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Abstract: Software and its dependencies build up a graph where edges connect packages according to their dependencies.
In this graph, downstream dependencies are all the nodes that depend on a package of interest. Although
gathering and mining such downstream dependencies allow for informed decision-making for a package
developer, there is much room for improvement, such as automation and integration of this approach into
their development process. This paper makes two contributions: (i) We propose an approach for efficiently
gathering downstream dependencies of a single package and extracting usage samples from them using a static
type analyzer. (ii) We present a tool that allows npm package developers to survey the aggregated usage data
directly in their IDE in an interactive and context-sensitive way. We evaluate the approach and the tool on a
selection of open source projects and specific development-related questions with respect to found downstream
dependencies, gathering speed, and required storage. Our methods return over 8 000 downstream dependencies
for popular packages and process about 12 dependencies per minute. The usage sample extraction offers
high precision for basic use cases. The main limitations are the exclusion of unpopular and closed-source
downstream dependencies as well as failing analysis when encountering complex build configurations or
metaprogramming patterns. To summarize, we show that the tool supports package developers in gathering
usage data and surveying the use of their packages and APIs within their downstream dependencies, allowing
for informed decision-making and improving the resdesign of APIs.

1 Introduction

The continued proliferation and improvement of open-
source software (OSS) platforms such as GitHub or
GitLab and package deployment ecosystems such as
npm, pip, or NuGet support and facilitate software
development on a global scale. Open-source develop-
ment offers many advantages over traditional closed-
source development, including voluntary contributions
from the open-source community, greater transparency
in security-related areas, and a high potential for so-
lution reuse (Saied et al., 2018). These solutions are
typically organized as packages, each solving an iso-
lated problem and providing a higher-level interface.
Packages can depend on existing packages by includ-
ing them in their manifest, i.e., the package.json file
of npm packages or the requirements.txt file of
Python projects. These dependency relations form a
large directed graph connecting significant parts of
the software world for today’s programming language
ecosystems. We define a software ecosystem as a col-
lection of software projects, which are developed and

which co-evolve in the same environment.
Despite this connectedness by design, however,

the development process of many packages is still
characterized by an isolated approach: While OSS
developers commonly submit tickets to or contribute
patches against upstream repositories that they depend
on to solve subproblems, the reverse direction of these
edges – called downstream dependencies and in the
following referred to as dependencies – is often ne-
glected by package developers. This deficit can cause
a wide range of alignment issues, including poorly
suited interfaces (Piccioni et al., 2013), unidentified
defects (Wong et al., 2017), and compatibility prob-
lems (Bogart et al., 2015). Eventually, all these issues
impair the capabilities of the global OSS community
to build and support high-quality packages.

To tackle these concerns, we propose an ap-
proach to extract API usage samples from downstream-
dependency repositories of individual packages to sup-
port package developers in exploring usages of their
packages. We make these data directly available to
package developers by integrating them into an inte-
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grated development environment (IDE).
Our approach consists of three steps: (i) col-

lect downstream dependency repositories from public
source code repositories, (ii) mine package usage sam-
ples from these dependencies using a type analyzer,
and (iii) aggregate and present these usage data to the
package developer in its development environment.
The approach is implemented as a Visual Studio Code
extension1 and evaluated on a selection of open source
projects and specific development-centric questions.

The remainder of this paper is structured as fol-
lows: In section 2, we summarize existing approaches
and in section 3, we outline the overall conditions for
our solution and detail the collection of downstream
dependency repositories and subsequent mining of us-
age data. In section 4, we present an implementation
of our approach and outline design decisions for dis-
playing usage samples to the user. Finally, in section 5,
we examine the fitness of our data mining approach
and the usability of the display solution. Section 6
concludes this paper.

2 Related Work

Proper tooling design for improving package develop-
ers’ knowledge about interface usages in dependencies
has not yet attracted significant attention in the scien-
tific community. Nevertheless, programmatic analy-
sis of dependency graphs and API usage mining are
already standard techniques in the field of mining soft-
ware repositories (MSR). Chaturvedi et al. provide a
broad overview of existing achievements and ongoing
research topics in this field (Chaturvedi et al., 2013).
Besides source code repositories, they describe data
sources worthwhile to examine, including telemetry
data from IDEs, issue trackers, and discussion plat-
forms, and propose different directions for evaluating
the retrieved data, e.g., classifying or ranking repos-
itories, analyzing the evolution of projects, studying
development communities, but also inspecting the re-
lationships and dependencies between projects. We
further consider related work in the areas of depen-
dency graphs, usage sample extraction, and tooling
support.

Searching dependency graphs. A common purpose
for analyzing dependency graphs is to discover tran-
sitive upstream dependencies of a project and assess
their impact on the stability and vulnerability of the

1All presented artifacts are available on GitHub:
https://github.com/LinqLover/downstream-repository-
mining (Thiede et al., 2022)

project (Kikas et al., 2017). Similarly, the spreading of
security vulnerabilities along the chain of downstream
dependencies can be measured (Decan et al., 2018).

However, existing research on dependency graphs
takes a broad statistical perspective and relies on a
large corpus of downloaded software repositories (Ab-
dalkareem et al., 2017; Kikas et al., 2017; Katz, 2020).
As opposed to this approach, these capacities are not
suitable for scenarios that developers of a single pack-
age occasionally perform. In this case, developers will
often use a public code search service instead, such as
GitHub or Sourcegraph. Liu et al. provide a survey of
methods and trends in code search tools that include
newer approaches such as structural or semantic search
queries, code similarity metrics, or machine learning
methods (Liu et al., 2020).

Extracting usage samples. Dependency graphs do
not provide information about package usage at suf-
ficient granularity. For example, insights about refer-
encing package classes or methods are missing. The
process of extracting fine-grained information about
all references to individual elements of an interface is
referred to as API usage analysis (Lämmel et al., 2011).
A simple approach is to perform a string search for
package names or members in the dependencies (Mil-
eva et al., 2010), or to operate on the abstract syntax
tree (AST) of each parsed dependency to avoid false
positive caused by ambivalent identifier names (Qiu
et al., 2016). In addition, one can collect usage data
to analyze the historical importance of certain features
supported by an API (Sawant and Bacchelli, 2017).

However, the precision of ASTs is limited for
dynamically typed languages such as JavaScript or
Python. As opposed to static typing, the value type of
an expression in a dynamically typed language may
be unknown at the compile time of the program. For
this reason, a type analysis can help to predict run-
time types of all expressions in the AST (Jensen et al.,
2009). This is usually accomplished by analyzing
the control flow of a program and inferring possible
types of every variable or function. Another source
for enhancing type information is call graphs that are
either gathered statically, i.e., as a result of a theoret-
ical analysis of the source code, or dynamically, i.e.,
sampled during actual program execution. While the
latter method is better suited to include more contex-
tual information, the former method has the advantage
that it can be applied to a more considerable amount
of source code without requiring concrete entry points,
parameterization, and run-time data. Many solutions
exist that analyze the structure of programs and extract
relevant information to build call graphs:

Collard et al. propose an infrastructure called
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SRCML that aims to create a unified representation
of multilingual source code snippets for arbitrary
analysis purposes, including the construction of call
graphs (Collard et al., 2013). Another solution utilizes
an island parser to build polyglot call graphs (Bogar.
et al., 2018). Furthermore, Antal et al. compare sev-
eral call graph generators for JavaScript and emphasize
that static call graph generators have limited precision
by design for languages supporting dynamic typing or
meta-programming mechanisms (Antal et al., 2018).

To merge dependency graphs and call graphs,
ecosystem call graphs can be constructed by apply-
ing call graphs to entire ecosystems that cross repos-
itory boundaries. Many approaches apply this con-
cept to different ecosystems, often aiming to conduct
fine-grained impact analysis for security vulnerabili-
ties (Hejderup et al., 2018; Boldi and Gousios, 2020;
Wang et al., 2020; Hejderup et al., 2021; Keshani,
2021; Nielsen et al., 2021). Another approach is
the precise code intelligence feature of Sourcegraph,
which makes code references explorable across repos-
itory boundaries for repositories that provide a meta-
data file in the Language Server Index Format.2

After collecting these usage data, additional pro-
cessing is possible to extract general usage information
from the extensive raw data. Next to basic grouping
and counting operations, such aggregations can be
built by detecting popular usage patterns of API fea-
tures in the downstream dependencies. Zhong et al.
propose such a framework, that, for instance, finds
sequences of API members that are invoked frequently
and even uses these patterns for guiding API users by
giving them recommendations (Zhong et al., 2009).
Hanam et al. pursue a different goal in their tool that
helps package developers assess the impact of break-
ing API changes on the functionality of downstream
dependencies (Hanam et al., 2019).

Presentation of results. To establish an adequate
developer experience, any collected usage data still
need to be presented suitably. Due to the hierarchical
structure of source code, a common approach for this
is a hierarchical and navigatable representation of the
collected call tree. An early form of this represen-
tation has been invented as the interactive “message
set” tool for browsing senders and implementors in an
object-oriented system for the Smalltalk programming
environment (Goldberg, 1984). Modern alternatives
include the Stacksplorer (Karrer et al., 2011) or Blaze
(Krämer et al., 2012) that list next to the currently fo-
cused method other methods which are adjacent to this
method in the call graph. With a focus on exploring

2https://docs.sourcegraph.com/code_intelligence/
explanations/precise_code_intelligence

references to API members, De Roover et al. pro-
pose a set of additional views, including hierarchical
lists and word clouds for highly referenced identifiers
(De Roover et al., 2013). Focusing on exploring APIs
in a non-code-centric way, Hora and Valente propose
a dashboard that allows developers to browse exist-
ing APIs and track possibly breaking changes in their
interfaces (Hora and Valente, 2015).

3 Downstream Dependency Mining

Our approach to improve developers’ knowledge about
the usage of their packages is based on the automatic
gathering of downstream dependency information and
integration into their development environment. This
approach assumes a target package and focuses on
showing a developer actual usage of parts of their
package and, in particular, answering the following
questions: In doing so, we identified three questions
from package developers about the usage of their pack-
ages:

Q1 Which dependencies are using the target package,
and what problems do they try to solve with them?

Q2 By how many dependencies is a particular package
member being used?

Q3 In which contexts and constellations is a particular
package member being used?

For an effective integration into the development pro-
cess, we pose three non-functional requirements:

R1 The tool is ready to use out of the box and requires
little configuration (less than 5 minutes for a new
user).

R2 The tool consumes sufficiently few computational
resources to run on a single machine but still deliv-
ers interactive response times according to Shnei-
derman’s requirement to frequent tasks (Shneider-
man and Plaisant, 2010).

R3 The tool blends in with the usual workflow of pack-
age developers at the best possible rate.

On a conceptual level, we separate the approach into
the collection of downstream dependency projects and
mining of usage samples based on a target package.

3.1 Downstream Dependency Collection

In the first step, a list of repositories that depend on
the target package has to be assembled. As men-
tioned in section 2, many approaches start with a large
downloaded corpus of unspecific repositories from the
ecosystem, which they then iterate over to filter the
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Input:
package: target package
dependencies: downstream dependencies

Output: usage samples (set of strings)

for dependency ∈ dependencies:
asf ← parse(dependency∪package)
annotate_types(asf )
for ast ∈ asf :

for node ∈ dfs(ast):
for pattern ∈ patterns:

if pattern.matches(node)∧ package.declares(pattern.getType(node)):
yield node.text

Algorithm 1: Extraction of usage samples.

relevant repositories. However, a major drawback of
this approach is the high resource demand for both
creating and traversing this corpus. This approach is
suited for analyzing repositories on a large scale but
is not conform to requirement R1 because of its large
footprint in terms of computational power, memory,
and time. As an alternative, we have decided to apply
filtering to the set of repositories before downloading
a subset of it to the developers’ machine. For that,
we use two types of data sources that are available as
public web platforms:

(i) Package repositories that maintain a doubly-
connected edge list of interdependent packages
in an ecosystem.

(ii) Code search engines that index the source code
of many repositories from OSS platforms. Using
these search engines, we can query all repositories
that declare a dependency on the target package in
their package manifest file.

3.2 Usage Sample Mining

Having downloaded the selected downstream depen-
dency repositories, the next step is to extract usage
samples for the target package from each dependency
repository. Our goal is to gather fine-grained source
code excerpts that reference individual identifiers ex-
posed by the target package. The complete procedure
is displayed in algorithm 1.

To do so, the source code of every dependency
repository as well as the source code of the target pack-
age are parsed, each into a separate abstract syntax
forest (ASF, i.e., a set of ASTs). In a second step,
static type analysis against each dependency ASF is
performed together with the target package’s ASF. The
results of the type analysis are attached to the ASF so

that every identifier is annotated with a type symbol
that links to the declaration of the type for the identifier.
For instance, after this step, every variable node con-
tains a link to the assignment node of this variable, and
every function call expression contains a link to the
definition of this function. The operating principle of
this type analysis depends on the kind of programming
language. In statically typed languages, type symbols
can be retrieved from declarations, whereas in dynam-
ically typed languages, a control flow analysis will
be required to identify the origin of every identifier’s
type.

In the final step, all nodes whose type is declared
in the target package are collected from each ASF. To
identify these links, we use a set of language-specific
patterns for AST subtrees that constitute a usage ex-
pression. In particular, each of these patterns expects a
node containing a link to an identifier declaration (see
fig. 1).

4 Prototype

In our prototype, we focus on analyzing JavaScript
projects for node.js. This decision is motivated by the
large prevalence of JavaScript3 as well as the first-rate
extent of the npm ecosystem which has been unsur-
passed since 20154. The prototype instantiates the
downstream dependency collection and the usage sam-
ple mining and allows for the integration of the results
into the development environment.

3GitHut 2.0: A small place to discover languages in GitHub.
https://madnight.github.io/githut/#/pushes

4Modulecounts: http://www.modulecounts.com/
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CallExpression

identifier
typeArguments

arguments

(a) Node pattern for a TypeScript
function call, such as in: result =
fun<T1, T2>(arg1, arg2);

PropertyAccessExpression

identifier name

(b) Node pattern for a JavaScript prop-
erty access, such as in:
return obj.prop;

JsxOpeningExpression

tagName
typeArguments

attributes

(c) Node pattern for a JSX opening el-
ement (as supported in React or Type-
Script), such as in: or TypeScript
elem = <Button color="blue">
Submit</Button>;

Figure 1: AST patterns for example JavaScript/TypeScript expressions. The highlighted node contains the link to the
declaration of the referenced identifier.

Listing 1: Example package.json file for the ripple-lib
package specifying multiple dependencies (truncated). The
list of dependencies that are extracted from this exam-
ple contains bignumber.js, https-proxy-agent, and
jsonschema.

1 {
2 "name": "ripple-lib",
3 "version": "1.10.0",
4 "description": "An API for the XRP

Ledger",
5 "dependencies": {
6 "bignumber.js": "^9.0.0",
7 "https-proxy-agent": "^5.0.0",
8 "jsonschema": "1.2.2"
9 }

10 }

4.1 Downstream Dependency Collection

The de-facto standard package repository manager for
node.js is npm. To fetch downstream dependency pack-
ages from the npm registry, we use the npm package
npm-dependants which scrapes the dependents list
from npmjs.com as there does not exist a publicly
available API for these data. To keep the footprint of
our implementation small, only a part of the depen-
dents list is scraped. Then, basic metadata for each
found package is requested from the npm registry, in-
cluding the tarball URL of the latest package version,
using the package package-metadata. Finally, each
tarball is downloaded and extracted using the package
download-package-tarball.

For the second method – based on a code search
engine –, we have identified Sourcegraph5 as a promis-
ing platform. npm packages specify their dependen-
cies in a package.json metadata file (see listing 1).
To find all packages depending on a certain pack-
age, we can search all available package.json files
for a reference to this package identifier. We refine

5https://sourcegraph.com/

our search query with some additional constraints
to filter out package copies from node_modules fold-
ers that downstream developers have pushed acciden-
tally, and to limit the number of results retrieved.
We submit this search query to the publicly available
GraphQL API of Sourcegraph6 by using the npm pack-
age graphql-request. After retrieving a search result,
we download a snapshot of the full repository by using
the package download-git-repo.

Additionally, we enrich the metadata of each pack-
age with a few metrics indicating its popularity from
the associated GitHub repository if specified. The
GitHub API is accessed via the official octokit library7.

4.2 Usage Sample Mining

For parsing the dependencies, we use the Type-
Script Compiler API8. TypeScript is an extension of
JavaScript that adds strong typing; typing is based on
a combination of implicit type inference and explicit
type declarations. As a side benefit, our implementa-
tion is also able to analyze packages implemented in
true TypeScript.

The TypeScript compiler’s binder component anno-
tates every node of the parsed program with a type sym-
bol if it can resolve one. After performing a type anal-
ysis of the dependency by instrumenting the binder,
we collect all nodes from the type-annotated ASF that
refer to the target package, matching each node against
a list of defined patterns (similar to fig. 1). A lookup
of the node’s type symbol’s declaration is performed
based on the syntax kinds of the node, its ancestors,
and its descendants, and then compared with the source
directory of the target package.

6https://docs.sourcegraph.com/api/graphql
7https://octokit.github.io/
8https://github.com/Microsoft/TypeScript/wiki/
Using-the-Compiler-API
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(a) The dependency browser. (b) The usage browser. (c) The CodeLens integration for the class GraphQLError.

(a) The dependency browser. (b) The usage browser. (c) The CodeLens integration for the class GraphQLError.

Figure 2: Screenshots of our VS Code extension used to explore downstream dependencies of the npm package graphql.

Normally, foreign types can only be resolved if
they are declared in a dependency module that has been
installed into the node_modules folder of the repository.
Because downloading and installing all dependency
modules for every downstream repository of the target
package would increase the computational resources
of the usage mining drastically and eventually violate
requirement R2, we skip this step but instead mod-
ify the module resolution strategy of the TypeScript
compiler host. To do so, we extend the paths param-
eter from the default compiler options9 and insert a
new entry that remaps accesses to the target package
name to the separate source code directory of the target
package.

4.3 Presentation of Results

After all references have been collected, a proper user
interface (UI) is still required to provide users easy
access to these data that fulfills the requirements men-
tioned above. To satisfy requirement R1 and require-
ment R3 by making our tool available in the usual
working environment of users, we implement it as
an extension to the Visual Studio Code IDE10. It also
provides a comprehensive set of APIs for extension
developers. To support other researchers in reusing our
solution, we also provide a CLI. The user interface is
divided into three key views, supporting developers in
answering the questions raised in section 3 (see fig. 2):

(i) The dependency browser allows to explore all
downstream dependencies and, grouped for each
dependency, all references to the target package.

(ii) The usage browser displays all public package

9https://www.typescriptlang.org/tsconfig#paths
10https://code.visualstudio.com/

members and, grouped for each member, all de-
pendencies and their references to this member.

(iii) The CodeLens integration provides quick access
to a slice of usage samples and is attached to the
definition of each package member in the source
code editor.

Both references and members are organized each
in a tree view that reflects the hierarchical structure of
the original software repository. In addition, we recog-
nize the effort of browsing large lists of dependency
data and encounter it by providing an “I’m feeling
lucky” button for every view that redirects the user to a
random dependency or reference, respectively, to gain
a faster, unbiased impression of usage samples.

To implement each of these views in the VS Code
Extension API (VSCE)11, we use the Tree View API
and the CodeLens API. One challenge has been to de-
liver fast results and not to block the user interface
because even despite the lightweight mining meth-
ods we chose to satisfy requirement R2 from above,
querying, downloading, and analyzing each depen-
dency takes a few seconds (see section 5). To over-
come this issue, we use pagination wherever possible
and push incremental UI updates. As the VSCE API
per se does not provide for multithreading or multipro-
cessing operations but suggests a Promise/A+-driven
dataflow, we adopt this style for our object model by
using the JavaScript concepts asynchronous functions,
AsyncIterators, and Promise.all to avoid busy wait-
ing during the data collection process.

11https://code.visualstudio.com/api

https://www.typescriptlang.org/tsconfig#paths
https://code.visualstudio.com/
https://code.visualstudio.com/api


Table 1: Quantity and false-positive rates (FPR) of downstream dependencies found by the presented methods (using npm and
Sourcegraph) for selected packages.

npm Sourcegraph

Package G
itH

ub
st

ar
s

C
ou

nt

FP
R

C
ou

nt

FP
R

In
te

rs
ec

tio
n

in
%

base64id 16 27 0.20 45 1.00 8

nemo 38 1 0.00 1 1.00 0

random-js 556 219 0.14 193 0.36 15

kubernetes-client 902 36 0.13 79 0.21 16

jsonschema 1 547 394 0.00 517 0.18 2

graphql 18 005 396 0.17 8 863 0.68 2

cheerio 24 228 396 0.07 6 779 0.07 0

5 Evaluation

To evaluate our approach, we formulate three research
questions:

RQ1 What is the quality and quantity of the proposed
methods for dependency collection?

RQ2 What is the quality and quantity of the proposed
method for mining usage samples?

RQ3 How well is the proposed tool applicable with
regard to the questions and requirements described
in section 3?

In the following, we will investigate each question.

5.1 RQ1: Dependency collection

To assess the quality and quantity of dependency col-
lection, we analyze it with respect to extent, precision,
recall, and performance. Table 1 shows the number
of dependencies collected to build an experimental
dataset from each data source following the proposed
methods for a set of manually selected npm packages.
For each package, we have annotated a subset of the
collected dependencies (max. 20 dependencies per
package) to identify and classify false positive hits.

Extent. Regarding the total number of dependencies
collected by each method, no clear trend in favor of
any method can be ascertained for small or medium
packages, i.e., having less than 10,000 stars on GitHub.
For larger packages, i.e., having at least 10,000 stars,
however, the number of dependencies collected from
the npm registry stagnates near to 400 hits. Beyond
this limit, the npm registry returned internal server
errors for our requests. For Sourcegraph, we have

not hit any limitations so far. Currently, they do not
provide any official documentation for the exact rate
limits. As the disjunct proportion of results from both
methods is very small (on average about 6 %), we
consider a combination of both data sources useful
for maximizing the extent and diversity of the gained
dataset.

Precision. The precision of collected dependencies
is drastically lower for dependencies found on Source-
graph than for such found on npm. Figure 3 collates
the causes we have identified for false positives; most
frequently, repositories specify a dependency on a tar-
get package in their package manifest file but do not
import this package at any place. In some situations,
this may happen if the package is a plugin for another
package or if it is invoked as a CLI from a build script,
but in the majority of repositories, developers trivially
appear to have specified the upstream dependency by
accident (e.g., while copying a package.json file over
from another package), or to have forgotten to remove
the upstream dependency after switching away from
using the package. Less common causes are reposito-
ries that only add type definitions to a package but do
not actually import it, as well as packages required by
a repository that declares a peer dependency on the tar-
get package, which needs to be fulfilled by the depend-
ing repository. We explain the increased false-positive
rate for Sourcegraph dependencies by our observation
that packages found on npm are deliberately published
and typically stand out by their higher cohesion and
commitment to maintenance, whereas GitHub-only
projects contain a higher share of hobby or students’
projects. We stress that a reduced precision does not
impair the quality of results displayed to package de-
velopers as all dependencies not containing at least
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Figure 3: Causes for false-positive dependency matches and their frequencies.

one usage sample can be easily filtered out, but down-
loading and analyzing any irrelevant packages lowers
the performance of the approach.

Recall. Besides the precision of the collected depen-
dencies, their recall is of interest, too. Since dependen-
cies are collected in excerpts from two large datasets,
a quantitative analysis of false negatives would require
costly manual annotation and is target for future work.
Nevertheless, some causes will prevent a dependency
from being found by our methods:

• Packages without a proper dependency manifest
cannot be detected as our method is based on pars-
ing these metadata.

• Only published packages are found on npm, lead-
ing to a bias for generic and professional software.

• On both platforms, results will be sorted based
on intransparent criteria (which, as we speculate,
include the number of direct dependents on npm
and the recent update frequency on Sourcegraph,
respectively). As we only fetch the first dependen-
cies from both data sources, this is a likely source
of further biases. These biases could be fought by
always fetching all dependencies, but this would
drastically reduce performance and would require
a workaround for the npm query limitation.

Performance. Table 2 gives some basic metrics com-
paring the performance of both data sources. While
searching downstream dependencies is slower by aver-
age on npm as we use a web scraper instead of an API
for this source, npm packages are usually smaller than
many mono-repositories on OSS platforms that contain
multiple node.js packages. In addition, they are faster
to download since the download-git-repo package
that we use for repositories found on Sourcegraph only
uses zipballs instead of tarballs (.tar.gz files), while
the latter would offer a higher compression rate.

5.2 RQ2: Usage mining

To assess the quality and quantity of usage mining,
we examine this processing step’s precision, recall,
and performance. Due to the complexity of a detailed
annotation process, we only consider the existence of
found usage samples on the dependency level. The
absolute quantity of found usage samples largely varies
for different packages and dependencies based on the
semantic extent of the package and the coupling.

Precision. Under laboratory conditions, false-
positive usage samples cannot be emitted by our
method if we assume the correctness of the TypeScript
compiler. There are only two theoretical exceptions
to this invariant: (i) In case of a name collision be-
tween two packages, invalid or false positive usage
samples may be emitted. However, the npm infras-
tructure attempts to rule out these collisions by using
the package name as a unique ID for every published
package. (ii) If dependency developers deliberately
interfere with the TypeScript compiler (for instance,
by suppressing type errors using @ts-ignore com-
ments, both false positive and false negative matches
are possible. Additionally, some npm packages contain
minified sources only that are still searchable, valid
code but can be significantly harder to read.

Recall. To evaluate the recall of our method, we have
refined the experimental dataset collected in section 5.1
and removed all false-positive dependencies. Within
this cleansed dataset, the overall rate of dependencies
for that our method cannot find at least one usage
sample accounts for 47.9 %. To explain these false
negatives, we have identified some systematic causes:

• Many projects on OSS platforms have complex
build configurations that include additional tran-
spilation or code generation steps before a final
version of the source code is reached that is valid



Table 2: Performance metrics and remarks for both dependency collection methods using npm and Sourcegraph.

Metric npm Sourcegraph

Search speed a s/pkg 1.58 0.04

Download speed a,b s/pkg 0.26 8.80

Storage MB/pkg 5.80 27.20

API limitations max. 400 results none known
a

Test machine: 7 vCPUs Intel Xeon Cascade Lake at 2.80 GHz, internet down speed 1.8 Gbit/s.
b

Effective speed downloading multiple packages in parallel to manage latencies.

to the node.js interpreter or the TypeScript com-
piler. Unless we add explicit support for such build
configurations, type analysis and usage mining for
these projects will fail.

• In some situations, additional type definitions are
required to perform a complete type inference of
a dependency. This applies to every parametrized
callback from a package for that type definitions
are not available. This limitation could be resolved
by downloading or generating type definitions for
all upstream dependencies of every downstream
dependency; however, this would reduce the ap-
proach’s performance.

• The static type analyzer of TypeScript has some
limitations. For instance, the type analysis will
have a limited recall for certain control flow
patterns or metaprogramming constructs such
as meta-circular evaluation using the eval()
function or dynamic function binding using
Function.bind(). These limitations could be
resolved with AST preprocessing and partial eval-
uation of the source code.

Performance. The total time spent performing type
analysis for a repository from the experimental dataset
and mining usage samples averages about 3 seconds.
The complete ASF of an average parsed repository
consumes between 10 MB and 500 MB memory, de-
pending on the size of the repository.

5.3 RQ3: Requirements

To assess the applicability of our tool, we investigate
different options for users who would like to answer
the questions raised in section 3. We further analyze
how far our tool meets the requirements posed above.

Answering User Questions. To answer question Q1
without our tool, users could access the data sources
used by our tool manually to search for and view down-
stream dependencies. The source code of repositories
can be browsed on Sourcegraph, but if an npm package

is not available on an OSS platform, users will need
to download and extract it. With our tool, the data
collection process is condensed into a single button
that incrementally displays all references from both
data sources. Users can hover or click any dependency
to view its documentation or implementation. To an-
swer questions Q2 and Q3 without our tool, users need
to scan each found dependency separately to count
or read all usage samples. If they intend to analyze
the usage of a member with an exact name, they can
perform an expeditious string search. This is possi-
ble using Sourcegraph or another search engine if the
dependency is indexed there; otherwise, users will
need to download the repository and search it locally.
If the member of interest has an ambiguous name,
users will need to download the project and view it
in an IDE such as VS Code that supports reference
search. Alternatively, they can try the precise code in-
telligence mode on Sourcegraph (see section 2); how-
ever, this feature is available for a few repositories
only. All usage samples can be collected automatically
and merged into a single list within our tool. Once
the collected dependencies have been processed, users
can select a member of interest and view all its usage
samples with a single click. For the usage analysis
of Java APIs, the tool Exapus also considers different
kinds of member usages such as instantiation vs. in-
heritance of a class (De Roover et al., 2013); a similar
classification could improve the usability of our tool.

Meeting Requirements. To satisfy requirement R1,
the application needs to be easy to set up. As our exten-
sion can be installed with two clicks from the Visual
Studio Code Extension Marketplace and the installa-
tion takes less than 10 seconds on our test machines, it
fulfills this requirement.

We break down requirement R2 into two accep-
tance criteria: application liveness and small resource
footprint. As discussed before, our tool can process
5 up to 12 dependencies per minute while requiring
about 500 MB memory in total and less than 30 MB
storage per package. After the tool is activated, the
first results usually appear after less than 10 seconds



on the UI. This is an acceptable delay regarding Shnei-
derman’s definition of acceptable application response
times, so the liveness criterion is fulfilled. Even if the
tool downloads a few hundred dependencies, it will
occupy less than 10 GB storage that can be released
at any time, which we consider a small resource foot-
print at a time where modern operating systems require
64 GB storage; thus, the second criterion is fulfilled as
well.

Requirement R3 effectively calls for a minimum
number of context switches that are required to use
the tool, i.e., for minimizing the temporal, spatial, and
semantic distance (Ungar et al., 1997) between the
downstream dependency UI and the IDE used by pack-
age developers. Once the data are available in the UI,
interaction is possible with the same speed as with
local source files in the package. This meets Shnei-
derman’s requirement to frequent tasks and indicates
a low temporal distance. The spatial distance varies
for the different views of the tool: A separate tool-
bar has to be opened for the dependency and usage
browsers, which indicates a higher spatial distance;
still, the artifacts are available in the same IDE. Also,
the dependency artifacts have no strong relation to any
existing IDE artifacts, so any closer integration into an
existing view would increase coupling between inde-
pendent domains. The code annotations are displayed
close to the package source code with a small spatial
distance. The semantic distance can be described as
the perceived similarity of artifacts displayed both in
the tool’s UI and in the existing IDE, i.e., the package
and dependency members. Most items in the usage
browser bear the same label as the corresponding iden-
tifier in the source code, which reduces the semantic
distance. However, dependency member path nodes
that refer to anonymous expressions are displayed dif-
ferently compared to the outline view of VS Code (see
fig. 2 (a)), slightly increasing the semantic distance.
With a low temporal distance, a low-to-medium spatial
distance, and a mainly low semantic distance, our tool
also fulfills requirement R3.

6 Conclusions and Future Work

Downstream dependencies offer a promising perspec-
tive for package developers interested in understanding
how their interfaces are used in practice by other soft-
ware developers. In this paper, we have proposed an
automated approach to making this sort of information
accessible to package developers by automating the de-
pendency collection and mining of usage samples from
every dependency. We have identified two kinds of
rich data sources for efficiently collecting downstream

dependencies: public package repositories, such as
npm, and online code search engines for finding de-
pendent repositories by their package manifest files,
namely Sourcegraph. We accomplish the usage min-
ing by scanning the ASTs of every dependency for
certain usage patterns that refer to a type from the
target package; if the dependency uses a dynamically
typed language, we perform a type analysis before.
We have demonstrated the usability of our approach
with a tool that embeds the downstream dependency
data into the VS Code IDE. Our analysis suggests that
the collected dependencies and the extracted usage
samples have a viable quality in terms of precision
and extent and further that the resource requirements
of our prototype are sufficiently low for collecting all
data on the local machine of a package developer.

Nevertheless, we have identified several causes for
false negatives over the whole mining process that can
bias the output usage samples, including the popularity
and recency of dependencies but also the proper decla-
ration of packages and their renunciation of complex
toolchains and metaprogramming patterns. Our anal-
ysis, however, is not yet fully supported by data and
would require further quantitative evaluation to assess
the exact precision and recall of our approach for min-
ing usage samples as well as the efficacy of our tool.
As for the first question, manual annotation of source
code repositories with usage samples will be required
to compare them to the outputs of our implementation.
Close insights for the second question could be gained
from a user study that measures the impact of our
tool on the efficiency of package developers solving
downstream dependency-related tasks.

We believe that our tool has further potential to
support package developers in surveying downstream
dependencies. As future work, we envision other pur-
poses for analyzing the collected downstream depen-
dency data, including usage pattern mining, automated
convenience protocol suggestions, and the generation
of metrics for classifying downstream dependencies or
measuring the cohesion and impact of libraries within
an ecosystem. By extending the static usage analysis
with a dynamic approach, the detected usage samples
could be enriched with valuable runtime data describ-
ing involved parameters, the fine-grained code cover-
age of package members, or the invocation context
of members. Returning to the abstract problem that
we have formulated in the introduction – how can we
improve developer knowledge about their packages’
usage? –, further data sources next to source code
files emerge that could be mined for package refer-
ences, too. For instance, we are looking forward to
solutions that mine the change history of projects for
package-related changes (potentially indicating break-



ing changes), search conversation platforms such as
public issue trackers or Q&A forums for mentions of
package members and analyze their sentiments, e.g.,
potentially indicating confusing behavior or bad docu-
mentation), or even scan continuous integration logs
for failure stack traces (e.g., potentially revealing bugs
in the package of interest.
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