
Visual Counterfactual Explanations Using Semantic Part Locations

Florence Böttger1, Tim Cech2 a, Willy Scheibel1 b, and Jürgen Döllner2 c

1University of Potsdam, Digital Engineering Faculty, Hasso Plattner Institute, Germany
2University of Potsdam, Digital Engineering Faculty, Germany

florence.boettger@student.hpi.uni-potsdam.de, tcech@uni-potsdam.de, willy.scheibel@hpi.uni-potsdam.de,
doellner@uni-potsdam.de

Keywords: Counterfactuals, Explainable Artificial Intelligence, Convolutional Neural Networks

Abstract: As machine learning models are becoming more widespread and see use in high-stake decisions, the ex-
plainability of these decisions is getting more relevant. One approach for explainability are counterfactual
explanations, which are defined as changes to a data point such that it appears as a different class. Their close
connection to the original dataset aids their explainability. However, existing methods of creating counter-
facual explanations often rely on other machine learning models, which adds an additional layer of opacity
to the explanations. We propose additions to an established pipeline for creating visual counterfacual expla-
nations by using an inherently explainable algorithm that does not rely on external models. Using annotated
semantic part locations, we replace parts of the counterfactual creation process. We evaluate the approach
on the CUB-200-2011 dataset. Our approach outperforms the previous results: we improve (1) the average
number of edits by 0.1 edits, (2) the keypoint accuracy of editing within any semantic parts of the image by an
average of at least 7 percentage points, and (3) the keypoint accuracy of editing the same semantic parts by at
least 17 percentage points.

1 INTRODUCTION

In recent years, the impact of machine learning mod-
els has increased in many high-stakes areas, e.g., the
medical field (Chen et al., 2021) or autonomous driv-
ing (Schwarting et al., 2018). The topic of ethics in
machine learning for purposes such as bias mitigation
(Wachter et al., 2020) is becoming more prevalent too
(Zhang et al., 2021). However, most models used in
high-stakes decisions are still regarded as black boxes
with little to no inherent means of explaining the mod-
els’ outputs (Castelvecchi, 2016). Given these high
stakes, it is essential that machine learning models
are explainable. In particular, continued use of ma-
chine learning models needs to comply with laws,
e.g., the “right to explanation” from the European
Union’s General Data Protection Regulation (Wachter
et al., 2018).

Solving these problems of explainability is re-
searched within the field of Explainable AI (XAI).
While explanations can be generated on models work-
ing with raw data, our focus is on visual explanations.

a https://orcid.org/0000-0001-8688-2419
b https://orcid.org/0000-0002-7885-9857
c https://orcid.org/0000-0002-8981-8583

There exist multiple means of generating explanations
on visual data: some are external to the data, such as
captions (Hendricks et al., 2016) or visual questions
answering, which reveals information by answering
given questions about the decisions (Goyal et al.,
2017; Chen et al., 2020). Others are more closely re-
lated to the data, such as saliency maps, which try to
show the most pertinent parts of an input image (Si-
monyan et al., 2014; Petsiuk et al., 2021). We are fo-
cusing on visual counterfactual explanations, which
are closely related to the input images as we are di-
rectly editing them to generate the explanations.

A Counterfactual Explanation is defined as an edit
of an input image of a given class based on another
image of another class. The initial image and its class
are referred to as the query image and the query class,
while the image that is used for editing and its class
are the distractor image and the distractor class. The
result of this is a counterfactual image, which is based
on the query image while being detected as the dis-
tractor class. For example, a decision of a model to
identify numbers could be explained by displaying
what would need to be changed to instead be detected
as a different number, so a query image showcasing
a “5” should be modified to instead be detected as

(a) Query image (b) Distractor image

(c) Merged counterfactual image

Figure 1: Visual representation of a counterfactual created
by editing a query image with parts of a distractor image
using a vignette overlay. The head of the distractor image is
edited over that of the query image. Note that the vignette
overlay is used to increase visual clarity and is not an exact
representation of the actual counterfactual creation process
and has not been tested in studies.

a distractor class of “6”. By creating a specific set
of changes from a given data point, the explanation
is intrinsically connected to the data, and therefore it
should be understandable to anyone who understands
the original data. However, this adherence to an orig-
inal data point also limits the scope of possible ex-
planations, as the explanation should not stray too far
from the original, or present impossible or nonsensi-
cal changes. If a counterfactual for the number de-
tection example suggested replacing the entire image,
for example, that would not be a helpful suggestion,
as it would lose all connections to the query image.

A visual representation of a counterfactual can be
seen in Figure 1. A counterfactual has been created
from two images by editing part of the distrator image
over the query image, showing how the query image
subject would need to look different in order to be de-
tected as the distractor class. Note that the vignette
overlay used here is for presentation purposes and is
not an exact representation of the actual process. As
opposed to other methods of explanations, which tend
to be external to the actual data at hand, counterfactu-
als tend to have a much closer connection to the data.
Counterfactual explanations are strongly correlated to

the input; therefore, they are easily understandable.
In particular, a counterfactual explanation can support
causal reasoning, as it displays a change in state and
how it would affect the decision (Pearl, 2000).

One important aspect of counterfactual creation is
comprehensibility: if an edit is incomprehensible to
an observer, for example because it switched a bird’s
head with the legs of another, the explanation would
not be understandable, as it does not present a re-
alistic alternative. Therefore, it is important to en-
courage that the proposed counterfactual explanations
obey this sensibility. Additionally, explanations gen-
erated using external models add an additional layer
of opacity that does not exist when the explanation
itself is more inherently explainable.

In this paper, we expand upon existing approaches
by Goyal et al. (2019) and Vandenhende et al. (2022)
for creating visual counterfactual explanations on the
CUB-200-2011 dataset (Wah et al., 2011) by using
pre-annotated semantic parts data. We outline how we
add an additional loss summand based on annotated
date of semantic parts. We also perform a comparison
of different edits as well as an extensive optimization
of the hyperparameters.

The remainder of this work is structured as fol-
lows. We will first go over the related work that we
are building upon. Then we outline our approach,
briefly going over the dataset before explaining the
parts loss, an additional loss term that uses seman-
tic part locations to prefer edits between features con-
taining the same semantic parts. We also add a means
to add tolerance to this process, as well as a way to
simplify the semantic parts in crowded areas. Af-
ter this, we explain the experiment setup, going over
our implementation before elaborating on the relevant
hyperparameters. We also explain the metrics that
we optimize for, then briefly outline our optimiza-
tion algorithm. We perform two experiments, one to
determine viability of different hyperparameters and
one to determine the best values for the hyperparame-
ters that were deemed promising from the first exper-
iment, then briefly analyze our approach’s runtime.
After this, we discuss our results, putting them into
perspective and performing comparisons with the pre-
vious work, and evaluate possible threats to validity.
Lastly, we provide our conclusions and detail possible
future work.

2 RELATED WORK

Counterfactual explanations have found widespread
use in explaining machine learning models. Mothilal
et al. (2020) have developed a counterfactual creation

engine for raw information datasets that can create
sets of diverse counterfactuals. Gomez et al. (2020)
have created a visual analytics tool to visually repre-
sent counterfactuals to an information dataset. Bor-
eiko et al. (2022) have generated visual counterfac-
tuals by performing detailed edits to change the sub-
ject of the image. As these approaches perform more
complex operations, ensuring semantic context be-
comes a challenge, whereas the approach we are us-
ing performs simpler operations that inherently keep
more of the context intact.

As opposed to more finely detailed means of coun-
terfactual creation, Goyal et al. (2019) constructed a
visual counterfactual explanation by pasting a subset
of features from the distractor image onto the query
image, resulting in a counterfactual. Because the to-
tal number of possible edits arising from all possible
combinations of features to edit between was too big
to reasonably compute, they proposed a greedy se-
quential search to determine the individual best edits
over multiple edit steps by optimizing a classification
loss term.

Vandenhende et al. (2022) expanded upon this
framework by adding a semantic consistency loss
term to the existing greedy sequential search. For this
they used an auxiliary model that determined seman-
tic consistency between spatial cells. They then com-
bined this loss with the classification loss and opti-
mized for this combined loss. Additionally, they also
searched over multiple distractor images to find the
best edit instead of just one. They optimized for this
by only selecting a smaller number of distractor im-
ages chosen by semantic consistency with the query
image.

Because the semantic consistency approach uti-
lizes an auxiliary model to create its explanation,
someone wishing to fully understand their explana-
tions would also need to understand the auxiliary
model. By adding this additional layer of opacity,
a comprehensive explanation would also need to ex-
plain the auxiliary model. Rudin (2019) argues that
inherently explainable models should be used instead
of black box models when the quality is sufficient.
Our explanation is inherently understandable, as it re-
lies on the annotated parts and matches them between
query and distractor features. As such, no additional
explanation work is needed to fundamentally under-
stand our explanation.

3 APPROACH

Our approach builds upon the previous work done by
Goyal et al. (2019) and Vandenhende et al. (2022).

Ensuring consistency within edits is an important part
of creating understandable edits. For example, an
edit that switches the head of a bird with its wing is
likely to look nonsensical and is therefore ill-suited
as a counterfactual explanation. We can prevent such
edits and therefore improve their accuracy by adding
an additional loss term based on semantic part loca-
tions as well as adding more terms on how said loss is
calculated by implementing a tolerance as well as the
option to simplify semantic parts.

3.1 The Dataset

We use the CUB-200-2011 dataset (Wah et al., 2011)
for our experiments as it has already been used in pre-
vious works by Goyal et al. (2019) and Vandenhende
et al. (2022) in creating visual counterfactuals. It is
also popular among other visual applications of arti-
ficial intelligence, such as the image captioning done
by Hendricks et al. (2016) or the CutMix approach to
training samples proposed by Yun et al. (2019).

The dataset contains 11 788 images of 200 bird
species. It is uniquely suitable to our approach, as
it includes part locations for 15 bird parts, as seen in
Figure 2. We are using these part locations in order to
improve the accuracy of the explanation. According
to the dataset split, 5 794 of the 11 788 images within
the dataset are used for testing, while the others are
used for training.

3.2 Parts Loss

When creating a counterfactual, the basis consists of
an image I of a query class c ∈ C and an image I′ of
a distractor class c′ ∈ C. The goal is to edit I such
that the result is detected as the class c′. In order to
detect the classes as seen by a given network, a fea-
ture extractor function f : I → Rhw×d is used, where
h and w are the spatial dimensions of the features
and d the number of channels. A decision network
g : Rhw×d → [0,1]|C| assigns each feature matrix to a
set of probabilities of the matrix belonging to each
given class.

We perform edits as first defined by Goyal et al.
(2019): we permute the features of I′ and then edit
only a subset of those features over the features of
I (gating). Consider the permutation matrix P ∈ P ,
where P is the set of all hw× hw permutations over
the feature maps, and the gating vector a ∈ {0,1}hw,
where ai = 1 means that a given feature will be added
to the counterfactual. A counterfactual I′ is then ex-
actly defined by P and a:

f (I∗) = (1−a)◦ f (I)+a◦P f
(
I′
)
. (1)

Figure 2: The 15 parts labeled within the CUB-200-2011 dataset, as created by Wah et al. (2011).

Table 1: Different types of sub-losses used to calculate total loss. Table is sorted by source date.

Source Loss Formula

Goyal et al. (2019) Lc (I, I′) gc′
(
(1−a)◦ f (I)+a◦P f

(
I′
))

Vandenhende et al. (2022) Ls

(
u(I)i ,u(I

′) j

) exp
(

u(I)i ·u(I′) j /τ

)
∑ j′∈u(I′) exp

(
u(I)i ·u(I′) j′ /τ

)
Proposed Lp

(
r (I)i,r (I

′) j

)
max

0≤k<p

(
r (I)i,k · r

(
I′
)

j,k

)

As the dataset we use contains part locations, we
locate the feature within the h×w feature grid that
each part’s spatial location belongs to. We define

r : I → {0,1}hw×p, (2)

where p is the number of distinct parts in the dataset,
and r(I)i,k = 1 if and only if part k is contained within
cell i of the feature representation of I. Our parts loss
Lp is defined in Table 1, where i is the given feature
cell of the query image, and j the cell of the distractor
image. Lp is 1 if cell i of the query image and cell j of
the distractor image contain a common class between
them, otherwise it is 0.

Our loss is combined with the loss terms by Goyal
et al. (2019) and Vandenhende et al. (2022) as out-
lined in Table 1 (with u being the auxiliary model and
τ the temperature), leading to the following total loss:

L
(
I, I′
)
= logLc

(
I, I′
)

+λ1 · logLs
(
aT u(I),aT Pu

(
I′
))

+λ2 ·Lp
(
aT r (I) ,aT Pr

(
I′
))

, (3)

where λ1 and λ2 are hyperparameters balancing the
individual losses. We keep the use of multiple dis-
tractor images. In the case of n different distractor
images, the semantic class parts for the distractor im-
ages have a combined shape of {0,1}nhw×p.

3.3 Tolerance for Parts Loss

By default, the semantic class parts for each image
consist of a binary matrix, where a part either exists
within a feature or not. However, the specific bound-
aries between features are arbitrary with relation to
the image. Therefore, we implement a tolerance sys-
tem to make the result less dependent on said layout.

We define rD : I → [0,1]hw×p similarly to r in
Equation 2. Just as with r, a value of 1 indicates that
a part is present within a feature. However, some-
times parts are close to the boundary between fea-
tures. The previous approach would count them to
be wholly within one feature, even though they are
very close to another. As such, a binary loss is a poor
representation of the reality of the parts.

We take this into account by returning a frac-
tional number within [0,1] if the part is close to the
given feature. Given an euclidean distance of d be-
tween a class part and a feature cell, the value is
max

(
0,1− d

D

)
, with D being set as the maximum dis-

tance that a cell can have from a part. The unit for
both values is set as the dimension of a cell, so if
e.g. D = 1, the gradient takes effect up to 1 cell away
from the part location. As such, the previously de-
fined function r is equivalent to r0. A comparison of
the approaches can be seen in Figure 3.

(a) Image with part location

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.00

0.00

(b) Matrix for D = 0

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

0.21 0.21

0.99 1.00

0.79 0.79

(c) Matrix for D = 1

Figure 3: 4×4 feature matrices for values of rD for a given part with different tolerances.

Figure 4: Locations of all head parts in an image of a black-
footed albatross from the CUB-200-2011 dataset.

We use rD in place of r for the calculation of Lp.

In that case, Lp

(
rD (I)i,rD (I′) j

)
is also no longer a

binary result in {0,1}, but can take any value in [0,1].

3.4 Simplifying Semantic Parts

The annotated part locations may be in different de-
grees of detail based on the specific dataset and the
purposes said annotation set out to do. For example,
the CUB-200-2011 dataset contains many annotations
for parts within a bird’s head area, as seen in Figure 4.
Such a level of detail is less useful when we are con-
sidering the rougher divisions of the feature grid we
are using. In fact, it might even detract from the result
because the granularity is so much finer than what we
are using. Therefore we are grouping all parts that are
categorized under “head” within Wah et al. (2011) as
the same semantic class.

We use a mapping function m : [0,1]hw×p →
[0,1]hw×p′ , where p′ is the new number of parts. Us-
ing a given p× p′ permutation matrix M, we calculate

m(R)i, j = max
0≤k<p

(
Ri,k ·Mk, j

)
, (4)

where R ∈ [0,1]hw×p is a parts matrix. We then use
m(r(I)) and m(r (I′)) in place of r(I) and r (I′), re-
spectively, when calculating Lp.

By performing this simplification we are reducing
the total number of semantic parts from the original
15 down to 7 by assigning all classes belonging to the
head—those being the beak, the crown, the forehead,
the eyes, the nape, and the throat—as one “head”
class. Vandenhende et al. (2022) only simplified the
number of different parts down to 12 by unifying left
and right counterparts of body parts.

4 EXPERIMENT SETUP

We are performing a computational experiment where
we create a counterfactual for each of the 5 794 sam-
ples within the CUB-200-20111 test dataset. The in-
put images within the dataset are of size 224× 244
pixels, while the feature map has dimensions of 7×7,
meaning that h=w= 7. We use the approach outlined
in section 3 to generate a series of edits by choos-
ing the best edit via Lp, as seen in Equation 3, until
the given network predicts the edited features to be-
long to the distractor class. For the sake of creating
counterfactuals between similar semantic classes, we
select the distractor class based on the most similar
class to the query class using a confusion matrix in-
cluded with the dataset. We then randomly select a
given number of distractor images to use for counter-
factual creation. Then we save the counterfactual and
repeat this process for the next one until all of the data
has been processed.

4.1 Implementation

To implement the method outlined above, we are
building upon the Python implementation created by
Vandenhende et al. (2022). Specifically, we are
adding our additional loss to the sequential greedy
search and expanding upon the program by imple-
menting the necessary hyperparameters as well as
editing the parts map to take tolerance and simpli-
fied parts into account. To compare our results to

Vandenhende et al. (2022), we are using the same
pretrained VGG-16 (Simonyan and Zisserman, 2015)
and ResNet-50 (He et al., 2016) networks that they
have used.

We perform this experiment using parallelized
computing on four servers (512GiB RAM each), us-
ing Python version 3.8.13. The code written for this
project as well as additional data are available online1.

Our results are entirely deterministic, as we are
performing a greedy sequential search. If the hyper-
parameters are identical and the same network is used,
the calculations of the losses for each individual edit
will also be identical. As such the same edits are cho-
sen, and the evaluation is therefore also identical.

4.2 Hyperparameters

For our initial optimization run, we evaluate sev-
eral hyperparameters to determine which ones are the
most promising. As such, we keep the hyperparam-
eter λ1 as utilized when weighing Lc in the calcula-
tion of the total loss term as first proposed by Van-
denhende et al. (2022). In order to still limit the total
number of hyperparameters and yield more substan-
tive results, we are keeping the temperature hyperpa-
rameter τ from Table 1 fixed at the best value deter-
mined by Vandenhende et al. (2022), being τ = 0.1.

We are also adding three additional hyperparame-
ters: λ2 from L in Equation 3 is used to determine the
weight of the parts loss Lp. D is be used to balance
the tolerance for the semantic class loss using rD, as
outlined in subsection 3.3. Lastly, we use a binary hy-
perparameter S ∈ {True, False} to determine whether
we further simplify the semantic parts from 12 parts
to 7. We set 0 ≤ λ1 ≤ 2, 0 ≤ λ2 ≤ 10, 0 ≤ D ≤ 3 and
S ∈ {True, False} as the optimization ranges for the
hyperparameters.

4.3 Optimization Metrics

We use the evaluation metrics initially used by Goyal
et al. (2019) and Vandenhende et al. (2022), those be-
ing the average number of edits as well as the keypoint
(KP) metrics. Let m be the size of the dataset we are
editing over, and Ek ∈N,0 ≤ k < m the number of ed-
its on the k-th iteration. Then the average amount of
edits E is

E =
∑

m−1
k=0 Ek

m
. (5)

For the keypoint metrics, consider a single given
edit e = (i, j) ∈ (N,N) ,0 ≤ i, j < hw consisting of a

1https://doi.org/10.5281/zenodo.8056313

Table 2: Spearman correlation between different metrics
over initial testing using VGG-16 and 400 iterations. Note
that for clarity, −E is used in place of E as we wish to min-
imize E while maximizing the KP values.

−E KPS,N KPS,S KPA,N KPA,S

−E 1 −0.44 −0.60 0.01 −0.26
KPS,N −0.44 1 0.89 0.86 0.91
KPS,S −0.60 0.89 1 0.67 0.90
KPA,N 0.01 0.86 0.67 1 0.89
KPA,S −0.26 0.91 0.90 0.89 1

pair of a query cell i from I and a distractor cell j
from I′ to edit. Then the Near-KP metric of that edit
KPN : Nhw×hw → [0,1] is defined as the average num-
ber of these cells which contain at least one semantic
part within them:

KPN(i, j) =
1
2
·1

(
p−1⋃
k=0

r(I)i,k = 1

)

+
1
2
·1

(
p−1⋃
k=0

r
(
I′
)

j,k = 1

)
. (6)

The Same-KP metric KPS : Nhw×hw → {0,1} is
defined as being 1 if the edit cells share a common
semantic part between them and 0 otherwise:

KPS(i, j) = 1

(
p−1⋃
k=0

r(I)i,k = r
(
I′
)

j,k = 1

)
. (7)

For both of these individual edit metrics, we de-
fine both a variant defined as the total average of the
given metric for all edits across each iteration and a
variant defined as the average of only the single first
edit across each iteration. This results in five total
metrics: the average number of edits E, the Near-KP
over a single edit KPS,N , the Near-KP over all edits
KPA,N , the Same-KP over a single edit KPS,S and the
Same-KP over all edits KPA,S.

We specifically focus on two metrics for the op-
timization: the average number of edits E and the
Same-KP over all edits KPA,S. These metrics were
chosen as early tests have shown that the different
keypoint metrics largely correlate with one another,
while edits show little or even opposed correlation
with the keypoint metrics, as seen in Table 2. Note
that we are using −E instead of E in the table, as we
wish to minimize E while maximizing the KP values.

As E is inversely correlated with all of the other
metrics that we considered, it was chosen as one of
our main metrics. From the KP metrics, we choose
the Same-KP over all edits KPA,S. This metric is the
strictest, as early tests have shown that KPA,S yields

https://doi.org/10.5281/zenodo.8056313

0.3 0.4 0.5 0.6 0.7 0.8 0.9
KP

3.5

4.0

4.5

5.0

5.5

6.0

Ed
its

Figure 5: Scatter plot of all 400 optimization iterations from
initial testing using VGG-16. The Pareto front is high-
lighted in red.

the lowest average out of all keypoint metrics. Fol-
lowing, we refer to the KPA,S metric as KP.

4.4 Optimization Algorithm

We use the optimization framework Optuna (Ak-
iba et al., 2019) in order to optimize the given hy-
perparameters. This framework lets the user have
freedom in constructing the search space (define-by-
run principle). We slot the existing structure that
we expanded from the work by Vandenhende et al.
(2022) into an optimization function without requir-
ing drastic changes or forgoing the existing function-
ality of externally-defined hyperparameters. We then
use Optuna to optimize the existing functions, utiliz-
ing a tree-structured Parzen estimator (Bergstra et al.,
2011). We chose this estimator due to its good perfor-
mance even for multivariate optimization.

5 EXPERIMENTS

In order to showcase our results, we perform two ex-
periments. Experiment 1 is performed to analyze the
quality of our four selected hyperparameters by con-
sidering their correlation with our two metrics. From
among those we then select the hyperparameters that
have a positive correlation with at least one of the
metrics. Experiment 2 is performed with just these
hyperparameters with the goal of determining the to-
tal quality of our results. We are also comparing our
results with those set by Goyal et al. (2019) and Van-
denhende et al. (2022).

5.1 Experiment 1

We begin by performing an optimization using VGG-
16 and all four hyperparameters (λ1, λ2, D, and S)

Table 3: Spearman correlation and related p-values between
the hyperparameters and the optimization metrics over the
first experiment using VGG-16.

rKP p(rKP) rE p(rE)

λ1 -0.03 56% 0.91 < 0.1%
λ2 0.47 < 0.1% 0.19 < 0.1%
D -0.68 < 0.1% -0.35 < 0.1%
S -0.23 < 0.1% 0.08 10.1%

over 400 iterations to determine the viability of each
of the hyperparameters. A scatter plot of the results
from this test can be seen in Figure 5. In order to
determine the impact of each hyperparameter, we de-
termine the Spearman correlation (Spearman, 1904)
of each hyperparameter on each of the optimization
metrics. The Spearman correlation is defined as the
correlation between the ranks of a set of values, mean-
ing it measures monotony. The reason we utilize the
Spearman correlation is that we mainly wish to deter-
mine the hyperparamters’ impact on the rank of the
values so we can determine their general impact. We
also record the corresponding p-values for the null
hypothesis that the hyperparameter has no correlation
with the metric.

As can be seen from Table 3, λ1 has a very slight
negative correlation on KP, while also having a very
direct correlation with a higher E. λ2, meanwhile,
has a rather clear correlation with a higher KP, while
slightly increasing E. D has a negative correlation
on KP, while correlating with fewer edits E. Lastly,
S appears to have negative correlation on KP while
appearing to have little correlation to E.

Given these correlation values, we can determine
that λ2 and D each positively correlate with one of our
metrics: while λ2 correlates with better KP, D corre-
lates with fewer edits. The other two metrics which
we tested in these experiments, λ1 and S do not dis-
play a positive correlation with either of our metrics.
Therefore, Experiment 2 will be performed using the
hyperparameters λ2 and D with both the VGG-16 and
ResNet-50 models.

5.2 Experiment 2

For optimizing the results using only the hyperparam-
eters λ2 and D, we begin by queuing up optimization
trials for the extreme values of λ2 = 0, D = 0 and
λ2 = 10, D= 0. Early tests have shown that these val-
ues provide extreme values for the results, and choos-
ing them for the initial optimization trials sets a range
for the optimization, as well as providing promising
initial values. A scatter plot of the 400 optimization
iterations for this experiment using VGG can be seen
in Figure 6. When visualizing the hyperparameters

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
KP

3.5

3.6

3.7

3.8

3.9

4.0

4.1

4.2

4.3

Ed
its

Figure 6: Scatter plot of all 400 iterations from the second
experiment using VGG-16. The Pareto front is highlighted
in red.

via the saturation of the data points in Figure 7, we
can see a tradeoff between λ2 correlating to good KP
but poor E, while D correlates with worse KP but bet-
ter E. This is also reflected in the Spearman correla-
tion in Table 4, which shows a strong correlation with
λ2 and a good KP but many edits, and the opposite
for D.

In order to showcase visual results, a choice of a
specific hyperparameter pair is necessary. We opted
to choose λ2 = 0.51, D = 0.09 from the pareto front,
which yields 3.65 average edits and an average KP of
61.1%. For these hyperparameters, we showcase the
first edit in Figure 8. We can see that the first edit is
identified to be between the heads of the birds.

Figure 9 shows a comparison of our work to that
of Vandenhende et al. (2022). We note that when
they performed a grid search on their hyperparame-
ters (those being λ1 and τ), it was without some of
the other improvements they have added, such as only
considering one distractor image instead of choosing
out of multiple ones. For the sake of a fair compar-
ison, we repeat their grid search with the addition of
their improvements.

Our results consistently outperform those of Van-
denhende et al. (2022) along both metrics. The data
point with the lowest KP and edits is the data point
where the respective weight hyperparameter λ1 or λ2
is 0, meaning that only the classification loss Lc is
considered. This point is the equivalent to the initial
approach by Goyal et al. (2019), though with the ad-
ditional features Vandenhende et al. (2022). A full
overview of the results for the edits and all KP met-
rics can be seen in Table 5. In addition to the results
from the related work, we have also added results for
the Goyal et al. (2019) approach of only using Lc (i.e.
λ1 = λ2 = 0) with later additions such as multiple dis-
tractor images, as well as our balanced set of hyper-
parameters with λ2 = 0.51, D = 0.09 and a set with

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
KP

3.5

3.6

3.7

3.8

3.9

4.0

4.1

4.2

4.3

Ed
its

(a) λ2

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
KP

3.5

3.6

3.7

3.8

3.9

4.0

4.1

4.2

4.3

Ed
its

(b) D

Figure 7: Scatter plot of all 400 iterations of the second
experiment using VGG-16. The saturation of the data points
indicates the value of a given hyperparameter, with more
saturation corresponding to higher values.

Table 4: Spearman correlation and related p-values between
the hyperparameters and the optimization metrics over the
second experiment using VGG-16.

rKP p(rKP) rE p(rE)

λ2 0.77 < 0.1% 0.82 < 0.1%
D -0.57 < 0.1% -0.48 < 0.1%

(a) Query image (b) Distractor image

Figure 8: Features to be edited from a query-distractor pair.

Table 5: Comparison of all metrics between Goyal et al. (2019), Vandenhende et al. (2022), and our implementation on a
VGG-16 network. KP are given in %. We are listing both a balanced set of hyperparameters with λ2 = 0.51, D = 0.09 as
well as a KP-optimizing set of hyperparameters at λ2 = 10, D = 0. The best results for each metric are bolded.

E KPS,N KPS,S KPA,N KPA,S

Goyal et al. (2019) 5.5 67.8 17.2 54.6 8.3
Goyal et al. (2019) (Multiple Distractors) 3.5 75.3 24.2 70.4 17.8

Vandenhende et al. (2022) 3.8 78.1 41.0 71.9 36.5
Proposed 3.7 85.4 58.7 83.7 61.1

Proposed (KP Optimized) 4.3 100.0 100.0 97.7 96.9

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
KP

3.50

3.75

4.00

4.25

4.50

4.75

5.00

5.25

Ed
its

Figure 9: Scatter plot of 400 iterations from the second ex-
periment using VGG-16 (blue) and scatter plot of 18 grid
search samples from Vandenhende et al. (2022) (green).

λ2 = 10, D = 0 which optimizes the KP metrics.
Notably, when optimizing for KP metrics, we can

see that we reach exactly 100% on the single-edit
evaluations. This means that the first edit is always
between two features that share a common part. How-
ever, this also leads to the highest number of edits
out of any of the multi-distractor approaches. On
the other hand, using only Lc in the loss calculation
while using multiple distractors yields the fewest ed-
its, but it also features the worst KP metrics out of
the multi-distractor approaches. Both the approach
by Vandenhende et al. (2022) and our balanced one
have results in between these extremes, with our bal-
anced approach consistently outperforming theirs in
each metric. While edits are only slightly improved
by 0.1 edits, the KP values are improved by at least
7 percentage points at their lowest and up to 24 per-
centage points at their highest.

5.3 Runtime Performance

We perform a runtime analysis using the conditions
of Experiment 1, i.e. 400 optimization iterations us-
ing all hyperparameters. Using these conditions, we
achieve a maximum runtime of 6449.5 seconds, a
minimum runtime of 4239.7 seconds, and an average
runtime of 5010.5 seconds. The average time per edit

is 0.255 seconds. Note that as this is an optimization,
it is to be expected that the results improve during it,
and as such, runtime also improves.

This can be seen when comparing the correlation
between the number of edits and the total runtime of
each optimization iteration. Given that we analyze
how accurate the average runtime is, we will perform
a Pearson correlation analysis (Pearson, 1896) in ad-
dition to a Spearman one. Because Pearson correla-
tion indicates the correlation of the raw values instead
of the ranks as Spearman does, a high Pearson corre-
lation indicates a linear relationship between the num-
ber of edits and the runtime, meaning that it strongly
indicates whether the average time per edit is accurate
to most edits. The values have a Pearson correlation
of ρ = 0.995, a Pearson p-value of < 0.1%, a Spear-
man correlation of r = 0.992, and a Spearman p-value
of < 0.1%. This shows that the runtime of a given edit
is largely similar among different executions, so the
true measure for the runtime is how many total edits
are occurring.

6 DISCUSSION

Our approach outperforms existing counterfactual
creation approaches within the KP and edits metrics.
By adding the parts loss Lp and therefore specifi-
cally encouraging edits that will optimize the KP met-
rics, we are able to especially achieve higher KP met-
rics. There exist especially large improvements on the
Same-KP metric, indicating that our approach edits
between the same semantic parts more frequently than
previous work. This becomes clear when consider-
ing the ratio of Same-KP to Near-KP, which indicates
how many edits that concerned a semantic part also
edited between the same semantic parts. In the ap-
proach by Vandenhende et al. (2022), when consider-
ing only the first edit, this ratio is 52.5%, and over all
edits it drops to 50.8%. In our approach, meanwhile,
on the first edit, the ratio is 68.8%, and this ratio actu-
ally rises to 73.0% over all edits. This shows that the

Same-KP metrics rose comparatively higher than the
Near-KP metrics.

However, we note that these metrics are still only
approximations of the actual goal of the field of XAI,
that being creating explanations that are understand-
able to humans. While better performance in these
metrics has correlated with better results in the user
study performed by Vandenhende et al. (2022), this
does not necessarily apply in every circumstance.
Choice of metrics in general is not a settled topic
(Vilone and Longo, 2021), with Rosenfeld (2021)
proposing a general set of metrics that generally lead
to simpler and more inherently explainable models
being preferred. As such, if the user-based metrics
for our approach are poor in comparison to the greater
performance of the heuristics-based metrics, a differ-
ent choice of metrics may better represent the impact
on the users.

Goyal et al. (2019) presented some of their coun-
terfactual explanations by merging the edited features
over the query image via vignette masks. A display
of this approach can be seen in Figure 10. This ap-
proach displays a smoother approximation of edits
and is likely to be more pleasant viewing than a more
discrete pasting of a feature rectangle would be. How-
ever, while it does make for a comparatively prettier
representation, it is not quite accurate to the process of
counterfactual approximation. Within the actual pro-
cess, the entirety of the feature is edited.

Examples such as Figure 10 show that while our
approach performs well within the metrics, the ap-
proach by Vandenhende et al. (2022) tends to pro-
duce smoother transitions. For instance, while our
approach edits the chest area in such a way that pro-
duces visible tears, Vandenhende et al. (2022) manage
to edit the chest area in such a way that the transi-
tion appears seamless. However, merged images such
as these have not actually been used within the user
studies tracking understandability of the explanations
by Goyal et al. (2019) and Vandenhende et al. (2022).
Instead, the features to be edited were represented us-
ing bounding boxes as seen in Figure 11. While our
merged images do not look as seamless as those in
the semantic consistency approach, the bounding box
representation in this figure still shows an edit be-
tween the breasts of the birds.

Internal threats to validity can occur from our
heavy reliance on the parts annotation, which is a
comparatively less-utilized aspect of the CUB-200-
2011 dataset. Errors within said annotations would
greatly influence the results.

Regarding external threats, it is impossible to uti-
lize the parts loss on datasets without semantic part
locations. The specific hyperparameter values for the

(a) Query image

(b) Merged
(Vandenhende et al., 2022)

(c) Distractor image
(Vandenhende et al., 2022)

(d) Merged (Proposed) (e) Distractor image
(Proposed)

Figure 10: Merged images of the query image and
counterfactual features using a vignette mask as well as the

distractor images for the second edit, comparing our
approach and the one by Vandenhende et al. (2022).

(a) Query image (b) Distractor image

Figure 11: Features to be edited from a query-distractor pair
for our approach on the second edit.

tolerance distance D are also only valid within the
context of the specific parts within the CUB-200-2011
dataset that they were optimized for, as well as rely-
ing on consistent feature grid dimensions to remain
accurate. Changing the dataset or the feature grid
dimensions would require optimizing these hyperpa-
rameters once more. In comparison, the approach by
Vandenhende et al. (2022) is more generically appli-
cable, as semantic consistency is transferable between
models and does not require any additional training or
optimization once the auxiliary model has been ini-
tially trained. As such, our specific results are only
applicable to this dataset and only generalizable to a
specific subset of datasets. The fact that an improve-
ment over the state of the art exists, even if limited
to a specific dataset, may encourage the creation of
similar annotations on further datasets.

Additionally, within the first experiment, we only
determine correlation, which is not causation. While
we perform multiple experiments to confirm our hy-
potheses and reach very low p-values within them, it
is nonetheless not a guaranteed indication of causa-
tion. Because we determine the Spearman correlation
on data that is gained from optimization, it is possible
that the optimization itself acts as a confounder, lead-
ing to uncorrelated hyperparameters to be be seen as
correlated (Pearl, 2000). This is an especially high
risk in the case of the hyperparameter S due to its
binary state. Assuming that it is uncorrelated to be-
gin with, random sampling may still create the im-
pression that it is correlated in some way. Therefore
the optimization algorithm might prefer that value for
S in further tests, leading to a potentially inaccurate
view of the actual level of correlation. However, this
can only create the impression of a correlation where
there is none, and given that S and λ1 showed a neg-
ative correlation, they are either actually negatively
correlated or not correlated. Either way, they would
not be viable candidates. The positive correlation of
λ2 and D in respect to one of the metrics each has been
observed over multiple optimization runs for both the
first experiment and additionally for both the VGG-
16 and ResNet-50 networks within the second exper-
iment. Therefore, while it is impossible to rule out, it
is unlikely that λ2 or D are not actually correlated to
the metrics.

7 CONCLUSIONS & FUTURE
WORK

In this work we have presented an approach for cre-
ating visual counterfactual explanations based upon
a new parts loss term Lp. This loss term takes into

account the accuracy of an edit with regards to the se-
mantic parts, controlled by a hyperparameter λ2. We
also created hyperparameters to add to this loss by
adding a distance tolerance D to account for the arbi-
trary nature of the bounds between features, as well
as an option S to simplify the semantic parts within
the high-density area of the head. Using an in-depth
optimization process, we then determined the perfor-
mance of the new hyperparameters. This is opposed
to the semantic loss term Ls originally introduced by
Vandenhende et al. (2022) which used an external net-
work to measure semantic similarity.

Our evaluation determined that the hyperparam-
eter λ1 controlling semantic loss Ls has little cor-
relation with the keypoint metrics, and strong nega-
tive correlation with the number of edits. We also
determined similar results for the simplification op-
tion S. As such we focused on experiments using
only the hyperparameters λ2 and D. By optimiz-
ing these two hyperparameters we could find config-
urations that outperform the standard set by Vanden-
hende et al. (2022). In particular we improve upon
their work by an average of 0.1 edits and at least 7
percentage points in the keypoint metrics when con-
sidering the keypoints generally being part of the bird
and at least 17 percentage points when considering if
the edits share a semantic part.

We have created an explanation algorithm that is
inherently explainable which outperforms the previ-
ous work while not relying on an external model. By
using metadata such as semantic part locations, this
approach could be expanded to other data sets.

In the future, we plan to perform user studies to
determine whether the improved metrics of our ap-
proach lead to more understandable explanations. We
also invite other researchers to investigate if similar
types of metadata from other datasets could be used
to improve the performance of this or other explana-
tion approaches on those datasets.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valu-
able feedback. This work was partially funded by
the German Federal Ministry for Education and Re-
search (BMBF) through grant 01IS22062 (“AI re-
search group FFS-AI”).

REFERENCES

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.
(2019). Optuna: A next-generation hyperparameter

optimization framework. In Proc. 25th ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, KDD ’19, pages 2623–2631. ACM.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B.
(2011). Algorithms for hyper-parameter optimiza-
tion. In Proc. Neural Information Processing Systems,
NeurIPS ’11. Curran Associates, Inc.

Boreiko, V., Augustin, M., Croce, F., Berens, P., and Hein,
M. (2022). Sparse visual counterfactual explanations
in image space. In Proc. DAGM German Conference
on Pattern Recognition, GCPR ’22, pages 133–148.
Springer International Publishing.

Castelvecchi, D. (2016). Can we open the black box of AI?
Nature News, 538(7623):20–23.

Chen, I. Y., Pierson, E., Rose, S., Joshi, S., Ferryman, K.,
and Ghassemi, M. (2021). Ethical machine learning
in healthcare. Annual Review of Biomedical Data Sci-
ence, 4:123–144.

Chen, L., Yan, X., Xiao, J., Zhang, H., Pu, S., and Zhuang,
Y. (2020). Counterfactual samples synthesizing for
robust visual question answering. In Proc. IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 10797–10806. IEEE.

Gomez, O., Holter, S., Yuan, J., and Bertini, E. (2020).
ViCE: Visual counterfactual explanations for machine
learning models. In Proc. 25th International Con-
ference on Intelligent User Interfaces, IUI ’20, pages
531–535. ACM.

Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., and
Parikh, D. (2017). Making the V in VQA matter: Ele-
vating the role of image understanding in visual ques-
tion answering. In Proc. IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR ’17,
pages 6325–6334. IEEE.

Goyal, Y., Wu, Z., Ernst, J., Batra, D., Parikh, D., and
Lee, S. (2019). Counterfactual visual explanations.
In Proc. 36th International Conference on Machine
Learning, PMLR ’19, pages 2376–2384. PMLR.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep
residual learning for image recognition. In Proc. Con-
ference on Computer Vision and Pattern Recognition,
CVPR ’16, pages 770–778. IEEE.

Hendricks, L. A., Akata, Z., Rohrbach, M., Donahue, J.,
Schiele, B., and Darrell, T. (2016). Generating visual
explanations. In Proc. European Conference on Com-
puter Vision, ECCV ’16, pages 3–19.

Mothilal, R. K., Sharma, A., and Tan, C. (2020). Explaining
machine learning classifiers through diverse counter-
factual explanations. In Proc. Conference on Fairness,
Accountability, and Transparency, FAT* ’20, pages
607–617. ACM.

Pearl, J. (2000). Causality: Models, Reasoning and Infer-
ence. Cambridge University Press.

Pearson, K. (1896). VII. Mathematical contributions to the
theory of evolution.—III. Regression, heredity, and
panmixia. Philosophical Transactions of the Royal
Society of London. Series A, containing papers of a
mathematical or physical character, 187:253–318.

Petsiuk, V., Jain, R., Manjunatha, V., Morariu, V. I., Mehra,
A., Ordonez, V., and Saenko, K. (2021). Black-box

explanation of object detectors via saliency maps. In
Proc. IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR ’21, pages 11438–11447.
IEEE.

Rosenfeld, A. (2021). Better metrics for evaluating ex-
plainable artificial intelligence. In Proc. 20th Interna-
tional Conference on Autonomous Agents and Multia-
gent Systems, AAMAS ’21, pages 45–50. IFAAMAS.

Rudin, C. (2019). Stop explaining black box machine learn-
ing models for high stakes decisions and use inter-
pretable models instead. Nature Machine Intelligence,
1(5):206–215.

Schwarting, W., Alonso-Mora, J., and Rus, D. (2018). Plan-
ning and decision-making for autonomous vehicles.
Annual Review of Control, Robotics, and Autonomous
Systems, 1:187–210.

Simonyan, K., Vedaldi, A., and Zisserman, A. (2014).
Deep inside convolutional networks: Visualising im-
age classification models and saliency maps. In Proc.
2nd International Conference on Learning Represen-
tations – Workshops Track, ICLR ’14.

Simonyan, K. and Zisserman, A. (2015). Very deep convo-
lutional networks for large-scale image recognition. In
Proc. 3rd International Conference on Learning Rep-
resentations, ICLR ’15, pages 1–14. Computational
and Biological Learning Society.

Spearman, C. E. (1904). The proof and measurement of
association between two things. American Journal of
Psychology, 15(1):72–101.

Vandenhende, S., Mahajan, D., Radenovic, F., and Ghadi-
yaram, D. (2022). Making heads or tails: Towards se-
mantically consistent visual counterfactuals. In Proc.
European Conference on Computer Vision, ECCV
’22, pages 261–279. Springer Nature Switzerland.

Vilone, G. and Longo, L. (2021). Notions of explainability
and evaluation approaches for explainable artificial in-
telligence. Information Fusion, 76:89–106.

Wachter, S., Mittelstadt, B., and Russell, C. (2018). Coun-
terfactual explanations without opening the black box:
Automated decisions and the GDPR. Harvard Journal
of Law & Technology, 31(2):841–887.

Wachter, S., Mittelstadt, B., and Russell, C. (2020). Bias
preservation in machine learning: The legality of fair-
ness metrics under EU non-discrimination law. West
Virginia Law Review, 123(3):735–790.

Wah, C., Branson, S., Welinder, P., Perona, P., and Be-
longie, S. (2011). The Caltech-UCSD Birds-200-2011
dataset. Technical Report CNS-TR-2011-001, Cali-
fornia Institute of Technology.

Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., and Yoo,
Y. (2019). CutMix: Regularization strategy to train
strong classifiers with localizable features. In Proc.
IEEE/CVF International Conference on Computer Vi-
sion, (ICCV ’19, pages 6022–6031. IEEE.

Zhang, B., Anderljung, M., Kahn, L., Dreksler, N.,
Horowitz, M. C., and Dafoe, A. (2021). Ethics and
governance of artificial intelligence: Evidence from
a survey of machine learning researchers. Journal of
Artificial Intelligence Research, 71:591–666.

