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Abstract: During the software development process, software defects, so-called bugs, are captured in a semi-structured
manner in a bug tracking system using textual components and categorical features. It is the task of the triage
owner to assign open bugs to developers with the required skills and expertise. This task, known as bug
triaging, requires in-depth knowledge about a developer’s skills. Various machine learning techniques have
been proposed to automate this task, most of these approaches apply topic models, especially Latent Dirichlet
Allocation, for mining the textual components of bug reports. However, none of the proposed approaches
explicitly models a developer’s expertise. In most cases, these algorithms are treated as a black box, as they
allow no explanation about their recommendation. In this work, we show how the Author-Topic Model, a
variant of Latent Dirichlet Allocation, can be used to capture a developer’s expertise in the latent topics of
a corpus of bug reports from the model itself. Furthermore, we present three novel bug triaging techniques
based on the Author-Topic Model. We compare our approach against a baseline model, that is based on Latent
Dirichlet Allocation, on a dataset of 18 269 bug reports from the Mozilla Firefox project collected between
July 1999 to June 2016. The results show that the Author-Topic Model can outperform the baseline approach
in terms of the Mean Reciprocal Rank.

1 INTRODUCTION

Today’s software projects are characterized by a large
number of developers involved and an ever increas-
ing structural and behavioral complexity. This is the
main cause for the emergence of software misbehav-
ior, called bugs. When a bug is detected, it is de-
scribed by a bug report within an issue tracking or
bug tracking system in a semi-structured manner. Be-
sides textual components, e.g., a title and a more
detailed description, bug reports use categorical at-
tributes, e.g., the product, the affected component, the
version, and the priority and severity, to specify de-
tails. Additionally, files can be attached and solutions
can be discussed. Based on this rich source of in-
formation, it is the task of the bug triage owner to
assign the bug report to a developer to fix it. This
process is known as bug triaging. In order to ensure
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high productivity, it is necessary that the developer
to solve the bug has the required skills and exper-
tise (Sommerville, 2016). In most cases, the decisions
made by the triage owner are based on subjective per-
ceptions (Zou et al., 2020), that in turn often lead to
wrong assignments, which might result in a delay in
the development process.

Automated bug triaging techniques try to over-
come this issue by mining the information con-
tained in a bug tracking system (Sajedi-Badashian and
Stroulia, 2020; Zou et al., 2020; Zhang et al., 2015).
Most of these approaches analyze closed bug reports
with known bug resolvers to train a machine learning
algorithm that can then in turn be used to rank devel-
opers for a new bug. A large class of those techniques
models the textual components of bug reports using a
probabilistic topic model, mostly Latent Dirichlet Al-
location (LDA) (Blei et al., 2003). The goal of LDA is
to extract semantic clusters in the vocabulary, given as
distributions over this vocabulary, by examining pat-
terns of co-occurring words within bug reports. The
semantic structure of bug reports can then in turn be



described as multinomial distributions over the top-
ics. The results of the LDA model are then used as
input for the machine learning model. Though it has
shown great advances in the last years, LDA is not
able to describe a developer’s expertise directly from
the available data. As such, these models provide no
explanation to the user, which is a limiting factor for
their applicability in a real-world setting (Aktas and
Yilmaz, 2020; Zou et al., 2020).

In this work, we apply the Author-Topic Model
(ATM) on a corpus of closed bug reports with known
resolvers, to model a developer’s expertise in the la-
tent topics (Rosen-Zvi et al., 2004). Based on this
description of a developer, we modify an existing bug
triaging algorithm, named Developer Recommenda-
tion based on Topic Models (DRETOM), based on
LDA, proposed by Xie et al. (2012). This results in
three alternative methods for automated bug triaging,
namely

1. Developer Recommendation based on the Author-
Topic Model (DRATOM),

2. Developer Recommendation based on
the Author-Topic Model and Bayes For-
mula (DRATOMBayes): a further iteration
of DRATOM, which makes use of the Bayes
formula for conditional probabilities,

3. Developer Recommendation based on Author
Similarity (DRASIM): By applying the ATM on
past bug reports, developers and bug reports can
be described in a joint feature space. This reduces
the bug triaging task to a Nearest Neighbor (NN)
search.

We further evaluate the effectiveness of the ATM and
the influence of its hyperparameters for the bug triag-
ing task. For this purpose, we use a publicly available
dataset of 18 269 bug reports from the Mozilla Firefox
project, collected between July 1999 and June 2016.
The results show that our modification of DRETOM
is able to outperform the baseline approach in terms
of the Mean Reciprocal Rank (MRR).

The remainder of this work is structured as fol-
lows: Section 2 presents existing approaches for bug
triaging, which apply LDA for modeling the textual
components of bug reports. In Section 3 we give a
short overview of LDA and its variant ATM. We de-
tail our three novel bug triaging algorithms, based on
the ATM, in section 4. We describe the experimental
setup in section 5 and discuss its results in section 6.
Section 7 concludes this paper and outlines directions
for future work.

2 RELATED WORK

Various machine learning and information re-
trieval approaches for bug triaging have been pro-
posed (Sajedi-Badashian and Stroulia, 2020). We
focus our presentation of the related work on ap-
proaches that apply probabilistic topic models on
the textual components of bug reports. We there-
fore disregard work that utilizes data from version
control systems (Matter et al., 2009; Kagdi et al.,
2012; Shokripour et al., 2013; Khatun and Sakib,
2016; Hu et al., 2014) or question-and-answer plat-
forms (Sajedi-Badashian et al., 2015). Here, we want
to clarify that we always refer to bug reports, even
though issue reports or change requests are also com-
mon terms used in the literature. Precisely, we refer to
the problem defined as follows: “Given a new bug re-
port, identify a ranked list of developers whose exper-
tise qualifies them to fix the bug” (Sajedi-Badashian
and Stroulia, 2020).

Xie et al. were the first to apply LDA for the
bug triaging task (Xie et al., 2012). Their approach
DRETOM models a developer’s interest and expertise
in topics from a corpus of historical bugs for recom-
mending suitable contributors for an open bug. As our
approach builds upon the work of Xie et al., we will
present a detailed description of it in Section 4.

Based on the work of Xie et al. (2012), succes-
sive work focused on improving the quality of de-
veloper recommendations considering additional in-
put features of a bug report (Xia et al., 2013; Naguib
et al., 2013; Zhang et al., 2014a; Yang et al., 2014;
Nguyen et al., 2014; Zhang et al., 2016; Xia et al.,
2016; Zhang et al., 2014b). What all approaches have
in common is that for each bug report, the title and
description are used to determine the latent topics.

Given a bug report, Xia et al. extract a feature
vector that captures the topics via LDA, the affected
product, and components of the bug report (Xia et al.,
2013). Using a newly defined distance metric, the al-
gorithm recommends a set of developers who are as-
signed to a new bug report.

Naguib et al. proposed an approach leveraging
LDA and the developer activities, such as review-
ing, fixing, and assigning bug reports (Naguib et al.,
2013). First, they use in addition to a bug report’s
title and description its system component to catego-
rize bug reports into topics. Subsequently, they create
an activity profile for each developer, so that it can be
used alongside the topic associations to recommend a
suitable developer.

Zhang et al. also utilized LDA to extract topics
from historical bug reports (Zhang et al., 2014a). In
addition, they analyzed the relationship between the



developers, i.e., assignees, commenters, and the bug
reporter whose bug reports attracted the most number
of comments.

Yang et al. proposed a new method by utilizing
not only the natural language for LDA, but multiple
features including product, component, severity, and
priority (Yang et al., 2014). They extract the set of
candidate developers who have contributed to the bug
reports having the same combination of topic and fea-
tures and rank them by the scores determined using
their number of activities, i.e., a developer’s number
of commits, comments, attachments, and bug assign-
ments.

Zhang et al. use structural information from
the submitter-bug-commenter heterogeneous network
to improve the quality of developer recommenda-
tions (Zhang et al., 2014b). Through this network,
submitters and commenters obtain the topic informa-
tion propagated from bugs, which adjust the topic dis-
tributions obtained by the LDA model.

Nguyen et al. used the inferred topics from LDA
along with the bug fixer and the severity levels of
historical bug reports as an input of a log-normal
regression model for predicting defect resolution
time (Nguyen et al., 2014). Based on each developer’s
mean time to repair and dependent on the most promi-
nent topic of the open bug report, they recommend the
developer that is likely the fastest in resolving the is-
sue.

In a later work, Zhang et al. proposed a new sim-
ilarity measure to find related historical bug reports
based on its title, description, product, and compo-
nent (Zhang et al., 2016). Their approach uses 18 hy-
perparameters that need to be tuned to weight the indi-
vidual features, of which only the number of topics is
a hyperparameter of the underlying LDA model. The
other hyperparameters of LDA remain on the default
settings of the respective LDA implementation. For
the actual developer recommendation, that also incor-
porates a developer’s number of comments, fixed and
reopened bugs, there are two more hyperparameters
to be tuned.

Xia et al. proposed the Multi-feature Topic Model
(MTM), a method that extends the basic topic mod-
eling algorithm LDA (Xia et al., 2016). The MTM
includes a bug report’s feature combination, e.g., its
product and component, as an additionally observed
variable, and models the topic distributions for each
feature combination. Their approach recommends the
developers based on the affinity score towards a topic
and the feature combination.

A detailed overview on how topic models are used
for software engineering tasks in general is presented
by Chen et al. (2016).

Table 1: Three extracted topics from Mozilla Firefox. For
each topic, the ten most probable terms are displayed.

Topic #1 Topic #2 Topic #3

private preferences bar
browsing pref url

mode options location
clear dialog autocomplete

cookies default text
history set address
window prefs results

data option type
cookie preference enter
cache change result

3 Latent Dirichlet Allocation

In this section we give a short overview on LDA re-
quired to understand the rest of our work. Topic mod-
els are a widely used technique for mining the seman-
tic structure of a collection of documents, e.g., for
summarization or classification tasks (Aggarwal and
Zhai, 2012). The by far most popular topic model for
mining software repositories is LDA proposed by Blei
et al. (Chen et al., 2016; Sun et al., 2016). Given a cor-
pus C = {d1, . . . ,dm}, where each element d1, . . . ,dm
denotes a single document stored as a Bag-of-Words
(BOW), LDA extracts latent topics ϕ1, . . . ,ϕK , where
the number of topics K is a hyperparameter of the
model (Blei et al., 2003). The topics ϕ1, . . . ,ϕK are
given as multinomial distributions over the vocabu-
lary V of the corpus C . In most cases the most proba-
ble words are a strong indicator for the “concept” un-
derlying a topic. Table 1 shows an example for three
topics with their ten most probable words that were
extracted from the Mozilla Firefox corpus, which we
will describe in detail in Section 5.1. LDA further
results in descriptions θ1, . . . ,θm of the documents
d1, . . . ,dm as multinomial distributions over the set of
topics. The vectors θ1, . . . ,θm therefore capture the
semantic structure of the documents and allow a for-
mal comparison using a dissimilarity measure, e.g.,
the cosine-similarity or the Jensen-Shannon distance.
The generative process underlying LDA is given by

1. For each document d in the corpus D choose a
distribution over topics θ ∼ Dirichlet(α)

2. For each word w in d

(a) Choose a topic z ∼ Multinomial(θ)
(b) Choose the word w according to the probability

p(w|z,β)
The hyperparameter α = (α1, . . . ,αK), where 0 <

αi for all 1 ≤ i ≤ K, is called the Dirichlet prior for
the document-topic distribution. It is often written as
the product α = ac ·m of its concentration parameter
ac ∈R and its base measure m = (m1, . . . ,mK), which



(a) α = (1,1,1) with ac = 3 (b) α = (10,10,10) with ac = 30 (c) α = (0.1,0.1,0.1) with ac = 0.3
Figure 1: 2,000 randomly sampled topic distributions θ using varying concentration parameters ac for symmetrical Dirichlet
prior α. We illustrate the distributions for K = 3 topics in the three-dimensional topic space θ= (θ1,θ2,θ3). The base measure
m = (1/3, 1/3, 1/3) is uniform for every symmetrical Dirichlet distribution.

is a vector whose components sum up to one. In the
case of m1 = · · · = mK = 1/K, the Dirichlet prior α is
said to be symmetric. Figure 1 illustrates the effect of
the chosen Dirichlet prior α.

The parameter β = (β1, . . . ,βN), where 0 < βi for
1≤ i≤N and N denotes the size of the vocabulary V ,
i.e., the set of words in the corpus C , is the Dirichlet
prior for the topic-term distribution.

As inference for LDA is intractable, it is re-
quired to apply approximation techniques (Blei et al.,
2003). Popular examples include Collapsed Gibbs
Sampling (CGS) (Griffiths and Steyvers, 2004), Vari-
ational Bayes (VB) (Blei et al., 2003), and its online
version (OVB) (Hoffman et al., 2010).

Many variants of LDA have been developed tak-
ing into account additional meta information about
the documents of a corpus, e.g., Labeled LDA which
makes use of tags attached to the documents, thus re-
sulting in topics with a defined label (Ramage et al.,
2009). The ATM is another such variant, which takes
information about authorship into account. The ATM
is based on a generative process, similar to that of
LDA, which assumes that each document is written
in a collaborative manner by its authors, who are ob-
served as additional information (Rosen-Zvi et al.,
2004). In addition to the document-topic distribu-
tions, the ATM learns representations of the authors
as distributions over the topics. LDA can be seen as
a special case of the ATM, where each file has one
unique author. To the best of our knowledge, the ATM
was only used for a software engineering task in the
work of Linstead et al. for mining developer activi-
ties on the Eclipse source code (Linstead et al., 2007;
Linstead et al., 2009). When applied to historical bug
reports, each developer who has contributed to bug
fixing can be described as a distribution over topics.

4 Mining Bug Reports with
Author-Topic-Models

The approach DRETOM follows three steps. First, an
LDA model is trained on a corpus of historical bug re-
ports, then associations between developers and top-
ics are constructed using a heuristic, and finally au-
thors are recommended for incoming bug reports ac-
cording to some ranking scheme. In this section, we
present three approaches to how the ATM can be uti-
lized for the bug triaging task by taking its capabil-
ity to relate developers and topics into account. It
has to be noted that in the context of bug triaging,
we denote the resolver of the bug report as the au-
thor, who should not be confused with the reporter
of a bug. As our first two approaches are modifi-
cations of DRETOM, we start with a description of
the approach by Xie et al. (2012). Our first approach
(DRATOM) is derived from DRETOM by simply re-
placing its LDA core with the ATM. The second mod-
ification (DRATOMBayes) utilizes the relation be-
tween developers and topics learned from the ATM,
thus making the heuristic and trade-off parameter θ

from DRETOM redundant. Our third approach makes
full use of the ATM by modeling developers as well
as bug reports in a joint feature space, thus reducing
the bug triaging task to a NN search.

4.1 Preprocessing

In the remainder of this work, we view each bug re-
port as a document consisting of its title and a more
detailed description. Discussions below the bug re-
port are not taken into account, as they are not avail-
able during the entire lifecycle of a bug, especially
not during the first assignment. When applying topic
models, it is common to undertake several prepro-
cessing steps, in order to remove noise in the vocab-



ulary (Chen et al., 2016). It further reduces the size
of the vocabulary thus accelerating the computation
time. Our preprocessing pipeline follows the best-
practice recommendations systematically studied by
Schofield et al. (Schofield et al., 2017b; Schofield
et al., 2017a; Schofield et al., 2017c):
1. Removal of URL, hex code, stack trace informa-

tion, timestamps, line numbers, tokens starting
with numerics, tokens consisting of only one char-
acter and punctuation,

2. Lower casing the entire document,

3. Removal of all words from the English NLTK
Stopwords Corpus1

4. We remove words with a frequency less than 5,
we further remove words that occur in more than
20% across all bug reports.

In particular, in contrast to Xie et al. (2012) we do
not apply stemming, as words with the same morpho-
logical roots are often placed in the same topic, thus
making stemming redundant and might damage mod-
els (Schofield and Mimno, 2016). After preprocess-
ing, all bug reports are stored as BOW.

4.2 DRETOM

In the first step of DRETOM, an LDA model is trained
on a corpus of historical bug reports and each of these
bug reports is assigned to the topic of its maximum
probability. Additionally, all collaborators for the his-
torical bug reports are extracted from the bug tracking
system.

The suitability of a developer d to solve a bug b
is given by the conditional probability P(d|b). This
probability can be computed as the sum

P(d|b) = ∑
z

P(d|z) ·P(z|b), (1)

where P(d|z) denotes the skill level of the developer
d in the respective topic z, and P(z|b) is the probabil-
ity of the topic in the given bug report. The skill of
developer d in topic z comprises two parts, his inter-
est P(d → z) and his expertise P(z → d), which are
balanced by a trade-off parameter θ ∈ [0,1] according
to

P(d|z) = θP(d → z)+(1−θ)P(z → d). (2)

The interest of a developer in a topic is computed as

P(d → z) =
Nd,z

Nd
, (3)

where Nd,z is the number of bug reports that belong
to topic z and were resolved with the participation of

1http://www.nltk.org/nltk data/

developer d, Nd is the number of bugs, where the de-
veloper has contributed.

The expertise component is computed as

P(z → d) =
Nd,z

Nz
, (4)

where Nz is the number of bug reports that are associ-
ated with topic z.

For an incoming bug report, its topic distribu-
tion is inferred using the trained LDA model and the
developers are ranked according to their conditional
probabilities from Equation (1).

4.3 Modifying DRETOM with the ATM

By replacing the LDA model in DRETOM with the
ATM, we end up with a first modification, named
DRATOM, i.e., the probability P(d|z) is computed as
in the DRETOM approach, whereas the probability
distribution of a bug over topics is now derived from
the ATM.

An advantage of the ATM against a heuristic
method for deriving relations between developers and
topics lies in its interpretability, as each developer can
be modeled as a distribution over the topics. This sort
of explainability is particularly interesting for its use
in a real-world setting (Zou et al., 2020; Aktas and
Yilmaz, 2020).

Xie et al. have shown that the quality of the gen-
erated developer recommendations is sensitive to its
parameter θ. We circumvent this problem by taking
the description of a developer as a distribution over
topics, learned from the ATM, into account. From the
known probability P(z|d) for an arbitrary topic z and
developer d, we derive from the Bayes’ formula:

P(d|z) = P(z|d) ·P(d)
P(z)

. (5)

The probability for a developer can be computed as

P(d) =
Nd

Ntotal
, (6)

where Ntotal denotes the number of all bug reports
in the training corpus. We approximate the marginal
probability P(z) using the Dirichlet prior α. Written
α as the product between its normalization base mea-
sure m and its concentration parameter ac, we con-
clude

m = (m1, . . . ,mK) = (P(z1), . . . ,P(zK)). (7)

We approximate the probability P(z) via its respec-
tive Dirichlet parameter. We further denote this bug
triaging algorithm as DRATOMBayes.

http://www.nltk.org/nltk_data/


4.4 DRASIM

Our third bug triaging algorithm adopts the idea pre-
sented by Linstead et al., who applied the ATM on
source code files, for the case of bug reports (Lin-
stead et al., 2007). As the ATM models documents,
i.e., bug reports, as well as developers as distributions
over common topics, both categories are embedded in
a joint feature space and can therefore be compared.
The affinity of a developer d to solve a given bug b
can thus be computed via D(b,d), where D denotes a
chosen similarity measure, e.g., the Jensen-Shannon
distance, the cosine-similarity, or the Manhattan dis-
tance. The ranking of developers reduces to a NN
search.

5 Experimental Setup

To guarantee the reproducibility of our study, we
present a detailed description of our experimental
setup. We start with a description of the data set used
in our study and a justification for the chosen prepro-
cessing techniques. We further provide details on the
longitudinal evaluation scheme as well as on the cho-
sen topic modeling implementation.

5.1 Dataset and Preprocessing

In our work, we use a data set presented by Mani
et al., which contains 18269 bug reports from the
Mozilla Firefox project, collected between July 1999
to June 2016, with 169 involved developers (Mani
et al., 2019). We train our model on bug reports with
an assigned developer and a status marked as verified
fixed, resolved fixed, or closed fixed and consider each
bug reports’ final assignee as the actual bug resolver.
We then preprocess the documents as described in
section 4.1. Since our proposed approaches use the
ATM instead of LDA, we need enough bug reports in
the training data for each developer to learn their ex-
pertise with regard to certain topics directly from the
data. Mani et al. showed that a threshold greater than
20 did not improve the recommendation accuracy on
the same dataset (Mani et al., 2019). We make sure
there exist at least 20 bug reports per developer in
each training set. The characteristics of the Mozilla
Firefox dataset used for evaluation are summarized in
Table 2.

5.2 Evaluation Scheme

In every large software project, the developers keep
changing over time, hence chronological splitting en-

Table 2: Summary of the Mozilla Firefox project used for
evaluation.

Property Mozilla Firefox

Period considered July 1999 – June 2016
# Bugs 18,269
# Bug resolvers 169
# Terms 22,209
# Terms w/o stop words 18,590
# Terms w/o extremes 7,195

sures that the bug reports used for training and test-
ing have a high overlap of bug resolvers and we do
not suffer from information leakage. All the fixed
bug reports are sorted in chronological order and split
into eleven sets. In the l-th run, 1 ≤ l ≤ 10, the
first l sets are used for training the model and the
(l + 1)-th subset is used for testing. This evalua-
tion scheme is called longitudinal evaluation and is
known to increase internal validity (Bhattacharya and
Neamtiu, 2010; Jonsson et al., 2016; Mani et al.,
2019; Tamrawi et al., 2011; Xia et al., 2016). Dif-
ferent evaluation metrics have been used in related
work. Among the most widely used metrics are Top-
k accuracy, Precision@k and Recall@k, often used
with k ∈ {1,3,5,10}, as used by Xie et al. Those set-
based metrics have in common that they do not con-
sider the rank as long as the real assignee is among
the top k recommended developers. However, a good
developer recommendation approach should place the
probably most suitable developer for a bug report at
the top of the list. This is because the bug triager usu-
ally checks the higher ranks in the list and may not
proceed to the last one. Therefore, errors in the higher
ranks are worse than errors in the lower ranks. The
MRR and Mean Average Precision (MAP), are more
affected by a hit in the first ranks compared to the fol-
lowing ranks (Sajedi-Badashian and Stroulia, 2020).
In a sense, they penalize the mistakes in the first ranks
more than in subsequent ranks. While the MRR stops
at the first real assignee, this penalization continues
for MAP, for every incorrect guess until the last real
assignee in the list (Sajedi-Badashian and Stroulia,
2020). In our case, MAP and MRR are the same,
since there is only one real assignee for each bug re-
port. In our experiments we consider the MRR@10,
which is given by

MRR@10 =
1

#bugreports

#bugreports

∑
i=1

(RR@10)i (8)

(RR@10)i =

{
1

ranki
, if ranki ≤ 10

0, otherwise
(9)

where RR denotes the reciprocal rank and ranki is the
rank position of the real assignee for the ith bug report.



5.3 Topic Modeling Implementations

In our experiments, we use two widely used and ac-
tively maintained libraries for topic modeling. Ta-
ble 3, summarizes the features of the different topic
modeling libraries.

1. Gensim (Rehůřek and Sojka, 2010) offers an LDA
implementation based on the original implemen-
tation by Blei et al. (Blei et al., 2003), that we re-
fer to as Variational Bayes (VB), as well as its on-
line version Online Variational Bayes (OVB) in-
troduced by Hofman et al. (Hoffman et al., 2010).
Further features of Gensim include the automatic
hyperparameter estimation of the Dirichlet priors
α and β, as well as a parallel version. For the ATM
we always refer to Gensim.

2. MALLET implements the simple parallel
threaded implementation proposed by Newman
et al. (Newman et al., 2009) with the SparseLDA
Gibbs scheme and data structure introduced by
Yao et al. (2009). Based on the work of Wallach
(2008), MALLET implements several strategies
for hyperparameter optimizations of Dirichlet
priors.

6 Results

In this section, we give details on the conducted ex-
periments for evaluating our three bug triaging tech-
niques based on the ATM. We compare our ap-
proaches with DRETOM, the approach proposed by
Xie et al. (2012). Though more advanced bug triaging
algorithms exist, we choose the DRETOM approach
proposed by Xie et al. (2012) for comparison. This
is mainly because novel bug triaging algorithms try
to improve their models by taking additional infor-
mation into account, rather than improving the un-
derlying topic model and its respective hyperparame-
ters (Xia et al., 2013; Naguib et al., 2013; Zhang et al.,
2014a; Yang et al., 2014; Nguyen et al., 2014; Zhang
et al., 2016; Xia et al., 2016; Zhang et al., 2014b).
On this exemplary approach, we want to discuss the
following research questions:

RQ1 Are the approaches based on the ATM able to
outperform DRETOM?

RQ2 How far do the choice of hyperparameter, i.e.,
the number of topics and the Dirichlet prior, affect
the approaches for bug triaging tasks?
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Figure 2: Impact of underlying inference techniques using
default parameters for LDA implementation on MRR@10
obtained on the Mozilla Firefox project. The mean over a
10-fold cross-validation is reported.

6.1 Naive Replication of DRETOM

As DRETOM mainly depends on LDA, we first in-
vestigate the effect of the chosen LDA implementa-
tion on the results. We choose Gensim as represen-
tative LDA implementation using VB and MALLET
using Collapsed Gibbs Sampling (CGS). We used the
proposed parameters as specified by Xie et al. (2012):
a symmetrical Dirichlet prior both for the document-
topic distribution α= 0.01, the topic-term distribution
β = 0.01, and the number of topics to K = 20. For the
MALLET implementation we set the number of itera-
tions to 100. We keep the remaining parameters set to
their respective default values defined by the respec-
tive LDA implementation.

We report the mean of ten cross-validation runs of
the MRR@10 on the Mozilla Firefox project in Fig-
ure 2.

The DRETOM approach using MALLET is supe-
rior to the other three implementations, with a rela-
tive improvement of at least 47%. On average, the
MRR@10 for DRETOM using MALLET is 13.1%.
For all other implementations using VB inference this
number is significantly lower, 8.9% for Gensim, and
slightly worse for the parallelized LDA implementa-

4Asymmetrical β priors are not beneficial (Wallach
et al., 2009).

5When passing distributed=True as a parameter, the
implementation makes use of a cluster of machines via
pyro4.



Table 3: Features of used LDA and ATM implementations of Gensim and MALLET

LdaModel LdaMulticore AuthorTopicModel TopicTrainer

project Gensim Gensim Gensim MALLET
varying K ✓ ✓ ✓ ✓

symmetrical α/β ✓ ✓ ✓ ✓
optimized symmetrical α/β ✗ ✗ ✗ ✓
optimized asymmetrical α ✓ ✗ ✓ ✓

optimized asymmetrical β ✓ ✗ ✓ ✗4

parallelism ✓5 ✓ ✗ ✓

tion of Gensim (8.3%) Our next observation is that the
best hyperparameter setting for θ varies between the
different cross-validation splits between 0.0 and 0.3
according to the MRR@10. Xie et al. report that the
average precision and recall has its peak at θ = 0.6
for the Mozilla Firefox project which favors the de-
veloper’s interest slightly more compared to a devel-
oper’s expertise (Xie et al., 2012). Surprisingly, re-
gardless of the LDA implementation DRETOM never
reaches an optimal value of θ greater than 0.3 in the
first experiment of our reproduction study with re-
spect to the MRR@10. Across all cross-validation
splits the MRR@10 peaks at θ = 0.0 in 50% of the
cases, i.e., the recommendation is completely based
on a developer’s expertise.

Since all LDA implementations using VB per-
form significantly worse than the Gibbs implemen-
tation used in MALLET, we devote our attention to
the question of whether the differences with respect
to the MRR@10 are due to insufficient convergence
of the models trained with OVB. Particularly deci-
sive are the training parameters iVB and iCGS to make
sure the models have enough iterations to converge.
We increase the number of iterations to iVB = 400
in the case of Gensim. Following the original im-
plementation, the number of Gibbs iterations in our
first experiment was relatively low with iCGS = 100,
compared to other tool’s default values. We therefore
increase the value to iCGS = 1000. Gensim’s default
value for the maximum number of iterations for up-
dating the document-topic distribution within one E-
step is iV B = 50. The impact of the modified learning
parameters on the MRR@10 is presented in Figure 3.

For MALLET, the increase of the number of Gibbs
iterations from 100 to 1000 does not affect the average
MRR@10 across the ten cross-validation splits which
remains unchanged. This confirms the assumption
that the LDA model trained by CGS has already con-
verged previously and a lower number of iterations
is indeed sufficient on the Mozilla Firefox dataset. In
contrast, all OVB based implementations benefit from
the changed parametrization, but still do not match the
MRR@10 obtained using MALLET.
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Figure 3: Impact of underlying inference technique using
modified number of iteration steps for LDA implementation
on MRR@10 obtained on the Mozilla Firefox project. The
mean over a 10-fold cross-validation is reported.

6.2 Learning Asymmetrical Dirichlet
Priors

We will now focus on the shared hyperparameters be-
tween LDA and the ATM to compare DRETOM with
our proposed algorithms, starting with the Dirichlet
priors. All of the approaches presented in Section 2
use the default values of the Dirichlet priors, specified
in the respective implementation, none of them there-
fore investigates the effect of an asymmetrical Dirich-
let prior. However, Wallach et al. (2009) found that an
asymmetrical Dirichlet prior over the document-topic
distributions has substantial advantages over a sym-
metrical prior. In contrast, an asymmetrical Dirich-
let prior over the topic-term distributions provides no
known benefit. Learning an asymmetrical Dirichlet α

prior from the data while keeping the β prior symmet-
rical increases the robustness of topic models to varia-
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Figure 4: Impact of an optimized asymetric α prior on
the MRR@10 obtained on the Mozilla Firefox project.
DRATOM, DRATOMBayes and DRASIM use the same
trained Author-Topic Model (ATM). The mean over a 10-
fold cross-validation is reported.

tions in the number of topics and to the highly skewed
word frequency distributions common in natural lan-
guage (Wallach et al., 2009). We therefore only con-
sider the case of an asymmtrical prior α. Concretely,
we learn an asymmetrical prior from the data using
Gensim’s and MALLET’s built-in hyperparameter op-
timization.

Figure 4 shows the effects of learning an asym-
metrical Dirichlet prior α for the task of developer
recommendation measured as MRR@10.

The DRETOM using Gensim approach does not
benefit significantly from the use of automatic hyper-
parameter optimization compared to the symmetrical
α prior used in the previous experiments. In con-
trast, the DRETOM approach using MALLET’s hy-
perparameter optimization benefits noticeably more.
The MRR@10 improves from 13.1 to 13.7 across
all ten folds. The MRR@10 improves by over 30%
on average when we use DRATOM (14.2) instead of
DRETOM with the algorithmically comparable im-
plementation of Gensim (10.9). This indicates that
choosing a more appropriate topic model can signif-
icantly improve the quality of developer recommen-

dations. Surprisingly, even with the VB-based imple-
mentation of the ATM, we manage to outperform the
previously superior CGS-based LDA implementation
of MALLET (13.7). We further observe that the opti-
mal value for the common hyperparameter θ changes
abruptly at various times in the project. This is partic-
ularly pronounced for DRATOM using ATM, though
similar behavior can be observed for DRETOM with
both the Gensim and MALLET implementations. It
is all the more astonishing that our DRATOMBayes
approach (13.3) performs over 20% better than the
comparable DRETOM implementation using Gensim
and its optimal value θ=0.1 (10.9), although our ap-
proach neither knows nor needs to know the trade-off
hyperparameter. Our novel approach DRASIM seems
inferior and practically useless compared to all other
methods independent of the distance metric used.

6.3 The Influence of the Number of
Topics

The last remaining hyperparameter that needs to be
considered is the number of latent topics K. Xie et al.
applied a heuristic to determine the number of topics
to K = 20 in their corpus (Xie et al., 2012). If we
would adapt their method, we would use K = 30 as
the number of topics. However determining the ideal
number of topics for a topic model is still an open
question, and should therefore be investigated in our
experiments (Hasan et al., 2021).

Table 4 shows how increasing the number of top-
ics affects the choice of the optimal value for θ for
DRETOM and DRATOM as well as our other pro-
posed approaches with regard to the MRR@10.

It becomes apparent that all compared approaches
benefit from a larger number of topics but to dif-
ferent degrees. As in all previous experiments, the
CGS-based LDA implementation of MALLET con-
sistently outperformed the VB-based implementation
of Gensim independently of the number of topics
and θ by margins of up to 35%. The optimal value
for DRETOM’s hyperparameter is not constant, even
when averaged across all cross-validation folds, and
increases at different rates depending on the LDA im-
plementations to θ = 0.2 at K = 60. This underlines
the sensitivity of DRETOM from an optimal choice
of θ which also showed this deficiency in all previous
experiments. Even more affected by this problem is
DRATOM, the same developer recommendation ap-
proach using ATM. However, the latter outperforms
the DRETOM approach, regardless of the used LDA
implementation, the number of topics, and even the
value for θ by margins of up to 40%. If we compare
DRATOMBayes with the similar VB implementation



Table 4: Impact of a varying number of topics K on MRR@10 obtained on the Mozilla Firefox project with 10-fold cross
validation. DRATOM(ϑ), DRATOM and DRASIM use the same trained Author-Topic model (ATM). The mean over the
cross-validation and standard deviation are reported. The best hyperparameter setting for ϑ and the best distance metric for
DRASIM are highlighted. The table only shows the results for θ ≤ 0.4, as in not any case best results where achieved with a
greater value for θ.

Model Parameter K=20 K=30 K=40 K=50 K=60

DRETOM
Gensim

ϑ=0.0 10.4 ± 2.8 11.1 ± 2.7 11.6 ± 2.7 11.9 ± 3.2 11.9 ± 2.6
ϑ=0.1 11.0 ± 3.0 11.6 ± 2.9 12.0 ± 2.8 12.3 ± 3.4 12.2 ± 2.8
ϑ=0.2 10.1 ± 2.7 11.3 ± 2.9 11.8 ± 2.9 12.1 ± 3.5 12.3 ± 2.9
ϑ=0.3 8.7 ± 2.1 10.3 ± 2.9 11.0 ± 2.7 11.5 ± 3.4 11.7 ± 2.8
ϑ=0.4 7.7 ± 1.6 9.3 ± 2.7 10.0 ± 2.4 10.8 ± 3.1 10.9 ± 2.7

DRETOM
MALLET

ϑ=0.0 12.7 ± 3.3 13.4 ± 3.1 14.3 ± 3.6 15.0 ± 3.9 15.8 ± 3.7
ϑ=0.1 13.7 ± 3.4 14.2 ± 3.1 15.1 ± 3.8 15.8 ± 4.1 16.6 ± 3.9
ϑ=0.2 13.2 ± 3.1 14.1 ± 2.7 15.1 ± 3.7 15.8 ± 3.9 16.7 ± 3.9
ϑ=0.3 12.0 ± 2.7 13.1 ± 2.2 14.3 ± 3.4 15.0 ± 3.3 16.4 ± 3.6
ϑ=0.4 10.3 ± 2.3 11.9 ± 2.0 13.0 ± 2.9 14.0 ± 2.5 15.6 ± 3.1

DRATOM(ϑ)

ϑ=0.0 14.0 ± 2.7 15.5 ± 3.8 15.8 ± 3.8 15.5 ± 3.8 16.0 ± 3.3
ϑ=0.1 14.2 ± 2.6 15.8 ± 3.8 16.5 ± 3.8 16.1 ± 3.9 16.6 ± 3.4
ϑ=0.2 14.0 ± 2.5 15.9 ± 3.8 16.9 ± 3.9 16.5 ± 3.9 17.1 ± 3.4
ϑ=0.3 13.7 ± 2.4 15.8 ± 3.7 16.9 ± 3.7 16.7 ± 3.8 17.4 ± 3.3
ϑ=0.4 13.2 ± 2.4 15.6 ± 3.6 16.8 ± 3.6 16.7 ± 3.6 17.6 ± 3.2

DRATOM n/a 13.3 ± 2.3 14.9 ± 2.9 16.0 ± 4.2 15.8 ± 4.2 16.1 ± 3.7

DRASIM
Jensen-Shannon distance (DJS) 6.7 ± 2.0 8.6 ± 1.5 10.8 ± 2.6 12.0 ± 2.4 12.7 ± 2.1

Cosine distance (DCos) 6.6 ± 2.0 8.6 ± 1.6 10.9 ± 2.7 12.0 ± 2.3 12.6 ± 2.0
Manhattan distance (DMan) 5.1 ± 1.9 6.9 ± 1.7 8.5 ± 2.3 10.1 ± 2.5 10.8 ± 2.3

of DRETOM using Gensim, the superiority in the use
of ATM over LDA becomes evident also in this case.
On the other hand, if we compare DRATOMBayes
with the fundamentally superior MALLET implemen-
tation of DRETOM, using the ATM instead of LDA,
we are able to match the accuracy of the developer
recommendations, even exceeding them in the case
of 30 or 40 topics. Though DRASIM achieves worse
results than all other approaches with regard to the
MRR@10, it benefits most from an increasing num-
ber of topics and the quality of the developer recom-
mendations improves by almost 90%.

6.4 Threats to Validity

The internal threat to validity mainly lies in the
implementation of the studied baseline approach
DRETOM. Our approach based on the ATM used
the implementation provided by Gensim, which uses
VB and its online version OVB. A direct compari-
son between the MALLET-based DRETOM and ours
is therefore not possible. However, our first experi-
ment indicates the prevalence of CGS over VB and
its online version. Therefore, we think that an imple-
mentation of the ATM based on CGS can increase the
competitiveness of our findings.

The main threat for generalization is that we re-
ported our observations only from the conducted ex-

periments on the Mozilla Firefox project. The dataset
used for evaluation contains only the final developer
that is assigned to a resolved bug report and we con-
sider this developer as the ground truth. However, this
could become problematic as bug resolving is often
a team effort and multiple developers with different
roles are involved. Furthermore, the ground truth data
originates from the current process of manually bug
triaging issues to developers and assumes that this as-
signment is optimal.

7 Conclusions and Future Work

In this work, we applied the ATM, a variant of LDA
taking authorship into account, for modeling a de-
veloper’s expertise based on his activities stored in a
bug tracking system. By examining patterns of co-
occurring words, the ATM is able to capture semantic
clusters in the vocabulary, so-called topics, which of-
ten describe concepts in the bug reports. Describing
a developer as a distribution over these topics leads
to interpretable developer profiles, thus motivating its
use for the bug triaging task. Based on the ATM, we
further proposed three novel bug triaging algorithms
DRATOM, DRATOMBayes, and DRASIM, of which
the first two originate from an approach proposed by
Xie et al. (2012). We conducted experiments on a



large dataset from the Mozilla Firefox project to eval-
uate the effect of our approaches. The results show
that

1. The chosen topic modeling library can have a
large impact on the bug triaging results.

2. The approaches based on the ATM are able to out-
perform the DRETOM approach

3. The hyperparameters α and K can have a signifi-
cant impact on the developer recommendation re-
sults.

One direction for future work would be
the modification of our approaches DRATOM,
DRATOMBayes and DRASIM by taking additional
categorical features of bug reports into account.
There are also topic models that were conceptualized
for short documents, that bugs are associated with.
Further experiments should be conducted, where
our approaches are then compared to more modern
approaches. Furthermore, datasets with more than
one assigned developer for each bug report would
be interesting to observe with regards to a different
definition of the ground truth.
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