
Bringing Objects to Life: Supporting Program Comprehension
through Animated 2.5D Object Maps from Program Traces

Christoph Thiede a, Willy Scheibel b and Jürgen Döllner c

Hasso Plattner Institute, Digital Engineering Faculty, University of Potsdam
christoph.thiede@student.hpi.uni-potsdam.de, willy.scheibel@hpi.uni-potsdam.de, doellner@uni-potsdam.de

Keywords: Software Visualization, Software Maps, Program Comprehension, Omniscient Debugging.

Abstract: Program comprehension is a key activity in software development. Several visualization approaches such as
software maps have been proposed to support programmers in exploring the architecture of software systems.
However, for the exploration of program behavior, programmers still rely on traditional code browsing and
debugging tools to build a mental model of a system’s behavior. We propose a novel approach to visualizing
program behavior through animated 2.5D object maps that depict particular objects and their interactions from
a program trace. We describe our implementation and evaluate it for different program traces through an
experience report and performance measurements. Our results indicate that our approach can benefit program
comprehension tasks, but further research is needed to improve scalability and usability.

1 INTRODUCTION

Exploring and understanding software systems are key
activities in software development. Programmers of-
ten come across familiar or unfamiliar systems that
they want to fix, change, or extend. For this, they
need to build up a mental model that links the sys-
tem’s visible behavior to its high-level architecture and
low-level implementation artifacts. Traditionally, pro-
grammers explore software systems by reading their
source code. An alternative approach is to explore
the system’s behavior by example: programmers can
start by invoking the system with a particular input
or by running a test case and then use a debugger
to step through the program’s execution, identifying
relevant units and actors and exploring their interac-
tions. As traditional debuggers are constrained to the
temporal execution order of the program, omniscient
debuggers (also referred to as time-travel debuggers or
back-in-time debuggers) record a program trace and
allow programmers to explore the program’s behav-
ior in a nonlinear fashion (Pothier and Tanter, 2009;
Perscheid et al., 2012). However, omniscient debug-
gers are unsuitable for exploring large program traces
involving several subsystems and dozens of interact-
ing objects: while their fine-grained display of source

a https://orcid.org/0000-0002-7442-8216
b https://orcid.org/0000-0002-7885-9857
c https://orcid.org/0000-0002-8981-8583

code and variables is useful for debugging-related ac-
tivities, it impedes the exploration of the higher-level
architecture and behavior.

Several visualization approaches have been pro-
posed to support programmers in exploring the archi-
tecture of software systems. Software maps display
the static structure of systems using various metaphors
such as cities or forests are useful for program com-
prehension tasks (Wettel and Lanza, 2007; Limberger
et al., 2022). Yet, most approaches neglect the dy-
namic behavior of systems and take a coarse-grained
view of their structure. As a result, these maps are inad-
equate for developing a mental model of the system’s
behavior that situates particular interacting objects and
connects them to the overall functioning of the system
(von Mayrhauser and Vans, 1995).

To bridge this gap between coarse-grained static
software maps and fine-grained omniscient debugging
views, we propose a novel approach for visualizing the
behavior of object-oriented software systems through
animated 2.5D object maps (or (animated) object maps
for short), which depict particular objects and their
interactions from a program trace. In particular, we
make the following contributions:

1. We present a novel visualization approach for ob-
ject-oriented program behavior using animated
2.5D object maps.

2. We describe the implementation of our prototype
TRACE4D that applies this approach using program
traces from the Squeak/Smalltalk environment.

3. We discuss the potential and limitations of our
approach by reporting on our experience and eval-
uating the performance of our implementation, en-
compassing responsiveness, frame rates, and mem-
ory consumption, for different program traces.

We made all artifacts and supplementary materials of
this work available in a public repository1.

2 RELATED WORK

Several approaches for visualizing the architecture
and behavior of software systems were introduced be-
fore. In the broad field of program visualization (Sorva
et al., 2013), algorithm animation is an early approach
that focuses on visualizing procedural algorithms and
data structures in educational contexts (Brown and
Sedgewick, 1984). Further approaches have been pro-
posed that allow to create general-purpose visualiza-
tions for the architecture and behavior of software
systems (Cheng et al., 2008; Chiş et al., 2014). More
specific techniques can be categorized as sequential
depictions, software maps, and object visualizations.

Sequential Depictions. Several tools adopt and ex-
tend UML sequence diagrams to display communi-
cation between objects over time (Hamou-Lhadj and
Lethbridge, 2004): Jerding and Stasko (1998) and Cor-
nelissen et al. (2009) derive miniaturized versions of
a sequence diagram (Lemieux and Salois, 2006, sec.
3.4); Hamou-Lhadj and Lethbridge (2004) detect exe-
cution patterns to reduce sequence diagrams.

Software Maps and Treemaps. Software maps de-
scribes a family of approaches that use cartography
metaphors to visualize the architecture of software
systems (Limberger et al., 2022). As underlying tech-
nique, treemaps display the static structure of software
systems by visualizing their hierarchical organization
of packages and classes, folders and files, autc. as a
nested set of shapes (Scheibel et al., 2020b). They of-
fer various visual variables such as the size, color, and
position of the shapes to encode additional informa-
tion about the system. Shapes are usually rectangles
but can also be other polygons as in Voronoi tessel-
lation treemaps (Balzer et al., 2005; Scheibel et al.,
2020a). One popular, contemporary type of treemaps
is 2.5D treemaps which add a third dimension to the
visualization by transforming each shape into a right
prism (usually a cuboid) of a variable height. Many
approaches use the software city metaphor to style

1https://github.com/LinqLover/trace4d (also preserved
in Zenodo: https://doi.org/10.5281/zenodo.10044853)

the cuboids of a 2.5D treemap as buildings of a city
(Dugerdil and Alam, 2008; Wettel and Lanza, 2007).

Animated Software Maps. Some approaches en-
rich software maps with animations to display dy-
namic information over time (Lemieux and Salois,
2006, sec. 3.4) that can relate to the behavior or evo-
lution of systems: EVOSPACES (Dugerdil and Alam,
2008) highlights classes in a software city when they
are activated; DYNACITY (Dashuber and Philippsen,
2022), EXPLORVIZ (Krause et al., 2021), SYNCHRO-
VIS (Waller et al., 2013), and others also draw connec-
tions between modules to visualize dataflow; Langelier
et al. (2008) gradually construct a software city and
update the geometries and colors of buildings to rep-
resent development activity. Some approaches allow
programmers to monitor a system in real-time (Fittkau
et al., 2013) while others replay a previously recorded
trace of software activity (Dugerdil and Alam, 2008).

Object Graphs. To provide visual insights into the
behavior of software, behavior can be attributed to
different entities of the software, e.g., organizational
units such as modules or classes, or individual object
instances of object-oriented programs. Several tools
allow programmers to explore relevant parts of a pro-
gram’s object graph (Moreno et al., 2004; Gestwicki
and Jayaraman, 2005). Some graphs mimic the look of
UML object diagrams and provide details about an ob-
ject’s internal state while others choose more compact
representations. To reduce the visual complexity of
graph displays, some tools provide programmers with
means for filtering objects based on their organization
or relation to program slices (Lange and Nakamura,
1997; Hamou-Lhadj and Lethbridge, 2004).

Communication Flow. Call graphs and control-flow
graphs are two popular ways of displaying entities
with their mutual dynamic interactions or communi-
cations. Entities can be nodes from an object graph,
organizational units such as classes (Reiss, 2007) or
modules, or they can be subject to user-selected ab-
straction levels (Lange and Nakamura, 1997; Walker
et al., 1998). AVID (Walker et al., 1998) provide ani-
mated object graphs where users can explore the con-
trol flow interactively. Boothe and Badame (2011)
merge the stack frames from a control-flow graph and
the nodes from an object graph into a single memeo-
graph that can be explored through animation.

Dataflow. Another perspective on object graphs re-
gards the propagation of state through the system. The
WHYLINE approach allows programmers to ask ques-
tions about why certain behaviors did or did not happen

https://github.com/LinqLover/trace4d
https://doi.org/10.5281/zenodo.10044853

or where certain values came from and presents the
answers in a sliced control-flow graph (Ko and Myers,
2008). Lienhard et al. (2009) propose an inter-unit
flow view that displays the amount of data or objects
exchanged between different classes or modules in a
directed weighted graph; this graph can also be em-
bedded into a traditional call graph.

State Changes. Lienhard et al. (2009) propose a
side-effects graph which shows connections between
objects changing each other’s state. Similarly, object
traces slice a call tree for exploring the state evolution
of individual objects (Thiede et al., 2023a). Memory
cities support the heap memory analysis of programs
by displaying objects and their memory consumption
in a 2.5D treemap and animating the allocation and
deallocation of objects (Weninger et al., 2020).

Call Trees. Besides the communication or evolution
of entities, another perspective that visualizations of-
ten take on software behavior is the temporal order of
program execution. Besides naive graph representa-
tions of this data structure, several approaches display
call trees using hierarchical layouts such as treemaps,
sunbursts, icicle plots (Kruskal and Landwehr, 1983),
or flame graphs (Gregg, 2016).

3 VISUALIZATION APPROACH

We propose animated 2.5D object maps as a novel
visualization approach for program traces to support
the comprehension of object-oriented programs. In
the following, we describe the prerequisites and the
design of our approach.

3.1 Data Model

The data of our visualization is the program trace
of an object-oriented program. In this programming
paradigm, all behavior is described as messages sent
from one object to another. Each object is charac-
terized by its identity which distinguishes it from all
other objects, its state which is represented by its fields
such as array elements and instance variables, and its
behavior which is implemented by methods that are
invoked to receive messages (Thiede et al., 2023b).
We assume a general data model of the program trace:
the call tree is represented as a composite structure
of stack frames each of which specifies a time inter-
val, an invoked method, and a receiver object. Each
object is assigned a label, i.e., a textual representa-
tion of an object’s identity or signature state, a list of

Figure 1: Screenshot of an animated object map showing a
program trace for the construction of a regular expression
matcher in the Squeak/Smalltalk programming environment.
Blocks represent objects, arrows display references between
objects, and color highlights and trails show object acti-
vations. The timeline at the bottom provides a temporal
overview of the program trace.

Figure 2: Visual mapping of objects, fields, and references
to block entities, tiles, and arrows in the object map.

named fields, and a class. Each class is described by a
name and an organizational path in the file or package
structure of the software system. We neglect runtime
changes to the state, label, or class membership of ob-
jects as well as asynchronous or concurrent program
behavior and metaprogramming peculiarities such as
the implementation of classes or methods as objects.

3.2 Visual Mapping

We describe the design of our visualization and the
mapping of parts from the program trace to elements
and visual variables of our visualization (fig. 1). At
the highest level, an animated 2.5D object map is an
interactive information landscape that displays objects
and their interactions from the program trace. Users
can replay the program trace and watch the activation
of objects – the invocation of their methods – and their
interaction – the exchange of messages between two
objects. They can navigate freely through the visual
scene using their keyboard and pointing devices.

Objects. Each object is represented as a square
cuboid block entity that displays the label and fields
of the object (fig. 2). To maximize legibility from any
perspective, the label is repeated on all four sides and
in four orientations on the top. Fields are displayed as
tiles that are arranged in a row-wise uniform-sized grid
layout and repeated on each side of the block for better
legibility. References between objects are rendered as
directed arrows from the closest tile of the referencing
field to the closest label of the referenced object. To
indicate the direction of arrows chevrons are placed on
the arrow line.

Object Graph. All object blocks are placed on a
plane in the 2.5D object map. For their arrangement,
we use a force-directed graph layout.Between each pair
of object blocks a and b, we apply several weighted
attractive forces:
Class-membership force Fclass(a,b) if a and b be-

long to the same class;
Organizational force Forg(a,b) based on the com-

mon prefix length of the organizational paths (e.g.,
a file path) of a’s and b’s classes;

Reference force Fref(a,b) based on the number of
fields in a that reference b;

Communication force Fcomm(a,b) based on the
number of messages sent from a to b.

In addition to the attractive forces, we define globally
weighted repulsion and centripetation forces on all
blocks to control the graph’s entropy, and we define ra-
dial constraints to avoid collisions between blocks. We
provide an empirical base configuration for all force
weights but allow users to override them for specific
program traces. By default, we give the highest weight
to reference forces and the lowest weight to organiza-
tional forces with a six-order-of-magnitude difference
and scale organizational forces logarithmically. This
configuration encourages a state-centric layout of the
object graph while leaving a margin for the charac-
teristics of particular program traces (e.g., their ratio
between intrinsic and extrinsic state) towards a more
dataflow-driven layout. In addition, users can drag
and drop blocks to customize the layout. To reduce re-
sponse time and maintain an experience of immediacy,
we render the graph at regular update intervals even
before the force simulation has converged.

Object Selection. Usually, even after restricting the
object graph to the receivers from the call tree, only a
small part of it is relevant for comprehending the high-
level behavior of a program while many other objects
fulfill lower-level implementation details. In our visu-
alization, we use a filter system for excluding objects

Figure 3: Visual mapping of object behavior to block colors
and the trail in the object map. The intensity of the red color
indicates the recency of the last message received by the
corresponding object. The gradient trail curve connects the
most recent object activations (control points of the curve
are marked with a cross ()).

based on their label, class, or organization. Similar
to the layout configuration (object graph), we provide
an empirical default configuration that excludes cer-
tain base objects such as collections, Booleans, and
numbers, but allow users to customize these filters.

Object Behavior. The color of each object block in-
dicates its recent activity: inactive blocks are colored
in a neutral light gray while active blocks whose ob-
jects have recently received a message are highlighted
in a bright red (fig. 3). After control flow passes on
to other objects, blocks fade back to the base color
within one second using a single-hue continuous se-
quential color scheme by Harrower and Brewer (2003).
In addition to the color coding, a trail connects the
k = 15 most recent object activations to support the
delayed observation of short activations and the recog-
nition of the exact activation order. The trail curve
is based on a centripetal Catmull-Rom spline whose
control points are placed on the top of each relevant
block and alternated with intermediate points between
blocks. Block control points are displaced on the top
surface by a random offset using a normal distribution
to distinguish multiple activations of the same object.
Intermediate control points are raised vertically to give
the curve a wave-like shape that makes activated ob-
jects identifiable. The direction of the trail is displayed
by continuously moving it to the next object during the
animation and applying a linear translucency gradient
to fade out the tail of the curve.

Figure 4: Timeline overlay with widgets to control the play-
back of the program trace and a flame graph with a variable
level of detail for navigating the call tree. The flame graph
and the object map are linked, i.e., the user can hover over a
frame to highlight the corresponding object in the map.

Timeline. The object map integrates a timeline over-
lay at the bottom of the viewport that provides a time-
centric navigation aid. The timeline consists of two
widgets stacked on top of each other (fig. 4). A player
with a slider and a play/pause button displays the cur-
rent point in time of the program trace and allows users
to control the time and animation state. Behind the
player, a collapsed flame graph shows the course of
the call stack depth. Users can resize the timeline to
explore the full call tree hierarchy and examine indi-
vidual frames in the flame graph. Both the flame graph
and the object map are interactively linked, i.e., users
can hover over an object in the map to discover all
of its activations in the timeline, or vice versa, they
can click on a frame to fast-forward or rewind the
trail in the map to the corresponding object activation.
Thus, object map and timeline provide two orthogo-
nal means of navigating through the object-oriented
program trace at different granularities.

3.3 Implementation

We demonstrate the technical feasibility of animated
2.5D object maps by describing the implementation of
our prototype TRACE4D that displays program traces
from a Squeak/Smalltalk environment (backend) in
a web application (frontend). While we use program
traces from Squeak/Smalltalk in our prototype, it is not
limited to this environment but could easily be applied
to other object-oriented traceable languages.

Program Tracing. Squeak/Smalltalk is an interac-
tive development environment (IDE) based on the
object-oriented paradigm (everything is an object, in-
cluding classes, methods, and stack frames) and gives
programmers rich control to inspect and manipulate all
parts of the system by instrumenting method objects,
recording stack frame objects, etc. (Thiede and Rein,
2023). In our backend, we use the TRACEDEBUG-
GER, an omniscient debugger for Squeak, to record a
program trace. We export the resulting program trace
consisting of a call tree, an object graph, and a class

hierarchy as a JSON file. We use Squeak’s built-in
inspector tool to retrieve fields for instance variables
or higher-level views of each object.

Visualization. We implement the visualization fron-
tend of TRACE4D as a JavaScript web application. The
web app retrieves a serialized program trace and pro-
vides prototypical interfaces for customizing the visual
configuration. To build the 2.5D object map, we gen-
erate and display a 3D scene from the program trace
using the JavaScript 3D rendering library THREE.JS
and layout the object blocks using the d3-force mod-
ule of the visualization framework D3.JS. The timeline
is built using a flame graph from the d3-flame-graph
plugin for D3.JS.Custom HTML widgets are used for
the player controls. Animation is played at a config-
urable speed (defaulting to 50 bytecode instructions
per second), which updates the color highlights and
trail for activated objects at each animation tick.

4 EVALUATION

We evaluate our visualization approach by describing
a practical use case of animated 2.5D object maps for
program comprehension, reporting on our experiences
for six different program traces, and evaluating the
performance of the TRACE4D prototype.

4.1 Use Case

To illustrate how animated object maps can support
program comprehension, we describe how a fictional
programmer uses the TRACE4D visualization to ex-
plore the way a regular expression engine constructs a
matcher from a pattern. The Regex package in Squeak
provides a Smalltalk-specific flavor of regular expres-
sions. To construct a matcher, the package first parses
the pattern string into an abstract syntax tree (AST) and
then compiles the AST into a non-deterministic finite
automaton (NFA). In this example, our programmer
visualizes the construction of the simple regular ex-
pression \d|\w+ to gain a better understanding of the
subsystems involved and their interactions. To create
the visualization, the programmer records and exports
a trace of the program '\d|\w+' asRegex in Squeak and
loads it into the TRACE4D web app2. As the visualiza-
tion loads, she sees about 25 objects moving around
in the object map and arranging themselves in a semi-
structured graph within a few seconds (fig. 1). By

2The interactive visualization of the described trace
is available at https://linqlover.github.io/trace4d/app.html?
trace=traces/regexParse.json. The visualization, together
with a screencast, is also archived at our Zenodo archive.

https://linqlover.github.io/trace4d/app.html?trace=traces/regexParse.json
https://linqlover.github.io/trace4d/app.html?trace=traces/regexParse.json

navigating through the scene, she discovers several
relevant objects and clusters of objects:

• the pattern string '\d|\w+';
• an RxParser object accessing the string via a Read-

Stream;
• eight objects referencing each other whose class

names begin with the prefix Rxs, identifying them
as nodes of the AST;

• an RxMatcher object surrounded by six objects
whose class names start with Rxm, identifying
them as states of the matcher’s NFA;

• several other loosely structured objects, including
an RxMatchOptimizer, four Dictionarys, and a Set.

After getting a rough overview of the object graph, she
starts the animation of the program trace through the
player in the timeline. By observing the trail of ob-
ject activations and the cursor position in the timeline
(default running time: 77 seconds), she can notice the
following three segments of the program execution:

1. Invoked by the pattern string, the parser dominates
the first third of the program execution, accessing
the pattern through the ReadStream and talking to
the AST nodes, presumably to initialize them.

2. Next, the matcher becomes active and accesses
the AST nodes and the NFA states simultaneously,
presumably to compile the AST into the NFA.

3. For the remaining half of the program, the match
optimizer is active, accessing the AST again and
talking to the set.

Thus, our programmer could gain a first overview of
the different parts of the Regex package and their col-
laboration to realize the construction of the matcher.
Besides, she also could notice that almost 50% of the
time was spent in the match optimizer. Without a
closer idea of the role of this object, she might sus-
pect this step to be a bottleneck in the construction
and wonder if the optimization is optional and could
be skipped for certain uses of the regular expression.
To dive deeper into the Regex implementation, she
expands the flame graph of the timeline, identifies a
few entry point methods of the objects that she finds
most interesting (e.g., RxParser»parseStream:), and
opens them in the Squeak IDE to browse their code.

4.2 Experience Report

To assess the use of animated object maps for program
comprehension, we explored six different program
traces from the domains of string processing, GUIs,
and programming tools in the TRACE4D prototype and
assessed our experience with them for five different cri-
teria regarding the usability, clarity, and insightfulness
of the visualization (table 1). We chose these criteria

Table 1: Ratings of our experience with animated object
maps for program comprehension using a three-point Likert
scale. We gained the most insights from smaller program
traces that thoroughly model behavior through communica-
tion between objects and avoid many similar objects.

Program C
on

fig
ur

at
io

n
ef

fo
rt

C
la

ri
ty

of
ob

-
je

ct
s

O
bj

ec
tl

ay
ou

t

A
ni

m
at

io
n

Pr
og

ra
m

co
m

-
pr

eh
en

si
on

Regex engine
• Construction + + + + +

• Matching + + + ◦ +

Morphic UI framework
• Event handling − − ◦ ◦ ◦
• Layouting ◦ ◦ + ◦ −

Inspector tool
initialization

− − − − −

HTML parsing ◦ + + + +

in view of short gulfs of execution and evaluation and
a maximum of information that users can gain from
the visualization. We provide a full protocol of the
experience report in the supplementary materials.

Suitable Traces. We had better experiences when
using the visualization for smaller program traces such
as various string processing examples. On the contrary,
we were more challenged when trying to understand
the behavior of larger program traces such as opera-
tions in a GUI system or programming tool. In general,
we found animated object maps most practical for sys-
tems that thoroughly adhere to the principles of object-
oriented design by defining many fine-grained, highly
coherent objects and describing behavior through ex-
tensive communication between these objects. On the
other hand, program traces involving many homoge-
neous objects or unrelated subsystems contain more
repetitive or irrelevant elements and are typically less
amenable to exploration through animated object maps.
Thus, programmers need to provide minimal program
traces to achieve clear visualizations.

Program Comprehension. For suitable program
traces, we were able to gain several kinds of insights
and benefits from the visualization: we could discover
characteristic regions of the object graph (e.g., the in-
put, the AST, and the NFA for the regular expression
use case) as well as significant segments of program be-
havior (e.g., the parsing, compilation, and optimization
stages in the same use case). Based on this overview,
we could develop and refine our mental model of the
explored system’s functioning and connect it to par-
ticular classes and objects in their implementation.
Furthermore, the interactive visualization helped us to

explore and analyze communication patterns, reflect
on the system design, and share and discuss our mental
models with other developers.

Object Graph Layout. The structure of the object
graph layout is crucial for the comprehension of the
program state. Our force-directed graph approach pro-
vides a simple yet effective way to describe a layout
based on different static and behavioral relations be-
tween objects and allows different types of relations to
dominate the layout depending on the characteristics
of the program trace. Especially for smaller program
traces, the resulting layout allowed us to distinguish
essential regions of the object graph. Still, the overall
structure of the force-directed layout could be consid-
ered too weak for an optimal visual intuition.

Limitations. For larger program traces, we were
overwhelmed by the amount of objects and messages
in the visualization. Our configuration interface al-
lows users to reduce this complexity by filtering ob-
jects or improving the structure of the object graph
but requires manual effort for users. To reduce this
barrier, we could streamline the configuration through
an integrated GUI or investigate automatic configu-
ration techniques for individual program traces. To
eliminate cluttered communication between objects,
we aim to apply trace summarization techniques to
eliminate lengthy handshakes or low-level messages
(Hamou-Lhadj and Lethbridge, 2006).

4.3 Evaluation of Performance

While computational efficiency was not a design goal
for our current implementation of the TRACE4D proto-
type, it already delivers practical performance – start-
up times between 1 and 5 seconds, frame rates between
30 FPS and 60 FPS, memory consumption between
700 MB and 1000 MB – for most of our considered
program traces. Still, there is a need to optimize the
frame rate, graphics memory consumption, and saving
and loading times of traces to improve user experience
and scalability, e.g., by precomputing filtered traces in
the backend or applying a level-of-detail strategy in
the visualization. We provide additional details on our
evaluation in the supplementary materials.

5 CONCLUSIONS

In this paper, we proposed a novel approach to visual-
izing the behavior of object-oriented programs through
animated 2.5D object maps that depict particular ob-
jects and their interactions from a program trace. We

described the visual design of our approach and im-
plemented it in a prototypical web application that
displays program traces from a Squeak/Smalltalk en-
vironment. We illustrated how programmers can use
TRACE4D to explore the behavior of object-oriented
programs and found that, especially for smaller pro-
gram traces, they can gain several insights into the
structure of the object graph and the segments of pro-
gram behavior. To handle larger program traces, open
issues are the automatic configuration of object maps,
the clarity of large object maps, and level-of-detail
approaches to show higher-level overviews first.

For future work, we plan to extend the prototype to
include trace summarization and to improve scalabil-
ity in layout, rendering, and interaction. As a striking
open point, a user study is needed to evaluate the po-
tential and limitations of animated object maps for pro-
gram comprehension. Further, the proposed approach
to animated object maps allows for a couple of differ-
ent directions of research. For one, the force-directed
graph layout can be augmented with clustering and
hierarchical layout approaches (Atzberger et al., 2023;
Scheibel et al., 2018). Finally, we envision animated
object maps getting seamlessly integrated into pro-
grammers’ toolchains, interactively visualizing system
behavior at multiple levels of abstraction to provide an
intuitive understanding of complex software behavior.

ACKNOWLEDGMENTS

We thank Marcel Taeumel for discussing potential
applications of the prototype with us.

REFERENCES

Atzberger, D., Cech, T., Scheibel, W., Limberger, D., and
Döllner, J. (2023). Visualization of source code similar-
ity using 2.5D semantic software maps. In VISIGRAPP
2021: Computer Vision, Imaging and Computer Graph-
ics Theory and Applications, pages 162–182. Springer.

Balzer, M., Deussen, O., and Lewerentz, C. (2005). Voronoi
treemaps for the visualization of software metrics. In
Proc. SoftVis, pages 165–172. ACM.

Boothe, P. and Badame, S. (2011). Animation of object-
oriented program execution. In Proc. Bridges 2011:
Mathematics, Music, Art, Architecture, Culture, pages
585–588. Tessellations Publishing.

Brown, M. H. and Sedgewick, R. (1984). A system for
algorithm animation. In Proc. SIGGRAPH, pages 177–
186. ACM.

Cheng, Y.-P., Chen, J.-F., Chiu, M.-C., Lai, N.-W., and
Tseng, C.-C. (2008). XDIVA: A debugging visualiza-
tion system with composable visualization metaphors.
In Proc. SIGPLAN OOPSLA, pages 807–810. ACM.

Chiş, A., Gîrba, T., and Nierstrasz, O. (2014). The mold-
able debugger: A framework for developing domain-
specific debuggers. In SLE 2014: Software Language
Engineering, pages 102–121. Springer.

Cornelissen, B., Zaidman, A., van Deursen, A., and van
Rompaey, B. (2009). Trace visualization for program
comprehension: A controlled experiment. In Proc.
ICPC, pages 100–109. IEEE.

Dashuber, V. and Philippsen, M. (2022). Trace visualiza-
tion within the Software City metaphor: Controlled
experiments on program comprehension. Elsevier In-
formation and Software Technology, 150:55–64.

Dugerdil, P. and Alam, S. (2008). Execution trace visual-
ization in a 3D space. In Proc. ITNG, pages 38–43.
IEEE.

Fittkau, F., Waller, J., Wulf, C., and Hasselbring, W. (2013).
Live trace visualization for comprehending large soft-
ware landscapes: The ExplorViz approach. In Proc.
VISSOFT, pages 18:1–4. IEEE.

Gestwicki, P. and Jayaraman, B. (2005). Methodology and
architecture of JIVE. In Proc. SoftVis, pages 95–104.
ACM.

Gregg, B. (2016). The flame graph. Communications of the
ACM, 59(6):48–57.

Hamou-Lhadj, A. and Lethbridge, T. C. (2004). A survey
of trace exploration tools and techniques. In Proc.
CASCON, pages 42–55. IBM Press.

Hamou-Lhadj, A. and Lethbridge, T. C. (2006). Summa-
rizing the content of large traces to facilitate the un-
derstanding of the behaviour of a software system. In
Proc. ICPC, pages 181–190. IEEE.

Harrower, M. and Brewer, C. A. (2003). ColorBrewer.org:
An online tool for selecting colour schemes for maps.
The Cartographic Journal, 40(1):27–37.

Jerding, D. F. and Stasko, J. T. (1998). The Information
Mural: a technique for displaying and navigating large
information spaces. IEEE TVCG, 4(3):257–271.

Ko, A. J. and Myers, B. A. (2008). Debugging reinvented:
Asking and answering why and why not questions
about program behavior. In Proc. ICSE, pages 301–
310. ACM.

Krause, A., Hansen, M., and Hasselbring, W. (2021). Live
visualization of dynamic software cities with heat map
overlays. In Proc. VISSOFT, pages 125–129. IEEE.

Kruskal, J. B. and Landwehr, J. M. (1983). Icicle plots:
Better displays for hierarchical clustering. Taylor &
Francis The American Statistician, 37(2):162–168.

Lange, D. B. and Nakamura, Y. (1997). Object-oriented
program tracing and visualization. IEEE Computer,
30(5):63–70.

Langelier, G., Sahraoui, H., and Poulin, P. (2008). Explor-
ing the evolution of software quality with animated
visualization. In Proc. VLHCC, pages 13–20. IEEE.

Lemieux, F. and Salois, M. (2006). Visualization techniques
for program comprehension – a literature review. In
Proc. SoMeT, pages 22–47. IOS Press.

Lienhard, A., Ducasse, S., and Gîrba, T. (2009). Taking
an object-centric view on dynamic information with
object flow analysis. Elsevier Computer Languages,
Systems & Structures, pages 63–79.

Limberger, D., Scheibel, W., Döllner, J., and Trapp, M.
(2022). Visual variables and configuration of software
maps. Springer Journal of Visualization, 26(1):249–
274.

Moreno, A., Myller, N., Sutinen, E., and Ben-Ari, M. (2004).
Visualizing programs with Jeliot 3. In Proc. AVI, pages
373–376. ACM.

Perscheid, M., Haupt, M., Hirschfeld, R., and Masuhara,
H. (2012). Test-driven fault navigation for debugging
reproducible failures. J-STAGE Information and Media
Technologies, 7(4):1377–1400.

Pothier, G. and Tanter, É. (2009). Back to the future: Omni-
scient debugging. IEEE Software, 26(6):78–85.

Reiss, S. P. (2007). Visual representations of executing
programs. Elsevier Journal of Visual Languages &
Computing, 18(2):126–148.

Scheibel, W., Limberger, D., and Döllner, J. (2020a). Survey
of treemap layout algorithms. In Proc. VINCI, pages
1:1–9. ACM.

Scheibel, W., Trapp, M., Limberger, D., and Döllner, J.
(2020b). A taxonomy of treemap visualization tech-
niques. In Proc. IVAPP, pages 273–280. INSTICC,
SciTePress.

Scheibel, W., Weyand, C., and Döllner, J. (2018). EvoCells –
a treemap layout algorithm for evolving tree data. In
Proc. IVAPP, pages 273–280. SciTePress.

Sorva, J., Karavirta, V., and Malmi, L. (2013). A review
of generic program visualization systems for introduc-
tory programming education. ACM Transactions on
Computing Education, 13(4):1–64.

Thiede, C. and Rein, P. (2023). Squeak by example. Lulu,
6.0 edition.

Thiede, C., Taeumel, M., and Hirschfeld, R. (2023a). Object-
centric time-travel debugging: Exploring traces of ob-
jects. In Proc. <Programming>, pages 54–60. ACM.

Thiede, C., Taeumel, M., and Hirschfeld, R. (2023b). Time-
awareness in object exploration tools: Toward in situ
omniscient debugging. In Proc. SIGPLAN Onward!,
pages 89–102. ACM.

von Mayrhauser, A. and Vans, A. M. (1995). Program com-
prehension during software maintenance and evolution.
IEEE Computer, 28(8):44–55.

Walker, R. J., Murphy, G. C., Freeman-Benson, B., Wright,
D., Swanson, D., and Isaak, J. (1998). Visualizing
dynamic software system information through high-
level models. ACM SIGPLAN Notices, 33(10):271–
283.

Waller, J., Wulf, C., Fittkau, F., Döhring, P., and Hasselbring,
W. (2013). SynchroVis: 3D visualization of monitoring
traces in the city metaphor for analyzing concurrency.
In Proc. VISSOFT, pages 2:1–4. IEEE.

Weninger, M., Makor, L., and Mössenböck, H. (2020). Mem-
ory Cities: Visualizing heap memory evolution using
the software city metaphor. In Proc. VISSOFT, pages
110–121. IEEE.

Wettel, R. and Lanza, M. (2007). Visualizing software sys-
tems as cities. In Proc. VISSOFT, pages 92–99. IEEE.

