
Survey of Treemap Layout Algorithms
Willy Scheibel

Hasso Plattner Institute,
Faculty of Digital Engineering,
University of Potsdam, Germany

Daniel Limberger
Hasso Plattner Institute,

Faculty of Digital Engineering,
University of Potsdam, Germany

Jürgen Döllner
Hasso Plattner Institute,

Faculty of Digital Engineering,
University of Potsdam, Germany

ABSTRACT
This paper provides an overview of published treemap layout algo-
rithms from 1991 to 2019 that were used for information visualiza-
tion and computational geometry. First, a terminology is outlined
for the precise communication of tree-structured data and layouting
processes. Second, an overview and classification of layout algo-
rithms is presented and application areas are discussed. Third, the
use-case-specific adaption process is outlined and discussed. This
overview targets practitioners and researchers by providing a start-
ing point for own research, visualization design, and applications.

CCS CONCEPTS
•Human-centered computing�Treemaps;Visualization de-
sign and evaluation methods.
KEYWORDS
Treemap Layout Algorithms, Tree Spatialization, Graph Drawing

ACM Reference Format:
Willy Scheibel, Daniel Limberger, and Jürgen Döllner. 2020. Survey of
Treemap Layout Algorithms. In The 13th International Symposium on Vi-
sual Information Communication and Interaction (VINCI 2020), December
8–10, 2020, Eindhoven, Netherlands. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3430036.3430041

1 INTRODUCTION
For much of today’s tree-structured data—either inherent or other-
wise supplemented—the family of treemap visualization techniques
provides a versatile and well established way for visualization [60].
As such, the domains of software visualization [54] (Figure 1), de-
mographics [45], biology and medicine [19], and business data [69]
deal with complex, tree-structured datasets, and have a growing
need for visualization. Since the introduction of treemaps [47],
related research is present at conferences and in journals every
year, publishing advances in data processing, layouting techniques,
visual variable mapping and encoding, and applications.

Eventually, this led to a large and even growing number of
treemap layout algorithms. These number of algorithms and visual-
ization techniques were consolidated in design spaces and surveys
before. As such, Schulz et al. proposed both a design space for 3D
treemaps [76] and an extension to this design space to cover implicit
tree visualizations more generally [75]. A visual survey on tree vi-
sualization techniques in general is published at treevis.net [73].

VINCI 2020, December 8–10, 2020, Eindhoven, Netherlands
© 2020 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in The 13th
International Symposium on Visual Information Communication and Interaction (VINCI
2020), December 8–10, 2020, Eindhoven, Netherlands, https://doi.org/10.1145/3430036.
3430041.

More specifically with focus on treemaps, Shneiderman provides
a tool-centric view on treemap visualization techniques [78]. All
of these publications focus on the visualization technique and the
visual encoding. Focusing more on the layout algorithms, Baudel
and Broeksema proposed a design space of sequential, space-filling
layouts [8]. Schulz et al. later provided a design space for general
rooted tree drawings [74].

On one hand, this availability leaves visualization designers to
question which algorithm is suited for their intend. On the other
hand, the selection of an appropriate algorithm may be driven
by technical decisions. For example, the size of the dataset and
the data that should be visually encoded needs to be considered
as well. While the strict attribution of a visualization technique
being either a treemap or a tree visualization technique [70], this
survey focuses on layout algorithms that employ “the property
of containment” [46], i.e., containment treemaps TC. As such, we
consider algorithms that

• map a rooted tree into a 𝑘D layout space (𝑘 ∈ N∗),
• account for multiple attributes and additional relations, and
• distribute child nodes within their parents’ extent.

This paper presents a review of said algorithms by (1) recapit-
ulating and consolidating basic terminology used, (2) presenting
a classification of their characteristics, and (3) providing guidance
for the choice of algorithm for applications of treemaps. Starting
with the initial publication of treemaps in 1991, we considered 81
treemap layout algorithms published in conference proceedings and
journal articles of major publishers—IEEE, ACM, Springer, EG, El-
sevier, Palgrave, and SciTePress—as well as selected doctoral theses
in the years from 1991 to 2019.

The remainder of this paper is structured as follows. Section 2 re-
capitulates terminology used for tree-structured data and treemap
layouting techniques. Section 3 reviews available layout algorithms

Figure 1: Example 2.5D treemap visualization of the source
code files of the Firefox software project with 109 000 nodes
using the Hilbert treemap layout algorithm and recursive
nested depiction of child nodes.

https://doi.org/10.1145/3430036.3430041
https://treevis.net
https://doi.org/10.1145/3430036.3430041
https://doi.org/10.1145/3430036.3430041


VINCI 2020, December 8–10, 2020, Eindhoven, Netherlands W. Scheibel, D. Limberger, J. Döllner

A
inner/root

/parent

B

D E

H I

C
inner/child

/parent
inner/child

/parent

inner/child
/parent

leaf
/child

leaf
/child

leaf
/child

leaf
/child

leaf
/child

F G

Tree, Tree Depth = 3

Tree Level 0Parent Node
to D and E

Path from 
A to H,

with Ancestors 
E, B, and A

Descendents of A

Siblings in C

Parent-Child
Relationship

Tree Level 1

Tree Level 2

Tree Level 3

Figure 2: A tree-structure depiction with annotated terms.

for treemaps. Section 4 discusses adaptation and layout postpro-
cessing. Section 5 concludes this paper.

2 TREEMAP TERMS
Depictions of tree-structured data are subject to research for at least
a century [32]. The language used to discuss and communicate their
making, intent, and effectiveness has changed and most likely will
continue to change. Although the purpose of this section is to facili-
tate unambiguous and precise communication, we are aware of the
general ambiguity of language and different approaches tomodeling
and communication. Nevertheless, we reiterate common terms for
tree structure and spatialization using notions of graph theory [25]
and visualization theory. As a general case, a tree-structured dataset
can be modeled as a graph built up by vertices (data points) and at
least one relationship among the vertices represented by edges.

Tree Structure Terms. For a dataset to be suitable for treemap-
ping, the expected structure of the nodes and edges is expected
to be a rooted tree. Often, we find the term hierarchy to be used
synonymously, but we suggest to strictly distinguish. As an addi-
tional special case, a dataset with forest structure can be used for
treemapping by employing a virtual root node.

Hierarchy. A special type of a graph with the characteristics
that there is one type of directed relation (and, thus, one
type of directed edges) encoding a parent-child relationship
with no circles (synonym: directed, acyclic graph).

Tree. A special type of a hierarchy with the main characteristic
that the hierarchy is arborescent, i.e., it has a single vertex
with no parent relationship, each other vertex has exactly
one parent vertex.

Forest. A special type of hierarchy that represents a set of trees,
i.e., there may be multiple vertices with no parent relation-
ship.

With respect to a tree-structured dataset, there are additional ter-
mini to precisely denote characteristics, assumptions, and algo-
rithms for treemap visualizations (Figure 2):

Node. The representation of a data point in the semantics of
a tree in information visualization (i.e., a vertex in graph
theory).

Relation. Synonym to an edge in graph theory.

Parent-Child Relationship. A directed relation connecting two
nodes, in which context one node has the parent role and
the other has the child role.

Parent Node / Inner Node. A node that has child nodes, i.e., it
has one or more relationships with other nodes where the
node itself is a parent.

Root Node A node of a tree that has no parent node. For actual
trees there is only a single node per tree; for forests there
is one root node for each tree of the forest.

Child Node. A node that has a parent node, i.e., it has a relation-
ship with another node where the node itself is a child.

Leaf Node. A node without associated child nodes.

For such a tree, additional properties and concepts can be applied
that are used when deriving treemaps:

Path. The shortest list of nodes that connects two nodes using
the parent-child relationship. Thereby, the first node is the
source node, the last node is the target node and each two
adjacent nodes in the list are connected through a parent-
child relationship.

Ancestors. The set of nodes on the path from the parent node
to the root node.

Descendants. The recursively collected set of all child nodes and
their child nodes starting at one or more nodes.

Siblings. The set of child nodes with the same parent node.
Node Depth. The length of the path to the root node excluding

the node itself.
Tree Depth. The maximum node depth across all nodes of a tree.
Tree Level. One level of a tree is the set of nodes with the same

node depth. This is sometimes called a tree slice.

While the tree is the main data structure to derive treemap visual-
izations, actual datasets may be augmented with other structural
information. To this end, a dataset that is used for treemaps is not
limited to one type of edges to make it tree-structed, but there
has to be one type of edge that allows for an arborescent view on
the graph. Thus, some algorithms and techniques make use of the
following concepts:

Compound Tree. A tree with additional relations between nodes
that are not used as parent-child relationships.

Neighborhood Information. The availability of additional rela-
tions between sibling nodes that should be considered dur-
ing node layouting and visualization.

Thereby, neighborhood information may be relevant for treemap
layouting, but general additional relationships are more promi-
nently used for superimposed edge visualization [43].

Spatialization Terms. The layout of a treemap is one of its
unique features. Hence, the layouting process and its characteristics
have specific termini. In graph theory, the layouting process is also
known as graph drawing [28].

Treemap Layout. A set of polytopes within the dimensionality
of the reference space, e.g., polygons for 2-dimensional
layouts, that are associated with the nodes of a tree. The
polytopes adhere to the property of containment.

Treemap Layout Element. A single polytope of a treemap layout,
usually associated with the node it represents.



Survey of Treemap Layout Algorithms VINCI 2020, December 8–10, 2020, Eindhoven, Netherlands

Splitting Layout Packing Layout

Figure 3: Conceptual display of splitting vs. packing layouts.
Splitting layout algorithms utilize the whole space of a lay-
out element for subdivision whereas packing layouts usu-
ally contain white space.

Treemap Layout Algorithm. An algorithm that maps tree-struc-
tured data to a treemap layout.

Space-filling. This property indicates that a layout algorithm
generates layouts where the allocated space is fully used.

Geo-dependent. A layout algorithm is geo-dependent if the gen-
erated layouts adhere to given geo-spatial constraints, e.g.,
geo-referenced neighbors [16, 81]. A synonym for this char-
acteristic is spatially dependent.

Packing Approach. A layout algorithm is a packing algorithm if
the layout of an inner node is derived from the layout of
its child nodes [75] (Figure 3).

Splitting Approach. A layout algorithm is a splitting algorithm
if the layout of a node is derived from the layout of its
parent node [75] (Figure 3). This process is also called dis-
section [62].

3 TREEMAP LAYOUT ALGORITHMS
Layouting is themapping of a node into a reference space which typ-
ically is one-dimensional, two-dimensional or three-dimensional.
This layouting is considered a recursive algorithm, whereby a
treemap algorithm usually defines the layout for one level of the
tree. For an algorithm to count as treemap layout algorithm, we
require it to represent the parent-child relationship between nodes
by containment, i.e., to layout a child node within the layout of the
parent node. Besides the parent-child relationship, other informa-
tion such as a size attribute or neighborhood information among
child nodes can be used as well.

3.1 Definition of a Treemap Layout Algorithm
The task to identify a treemap layout algorithm depends on two
definitions. First, it must be determinable if a resulting layout is in
fact a treemap layout, i.e., if it adheres to a definition of a treemap
layout. In order to provide a more specific yet minimal working
definition, we consider a treemap layout as follows:

Definition 3.1. Treemap Layout
A treemap layout associates a treemap layout element for each node
of a tree. For all layout elements and their associated nodes, the
following conditions must be met.

(i) Layout elements of any sibling nodes 𝑝 and 𝑞 must not over-
lap.

(ii) If 𝑝 is ancestor of 𝑞, then the layout element of 𝑞 is fully
enclosed by the layout element of 𝑝 .

This ensures that the layout element of a child node is locatedwithin
the layout element of its parent node, providing the containment
property, and does not overlap with any sibling layout element. The
latter property allows for an unambiguous visual mapping of the
parent-child relationship. With respect to Definition 3.1, a treemap
layout algorithm is an algorithm or function that maps a tree to
a treemap layout. This results in a large set of algorithms to be
considered treemap layout algorithms. In this paper, we focus on
algorithms that derive such a layout from a rooted tree, while not
using another treemap layout for the same tree as additional input.

Definition 3.2. Treemap Layout Algorithm
A treemap layout algorithm performs a graph drawing on a tree
and results in an association of tree nodes to layout elements. For
this, the input of the algorithm is a tree. As additional input, this
algorithm does not use another treemap layout for the same input
tree.

Algorithms that use such a pre-existing treemap layout for the
rooted tree, we call treemap layout postprocessing algorithms.

3.2 Layout Algorithm Characteristics
With respect to the scope of this paper, we assess the layout al-
gorithms by a small set of properties. As first classification, “one
can discern two major layout methodologies: subdivision and pack-
ing” [75]. The basic approach for packing layouts is the arrangement
of the polytopes of all child nodes in proximity and defining an
enclosing polytope as own layout. This approach is then applied
recursively from leaf nodes to the root node. Regarding splitting
layouts, the basic approach is to define a polytope for the root node
and perform a dissection on its layout for its child nodes, recurs-
ing down the tree. This basically means that all algorithms that
perform a packing or subdivision of lines, areas, volumes, or even
higher-dimensional shapes, are suitable for recursion and thus, for
treemap layouting. Next to the layouting methodology, the dimen-
sionality of the reference space for the layout is important, as it
mainly restricts further visual variable mapping. For example, a
2.5D treemap, where the layout provides the space for 3D polytopes
and the height of the polytopes is intended for height mapping,
requires the layout to be one-dimensional or two-dimensional.

Another set of properties is the type of additional data an algo-
rithm uses when layouting a tree. Here, we use four different types
of input data: (1) to use node weights for layout sizes, (2) to use
neighborhood information to place layout elements in adjecency,
(3) to use a similarity measure to place layouts in vicinity, and (4)
to use another treemap layout of another rooted tree as starting
point. Especially for the node weights, we assess if the algorithms
use the weight values to scale the sizes of leaf nodes. Typically, the
size of parent nodes is adjusted to the spatial consumption of the
child nodes. Next, the type of shapes an algorithm chooses for the
resulting layout is often a key filter of choice. Typically, the class
of shapes resembles either round shapes (points, circles, ellipsoids),



VINCI 2020, December 8–10, 2020, Eindhoven, Netherlands W. Scheibel, D. Limberger, J. Döllner

axis-aligned shapes (lines, rectangles, boxes), other convex shapes
(triangles, polygons, polytopes), and general non-convex shapes.

There are more characteristics of treemap layout algorithms that
may help to discern them and select one, e.g., the distinction be-
tween slicable and non-slicable layouts [108], or the algorithms’
run-time complexity (note that “the generic problem of creating
such layouts fall[s] in the category of NP-hard problems” [8]). How-
ever, slicable layouts as well as run-time complexity in general are
scarcely discussed within the community of information visualiza-
tion. For this paper, we deliberately omitted additional, external
assessment of these layouts. Summarizing, we assess treemap lay-
out algorithms along the following, non-exhaustive axes:

• Iteration approach: packing and splitting
• Additional attributes: weight, neighborhood-preserving, and
similarity

• Layout shape: circular, rectangular, convex, and non-convex
• Reference space dimensionality: 1D, 2D, and 3D

3.3 Algorithm Overview
The collected treemap layout algorithms (as defined with Defini-
tion 3.2) and their properties are provided in Table 1. This intro-
duction and classification is broadly categorized by (1) structure-
focused layouts, (2) list-focused layout algorithms, (3) rectangular
splitting layouts, (4) rectangular packing layouts, (5) rectangular
3D layouts, (6) circular layouts, (7) polygonal layouts, (8) similarity
map layouts, (9) cartograms, and (10) generalized layout algorithms.
For a broader perspective, we briefly include layout algorithms used
outside of information visualization, too.

Structure-focused Layouts. By use of nesting in the layout,
some algorithms can be considered treemap layout algorithms,
although only the structure of the tree is depicted, i.e., no additional
visual variable mapping of attributes is used. Examples for this are
Bubble Trees [12], aesthetics-improved higraphs [39], and horizontal-
vertical inclusion tree layouts [67]. Although most treemap layout
algorithms allow for weight mapping of nodes to different surface
areas, equal-weight mapping algorithms such as Treeline enable for
basic depiction and straight-forward implementation [51].

List-focused Layout Algorithms. Although treemap layout
algorithms are usually researched and discussed with recursion in
mind, there is a number of algorithms that were initially designed to
solve the layout of a degenerated case: the list. For the general layout
methodology of packing layouts, bin packing [47] and specialized
variations as guillotinable bin packing [50] can be used to generate
treemap layouts. One subject for optimization is the aspect ratio and
area of the resulting parent rectangle [14]. For the methodology
of splitting layouts, the basic subdivision of a rectangle can be
done using simple partitioning, as it is done within percentage
bar charts, i.e., a one-dimensional partitioning using fractions. For
more sophisticated layouts, mathematicians tries to find and prove
optimal dissections of rectangles with associated weights [31, 62].
If the order and neighborhood information of nodes within a layout
are important, the method of graph dualization can be used to
layout them within a rectangle [107].

Rectangular Splitting Layouts. One of the first treemap lay-
out algorithms is the formerly unnamed Slice andDice algorithm [47].

Table 1: List of treemap layout algorithms (as defined with
Definition 3.2) in approximated publication order.

A
lg
or
ith

m

Ye
ar

Pa
ck
in
g

Sp
lit
tin

g

W
ei
gh

t

N
ei
gh

bo
rh
oo

d

Si
m
ila
rit
y

Ci
rc
ul
ar

Re
ct
an
gu

la
r

Co
nv

ex
N
on

-C
on

ve
x

1D 2D 3D

Slice-and-Dice [47] 1991 • • • •
1-D Partitioning [46] 1993 • • • •
n-D Partitioning [46] 1993 • • • • • •

Information Cube [68] 1993 • • • •
Interactive Dynamic Map [110] 1994 • • • •
Guillotineable Bin Packing [50] 1995 • • •

Hierarchical Clustering [44] 1998 • • •
Cluster [100] 1999 • • • • •

Modifiable [94] 2000 • • • •
Bubble Tree [12] 2000 • • •
Squarified [15] 2000 • • • •

Pivot [79] 2001 • • • •
BinaryTree [78] 2001 • • • •
Blob Layout [39] 2002 • • •

Plateau Placement [1] 2002 • • •
Strip [9] 2002 • • • •

Quantum [9] 2002 • • •
InfoSky [2] 2002 • • • •

(h-v) Inclusion Tree [67] 2003 • • •
Strip TreeCube [88] 2003 • • • •
Pivot TreeCube [88] 2003 • • • •

Quantum TreeCube [88] 2003 • • •
Pebbles [103] 2003 • • • •

Data-Jewelry Box [105] 2003 • • •
Template-based Packing [105] 2003 • • •

Nested Circles [7] 2004 • • •
RecMap V1 [42] 2004 • • • •
RecMap V2 [42] 2004 • • • • •

Jigsaw [101] 2005 • • • •
Voronoi [6] 2005 • • • •
EncCon [63] 2005 • • • •

Circular Treemap [66] 2005 • • •
ID-Map [37] 2005 • • • •
Treeline [51] 2005 • • •

Circle Packing [98] 2006 • • •
Matrix [95] 2006 • • •
Grid [72] 2006 • • •

Component Coupling [13] 2006 • • • •
Spiral [89] 2007 • • • •
Snake [89] 2007 • • • •

Approximation [62] 2007 • • • •
Multiresolution Grid Layout [38] 2007 • • •

CodeCity [102] 2007 • • • •
Ellimaps [20] 2007 • • • •

Deterministic Hierarchical Clustering [96] 2007 • • • • •
Density-guided [56] 2008 • • • •

Hierarchical Circular Partition [64] 2008 • • • •
Document Page Blocks [24] 2008 • • •

Document Page Fit [24] 2008 • • • •
Fixed-outline Floorplanner [41] 2008 • • • •

CGD Ellimaps [65] 2009 • • • •
Evo-Streets [86] 2010 • • • •

Convex [23] 2011 • • • •
Ortho-Convex [23] 2011 • • • •

sqTM Burst Mapping [92] 2011 • • • •
Strip Packing [48] 2012 • • • •

Angular Treemap [52] 2012 • • • •
GosperMap [4] 2013 • • • •

Hilbert [87] 2013 • • • •
Moore [87] 2013 • • • •

Divide and Conquer Treemap [53] 2013 • • • •
iMap [97] 2013 • • • •

Fat Polygonal Partition [22] 2013 • • • •
Approximation by Impact [31] 2014 • • • •

Nmap [27] 2014 • • • • •
Template-based Splitting [49] 2014 • • • •

Hexagon Tiling [11] 2014 • • • • •
Variational Circular [109] 2015 • • • •

Enhanced Hexagon Tiling [106] 2015 • • • •
Weighted Map [33] 2015 • • • •

IsoMatch [30] 2015 • • • •
Code Map [40] 2015 • • • •

Squarified+ [18] 2016 • • • •
Golden Rectangle [58] 2017 • • • •

Bubble [34] 2017 • • • •
Box-connected Map [17] 2017 • • • • •

EvoCells [71] 2018 • • • •
y-Soft Packing [14] 2018 • • • •

Greedy Insertion [93] 2018 • • • •
Orthogonal Voronoi [99] 2019 • • • •

Balanced Partitioning [29] 2019 • • • •



Survey of Treemap Layout Algorithms VINCI 2020, December 8–10, 2020, Eindhoven, Netherlands

This algorithm uses a straight-forward dissection approach: “split-
ting the screen into rectangles in alternating horizontal and vertical
directions as you traverse down the levels” [78]. The resulting
long and thin rectangles are often-critiqued [36], and thus, a large
number of splitting algorithms were proposed, each with advan-
tages and disadvantages. The Interactive Dynamic Map integrates
an algorithm that approximates rectangles with an aspect ratio of
one [110]. The prolonged and hard-to-read rectangles were further
handled using user-controlled aspect ratios by means of modifiable
treemaps [94].

Extending on the interactive dynamic map, the approach of
Squarified treemaps uses an up-front sorting of nodes by weight
to improve the aspect ratios even further [15]. An alternative to
the target aspect ratio one is the golden ratio—used by the Golden
Rectangle layout [58]. Combined approaches for order-preservation
and good—and this is still subject to research—aspect ratios are the
Strip and Pivot layouts by Shneiderman and Wattenberg [79]. A
layout algorithm can be adjusted to allow for quantized rectangle
areas, allowing for grid layout of uniformly-sized leaf nodes [9].
The extension Squarified+ provides an aspect-ratio optimizing com-
bination of Squarified and Strip layouts [18].

Although not scientifically published, the BinaryTree layout is im-
plemented in the Java library from the University of Maryland [78].
This divide-and-conquer approach splits the list of nodes in half and
assigns rectangles in proportion to their summed weights, while
switching split directions during recursion.With balanced partition-
ing treemaps, this design space of split position and node sorting
was extended [29]. As some sort of binary tree, the treemap layout
algorithm Fractal Figures can be used to highlight the number of
nodes [21]. Further improving aspect ratios in treemap layouts, the
density-guided approach of Liu et al. uses brute force to detect the
best possible split [56].

The notion of strips to lay out rectangles for treemaps was con-
tinued by Tu and Shen with S-shape and Spiral layouts, both being
strip layouts where the next strip continues in reverse direction
and in a spiral pattern, respectively [89]. Both algorithms optimize
an additional property that is desired with treemaps: continuity,
i.e., preserved adjacency among sibling nodes. The approach with
spiral and snake treemaps was further improved by more sophis-
ticated space-filling curves (here: Hilbert and Moore curves) [87].
Originally published as layout algorithm for optimized node-link
drawings, the EncCon [63] layout combines the squarified approach
with Spiral Treemaps.

Using more regular layouts, the ID-Map [37], the Matrix Lay-
out [95], and the Multiresolution Grid Layout [38] are primarily
used for business charts. Likewise, the iMap layout allows for reg-
ular subdivision with quantized leaf rectangle sizes [97]. Kokash
et al. proposed an approach that ensure uniform treemap layouts
by applying an explicit splitting scheme [49]. Thereby, they pro-
pose that the layout template is either specified by the user or the
result of a constraint solver. Improving on this, the Greedy Insertion
approach operates on the derived layout tree and inserts new nodes
next to the element with worst aspect ratio [93]. Although most
algorithms target one specific dimensionality for the layout and use
different approaches for dissection, Johnson presented a general
nD Partitioning algorithm for arbitrary-dimensioned layout spaces
in his dissertation [46]. The special case in one dimension, the 1D

partitioning [46], is used for other implicit edge-representation tree
visualizations such as icicle plots and sunburst views [75].

Rectangular Packing Layouts. As an addition to basic adja-
cent placement (bin packing), one of the earliest algorithms uses
two areas for its plateau placement: one area for additional inner
nodes and one area for leaf nodes [1]. A specialized bin packing
for equal-width leaf nodes is proposed with the Strip Packing al-
gorithm [48]. Reusing a former layout, the Data Jewelry Box al-
gorithm [105] uses computational geometry to place new nodes
as it reuses previously layouted nodes. By applying the evolution
of data to a rectangular treemap layout, the EvoCells algorithm
adjusts the parent rectangles for each change on leaf nodes by dis-
placement and packing [71]. A specialized combination of sorted
nodes, quantized rectangle sizes and bin packing is the approach to
generate CodeCities [102]. Although the depiction of the Software
Landscapes are not a treemap visualization by means of splitting
treemaps or containment treemaps—categories TS and TC—, the
underlying layout algorithm named EvoStreets is a hierarchical
packing algorithm, and thus, a treemap layout algorithm [86].

Rectangular 3DLayouts. In contrast to 2D rectangular treemap
layout algorithms, some algorithms compute 3D layouts. These al-
gorithms are basically similar to their 2D counterparts. The packing
approach is used for the Information Cube [68] and early splitting
algorithms such as Slice’n’Dice, Ordered, Strip, and Quantum are
proposed and discussed as well [88].

Circular Layouts. Next to rectangular treemap algorithms and
their higher-dimensional complements, circles and ellipses can
serve as basic shapes as well. One of the first approaches is the
Pebbles treemap [103], that is a recursive packing of circles. This
packing can be optimized, e.g., using a front-line approach [98], de-
rived from a power diagram [109], or force-based contraction [34].
In contrast to more space-efficient packing, using more space to
enhance the depiction of the tree structure is feasible for smaller
datasets as well [66]. A splitting algorithm for circular treemap
layouts was proposed by Balzer et al. [7]. Treemaps with a base
layout shape of ellipses follows the concept of Venn diagrams and
are hinted by Johnson and Shneiderman [47]. In contrast to cir-
cular layouts, they are suitable for layout creation using splitting
algorithms, as proposed with Ellimaps [20] and optimized through
combined geometrical distortions [65].

Polygonal Layouts. Polygonal layouts are characterized through
use of more complex shapes for nodes, such as triangles, non-axis-
aligned rectangles, or convex and non-convex polygons. An early
example for the use of convex polygons is the InfoSky technique that
uses “a modified version of the additively weighted power Voronoi
diagram” [2]. These treemaps are termed Voronoi treemap [6]. An-
other approach—extending binary tree treemaps—uses scan lines
to compute the polygon split [5]. When using arbitrary cutting
angles, this approach results in Angular Treemaps [52] and their
extension, the Divide and Conquer Treemaps [53]. Using space-
filling curves with guaranteed locality are suitable for the creation
of treemaps as well. A basic curve is a scanning of alternating rows
and columns [72]. As more sophisticated examples, the Hilbert
curve is used to create Jigsaw treemaps [101] and the Gosper curve
is used for GosperMaps [4]. Allowing polygonal shapes improved



VINCI 2020, December 8–10, 2020, Eindhoven, Netherlands W. Scheibel, D. Limberger, J. Döllner

worst-case aspect ratios for single layouts. As such, the hierarchical
circular partition is an approach for convex-polygonal treemaps [64].
Improving on this, de Berg et al. proposed Convex andOrtho-Convex
treemaps [23] and Fat Polygonal Partitioning [22]. Buik-Aghai et al.
proposed a map-like treemap layout algorithm that lays out nodes
using adjacent hexagonal tiles [11]. This was later extended by the
possibility of area-mapping [106]. More recently, the Voronoi layout
approach is used to derive non-convex rectangular layouts [99].

Similarity-Map Layouts. Instead of subdividing by natural or
given order, there are algorithms that arrange nodes based on their
similarities. An early example is the Cluster treemap, proposed by
Wattenberg [100], that uses amaximization on similarities for neigh-
boring nodes. The most basic approach for this is brute force. More
sophisticated approaches are energy-based approaches [13] such as
spring embedders [11] and IsoMatch [30]. In contrast, dissimilarities
are solved by large neighborhood search, resulting in a space-filling,
box-connected map [17]. From the field of artificial intelligence, the
self-optimizing maps can be used as base layout [80].

Cartograms. Originating from cartography, there are treemap
layout algorithms that preserve underlying neighborhood informa-
tion from geographic locations. Next to statistical cartograms from
the early 19’th century, algorithmic descriptions for cartograms
(both splitting and packing) have been proposed with the RecMap
techniques [42]. Shortly after, algorithmic approximations on rect-
angular cartograms were introduced using constraint solver and
linear programming [85]. For layouts that do not adhere to both
tree-structure and neighborhood constraints, Buchin et al. pro-
posed a transformation towards an adjacency-preserving spatial
treemap [16]. A slice and scale approach improves the construction
of neighborhood-preserving treemaps as it is used within Nmap
treemaps [27]. The similiar approachWeighted Maps uses sorting
by longitude and latitude coordinates to construct cartograms [33].

Generalized Layout Algorithms. Within recent years, the re-
search community consolidated subgroups of layout algorithms and
derived layout languages that cover design spaces of treemap layout
algorithms. These generalized layout algorithms allow previously
published algorithms to be expressed as special parameterization of
a more generalized one. This was demonstrated for the subcategory
of splitting treemap layout algorithms. As such, Baudel and Broek-
sema proposed an algorithm that captures “The Design Space of
Sequential Space-Filling Layouts” [8]. Later, Schulz et al. proposed
a “Generative Layout Approach for Rooted Tree Drawings” that
supports layouts up to treemap category TMT [74].

Non-InfoVis Layouts. Loosely related to treemaps in informa-
tion visualization, there are other layout techniques that perform
some kind of subdivision of a surface. As they result from highly
specialized domains, the applicability for information visualization
may be restricted and we deliberately omitted these layout from
the overview table. For example, the floorplanning community ex-
plores methods that optimize the placement of integrated circuits
on a chip, whereby cuircits may have hierarchical nesting [41].
Following the quantum treemap approach to visualize multimedia
items—that often comes with an fixed aspect ratio and view size of
leaf node items—the layout of document pages is optimized using
Block and Fit approaches [24]. In the domain of wireless submission

via WiMAX, spatial subdivision of rectangles is important, too [82].
There, an adaption of Squarified layouts is used as an alternative
layout algorithm to compute the burst windows [92], whereby their
implementation and results resembles Strip layouts.

4 TREEMAP LAYOUT ADAPTATIONS
Although the treemap layout algorithm by itself is a basic building
block in a tree visualization technique, the resulting layout is most
often target to use-case-specific parameterization and further post-
processing. This ranges from the selection of layout algorithms and
the order of nodes for iteration to layout postprocessings for the
transformation of geometry or the depiction of structure.

Choice of Layout Algorithm. Despite the variety in treemap
layout algorithms and years of research and improvement, “no
algorithm is superior in all [. . . ] aspects and under all circum-
stances” [10]. Following this, the choice of the layout algorithm is
subject to use case and task. This may even require visualization
designers to select a general tree visualization technique [26]. For
treemaps, typical considerations to take into account for layout-
ing are additional relations and attributes. Use cases that rely on
specific adjacency of child nodes are inclined to use cartograms
or similarity maps, while others try to achieve general readability
or other layout metrics. As the inherent property of a treemap is
hierarchical recursion, “an algorithm could be chosen for each indi-
vidual [inner] node” [95]. As of now, the used methods of layout
algorithm selection are (1) equal for all nodes, (2) selected by a
static scheme [59, 95], (3) data-dependent analysis [35] or machine
learning [10], and (4) dynamic configuration [81].

Iteration Order. In addition to the selection of an algorithm,
the order of node processing has influence on the result, too. There
are a number of approaches for node iteration. For one, there is
the inherent order given by the dataset [47], i.e., a technical order.
There are semantic orders, such as “alphabetical order, chrono-
logical order, or other criteria” [3] or the order of nodes with re-
spect to a specific attribute (e.g., sorted by node weight [15] or
height [55]). Employing the neighborhood information can im-
prove geo-dependent treemaps by sorting by either longitude and
latitude coordinates [59] or by distance to an origin [104].

Layout Post-Processings. In contrast to layout algorithms that
result in a subdivision of a surface there are techniques that build
upon those techniques and perform operations on the resulting
layout. As such, local and global transformations can be applied to
a layout. Examples are the projection into other reference systems
such as polar coordinates [46] and local parameterization to ensure
uniform density among nodes [95]. Other local transformations
include the resizing of layout nodes due to a degree-of-interest [77]
or a degree of uncertainty [83]. Regarding the use of treemaps to
visualize tree-structured data over a longer period of time, cogni-
tive load can be decreased significantly using layouts that remain
stable [61]. This resulted in approaches that re-use previously gen-
erated layouts as template for the computation of another one. One
example is the computation of “the layout of the treemap using only
local modifications” [84] by applying local swaps and approximate
the layout of the previous instance.



Survey of Treemap Layout Algorithms VINCI 2020, December 8–10, 2020, Eindhoven, Netherlands

Structure Depiction. A separate category of such layout post-
processings is the introduction of additional space into the layout—
especially used for splitting treemaps. One approach is the applica-
tion of nesting to treemaps, which insets child nodes by an offset [47].
A special case of nesting is the title bar which introduces additional
space, e.g., for labeling of inner nodes [90]. Another approach is the
conversion of a nested treemap to a cascaded treemap [57]. Quite
differently, a burst based on a node’s depth can be applied to every
node individually [72]. Typically, the area of leaf layouts is com-
parable and strictly correlates to the underlying weight values. It
should be noted, however, that “visualizations of structure [. . . ]
invalidate this property” [57]. As it is usually necessary to “graphi-
cally portray the structure of the hierarchy” [46], nesting is applied
nonetheless. One technique that allows for depiction of the struc-
ture while “maintaining the proportionality property of treemaps”
is the BeamTree [91]. This technique converts a Slice’n’Dice treemap
into a layout using implicit edge representations via overlap, con-
verting a treemap layout of category TS into a TIE visualization.

5 CONCLUSIONS
In conclusion, the research community has published a multitude
of treemap layout algorithms and adaptions for various use cases
and tasks. Through a highlight of 81 of those algorithms we provide
a broad overview. The majority of algorithms is designed for 2D
layouts and rectangular shapes are most common. Among all algo-
rithms, the number of packing and splitting approaches is mostly
similar. Most notably, the majority of algorithms does neither ac-
count for similarity nor for neighborhood of nodes. This overview
and introduction to the broad parameterization of treemap lay-
out algorithms can be used by practitioners and researchers as a
starting point for own research and visualization techniques and
applications. We believe this review allows for more specific and
more effective use of treemap visualization techniques. For example,
we suggest that visualization APIs and libraries that target tree-
structured data consider the reviewed algorithms for inclusion.

For future work, we intend to use this review as a starting point
for more in-depth treemap algorithm evaluation and an assess-
ment of treemap metrics. With this, we strive to extend the list of
algorithms and evaluate them against further measurements and
categories, such as run-time complexity, availability in visualization
frameworks and libraries, and compatibility for combined usage
with other layout algorithms. Another important direction is the
collection of specific open questions in treemap layouts and deriv-
ing a research agenda. From our point of view, these are the next
steps for an even broader use of the treemap visualization technique
for researchers and visualization designers, as well as an improved
comprehension of the visualization consumers, the users.

ACKNOWLEDGMENTS
We want to thank the anonymous reviewers for their valuable
comments and suggestions to improve this article. This work is part
of the “Software-DNA” project, which is funded by the European
Regional Development Fund (ERDF – or EFRE in German) and the
State of Brandenburg (ILB) as well as the “TASAM” project, which
is funded by the German Federal Ministry for Economic Affairs and
Energy (BMWi, ZIM).

REFERENCES
[1] Keith Andrews. 2002. Visual Exploration of Large Hierarchies with Information

Pyramids. In Proc. International Conference on Information Visualisation (iV ’02).
IEEE, 793–798. https://doi.org/10.1109/IV.2002.1028871

[2] Keith Andrews, Wolfgang Kienreich, Vedran Sabol, Jutta Becker, Georg Droschl,
Frank Kappe, Michael Granitzer, Peter Auer, and Klaus Tochtermann. 2002.
The InfoSky visual explorer: Exploiting Hierarchical Structure and Document
Similarities. Information Visualization 1, 3-4 (2002), 166–181. https://doi.org/10.
1057/PALGRAVE.IVS.9500023

[3] Keith Andrews, Josef Wolte, and Michael Pichler. 1997. Information Pyramids™:
A new approach to visualizing large hierarchies. In Proc. International Conference
on Visualization (Vis ’97). IEEE, 49–52.

[4] David Auber, C. Huet, A. Lambert, B. Renoust, A. Sallaberry, and A. Saulnier.
2013. GosperMap: Using a Gosper Curve for Laying Out Hierarchical Data.
TVCG 19, 11 (2013), 1820–1832. https://doi.org/10.1109/TVCG.2013.91

[5] M. Balzer and Oliver Deussen. 2005. Exploring Relations within Software
Systems Using Treemap Enhanced Hierarchical Graphs. In Proc. 3rd International
Workshop on Visualizing Software for Understanding and Analysis (VISSOFT ’05).
IEEE, 1–6. https://doi.org/10.1109/VISSOF.2005.1684312

[6] M. Balzer and Oliver Deussen. 2005. Voronoi treemaps. In Proc. Symposium on
Information Visualization (InfoVis ’05). IEEE, 49–56. https://doi.org/10.1109/
INFVIS.2005.1532128

[7] Michael Balzer, Andreas Noack, Oliver Deussen, and Claus Lewerentz. 2004.
Software Landscapes: Visualizing the Structure of Large Software Systems. In
Proc. VGTC Symposium on Visualization (Vis ’04). EG/IEEE. https://doi.org/10.
2312/VisSym/VisSym04/261-266

[8] T. Baudel and B. Broeksema. 2012. Capturing the Design Space of Sequential
Space-Filling Layouts. TVCG 18, 12 (2012), 2593–2602. https://doi.org/10.1109/
TVCG.2012.205

[9] Benjamin B. Bederson, Ben Shneiderman, and Martin Wattenberg. 2002. Or-
dered and Quantum Treemaps: Making Effective Use of 2D Space to Dis-
play Hierarchies. Transactions on Graphics 21, 4 (2002), 833–854. https:
//doi.org/10.1145/571647.571649

[10] Joseph Bethge, Sebastian Hahn, and Jürgen Döllner. 2017. Improving Layout
Quality by Mixing Treemap-Layouts Based on Data-Change Characteristics. In
Proc. Vision, Modeling & Visualization (VMV ’17). EG. https://doi.org/10.2312/
vmv.20171261

[11] Robert P. Biuk-Aghai, Cheong-Iao Pang, and Yain-Whar Si. 2014. Visualizing
large-scale human collaboration in Wikipedia. Future Generation Computer
Systems 31 (2014), 120–133. https://doi.org/10.1016/j.future.2013.04.001

[12] Richard Boardman. 2000. Bubble Trees the Visualization of Hierarchical Infor-
mation Structures. In Proc. Extended Abstracts on Human Factors in Computing
Systems (CHI EA ’00). ACM, 315–316. https://doi.org/10.1145/633292.633484

[13] Johannes Bohnet and Jürgen Döllner. 2006. Analyzing Feature Implementa-
tion by Visual Exploration of Architecturally-embedded Call-graphs. In Proc.
International Workshop on Dynamic Systems Analysis (WODA ’06). ACM, 41–48.
https://doi.org/10.1145/1138912.1138922

[14] Ulrich Brenner. 2018. y-Soft Packings of Rectangles. Elsevier Computational
Geometry 70, C (2018), 49–64. https://doi.org/10.1016/j.comgeo.2018.01.005

[15] Mark Bruls, Kees Huizing, and Jarke J. van Wijk. 2000. Squarified Treemaps.
In Proc. TCVG Symposium on Visualization (Data Visualization ’00). Springer,
33–42. https://doi.org/10.1007/978-3-7091-6783-0_4

[16] Kevin Buchin, David Eppstein, Maarten Löffler, Martin Nöllenburg, and Rodrigo I
Silveira. 2011. Adjacency-Preserving Spatial Treemaps. In Proc. Workshop on
Algorithms and Data Structures (WADS ’11). Springer, 159–170. https://doi.org/
10.1007/978-3-642-22300-6_14

[17] Emilio Carrizosa, Vanesa Guerrero, and Dolores Romero Morales. 2017. Visu-
alizing proportions and dissimilarities by Space-filling maps: A Large Neigh-
borhood Search approach. Computers & Operations Research 78 (2017), 369–380.
https://doi.org/10.1016/j.cor.2016.09.018

[18] Antonio Cesarano, Filomena Ferrucci, and Mario Torre. 2016. A heuristic
extending the Squarified treemapping algorithm. arXiv Computing Research
Repository abs/1609.00754 (2016).

[19] Emmanuel Chazard, Philippe Puech, Marc Gregoire, and Régis Beuscart. 2006.
Using Treemaps to represent medical data. Studies in Health Technology and
Informatics 124 (2006), 522–527.

[20] Pierre Collin, Benoit Otjacques, Xavier Gobert, Monique Noirhomme, and Fer-
nand Feltz. 2007. Visualizing the activity of a web-based collaborative platform.
In Proc. 11th International Conference Information Visualization (iV ’07). IEEE,
251–256. https://doi.org/10.1109/IV.2007.137

[21] M. D’Ambros, Michele Lanza, and H. Gall. 2005. Fractal Figures: Visualizing
Development Effort for CVS Entities. In Proc. 3rd International Workshop on
Visualizing Software for Understanding and Analysis (VISSOFT ’05). IEEE, 16.
https://doi.org/10.1109/VISSOF.2005.1684303

[22] Mark de Berg, Krzysztof Onak, and Anastasios Sidiropoulos. 2013. Fat polyg-
onal partitions with applications to visualization and embeddings. Journal of
Computational Geometry 4, 1 (2013), 212–239.

https://doi.org/10.1109/IV.2002.1028871
https://doi.org/10.1057/PALGRAVE.IVS.9500023
https://doi.org/10.1057/PALGRAVE.IVS.9500023
https://doi.org/10.1109/TVCG.2013.91
https://doi.org/10.1109/VISSOF.2005.1684312
https://doi.org/10.1109/INFVIS.2005.1532128
https://doi.org/10.1109/INFVIS.2005.1532128
https://doi.org/10.2312/VisSym/VisSym04/261-266
https://doi.org/10.2312/VisSym/VisSym04/261-266
https://doi.org/10.1109/TVCG.2012.205
https://doi.org/10.1109/TVCG.2012.205
https://doi.org/10.1145/571647.571649
https://doi.org/10.1145/571647.571649
https://doi.org/10.2312/vmv.20171261
https://doi.org/10.2312/vmv.20171261
https://doi.org/10.1016/j.future.2013.04.001
https://doi.org/10.1145/633292.633484
https://doi.org/10.1145/1138912.1138922
https://doi.org/10.1016/j.comgeo.2018.01.005
https://doi.org/10.1007/978-3-7091-6783-0_4
https://doi.org/10.1007/978-3-642-22300-6_14
https://doi.org/10.1007/978-3-642-22300-6_14
https://doi.org/10.1016/j.cor.2016.09.018
https://doi.org/10.1109/IV.2007.137
https://doi.org/10.1109/VISSOF.2005.1684303


VINCI 2020, December 8–10, 2020, Eindhoven, Netherlands W. Scheibel, D. Limberger, J. Döllner

[23] Mark de Berg, Bettina Speckmann, and Vincent van der Weele. 2011. Treemaps
with Bounded Aspect Ratio. In Proc. 22nd International Symposium on Algorithms
and Computation (ISAAC ’11). Springer, 260–270. https://doi.org/10.1007/978-
3-642-25591-5_28

[24] João Batista S. de Oliveira. 2008. Two Algorithms for Automatic Document
Page Layout. In Proc. Symposium on Document Engineering (DocEng ’08). ACM,
141–149. https://doi.org/10.1145/1410140.1410170

[25] Reinhard Diestel. 2010. Graph Theory (fourth ed.). Graduate Texts in Mathemat-
ics, Vol. 173. Springer.

[26] Y. Dong, A. Fauth, M. Huang, Y. Chen, and J. Liang. 2020. PansyTree: Merging
Multiple Hierarchies. In Proc. Pacific Visualization Symposium (PacificVis ’20).
IEEE, 131–135. https://doi.org/10.1109/PacificVis48177.2020.1007

[27] Felipe S. L. G. Duarte, Fabio Sikansi, Francisco M. Fatore, Samuel G. Fadel,
and Fernando V. Paulovich. 2014. Nmap: A Novel Neighborhood Preservation
Space-filling Algorithm. TVCG 20, 12 (2014), 2063–2071. https://doi.org/10.
1109/TVCG.2014.2346276

[28] David Eppstein, Elena Mumford, Bettina Speckmann, and Kevin Verbeek. 2012.
Area-Universal and Constrained Rectangular Layouts. Journal on Computing
41, 3 (2012), 537–564. https://doi.org/10.1137/110834032

[29] Cong Feng, Minglun Gong, Oliver Deussen, and Hui Huang. 2019. Treemapping
via Balanced Partitioning. In Proc. Computational Visual Media (CVM ’19).

[30] O. Fried, S. DiVerdi, M. Halber, E. Sizikova, and A. Finkelstein. 2015. IsoMatch:
Creating Informative Grid Layouts. Computer Graphics Forum 34, 2 (2015),
155–166. https://doi.org/10.1111/cgf.12549

[31] Armin Fügenschuh, Konstanty Junosza-Szaniawski, and Zbigniew Lonc. 2014.
Exact and approximation algorithms for a soft rectangle packing problem. Opti-
mization 63, 11 (2014), 1637–1663. https://doi.org/10.1080/02331934.2012.728217

[32] Henry Gannett. 1903. Twelfth census of the United States, taken
in the year 1900. Statistical atlas. U.S. Census Office Washington.
https://www.loc.gov/item/07019233/.

[33] Mohammad Ghoniem, Maël Cornil, Bertjan Broeksema, Mickaël Stefas, and
Benoît Otjacques. 2015. Weighted maps: treemap visualization of geolocated
quantitative data. In Proc. Visualization and Data Analysis (SPIE, Vol. 9397). 1–15.
https://doi.org/10.1117/12.2079420

[34] J. Görtler, C. Schulz, Daniel Weiskopf, and Oliver Deussen. 2018. Bubble
Treemaps for Uncertainty Visualization. TVCG 24, 1 (2018), 719–728. https:
//doi.org/10.1109/TVCG.2017.2743959

[35] Sebastian Hahn and Jürgen Döllner. 2017. Hybrid-Treemap Layouting. In Proc.
EuroVis 2017 – Short Papers. EG. https://doi.org/10.2312/eurovisshort.20171137

[36] Sebastian Hahn, Jonas Trümper, Dominik Moritz, and Jürgen Döllner. 2014.
Visualization of varying hierarchies by stable layout of voronoi treemaps. In Proc.
International Conference on Information Visualization Theory and Applications
(IVAPP ’14). SciTePress, 50–58. https://doi.org/10.5220/0004686200500058

[37] M. C. Hao, Umeshwar Dayal, Daniel A. Keim, and Tobias Schreck. 2005.
Importance-driven visualization layouts for large time series data. In Proc.
Symposium on Information Visualization (InfoVis ’05). IEEE, 203–210. https:
//doi.org/10.1109/INFVIS.2005.1532148

[38] Ming C. Hao, Umeshwar Dayal, Daniel A. Keim, and Tobias Schreck. 2007.
Multi-Resolution Techniques for Visual Exploration of Large Time-Series Data.
In Proc. VGTC Symposium on Visualization (EuroVis ’07). EG, 27–34. https:
//doi.org/EG/IEEE

[39] David Harel and Gregory Yashchin. 2002. An algorithm for blob hierarchy
layout. The Visual Computer 18, 3 (2002), 164–185. https://doi.org/10.1007/
s003710100133

[40] N. Hawes, S. Marshall, and Craig Anslow. 2015. CodeSurveyor: Mapping large-
scale software to aid in code comprehension. In Proc. 3rd Working Conference
on Software Visualization (VISSOFT ’15). IEEE, 96–105. https://doi.org/10.1109/
VISSOFT.2015.7332419

[41] Ou He, Sheqin Dong, Jinian Bian, Satoshi Goto, and Chung-Kuan Cheng. 2008.
A Novel Fixed-outline Floorplanner with Zero Deadspace for Hierarchical De-
sign. In Proc. International Conference on Computer-Aided Design (ICCAD ’08).
IEEE/ACM, 16–23. https://doi.org/1509456.1509473

[42] R. Heilmann, Daniel A. Keim, C. Panse, and M. Sips. 2004. RecMap: Rectangular
Map Approximations. In Proc. Symposium on Information Visualization (InfoVis
’04). IEEE, 33–40. https://doi.org/10.1109/INFVIS.2004.57

[43] Danny Holten. 2006. Hierarchical Edge Bundles: Visualization of Adjacency
Relations in Hierarchical Data. TVCG 12, 5 (2006), 741–748. https://doi.org/10.
1109/TVCG.2006.147

[44] Mao Lin Huang and Peter Eades. 1998. A Fully Animated Interactive System
for Clustering and Navigating Huge Graphs. In Proc. Graph Drawing (GD ’98).
Springer, 374–383. https://doi.org/10.1007/3-540-37623-2_29

[45] M. Jern, J. Rogstadius, and T. Åström. 2009. Treemaps and Choropleth Maps
Applied to Regional Hierarchical Statistical Data. In Proc. 13th International
Conference on Information Visualisation (iV ’09). IEEE, 403–410. https://doi.org/
10.1109/IV.2009.97

[46] Brian Scott Johnson. 1993. Treemaps: Visualizing Hierarchical and Categorical
Data. Ph.D. Dissertation. University of Maryland. UMI Order No. GAX94-25057.

[47] Brian Scott Johnson and Ben Shneiderman. 1991. Tree-Maps: A Space-filling
Approach to the Visualization of Hierarchical Information Structures. In Proc.
2nd Conference on Visualization (Vis ’91). IEEE, 284–291. https://doi.org/10.
5555/949607.949654

[48] A. Kobayashi, K. Misue, and J. Tanaka. 2012. Edge Equalized Treemaps. In Proc.
16th International Conference on Information Visualisation (iV ’12). IEEE, 7–12.
https://doi.org/10.1109/IV.2012.12

[49] N. Kokash, B. de Bono, and J. Kok. 2014. Template-based treemaps to preserve
spatial constraints. In Proc. International Conference on Information Visualization
Theory and Applications (IVAPP ’14). SciTePress, 39–49. https://doi.org/10.5220/
0004684900390049

[50] Berthold Kröger. 1995. Guillotineable bin packing: A genetic approach. European
Journal of Operational Research 84, 3 (1995), 645–661. https://doi.org/10.1016/
0377-2217(95)00029-P

[51] Guillaume Langelier, Houari Sahraoui, and Pierre Poulin. 2005. Visualization-
based Analysis of Quality for Large-scale Software Systems. In Proc. 20th Interna-
tional Conference on Automated Software Engineering (ASE ’05). ACM, 214–223.
https://doi.org/10.1145/1101908.1101941

[52] J. Liang, Quang Vinh Nguyen, S. Simoff, and Mao Lin Huang. 2012. Angular
Treemaps – A New Technique for Visualizing and Emphasizing Hierarchical
Structures. In Proc. 16th International Conference on Information Visualisation
(IV ’12). IEEE, 74–80. https://doi.org/10.1109/IV.2012.23

[53] Jie Liang, Simeon Simoff, Quang Vinh Nguyen, and Mao Lin Huang. 2013. Visu-
alizing Large Trees with Divide & Conquer Partition. In Proc. 6th International
Symposium on Visual Information Communication and Interaction (VINCI ’13).
ACM, 79–87. https://doi.org/10.1145/2493102.2493112

[54] Daniel Limberger, Willy Scheibel, Jürgen Döllner, and Matthias Trapp. 2019.
Advanced Visual Metaphors and Techniques for Software Maps. In Proc. 11th
International Symposium on Visual Information Communication and Interaction
(VINCI ’19). ACM, 11:1–8. https://doi.org/10.1145/3356422.3356444

[55] Daniel Limberger, Willy Scheibel, Matthias Trapp, and Jürgen Döllner. 2017.
Mixed-Projection Treemaps: A Novel Approach Mixing 2D and 2.5D Treemaps.
In Proc. 21st International Conference Information Visualisation (IV ’17). IEEE,
164–169. https://doi.org/10.1109/iV.2017.67

[56] S. Liu, N. Cao, and H. Lv. 2008. Interactive Visual Analysis of the NSF Funding
Information. In Proc. Pacific Visualization Symposium (PacificVis ’08). IEEE, 183–
190. https://doi.org/10.1109/PACIFICVIS.2008.4475475

[57] Hao Lü and James Fogarty. 2008. Cascaded Treemaps: Examining the Visibility
and Stability of Structure in Treemaps. In Proc. Graphics Interface (GI ’08). Cana-
dian Information Processing Society, 259–266. https://doi.org/10.5555/1375714.
1375758

[58] Liangfu Lu, Shiliang Fan, Mao Lin Huang, Weidong Huang, and Ruolan Yang.
2017. Golden Rectangle Treemap. Journal of Physics: Conference Series 787, 1
(2017), 012007. https://doi.org/10.1088/1742-6596/787/1/012007

[59] FlorianMansmann, Daniel A. Keim, Stephen C. North, Brian Rexroad, and Daniel
Sheleheda. 2007. Visual Analysis of Network Traffic for Resource Planning,
Interactive Monitoring, and Interpretation of Security Threats. TVCG 13, 6
(2007), 1105–1112. https://doi.org/10.1109/TVCG.2007.70522

[60] Liam McNabb and Robert S. Laramee. 2017. Survey of Surveys (SoS) – Map-
ping The Landscape of Survey Papers in Information Visualization. Computer
Graphics Forum 36, 3 (2017), 589–617. https://doi.org/10.1111/cgf.13212

[61] KazuoMisue, Peter Eades,Wei Lai, and Kozo Sugiyama. 1995. Layout Adjustment
and the Mental Map. Journal of Visual Languages & Computing 6, 2 (1995), 183–
210. https://doi.org/10.1006/jvlc.1995.1010

[62] Hiroshi Nagamochi and Yuusuke Abe. 2007. An approximation algorithm for
dissecting a rectangle into rectangles with specified areas. Discrete Applied
Mathematics 155, 4 (2007), 523–537. https://doi.org/10.1016/j.dam.2006.08.005

[63] Quang Vinh Nguyen and Mao Lin Huang. 2005. EncCon: An Approach to
Constructing Interactive Visualization of Large Hierarchical Data. Information
Visualization 4, 1 (2005), 1–21. https://doi.org/10.1057/palgrave.ivs.9500087

[64] Krzysztof Onak and Anastasios Sidiropoulos. 2008. Circular Partitions with
Applications to Visualization and Embeddings. In Proc. 24th Annual Symposium
on Computational Geometry (SCG ’08). ACM, 28–37. https://doi.org/10.1145/
1377676.1377683

[65] Benoît Otjacques, Maël Cornil, Monique Noirhomme, and Fernand Feltz. 2009.
´. In Proc. Conference on Human-Computer Interaction (INTERACT ’09). Springer,
805–818. https://doi.org/10.1007/978-3-642-03658-3_84

[66] Bijan Parsia, Taowei Wang, and Jennifer Golbeck. 2005. Visualizing web ontolo-
gies with cropcircles. In Proc. 4th International Semantic Web Conference (SWC
’05).

[67] K. Pulo, P. Eades, and M. Takatsuka. 2003. Smooth structural zooming of h-
v inclusion tree layouts. In Proc. International Conference on Coordinated and
Multiple Views in Exploratory Visualization (CMV ’03). IEEE, 14–25. https:
//doi.org/10.1109/CMV.2003.1214999

[68] Jun Rekimoto and Mark Green. 1993. The information cube: Using transparency
in 3d information visualization. In Proc. 3rd Annual Workshop on Information
Technologies & Systems (WITS ’93). 125–132.

https://doi.org/10.1007/978-3-642-25591-5_28
https://doi.org/10.1007/978-3-642-25591-5_28
https://doi.org/10.1145/1410140.1410170
https://doi.org/10.1109/PacificVis48177.2020.1007
https://doi.org/10.1109/TVCG.2014.2346276
https://doi.org/10.1109/TVCG.2014.2346276
https://doi.org/10.1137/110834032
https://doi.org/10.1111/cgf.12549
https://doi.org/10.1080/02331934.2012.728217
https://doi.org/10.1117/12.2079420
https://doi.org/10.1109/TVCG.2017.2743959
https://doi.org/10.1109/TVCG.2017.2743959
https://doi.org/10.2312/eurovisshort.20171137
https://doi.org/10.5220/0004686200500058
https://doi.org/10.1109/INFVIS.2005.1532148
https://doi.org/10.1109/INFVIS.2005.1532148
https://doi.org/EG/IEEE
https://doi.org/EG/IEEE
https://doi.org/10.1007/s003710100133
https://doi.org/10.1007/s003710100133
https://doi.org/10.1109/VISSOFT.2015.7332419
https://doi.org/10.1109/VISSOFT.2015.7332419
https://doi.org/1509456.1509473
https://doi.org/10.1109/INFVIS.2004.57
https://doi.org/10.1109/TVCG.2006.147
https://doi.org/10.1109/TVCG.2006.147
https://doi.org/10.1007/3-540-37623-2_29
https://doi.org/10.1109/IV.2009.97
https://doi.org/10.1109/IV.2009.97
https://doi.org/10.5555/949607.949654
https://doi.org/10.5555/949607.949654
https://doi.org/10.1109/IV.2012.12
https://doi.org/10.5220/0004684900390049
https://doi.org/10.5220/0004684900390049
https://doi.org/10.1016/0377-2217(95)00029-P
https://doi.org/10.1016/0377-2217(95)00029-P
https://doi.org/10.1145/1101908.1101941
https://doi.org/10.1109/IV.2012.23
https://doi.org/10.1145/2493102.2493112
https://doi.org/10.1145/3356422.3356444
https://doi.org/10.1109/iV.2017.67
https://doi.org/10.1109/PACIFICVIS.2008.4475475
https://doi.org/10.5555/1375714.1375758
https://doi.org/10.5555/1375714.1375758
https://doi.org/10.1088/1742-6596/787/1/012007
https://doi.org/10.1109/TVCG.2007.70522
https://doi.org/10.1111/cgf.13212
https://doi.org/10.1006/jvlc.1995.1010
https://doi.org/10.1016/j.dam.2006.08.005
https://doi.org/10.1057/palgrave.ivs.9500087
https://doi.org/10.1145/1377676.1377683
https://doi.org/10.1145/1377676.1377683
https://doi.org/10.1007/978-3-642-03658-3_84
https://doi.org/10.1109/CMV.2003.1214999
https://doi.org/10.1109/CMV.2003.1214999


Survey of Treemap Layout Algorithms VINCI 2020, December 8–10, 2020, Eindhoven, Netherlands

[69] Richard C. Roberts and Robert S. Laramee. 2018. Visualising Business Data: A
Survey. Information 9, 11 (2018), 54. https://doi.org/10.3390/info9110285

[70] Willy Scheibel., Matthias Trapp, Daniel Limberger., and Jürgen Döllner. 2020.
A Taxonomy of Treemap Visualization Techniques. In Proc. 15th International
Joint Conference on Computer Vision, Imaging and Computer Graphics Theory
and Applications (IVAPP ’20). SciTePress, 273–280. https://doi.org/10.5220/
0009153902730280

[71] Willy Scheibel, Christopher Weyand, and Jürgen Döllner. 2018. EvoCells – A
Treemap Layout Algorithm for Evolving Tree Data. In Proc. 9th International
Conference on Information Visualization Theory and Applications (IVAPP ’18).
SciTePress, 273–280. https://doi.org/10.5220/0006617102730280

[72] Tobias Schreck, Daniel A. Keim, and Florian Mansmann. 2006. Regular TreeMap
Layouts for Visual Analysis of Hierarchical Data. In Proc. 22nd Spring Conference
on Computer Graphics (SCCG ’06). ACM, 183–190. https://doi.org/10.1145/
2602161.2602183

[73] Hans-Jörg Schulz. 2011. Treevis. net: A tree visualization reference. Computer
Graphics and Applications 6 (2011), 11–15. https://doi.org/10.1109/MCG.2011.103

[74] H. J. Schulz, Z. Akbar, and F. Maurer. 2013. A generative layout approach for
rooted tree drawings. In Proc. Pacific Visualization Symposium (PacificVis ’13).
IEEE, 225–232. https://doi.org/10.1109/PacificVis.2013.6596149

[75] Hans-Jorg Schulz, Steffen Hadlak, and Heidrun Schumann. 2011. The design
space of implicit hierarchy visualization: A survey. TVCG 17, 4 (2011), 393–411.
https://doi.org/10.1109/TVCG.2010.79

[76] Hans-Jörg Schulz, Martin Luboschik, and Heidrun Schumann. 2007. Interactive
poster: Exploration of the 3d treemap design space. In Symposium on Information
Visualization ’07. IEEE.

[77] Kang Shi, Pourang Irani, and Pak Ching Li. 2007. Facilitating Visual Queries in
the TreeMap Using Distortion Techniques. In Proc. Symposium on Human Inter-
face: Human Interface and the Management of Information. Methods, Techniques
and Tools in Information Design. Springer, 345–353. https://doi.org/10.1007/978-
3-540-73345-4_39

[78] Ben Shneiderman. 2009. Treemaps for space-constrained visualization
of hierarchies. Technical Report. Human-Computer Interaction Lab.
http://www.cs.umd.edu/hcil/treemap-history.

[79] Ben Shneiderman and Martin Wattenberg. 2001. Ordered treemap layouts. In
Proc. Symposium on Information Visualization (InfoVis ’01). IEEE, 73–78. https:
//doi.org/10.1109/INFVIS.2001.963283

[80] A. Skupin. 2002. A Cartographic Approach to Visualizing Conference Abstracts.
Computer Graphics and Applications 22, 1 (2002), 50–58. https://doi.org/10.1109/
38.974518

[81] Aidan Slingsby, Jason Dykes, and Jo Wood. 2009. Configuring Hierarchical
Layouts to Address Research Questions. TVCG 15, 6 (2009), 977–984. https:
//doi.org/10.1109/TVCG.2009.128

[82] Chakchai So-In, Raj Jain, and Abdel-Karim Al Tamimi. 2009. OCSA: An al-
gorithm for burst mapping in IEEE 802.16 e mobile WiMAX networks. In
Proc. 15th Asia-Pacific Conference on Communications (APCC ’09). IEEE, 52–
58. https://doi.org/10.1109/APCC.2009.5375688

[83] M. Sondag, W. Meulemans, C. Schulz, K. Verbeek, D. Weiskopf, and B. Speck-
mann. 2020. Uncertainty Treemaps. In Proc. Pacific Visualization Symposium
(PacificVis ’20). IEEE, 111–120. https://doi.org/10.1109/PacificVis48177.2020.7614

[84] M. Sondag, Bettina Speckmann, and K. Verbeek. 2018. Stable Treemaps via Local
Moves. TVCG 24, 1 (2018), 729–738. https://doi.org/10.1109/TVCG.2017.2745140

[85] Bettina Speckmann, Marc van Kreveld, and Sander Florisson. 2006. A Linear
Programming Approach to Rectangular Cartograms. In Proc. International Sym-
posium on Spatial Data Handling. Springer, 529–546. https://doi.org/10.1007/3-
540-35589-8_34

[86] Frank Steinbrückner and Claus Lewerentz. 2010. Representing Development
History in Software Cities. In Proc. 5th International Symposium on Software
Visualization (SoftVis ’10). ACM, 193–202. https://doi.org/10.1145/1879211.
1879239

[87] S. Tak and A. Cockburn. 2013. Enhanced Spatial Stability with Hilbert andMoore
Treemaps. TVCG 19, 1 (2013), 141–148. https://doi.org/10.1109/TVCG.2012.108

[88] Y. Tanaka, Y. Okada, and K. Niijima. 2003. Treecube: visualization tool for brows-
ing 3D multimedia data. In Proc. 7th International Conference on Information
Visualization (iV ’03). IEEE, 427–432. https://doi.org/10.1109/IV.2003.1218020

[89] Y. Tu and H. W. Shen. 2007. Visualizing Changes of Hierarchical Data using
Treemaps. TVCG 13, 6 (2007), 1286–1293. https://doi.org/10.1109/TVCG.2007.
70529

[90] David Turo and Brian Scott Johnson. 1992. Improving the Visualization of
Hierarchies with Treemaps: Design Issues and Experimentation. In Proc. 3rd
Conference on Visualization (Vis ’92). IEEE, 124–131. https://doi.org/10.1109/
VISUAL.1992.235217

[91] Frank van Ham and Jarke J. van Wijk. 2003. Beamtrees: Compact Visualization
of Large Hierarchies. Information Visualization 2, 1 (2003), 31–39. https:
//doi.org/10.1057/palgrave.ivs.9500036

[92] J. Vanderpypen and L. Schumacher. 2011. Treemap-Based Burst Mapping Al-
gorithm for Downlink Mobile WiMAX Systems. In Proc. Vehicular Technology
Conference (VTC ’11). IEEE, 1–5. https://doi.org/10.1109/VETECF.2011.6093072

[93] Eduardo Faccin Vernier, Joao Comba, and Alexandru C. Telea. 2018. A Stable
Greedy Insertion Treemap Algorithm for Software Evolution Visualization. In
Proc. Conference on Graphics, Patterns and Images (SIBGRAPI ’18). IEEE. https:
//doi.org/10.1109/SIBGRAPI.2018.00027

[94] Frédéric Vernier and Laurence Nigay. 2000. Modifiable Treemaps Containing
Variable-Shaped Units. In Proc. Information Visualization – Extended Abstracts
(InfoVis ’00). IEEE.

[95] Roel Vliegen, Jarke J. van Wijk, and E. J. van der Linden. 2006. Visualizing
Business Data with Generalized Treemaps. TVCG 12, 5 (2006), 789–796. https:
//doi.org/10.1109/TVCG.2006.200

[96] Richard Vuduc, Thomas Panas, Thomas Epperly, Andreas Saebjornsen, and
Daniel Quinlan. 2007. Communicating Software Architecture using a Unified
Single-View Visualization. In Proc. International Conference on Engineering of
Complex Computer Systems (ICECCS ’07). IEEE, 217–228. https://doi.org/10.
1109/ICECCS.2007.20

[97] Chaoli Wang, John P. Reese, Huan Zhang, Jun Tao, and Robert J. Nemiroff. 2013.
iMap: a stable layout for navigating large image collections with embedded
search. In Proc. Visualization and Data Analysis (VDA ’13). IS&T/SPIE, 8654:1–14.
https://doi.org/10.1117/12.999313

[98] WeixinWang, HuiWang, Guozhong Dai, and HonganWang. 2006. Visualization
of Large Hierarchical Data by Circle Packing. In Proc. SIGCHI Conference on
Human Factors in Computing Systems (CHI ’06). ACM, 517–520. https://doi.org/
10.1145/1124772.1124851

[99] Yan-Chao Wang, Feng Lin, and Hock-Soon Seah. 2019. Orthogonal Voronoi
Diagram and Treemap. arXiv Computing Research Repository (2019). http:
//arxiv.org/abs/1904.02348

[100] Martin Wattenberg. 1999. Visualizing the Stock Market. In Proc. CHI Extended
Abstracts on Human Factors in Computing Systems (CHI EA ’99). ACM, 188–189.
https://doi.org/10.1145/632716.632834

[101] Martin Wattenberg. 2005. A note on space-filling visualizations and space-
filling curves. In Proc. Symposium on Information Visualization (InfoVis ’05).
IEEE, 181–186. https://doi.org/10.1109/INFVIS.2005.1532145

[102] Richard Wettel and Michele Lanza. 2007. Program Comprehension Through
Software Habitability. In Proc. 15th International Conference on Program Com-
prehension (ICPC ’07). IEEE, 231–240. https://doi.org/10.1109/ICPC.2007.30

[103] Kai Wetzel. 2003. pebbles - using Circular Treemaps to visualize disk usage.
Online. http://lip.sourceforge.net/ctreemap.html.

[104] Jo Wood and Jason Dykes. 2008. Spatially Ordered Treemaps. TVCG 14, 6 (2008),
1348–1355. https://doi.org/10.1109/TVCG.2008.165

[105] Yumi Yamaguchi and Takayuki Itoh. 2003. Visualization of distributed processes
using "Data Jewelry Box" algorithm. In Proc. Computer Graphics International
(CGI ’03). IEEE, 162–169. https://doi.org/10.1109/CGI.2003.1214461

[106] Muye Yang and Robert P. Biuk-Aghai. 2015. Enhanced Hexagon-Tiling Algo-
rithm for Map-Like Information Visualisation. In Proc. 8th International Sympo-
sium on Visual Information Communication and Interaction (VINCI ’15). ACM,
137–142. https://doi.org/10.1145/2801040.2801056

[107] G. Yeap and M. Sarrafzadeh. 1995. Sliceable Floorplanning by Graph Dual-
ization. Discrete Mathematics 8, 2 (1995), 258–280. https://doi.org/10.1137/
S0895480191266700

[108] E. F. Y. Young, C. C. N. Chu, and Z. C. Shen. 2003. Twin binary sequences: a
nonredundant representation for general nonslicing floorplan. Transactions on
Computer-Aided Design of Integrated Circuits and Systems 22, 4 (2003), 457–469.
https://doi.org/10.1109/TCAD.2003.809651

[109] Haisen Zhao and L. Lu. 2015. Variational circular treemaps for interactive visu-
alization of hierarchical data. In Proc. Pacific Visualization Symposium (PacificVis
’15). IEEE, 81–85. https://doi.org/10.1109/PACIFICVIS.2015.7156360

[110] Mountaz Zizi and Michel Beaudouin-Lafon. 1994. Accessing Hyperdocuments
Through Interactive DynamicMaps. In Proc. European Conference on Hypermedia
Technology (ECHT ’94). ACM, 126–135. https://doi.org/10.1145/192757.192786

https://doi.org/10.3390/info9110285
https://doi.org/10.5220/0009153902730280
https://doi.org/10.5220/0009153902730280
https://doi.org/10.5220/0006617102730280
https://doi.org/10.1145/2602161.2602183
https://doi.org/10.1145/2602161.2602183
https://doi.org/10.1109/MCG.2011.103
https://doi.org/10.1109/PacificVis.2013.6596149
https://doi.org/10.1109/TVCG.2010.79
https://doi.org/10.1007/978-3-540-73345-4_39
https://doi.org/10.1007/978-3-540-73345-4_39
https://doi.org/10.1109/INFVIS.2001.963283
https://doi.org/10.1109/INFVIS.2001.963283
https://doi.org/10.1109/38.974518
https://doi.org/10.1109/38.974518
https://doi.org/10.1109/TVCG.2009.128
https://doi.org/10.1109/TVCG.2009.128
https://doi.org/10.1109/APCC.2009.5375688
https://doi.org/10.1109/PacificVis48177.2020.7614
https://doi.org/10.1109/TVCG.2017.2745140
https://doi.org/10.1007/3-540-35589-8_34
https://doi.org/10.1007/3-540-35589-8_34
https://doi.org/10.1145/1879211.1879239
https://doi.org/10.1145/1879211.1879239
https://doi.org/10.1109/TVCG.2012.108
https://doi.org/10.1109/IV.2003.1218020
https://doi.org/10.1109/TVCG.2007.70529
https://doi.org/10.1109/TVCG.2007.70529
https://doi.org/10.1109/VISUAL.1992.235217
https://doi.org/10.1109/VISUAL.1992.235217
https://doi.org/10.1057/palgrave.ivs.9500036
https://doi.org/10.1057/palgrave.ivs.9500036
https://doi.org/10.1109/VETECF.2011.6093072
https://doi.org/10.1109/SIBGRAPI.2018.00027
https://doi.org/10.1109/SIBGRAPI.2018.00027
https://doi.org/10.1109/TVCG.2006.200
https://doi.org/10.1109/TVCG.2006.200
https://doi.org/10.1109/ICECCS.2007.20
https://doi.org/10.1109/ICECCS.2007.20
https://doi.org/10.1117/12.999313
https://doi.org/10.1145/1124772.1124851
https://doi.org/10.1145/1124772.1124851
http://arxiv.org/abs/1904.02348
http://arxiv.org/abs/1904.02348
https://doi.org/10.1145/632716.632834
https://doi.org/10.1109/INFVIS.2005.1532145
https://doi.org/10.1109/ICPC.2007.30
lip.sourceforge.net/ctreemap.html
https://doi.org/10.1109/TVCG.2008.165
https://doi.org/10.1109/CGI.2003.1214461
https://doi.org/10.1145/2801040.2801056
https://doi.org/10.1137/S0895480191266700
https://doi.org/10.1137/S0895480191266700
https://doi.org/10.1109/TCAD.2003.809651
https://doi.org/10.1109/PACIFICVIS.2015.7156360
https://doi.org/10.1145/192757.192786

	Abstract
	1 Introduction
	2 Treemap Terms
	3 Treemap Layout Algorithms
	3.1 Definition of a Treemap Layout Algorithm
	3.2 Layout Algorithm Characteristics
	3.3 Algorithm Overview

	4 Treemap Layout Adaptations
	5 Conclusions
	Acknowledgments
	References

