana-
lyzing data available in software repositories to uncover interesting,
helpful, and actionable information about the software system [14].
One goal is to quantify and monitor the quality of the developed
software employing software metrics [8], another is to explore
new ways of making sense of the data. However, traversing and
gathering the vast amount of data poses a challenge [4, 9–11].

For an exemplary analysis of a software repository, we assume a
process that covers the following parts: (1) Acquiring the software
repository (e.g., git clone), (2) Provisioning the files to run an
analysis on (e.g., git checkout), (3) Running an analysis on the
files (applying existing tools or custom scripts that derive quality
metrics), and (4) Reporting the results (e.g., by creating reports or
interactive visualization). During this process, the analysis usually
covers parts or the whole repository and, thus, requires some sort
of traversal (Figure 1). With a list of revisions to analyze, each revi-
sion is checked out to the working directory. Upon each checkout,
tools that calculate software metrics are run and the results are
logged. After handling all revisions, the results are merged and
reported. For example, a linter may run on a working directory
and output a quality score of the source code. Another example
is to measure the source code using software metrics that report
higher-level information. Tracking those scores across versions
allows for detecting changes, trends, and insights about a software
project’s development status and quality.

If an applied software developments process includes regular
software analysis, the data mining from the repository gets de-
manding over time. This demand occurs through (1) ever-growing
source code, (2) the number of changes created during the overall
development, (3) the number of concurrent development branches,
e.g., through multiple developers or multiple maintained versions,
(4) the complexity of the analyses performed, and (5) the expectation
for timely results for effective use in the development process.

In this paper, we showcase a low-level analysis tool for efficient
git repository mining named pyrepositoryminer [5] and discuss
architectural and design decisions that improve the execution speed
of the tool. It is written in Python, available at PyPi, and serves as
a framework that provides repository traversal and allows to use
custom metrics provided as scripts and integrate existing metric
calculation tools. A first analysis using the mid-sized open-source
projects numpy, matplotlib, pandas, and tensorflow shows greatly
improved execution times compared to other low-level source code
repository MSR tools. Although provisioned as a separate tool
focusing on Python and git, the discussed approaches are applicable
to other MSR tools and VCS, too.

https://orcid.org/0000-0002-7885-9857
https://doi.org/10.1145/3524842.3528503
https://doi.org/10.1145/3524842.3528503


MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Heseding, Scheibel, and Döllner

Software
Repository

File
Provisioning

Metrics
Calculation

Each branch
Each commit

Merge
Outputs

Analysis &
Reports &

Visualization

$ git clone

$ git checkout $ ./script_A.sh . &&
radon *.py && ...

for commit in commits ...

$ jupyter lab

Figure 1: Example process for software analysis that requires
repository mining across multiple branches and commits,
while computing multiple metrics using third-party and cus-
tom tools. The results can than be used for further analysis,
static reports, or interactive visualization.

2 RELATEDWORK
In the last years, many tools for mining git and related systems were
proposed and researched. Although a number VCS are suitable for
mining of software data, the specific ecosystem around git seems to
be a focus. As such, git, a decentralized version control system, and
Github, the software project management platform built around
git repositories, are driving best practices in software development,
software analyses, and repository mining [2, 6]. When faced with
an MSR task, researchers and practitioners have the choice to use
one of the few existing tools and frameworks that focus on mining,
use a higher-level system or infrastructure where they integrate
their analysis in, or develop their own tool tailored to their specific
needs. Existing tools and infrastructure, however, often require
learning a domain-specific language to formulate the analysis in or
constrain the analysis to a predefined use case.

MSR Tools. A tool similar in usage to our implementation is
PyDriller1 [14], an open-source Python framework for Mining Soft-
ware Repositories. PyDriller is a high-level interface around the
comparatively low-level GitPython2 library that offers ease of use
for everyday MSR tasks with minimal to no decrease in perfor-
mance. While PyDriller offers an easy to learn interface for Python
developers, its performance is heavily dependent on the implemen-
tation of the concrete task at hand. For example, when iterating over
all of the blobs of all commits and calculating metrics, unchanged
files are not skipped even though the metrics are already calculated.
Additionally, this example would run on one core if the researcher
does not implement any parallelization.

Another tool that aims to simplify mining tasks is RepoFS3 [13],
a virtual filesystem mapping to a Git repository. RepoFS offers
directories for each revision within the filesystem and maps ac-
cess to a bare repository. Thus, it enables to run filesystem-based
mining tools across revisions without incurring disk IO from re-
peated checkouts. However, it leaves parallelization and efficient
calculation logic to the actual mining tool or task implementation.

1https://github.com/ishepard/pydriller
2https://github.com/gitpython-developers/GitPython
3https://github.com/AUEB-BALab/RepoFS

With regards to mining tools dealing primarily with GitHub, we
found tools for efficiently mining artifacts from GitHub, such as
ModelMine [12], as well as for efficient classification of commits for
downstream analysis, such as GitCProc [3], using primarily regular
expressions. While these tools excel in their target use cases, they
are not suited for general purpose analysis of a local repository.

MSR Infrastructure. A prominent tool in the MSR research field
tool is Boa [4], a domain-specific language and infrastructure for
MSR. Boa enables researchers to reproduce data extraction and anal-
ysis by specifying mining tasks in the Boa language and running
them on the Boa infrastructure. The Boa infrastructure also offers
scalability for expensive tasks. Boa, however, does not focus on
efficiency in calculations. Additionally, researchers need to learn a
new domain-specific language compared to a few shell commands.
Finally, flexibility in custom metric logic is limited by what the
language allows.

Other tools offering an infrastructure framework include Cross-
flow4 [7], SmartSHARK5 [15], andWorld of Code [9, 10]. CrossFlow
is a domain specific language and framework that offers scalability
for MSR tasks; SmartSHARK aggregates data from different sources
in a harmonized schema. The World of Code is an infrastructure
that enables research on free and open-source software reposito-
ries. While these tools offer scalability, they require researchers
to learn a new framework and run their analyses on their infras-
tructure. This requirement restricts the flexibility of these tools for
general-purpose analysis. Finally, projects such as the Three Tril-
lion Lines [11] describe the required infrastructure setup to manage
large-scale software analysis. While fault tolerance and domain-
specific data structures are important to a large-scale MSR endeavor,
we describe an approach to make the actual mining of repositories
more efficient.

3 APPROACHES
Efficiency in repository mining can be described by executing only
required operations, omitting as much as possible intermediate
operations that do not directly contribute to the results, as well as
leveraging multi-threading capabilities of current hardware.

RAM Disk. As such, physical representation of files on a disk is
an intermediate artifact that can be replaced with a RAM Disk that
would improve read and write access during traversal of a reposi-
tory. Eventual writes during mining would also pose no additional
strain on the lifetime of HDDs and SSDs. As creation, management,
and usage of a RAMDisk is usually done using the operating system
and not on a tool-level, this approach is feasible for all MSR tools.

Bare Repository Access. Further, checking out revisions into a
working directory is inefficient as it incurs disk IO by reading the
files from the repository folder and writing them to the working
directory [13]. Similarly, a working directory creates a copy of data
already available in a git repository, which can be avoided if analy-
ses and tools are versatile to handle input data using in-memory
interfaces. With bare repository access – a standard concept of
git – the used memory on disk is strictly bound to the space re-
quirements of the bare repository. Additionally, using a working
4https://github.com/crossflowlabs/crossflow
5https://github.com/smartshark/smartshark.github.io

https://github.com/ishepard/pydriller
https://github.com/gitpython-developers/GitPython
https://github.com/AUEB-BALab/RepoFS
https://github.com/crossflowlabs/crossflow
https://github.com/smartshark/smartshark.github.io


Tooling for Time- and Space-efficient git Repository Mining MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

directory complicates parallelization, i.e., a parallel computation
would require one working directory per thread.

Parallelization. We apply concurrent computation of metrics and
source code analyses on a per-commit level. Such parallelization
is feasible if the results for different commits can be computed
independently. As repository mining is a task that is inherently
idempotent and should only require read access to a software repos-
itory, this holds on a conceptual level. From an implementation
perspective, this also holds if working directories can be omitted,
or, alternatively, each thread uses its own working directory.

Caching. Regarding metric calculations, the idempotent prop-
erty of analyses allow for thorough caching of results. This is a
large advantage for software repositories, as each commit usually
changes only parts of the source code [1]. If, for example, a blob
rarely changes across revisions but is analyzed for each revision
nonetheless, these calculations are redundant and should be cached
instead.

Change-based Analysis. Likewise, some implementations of anal-
yses or metrics operate on a whole working directory instead of
only changed files for a commit. However, unchanged files were
presumably mined with an earlier commit during the analysis. This
optimization can be leveraged using a cache and filtering for files
that were not mined in an earlier commit. Even external tools can
profit from this filter.

Optimized Communication between Components. Last, we con-
sider an optimized communication through in-memory string rep-
resentation of files. This optimization aims to reduce file operations
and relate to the access of the bare repository and handling of the
repository on a RAM disk. The communication between the travers-
ing component and analysis components is ideally done through
contents residing in RAM and not on disk.

4 IMPLEMENTATION
We target all the performance optimizations with our tool and
further focus on usability, extensibility, and integration. As a re-
sult, we propose a tool that applies the optimization approaches
internally – by architecture and design – and that allows further
extensions with user-specific analyses and metrics (Figure 2). We
implemented the tool as an open-source Python project available
on PyPi6 with its source code hosted on GitHub7, published under
the GPL-3.0 License. We leverage pygit28, the python bindings for
libgit29, for direct interaction with Git objects of the bare repository.
The command-line interface is built using the Typer10 framework
and comprises four commands: (1) clone, (2) branch, (3) commits,
and (4) analyze.

Command-line Interface. The clone command clones a bare
repository from a URL pointing to a git repository into a local
path. The branch command returns the branches of a repository.
Remote and local branches can be included or excluded using the

6https://pypi.org/project/pyrepositoryminer/
7https://github.com/fabianhe/pyrepositoryminer
8https://github.com/libgit2/pygit2
9https://github.com/libgit2/libgit2
10https://github.com/tiangolo/typer

Figure 2: Architecture of the pyrepositoryminer. Custommet-
rics can be developed as (1) internal metrics using standard
Python libraries and source code, or (2) external metrics by
wrapping third-party tools, both implemented by subclass-
ing one of the metric types in Python scripts. The custom
metrics can be developed, maintained and stored indepen-
dently from the pyrepositoryminer.

command options. The commits command gets the commit hashes
of commits on the input branches. By default, merge commits are
simplified to their first parent commit, duplicates are eliminated,
and the commits are sorted in topological order. This behavior can
be changed using command options. Additionally, the output can be
limited to the first 𝑛 commits encountered. The analyze command
analyzes all input commits. Arguments to the analyze command
are names of the predefined metrics to use. This tool further sup-
ports command options, e.g., to load implementations of custom
metrics by using the --custom-metrics option, or to configure
the number of worker processes for parallel analysis (--workers).

Tool Operation. As an example, we demonstrate how to analyze
the numpy repository hosted on GitHub with regards to the Hal-
stead metrics and the total lines of code on all commits of the main
branch (see also Listing 1): This example (1) mounts a RAM disk
of size 250MB, (2) clone the numpy repository from GitHub to the
newly created RAM disk using the clone command, (3) collects lo-
cal branches, (4) and their reachable commits – topologically sorted
–, and (5) perform computation of the Halstead and Lines-of-Code
metrics on each commit.. The results are piped to a file for reporting.
As cleanup, and the RAM disk is unmounted.

Metric Types. Metrics are implemented as subclasses of their
respective metric type. Each superclass corresponds to the input
format and intermediate calculations that can be shared across
all metrics of that metric type. We provide classes for file blobs
(NativeBlobMetric), commit trees (TreeMetric), and directories
(DirMetric), each with the option of only using the touched blobs

https://pypi.org/project/pyrepositoryminer/
https://github.com/fabianhe/pyrepositoryminer
https://github.com/libgit2/pygit2
https://github.com/libgit2/libgit2
https://github.com/tiangolo/typer


MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Heseding, Scheibel, and Döllner

1 > . / mount− ramdisk −macos . sh 512000
2 > py r epo s i t o r ym ine r c l one h t t p s : / / g i t hub . com / numpy / numpy \
3 / Volumes / RAMDisk / numpy . g i t
4 > py r epo s i t o r ym ine r branch / Volumes / RAMDisk / numpy . g i t \
5 | p y r epo s i t o r ym ine r commits / Volumes / RAMDisk / numpy . g i t \
6 | p y r epo s i t o r ym ine r ana l y z e / Volumes / RAMDisk / numpy . g i t \
7 h a l s t e a d l o c > out . j s o n l
8 > . / unmount− ramdisk −macos . sh d i s k 3

Listing 1: Running the pyrepositoryminer on macOS. The
content of the ramdisk scripts are available in the repository
of the tool.

of a commit (DiffBlobMetric, DiffTreeMetric, DiffDirMetric).
We encourage to write metrics that use native git objects rather than
a working directory for analysis. Metrics that request a checked-
out working directory, i.e., subclasses of the DirMetric and the
DiffDirMetric, are handled by providing a working directory
nonetheless. For example, the class of a directory of touched blobs -
DiffDirMetric - finds all touched blobs of a revision and checks
out a working directory on which filesystem-based tools can run.

User-defined Metrics. Custom metrics can be easily implemented
by using the library interface of the tool. The tool provides five
superclasses to subtype from – each corresponding to one of the
supported metric types – such that own analyses and metrics can
be implemented in scripts and get loaded together with the tool.
Existing tools can be integrated by implementing them as a metric.
For example, an executable of a static source code analysis tool
such as Tokei11 can get wrapped as a metric by using the DiffDir
metric and inter-process communication and string conversion.

5 EVALUATION
We evaluate the pyrepositoryminer using two performance mea-
surements: (1) the time required to iterate all commits of a reposi-
tory and (2) the runtime of a basic mining use case. The measure-
ments are compared to similar implementations using PyDriller.
We measured on an Intel Core i9 CPU with 18 cores at 3.00GHz
and 128GB of main memory on an Ubuntu 20.04. The software
repositories used for the measurements are four publicly available
mid-sized GitHub repositories (Table 1). Before measuring either
tool, we loaded the repositories onto a RAM disk.

Commit Iteration Throughput. In our commit iteration use case,
the task is to get and print each revision id on a repository’s main
branch. We aim to measure the framework overhead cost with-
out a specific software metric. Using the pyrepositoryminer, this
is accomplished by running and piping the inputs and outputs
of the branch and commits commands without any further con-
figuration. Using PyDriller, this is accomplished by running the
traverse_commits method. As a result, the pyrepositoryminer
achieves a minimum throughput of 23 229 commits/s and a maxi-
mum of 28 899 commits/s, whereas PyDriller achieves a throughput
between 4191 commits/s and 6155 commits/s (see Figure 3). The
mean speedup achieved by the pyrepositoryminer compared to Py-
Driller is at 4.8×. When analyzing large software repositories with

11https://github.com/XAMPPRocky/tokei

Table 1: Open source projects used for evaluation. The re-
ported number of commits include all commits reachable by
all remote branches.

Identifier Repository # Commits

numpy https://github.com/numpy/numpy.git 17 122
matplotlib https://github.com/matplotlib/matplotlib.git 17 183
pandas https://github.com/pandas-dev/pandas.git 25 464
tensorflow https://github.com/tensorflow/tensorflow.git 76 299

numpy pandas matplotlib tensorflow
0

20,000

40,000

67
78

71
09

49
83 67
63

28
44
2

30
49
6

27
62
5 35

60
4

Project
co
m
m
its

pe
rs

ec
on

d

PyDriller
pyrepositoryminer

Figure 3: Throughput of commit iteration on all reachable
commits on all remote branches.

numpy pandas matplotlib tensorflow
100

101

102

103

4

2.
4

1.
9

1.
2

79
.8

55
.9

33
.4

2

21
8.
7

15
2.
5

99
.5

7.
2

34
2.
6

23
1.
4

16
9.
3

13
.3

41
2.
9

27
7.
4

21
6.
3

18
.1

Project

co
m
m
its

pe
rs

ec
on

d
(lo

g)

PyDriller pyrepositoryminer x1 pyrepositoryminer x4
pyrepositoryminer x8 pyrepositoryminer x12

Figure 4: Throughput of calculating all lines of code per reach-
able commit on all remote branches.

more than 60 000 commits, the total runtime of iterating commits
stays within a few seconds.

Basic Mining Use Case Throughput. In our basic mining use case,
the task is to calculate the total lines of code for each blob in each
commit. In the pyrepositoryminer, this is accomplished by imple-
menting a blob level metric that counts each new line character

https://github.com/XAMPPRocky/tokei
https://github.com/numpy/numpy.git
https://github.com/matplotlib/matplotlib.git
https://github.com/pandas-dev/pandas.git
https://github.com/tensorflow/tensorflow.git


Tooling for Time- and Space-efficient git Repository Mining MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

in a blob’s source code. The pyrepositoryminer ensures that they
run in parallel only on modified files. With the PyDriller imple-
mentation, each commit is iterated in a loop and analyzed using
the built-in loc attribute on modified files only. As a result, the
pyrepositoryminer achieves a single-threaded minimum through-
put of 2 commits/s and a maximum of 79.8 commits/s on the tested
repositories, whereas PyDriller achieves a throughput between
1.2 commits/s and 4 commits/s (see Figure 4). The mean single-
threaded speedup achieved by the pyrepositoryminer compared to
PyDriller is at 15.6×, while it is 68.9× as high using 12 cores.

Discussion. The results from the performance measurements
seem promising. However, iterating through a repository and pro-
viding the source code files is not the main source of computation
time when applying sophisticated analysis. Our tool aims to provide
a base for fast runtimes by eliminating omittable operations and
allowing for concurrent computations between commits, files, and
metrics. Additionally, our tool can be used as a wrapper to improve
runtimes on existing tools, e.g., using the DiffDir metric, lever-
aging a subset of the performance optimization approaches. The
current limitations include a focus on Python for internal metrics
and git as VCS. However, alternatives such as Boa [4] are enticing
because they offer the infrastructure to perform research. Addition-
ally, using a custom implementation offers flexibility in research
and optimization beyond what any framework approach can offer.
On the other hand, our concrete implementation suffers from the
drawback that researchers need to learn our framework’s interface
to use it. Finally, further measurements need to be taken to better
understand the achievable speedup compared to current tools.

6 CONCLUSIONS
While the number of software projects and their sizes increase,
and the need for software analysis and timely results remain es-
sential, we depend on highly efficient tooling. We approached effi-
ciency in repository traversal andmetric computation by leveraging
bare repository access, in-memory storage, parallelization, caching,
change-based analysis, and optimized communication between
the software components. We showcased these approaches with
the tool pyrepositoryminer. This tool is publicly hosted at Github,
available at PyPi, allows the use of externally developed scripts
and the integration of third-party tools for analysis and software
metrics. First performance results are promising and indicate a
single-threaded speedup of 15.6× to other freely available tools
across four mid-sized open source projects and even a speedup of
86.9× using 12 threads. This allows software repository mining to
be applied more frequently, thoroughly, and timely for mid-sized
and large projects. For future work, we target a more in-depth anal-
ysis of performance impacts on the individual approaches and a
broader analysis across open source projects and industry projects.
Further, we see the potential for optimization for a change-based
analysis on a line level, in contrast to the file level that is currently
used. In addition, the tool itself will profit from a broader list of
available metrics and supported languages.

ACKNOWLEDGMENTS
We want to thank the anonymous reviewers for their valuable com-
ments and suggestions to improve this article. This work is part of

the “Software-DNA” project, which is funded by the European Re-
gional Development Fund (ERDF or EFRE in German) and the State
of Brandenburg (ILB). This work is also part of the KMU project
“KnowhowAnalyzer” (Förderkennzeichen 01IS20088B), which is
funded by the German Ministry for Education and Research (Bun-
desministerium für Bildung und Forschung).

REFERENCES
[1] O. Arafat and D. Riehle. 2009. The Commit Size Distribution of Open Source

Software. In Proc. 42nd Hawaii International Conference on System Sciences. IEEE,
1–8. https://doi.org/10.1109/HICSS.2009.421

[2] Christian Bird, Peter C Rigby, Earl T Barr, David J Hamilton, Daniel M German,
and Prem Devanbu. 2009. The promises and perils of mining git. In 2009 6th IEEE
International Working Conference on Mining Software Repositories. IEEE, 1–10.
https://doi.org/10.1109/MSR.2009.5069475

[3] Casey Casalnuovo, Yagnik Suchak, Baishakhi Ray, and Cindy Rubio-González.
2017. Gitcproc: A tool for processing and classifying github commits. In Proceed-
ings of the 26th ACM SIGSOFT International Symposium on Software Testing and
Analysis. ACM, 396–399. https://doi.org/10.1145/3092703.3098230

[4] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N Nguyen. 2013. Boa: A
language and infrastructure for analyzing ultra-large-scale software repositories.
In 2013 35th International Conference on Software Engineering (ICSE). IEEE, 422–
431. https://doi.org/10.1109/ICSE.2013.6606588

[5] Fabian Heseding and Willy Scheibel. 2022. pyrepositoryminer. https://doi.org/
10.5281/zenodo.5918480 and hosted on github.com/fabianhe/pyrepositoryminer.

[6] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M
German, and Daniela Damian. 2014. The promises and perils of mining github. In
Proceedings of the 11th working conference on mining software repositories. ACM,
92–101. https://doi.org/10.1145/2597073.2597074

[7] Dimitris Kolovos, Patrick Neubauer, Konstantinos Barmpis, Nicholas Matragkas,
and Richard Paige. 2019. Crossflow: a framework for distributed mining of
software repositories. In 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). IEEE, 155–159. https://doi.org/10.1109/MSR.2019.
00032

[8] Daniel Limberger, Willy Scheibel, Jürgen Döllner, and Matthias Trapp. 2019.
Advanced Visual Metaphors and Techniques for Software Maps. In Proc. 12th
International Symposium on Visual Information Communication and Interaction
(VINCI ’19). ACM, 11:1–8. https://doi.org/10.1145/3356422.3356444

[9] Yuxing Ma, Chris Bogart, Sadika Amreen, Russell Zaretzki, and Audris Mockus.
2019. World of code: an infrastructure for mining the universe of open source
VCS data. In 2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR). IEEE, 143–154. https://doi.org/10.1109/MSR.2019.00031

[10] Yuxing Ma, Tapajit Dey, Chris Bogart, Sadika Amreen, Marat Valiev, Adam
Tutko, David Kennard, Russell Zaretzki, and Audris Mockus. 2021. World of
code: Enabling a research workflow for mining and analyzing the universe
of open source vcs data. Empirical Software Engineering 26, 2 (2021), 1–42.
https://doi.org/10.1007/s10664-020-09905-9

[11] Toni Mattis, Patrick Rein, and Robert Hirschfeld. 2020. Three trillion lines:
infrastructure for mining GitHub in the classroom. In Conference Companion of
the 4th International Conference on Art, Science, and Engineering of Programming.
ACM, 1–6. https://doi.org/10.1145/3397537.3397551

[12] Sayed Mohsin Reza, Omar Badreddin, and Khandoker Rahad. 2020. Mod-
elmine: a tool to facilitate mining models from open source repositories. In
Proceedings of the 23rd ACM/IEEE International Conference on Model Driven En-
gineering Languages and Systems: Companion Proceedings. ACM, 9:1–5. https:
//doi.org/10.1145/3417990.3422006

[13] Vitalis Salis and Diomidis Spinellis. 2019. RepoFS: File system view of Git reposi-
tories. SoftwareX 9 (2019), 288–292. https://doi.org/10.1016/j.softx.2019.03.007

[14] Davide Spadini, Maurício Aniche, and Alberto Bacchelli. 2018. Pydriller: Python
framework for mining software repositories. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. ACM, 908–911. https://doi.org/10.1145/
3236024.3264598

[15] Alexander Trautsch, Fabian Trautsch, Steffen Herbold, Benjamin Ledel, and Jens
Grabowski. 2020. The smartshark ecosystem for software repository mining.
In Proceedings of the ACM/IEEE 42nd International Conference on Software Engi-
neering: Companion Proceedings. ACM, 25–28. https://doi.org/10.1145/3377812.
3382139

https://doi.org/10.1109/HICSS.2009.421
https://doi.org/10.1109/MSR.2009.5069475
https://doi.org/10.1145/3092703.3098230
https://doi.org/10.1109/ICSE.2013.6606588
https://doi.org/10.5281/zenodo.5918480
https://doi.org/10.5281/zenodo.5918480
https://github.com/fabianhe/pyrepositoryminer
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1109/MSR.2019.00032
https://doi.org/10.1109/MSR.2019.00032
https://doi.org/10.1145/3356422.3356444
https://doi.org/10.1109/MSR.2019.00031
https://doi.org/10.1007/s10664-020-09905-9
https://doi.org/10.1145/3397537.3397551
https://doi.org/10.1145/3417990.3422006
https://doi.org/10.1145/3417990.3422006
https://doi.org/10.1016/j.softx.2019.03.007
https://doi.org/10.1145/3236024.3264598
https://doi.org/10.1145/3236024.3264598
https://doi.org/10.1145/3377812.3382139
https://doi.org/10.1145/3377812.3382139

	Abstract
	1 Introduction
	2 Related Work
	3 Approaches
	4 Implementation
	5 Evaluation
	6 Conclusions
	Acknowledgments
	References

