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Abstract
Hilbert and Moore treemaps are based on the same named space-filling curves to lay out tree-structured data for visualization.
One main component of them is a partitioning subroutine, whose algorithmic complexity poses problems when scaling to
industry-sized datasets. Further, the subroutine allows for different optimization criteria that result in different layout decisions.
This paper proposes conceptual and algorithmic improvements to this partitioning subroutine. Two measures for the quality of
partitioning are proposed, resulting in the min-max and min-variance optimization tasks. For both tasks, linear-time algorithms
are presented that find an optimal solution. The implementation variants are evaluated with respect to layout metrics and
run-time performance against a previously available greedy approach. The results show significantly improved run time and no
deterioration in layout metrics, suggesting effective use of Hilbert and Moore treemaps for datasets with millions of nodes.

CCS Concepts
• Human-centered computing → Treemaps; Information visualization;

1. Introduction

Much of the data measured and collected today has a tree structure
and tree visualization techniques are versatile tools to convey this
data, its structure, relationships, and meaning [SHS11]. One specific
technique for visualization is the treemap [STLD20] as a family of
visualization techniques with different underlying layouts [SLD20]
and visual representation [LSDT19]. Especially for the layout algo-
rithm, the different approaches come with different characteristics
regarding visual representation (shape), perceptive properties (read-
ability, recognition), and implementations (run-time performance,
source code availability). One goal for optimization is the stability
of the layout over time, i.e., adhering to the principle of visual-data
correspondence [KS14]. As such, a high layout stability facilitates in
maintaining a users’Designing a layout algorithm that ensures good
layout stability is an ongoing aspiration and resulted, for example,
in the proposal for rectangular Hilbert and Moore treemaps [TC13].

Depending on the domain, tree-structured data can be of larger
size, e.g., when measuring software system information with hun-
dreds of thousands of nodes [LSDT19] (see Fig. 1). Although the
visual display and cognition of users are usually the limiting factors
when providing visualization of large-scale datasets, the underlying
layout of a treemap should be computed on the whole dataset. This
enables the use of multiscale visualizations with level-of-detail and
level-of-abstraction approaches, as these require information about
positions and extents of the treemap layout elements, even if they
are not displayed at all times [LSHD17]. Previous applications for
these treemap algorithms seem to have used datasets with multiple

levels of hierarchy and up to 60 000 nodes [VSC∗20]. Nonethe-
less, we identified run-time limitations when applying Hilbert and
Moore treemaps ourselves, especially on even larger datasets with
more than 100 000 nodes. The main run-time complexity comes
from the partitioning subroutine to “divide the data in four weighted
quadrants that have roughly equal weights” [TC13]. In addition, the
vague definition of roughly further allows for a number of choices
on what qualities a partitioning of the weight quadrants should have.
Existing implementations range from greedy approaches in O(n2) to
brute-force implementations with a cubic run time. The greedy ap-
proach can be applied for dataset sizes of up to 60 000 nodes, more
sophisticated approaches are strongly limited with an extrapolated
run time of several days.

Contributions. We add a variation of optimization criteria to
Hilbert and Moore treemaps and provide novel partitioning algo-
rithms, implementation specifics, and both a metrics-based and a
run-time evaluation. This includes:

• a formalization of the the list of weight partitioning subroutine
and two optimization criteria for possible solutions, namely min-
max and min-variance,
• two novel partitioning algorithms that provide optimal solutions,
• pseudo code for and run-time complexity assessment of both al-

gorithms in comparison to the already available greedy approach,
• and experimental results on run-time performance and layout

metrics, applied to mid-sized and large-sized software system
data for datasets with up to 2,4 million nodes.
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Figure 1: Hilbert layout of the Firefox project with over 100 000
leaf nodes using min-max partitioning.

Related Work The Hilbert and Moore space-filling curves and
the partitioning of the list of weights are the basic building blocks
for both treemap algorithms. The concept of space-filling curves
was previously considered for treemap layout algorithms with the
Strip treemap [BSW02] and later conceptually extended by Spiral
and S-Shape treemaps [TS07]. A space-filling Hilbert curve was
previously used for non-convex Jigsaw Maps [Wat05]. The approach
to partition the list of weights to perform divide-and-conquer layouts
was first proposed with the Binary treemap [SP14] and has been
established since then [LSNH13, FGDH19].

2. Partitioning Subroutine

The part of the layout algorithm with most impact on run time and
presumed impact on layout quality is the recursive partitioning of the
list of weights into four parts with “roughly equal weights” [TC13].
However, the original paper provides no detailed approaches and no
discussion on possible optimization goals of this partitioning, lim-
iting expressiveness and comparability of implementations. As of
now, one specific implementation is publicly available, implement-
ing a greedy approach. In the following, we formalize the problem
of this list-of-weight partitioning and propose two quality measures,
namely min-max and min-variance. We further provide linear-time
algorithms to find an optimal solution for each quality measure.
Although not discussed for each algorithm, the use of a prefix sum
on the list of weights is a strong factor on the run-time complexity
and should be considered a standard optimization for such range
queries [CLRS09].

Problem Formalization. Let A = (a0, . . . ,an−1) be an array of n
positive numbers with W = ∑ai. For two indices i < j, we denote
the subarray (ai, . . . ,a j−1) as A[i, j]. A set of k + 1 indices c0 =
0,c1, . . . ,ck−1,ck = n with ci < ci+1 induces a subdivision of A into
k disjoint consecutive subarrays P1, . . . ,Pk where Pi = A[ci−1,ci].
We call P = {P1, . . . ,Pk} a k-partitioning of the array A and the
indices c1, . . . ,ck−1 its cuts (omitting c0 and ck). Further, we denote
Pi as a segment and Wi = ∑a∈Pi

a its weight. The term quadrant
is used for segment when k is four. To measure the quality of a

partitioning P, we propose to measure the heaviest segment

max(P) = max
1≤i≤k

Wi, (1)

or the variance of segment weights

Var(P) = ∑
1≤i≤k

(W/k−Wi)
2 . (2)

In both cases the goal is to minimize the respective measure. Anal-
ogous to minimizing the heaviest segment (min-max), one could
maximize the lightest segment (max-min). Note that a perfectly
balanced partition (Wi =W/k) is optimal under all three measures,
but unbalanced partitionings are penalized differently. We restrict
our analysis to min-max and min-variance.

Finding a Min-Max Partition. When searching an optimal solu-
tion with respect to the measure given in Eq. 1, the number of
cuts is fixed to 3 while the weight of the heaviest quadrant is to
be minimized. We derive a linear algorithm for this optimization
task by first considering a slightly modified problem. Suppose an
upper bound B on the weight of the heaviest segment were given
and the number of cuts to achieve this bound should be minimized.
In this setting, it is possible to compute a solution using a scan-line
approach. That is, one extends the current segment as long as the
summed weight stays below the bound and otherwise makes a cut.
The correctness of this approach can be proven via a greedy stays
ahead argument. The naive algorithm runs in linear time but can
be reduced to O(logn) per cut using a binary search over the prefix
sum as shown in Algorithm 1. In the pseudo code, the binary search
function returns the first index i where the prefix sum exceeds the
value used +B, that is, the rightmost index to which we can extent
the current segment without violating the limit B.

Since, the number of required cuts is monotone decreasing in
B, we can use binary search over B to find the smallest bound that
can be met with at most 3 cuts. With Algorithm 1 as a subroutine,
we obtain an algorithm for the original problem with exactly three
cuts. To maintain logarithmic running time for one invocation of
Algorithm 1, we limit the number of found segments. In total this
yields an O(n+ log(W

ε
) log(n)) algorithm with W being the total

weight and ε the desired precision, e.g., ε = 1 for integral numbers.

Finding a Min-Variance Partition. While a naive approach tests
all combinations for the three cuts leading to a run time of at least
O(n3), there is a dynamic programming solution for this problem
that runs in O(n2k) where k is the number of desired cuts [Sta13a,
Sta13b]. Improving on this, we provide an algorithm that computes
an optimal partitioning with 3 cuts in linear time (see Algorithm 2).
The idea is to test all positions for a middle cut m, while maintaining
cuts l and r that bisect A[0,m] and A[m,n], respectively.

Regarding the correctness of this algorithm, we test all possible
positions for the middle cut so at one point we find the optimal
one. What remains to show is that, given a middle cut, we place
the other cuts optimally. First, we observe that the left and right
cut are independent. Now, suppose some subarray A[b,e] that is
to be bisected into two segments by a cut c. Let M = W/4 be the
desired quadrant weight. We search an index c before which to
cut with b < c < e such that (M−∑

c−1
i=b ai)

2 +(M−∑
e−1
i=c ai)

2 is
minimized according to Eq. 2. Let S = ∑

e−1
i=b ai be the total weight of
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Algorithm 1: Pseudo code of the min-max partitioning subroutine.
This algorithm is performed as subroutine of a binary search over
the weight of the heaviest segment.

Input: segment bound B, prefix sum S
1 cuts← [ ], used← 0
2 while used <W and |cuts| < 4 do
3 i← binary_search(S,used +B)
4 cuts.append(i)
5 used← S[i−1]

6 return cuts

Algorithm 2: Pseudo code of the min-variance partitioning algo-
rithm.

1 cuts← [1,2,3], l← 1, r← 3
2 for m← 2 to n−2 do
3 while l +1 cuts A[0,m] more balanced do
4 l← l +1

5 while r+1 cuts A[m,n] more balanced do
6 r← r+1

7 if variance(l,m, r) < variance(cuts) then
8 cuts← [l,m, r]

9 return cuts

the given subarray. If we could cut the sum S at any point x, instead
of only at discrete indices, then the problem would be to minimize
the imbalance given by the function

f (x) = (M− x)2 +(M− (S− x))2

= 2x2−2Sx−2SM+2M2 +S2.

The root of the derivative f ′(x) = 4x−2S is at x = S
2 and since f is

a quadratic function, we know that the value of f is lower the closer
we get to S

2 . This means that the optimal way to place the left and
right cut is to split the subarrays up to and from the middle cut as
balanced as possible. Lastly, if the most balanced bisection of A[0,m]
is at index l, then the most balanced bisection l′ of A[0,m+1] will
be to the right of l. Therefore, we can incrementally move l as we
move m. The same holds for the right cut.

Regarding the run time of our algorithm, the outer loop tries all
n−3 positions for the middle cut. The while loops advance the left
and right cut, but each cut individually can only be incremented at
most n− 4 times. Thus, amortized over all iterations of the outer
loop, the while loops add an overhead of O(n). Both the imbalance
of a bisected subarray (lines 3,5) and the added variance of all four
quadrants (line 7) can be computed in constant time using prefix
sums. This yields an overall run time of O(n).

Greedy Partition. The only public implementation we are aware of
uses a greedy approach to determine the quadrants [Son18,VSC∗20].
This partitioning approach extends the current quadrant while the
difference to the optimal quadrant weight decreases. The implemen-
tation handles additional edge cases, e.g., A = (1,47,26,26) would
result in three segments, whereas A = (20,20,20,20,20) yields five
segments. The referenced implementation recomputes the sum of
the current quadrant in each iteration, leading to quadratic run time.
With this, our larger datasets do not finish in reasonable time (i.e.,

Table 1: Lists of weights and optimal solutions w.r.t. introduced
quality measures. The sum is 100 which results in an optimal quad-
rant size at 25. Example 1: The solution for min-max is not unique.
The solution for min-variance is also optimal for min-max. Example
2: A bad instance for the min-max partitioning with three cuts.

Example 1 Weights
Optimization Goal 20 9 16 17 8 29 1

min-variance 20 25 25 30
min-max 29 16 25 30
greedy 29 33 37 1

Example 2 Weights
Optimization Goal 1 33 22 11 11 22

min-variance 34 22 22 22
min-max 1 33 33 33
greedy 34 22 22 22

1hour) and we optimized this algorithm using a running total to
achieve linear time.

Quality Guarantees. The min-max and the min-variance approach
provide strong guarantees, namely optimality regarding their respec-
tive measure. In contrast, there are no such or similar guarantees
for the greedy approach. In fact, Example 1 in Table 1 shows an
instance where the greedy approach finds a very unbalanced solu-
tion although a good alternative exists. While the intuitively best
solution in the Example 1 is optimal with respect to variance as well
as the heaviest quadrant, a less balanced partitioning that is also
optimal regarding the heaviest quadrant is given. Moreover, there
are instances where the optimal min-max solution is arguably worse
(less balanced) than a solution with a larger heaviest segment (see
Example 2 in Table 1). We find that min-variance best captures the
notion of quadrants being of roughly equal size.

3. Evaluation

The three algorithms were evaluated by their layout quality and their
computation time. We use twelve datasets containing multiple snap-
shots of a software system, two datasets containing a single snapshot
but with a larger number of nodes, and one dataset containing part
of the Github project landscape with 1.9 million leaf nodes. Details
on the datasets including example layouts are provided with the
additional material and we provide the measurement prototype in
source as an open source repository [SWB21].

Layout Metrics. The optimization criteria for treemap layouts re-
volve around readability and stability [TC13]. These two abstract
targets are approximated using layout metrics. For readability, we
use the average aspect ratio (AAR). For stability, the different lay-
outs of tree-structured datasets are measured against different types
of changes: (1) the average distance change w.r.t. position and ex-
tent (ADC) [BSW02], (2) the relative position change w.r.t. neigh-
borhood and adjacency (RPC) [SSV18], (3) the average angular
displacement that measures the change in direction for adjacent
nodes (AAD) [WD08, GCB∗15], (4) the rotation-invariant adaption
that is the relative direction change (RDC) [HBD17], and (5) the

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.



W. Scheibel, C. Weyand, J. Bethge, and J. Döllner / Algorithmic Improvements on Hilbert and Moore Treemaps

0

10

20

30 29
.2

28
.2 29
.6

21
.6

17
.7 21

.1

AAR
0

1

2

·10−2

0.
01

83
0.

01
87

0.
01

78
0.

01
61

0.
01

66
0.

01
54

ADC
0

2

4

6

·10−3

0.
00

55
0.

00
58

0.
00

57
0.

00
5

0.
00

54
0.

00
52

RPC
0

1

2

3

·10−2

0.
02

9
0.

03
0.

02
9

0.
02

7
0.

02
8

0.
02

6

AAD
0

1

2

3

·10−2

0.
02

8
0.

02
9

0.
02

7
0.

02
5

0.
02

6
0.

02
5

RDC
0

0.05

0.1

0.
13

0.
12

8
0.

13
5

0.
13

1
0.

12
9

0.
13

1

LD

Hilbert greedy
Hilbert min-max
Hilbert min-variance
Moore greedy
Moore min-max
Moore min-variance

Figure 2: Comparison of the layout metrics. A lower value is preferred for each metric.
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Figure 3: Algorithm run time for greedy, min-max, and min-
variance implementations. Both the x-axis and the y-axis use log-
arithmic scaling. For reference, symbolic plots are added for the
complexity classes O(n), O(n2), and O(n3).

location drift, that considers the overall displacement of a layout ele-
ment (LD) [TC13]. Our layout quality tests were applied to both the
Hilbert and the Moore treemap variants using all three partitioning
algorithms, resulting in six measurement series. The layout metric re-
sults show an overall similar stability and quality of treemap layouts
(Figure 2). There is a slight difference between using a Hilbert and
a Moore curve for the base layout, as the layout metrics are slightly
lower when using a Moore curve except for the LD metric. Further,
the min-max partitioning algorithm results in slightly better aspect
ratios for the layout elements than the greedy and min-variance
approaches. Although the underlying curve slightly influences the
layout readability and stability, the partitioning algorithm does not
show a similar effect.

Run-time Performance. The algorithm run times were measured
for each partitioning algorithm, each dataset, and each snapshot.
We use the average layout computation time of 500 test runs that
are measured after 500 additional warmup runs. The runs were
executed using a single thread on an Ubuntu 20.04 system with an
Intel Core™ i7-6850K at 3.6 GHz base speed. In general, the results
for the three implementations perform similarly well (Figure 3).
The measurements suggests a linear run time complexity for each

implementation. Our improvement to the greedy implementation
allows for a fair comparison of the implementations. Without the
optimization, the plot would follow the O(n2) symbolic plot. As
overall observation, we see a ranking of the implementation variants
regarding run-time performance with the greedy approach being
first, the min-variance approach being second, and the min-max
approach being third. The fastest execution of the greedy approach
is expected as it uses minimal logic to distribute weights among
quadrants. However, the main result is that the execution time for
each implementation and dataset is similar and always less than one
second for each measurement. More specifically, the largest dataset
with 2.4 million nodes was computed in 357 milliseconds using the
min-max approach and even faster for the other two approaches.

4. Conclusions

Summarizing, the partitioning subroutine of Hilbert and Moore
treemaps allows for different interpretations and optimization goals.
We presented two optimization goals, the min-max and the min-
variance, and linear-time algorithms to solve them optimally. Fur-
ther, the previously used greedy approach was optimized to linear
time as well. Our improvements allow Hilbert and Moore treemaps
to be used on large real-world datasets over multiple revisions while
accounting for both layout stability and run-time performance. Our
preliminary experiments confirm the linear run time and show no
deterioration in layout quality. The choice of datasets resulted in
no significant differences, which may come from their number or
variety and them not being standardized datasets. Further, an open
question is which measure is most natural and best reflects the
balance of a partitioning. For future work, we plan to extend the
evaluation w.r.t. dataset sizes, further metrics [BSW02], and as-
pect ratios [KHA10], as well as to explore the continuity of the
space-filling curve across hierarchy levels and sibling nodes.
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