
A Scalable WebGL-based Approach for Visualizing Massive 3D
Point Clouds using Semantics-Dependent Rendering Techniques

Sören Discher
Hasso Plattner Institute

University of Potsdam, Germany
soeren.discher@hpi.de

Rico Richter
Hasso Plattner Institute

University of Potsdam, Germany
rico.richter@hpi.de

Jürgen Döllner
Hasso Plattner Institute

University of Potsdam, Germany
juergen.doellner@hpi.de

ABSTRACT
3D point cloud technology facilitates the automated and highly de-
tailed digital acquisition of real-world environments such as assets,
sites, cities, and countries; the acquired 3D point clouds represent
an essential category of geodata used in a variety of geoinformation
applications and systems. In this paper, we present a web-based sys-
tem for the interactive and collaborative exploration and inspection
of arbitrary large 3D point clouds. Our approach is based on stan-
dard WebGL on the client side and is able to render 3D point clouds
with billions of points. It uses spatial data structures and level-of-
detail representations to manage the 3D point cloud data and to
deploy out-of-core and web-based rendering concepts. By provid-
ing functionality for both, thin-client and thick-client applications,
the system scales for client devices that are vastly different in com-
puting capabilities. Different 3D point-based rendering techniques
and post-processing effects are provided to enable task-specific
and data-specific filtering and highlighting, e.g., based on per-point
surface categories or temporal information. A set of interaction
techniques allows users to collaboratively work with the data, e.g.,
bymeasuring distances and areas, by annotating, or by selecting and
extracting data subsets. Additional value is provided by the system’s
ability to display additional, context-providing geodata alongside
3D point clouds and to integrate task-specific processing and anal-
ysis operations. We have evaluated the presented techniques and
the prototype system with different data sets from aerial, mobile,
and terrestrial acquisition campaigns with up to 120 billion points
to show their practicality and feasibility.

CCS CONCEPTS
• Human-centered computing → Geographic visualization; •
Computing methodologies → Computer graphics; Point-based
models;

KEYWORDS
3D Point Clouds, web-based rendering, point-based rendering

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Web3D ’18, June 20–22, 2018, Poznan, Poland
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5800-2/18/06. . . $15.00
https://doi.org/10.1145/3208806.3208816

ACM Reference Format:
Sören Discher, Rico Richter, and Jürgen Döllner. 2018. A Scalable WebGL-
based Approach for Visualizing Massive 3D Point Clouds using Semantics-
Dependent Rendering Techniques. In Web3D ’18: Web3D ’18: The 23rd Inter-
national Conference on Web3D Technology, June 20–22, 2018, Poznan, Poland.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3208806.3208816

1 MOTIVATION
3D point clouds allow for a discrete representation of real-world
objects and environments. They can be time-efficiently and cost-
efficiently generated by a large number of acquisition techniques
using active or passive sensing technology such as LiDAR, radar, or
aerial and digital cameras [Eitel et al. 2016; Ostrowski et al. 2014].
Integrated into a variety of carrier platforms such as airplanes, he-
licopters, UAVs, cars, trains, and robots, the sensing technology
can capture data at different scales, ranging from small assets over
buildings and infrastructure networks up to entire cities and coun-
tries [Kersten et al. 2016; Langner et al. 2016; Remondino et al.
2013]. The resulting data sets are essential for a growing number
of applications in domains such as land surveying, urban planning,
landscape architecture, environmental monitoring, disaster man-
agement, construction as well as spatial analysis and simulation
[Eitel et al. 2016; Nebiker et al. 2010; Pătrăucean et al. 2015].

By their very nature, 3D point clouds are unstructured and do
not contain or imply any order or connectivity between individ-
ual points. As a consequence, traditional analysis algorithms for
geodata often struggle with 3D point clouds as they commonly
rely on explicitly defined connectivity information. Visualization
algorithms often apply a uniform pixel size and render style to
each point and, therefore, are prone to visual artifacts such as holes
or visual clutter which severely limits perception, interaction, and
navigation [Richter et al. 2015]. As a remedy, GIS applications fre-
quently use 3D point clouds only as input data to derive mesh
based 3D models (e.g., 3D city models, terrain models) [Berger et al.
2014], leading to a loss of precision, density and data quality. In ad-
dition, deriving 3D meshes constitutes a time consuming and only
semi-automatic process that does not scale for massive data sets.
Moreover, improved scanning hardware and novel carrier systems,
which get cheaper and easier-to-use, result in more dense 3D point
clouds. Thus, there is a strong demand to store, manage, process
and explore massive, arbitrarily dense 3D point clouds in order to
take advantage of their full potential and to provide an unfiltered,
detailed representation of captured sites.

In this paper, we present a web-based visualization system for
massive 3D point clouds (Fig. 1) based on spatial data structures
and level-of-detail representations that provide efficient access to
arbitrary subsets of the 3D point cloud stored on a central server

https://doi.org/10.1145/3208806.3208816
https://doi.org/10.1145/3208806.3208816

Web3D ’18, June 20–22, 2018, Poznan, Poland Sören Discher, Rico Richter, and Jürgen Döllner

Figure 1: Example of a massive 3D point cloud rendered with our web-based system. Context-providing geodata such as 2D
maps and 3D terrain models can be integrated into the visualization.

component. By combining out-of-core rendering concepts withweb-
based rendering concepts massive data sets can be simultaneously
distributed to and interactively visualized on an arbitrary number of
client devices with different computation capabilities. To facilitate
a collaborative inspection and to highlight task-relevant aspects of
the data, different point-based rendering and interaction techniques
are implemented that can be combined and configured by the user.
In addition, the system can take advantage of per-point attributes
generated by additional point-cloud analysis services. We evaluate
our system with real-world data sets containing up to 120 billion
points. Results show that the system is capable to provide a powerful
component in production workflows to manage, distribute and
share 3D point clouds.

2 RELATEDWORK
3D point clouds represent a universal data category for a large
number of geospatial applications [Eitel et al. 2016; Rüther et al.
2012]; many approaches exist to enhance information implicitly
contained in 3D point clouds by deriving information about sur-
face categories for each point, typically based on local topological
analysis [Chen et al. 2017] or by deep learning concepts [Boulch
et al. 2017; Huang and You 2016]. [Richter et al. 2013] show how
to efficiently identify changes in multi-temporal data sets, which
contain data acquired at different points in time. [Awrangjeb et al.
2015] combine surface categories and change detection results to
filter detected changes based on semantics. Our approach provides
efficient means to integrate such analyses as separate web process-
ing services [Müller and Pross 2015]. Furthermore, analysis results
can be shared, explored and inspected.

A general overview of point-based rendering techniques is pro-
vided by [Gross and Pfister 2011]. Photorealistic rendering tech-
niques [Preiner et al. 2012; Schütz and Wimmer 2015a] focus on
minimizing artifacts such as visual clutter or visible holes between
neighboring points by applying appropriate size, orientation and
color schemes to each point. Non-photorealistic rendering tech-
niques [Simons et al. 2014; Zhang et al. 2014], on the other hand,
deal with the fuzziness of a 3D point cloud and highlight edges and
structures, commonly without requiring any additional attributes
apart from a point’s spatial position [Boucheny 2009; Pintus et al.
2011]. In our approach, we implement both rendering styles, which
can be switched at runtime. State-of-the-art out-of-core render-
ing concepts for massive 3D point clouds, initially introduced by
[Rusinkiewicz and Levoy 2000], typically use spatial data structures
such as quadtrees [Gao et al. 2014], octrees [Elseberg et al. 2013], or
KD-trees [Goswami et al. 2013] to subdivide the data into smaller
subsets that can be selected dynamically for rendering tasks.

Recent approaches combine out-of-core and web-based render-
ing concepts to enable an ubiquitous visualization of 3D point
clouds [Rodriguez et al. 2012;Wand et al. 2008]. With Potree, [Schütz
and Wimmer 2015b] propose a thick-client approach for arbitrary
large data sets, which is adapted by [Martinez-Rubi et al. 2015]
to interactively present a massive data set of the Netherlands. An
alternative thick-client renderer for 3D point clouds named Plasio
was introduced by [Butler et al. 2014]. Using open-source libraries
such as Entwine and Greyhound massive data sets can be streamed
interactively. While both approaches provide effective interaction
and inspection techniques for 3D point clouds, they offer only mini-
mal support to integrate additional, context-providing geodata (e.g.,
shapes, 2D maps). While thin-client approaches that delegate the
rendering to the server side have been successfully implemented in
the past [Christen and Nebiker 2015; Döllner et al. 2012; Gutbell et al.

A Scalable WebGL-based Approach for Visualizing Massive 3D Point Clouds Web3D ’18, June 20–22, 2018, Poznan, Poland

Interaction
Handler

Active
Sensing
Devices

Passive
Sensing
Devices

3D
Point Clouds

Active
Sensing
Devices

Passive
Sensing
Devices

3D
Point Clouds

Thin
Client

Thick
Client

Processing Engine

Filtering

Level-of-Detail

Generation

Change Detection

Surface Category

Identification

Filtering

Level-of-Detail

Generation

Change Detection

Surface Category

Identification

Rendering Engine

Panorama

Provision

Data Provision

Panorama

Provision

Data Provision

Level-of-Detail

Selection

Memory

Management

Level-of-Detail

Selection

Memory

Management

Rendering

Image Compositing

Rendering

Image Compositing

Panorama

Provision

Data Provision

Level-of-Detail

Selection

Memory

Management

Rendering

Image Compositing

Point Cloud Manager Geodata Manager Workspace Manager

LoD Data
Structures

Point
Attributes

3D Points
LoD Data
Structures

Point
Attributes

3D Points 2D Maps 3D Shapes2D Maps 3D Shapes Annotations Views Measurements SelectionsAnnotations Views Measurements Selections

Figure 2: System architecture showing data flow between integration, processing, visualization, and interaction components.

2016], those contributions typically focus on mesh-based geometry
instead of 3D point clouds. To generate stereoscopic panoramas
we implemented the theoretical concepts described by [Peleg et al.
2001] by means of modern 3D computer graphics.

Systems for the efficient management of massive 3D point clouds
have been recently presented and evaluated by [Cura et al. 2017],
[van Oosterom et al. 2017], and [Poux et al. 2016]. However, those
contributions focus on the efficient storage, retrieval and processing
of the stored data sets. Less emphasis is put on the collaborative
exploration, inspection and manipulation of the stored data sets.

3 REQUIREMENTS
We have identified the following requirements that need to be
addressed by a system for the web-based visualization and collabo-
rative exploration of massive 3D point clouds:

R1 Use of 3D point clouds as a fundamental geometry type
instead of generalized mesh-based representations to enable
a direct and unfiltered provision of the data.

R2 No limitations regarding used acquisition methods as well
as density, resolution, and scale of the data (e.g., hundreds
of billions of points, complete countries).

R3 Support for varying hardware platforms and computation
capabilities, ranging from high-end desktop computers to
low-end mobile devices.

R4 Distributed data storage to enable load balancing and to
adjust for data specific requirements (e.g., certain 3D point
clouds might have to be stored on a specific server).

R5 Capabilities to prepare and clean up 3D point clouds for the
visualization (e.g., noise and outlier removal).

R6 Capabilities to conduct task and data specific analyses on
3D point clouds (e.g., surface category extraction) to provide
adaptive and task specific content.

R7 Visualization of analysis results (e.g., surface categories) to
enable task specific highlighting and filtering.

R8 Capabilities to compare and show differences between 3D
point clouds from different points in time of the same site
(i.e., change detection).

R9 Integration of supplementary, context-providing geodata
such as 2D maps.

R10 Provision of interaction techniques to inspect (e.g., mea-
suring of distances, areas, volumes) and annotate 3D point
clouds.

R11 Basic user management to customize data access.
R12 Capabilities to share specific rendering configurations, an-

notations and measurements with others (e.g., via link).

4 CONCEPTS
We have addressed the aforementioned requirements in the design
and implementation of our web-based system that seamlessly com-
bines functionality to integrate, process, and collaboratively explore
massive, heterogeneous 3D point clouds as well as supplementary,
context-providing geodata. The proposed system (Fig. 2) consists
of the following major components:

4.1 Point Cloud Manager
In our approach, 3D point clouds are organized in a single, ho-
mogeneous spatial data model. Access to that model is handled
by the point cloud manager storing spatial information and addi-
tionally provided or computed per-point attributes (e.g., temporal
information or surface categories) (R1). Level-of-detail represen-
tations [Elseberg et al. 2013; Goswami et al. 2013] are required to
efficiently access arbitrary data subsets of any size based on spatial,
temporal or any other attributes. These representations as well as
additional per-point attributes can be generated by the processing
engine (Section 4.4) (R2). While the point cloud manager logically
acts as a singular component, the data itself may be stored in a
distributed infrastructure, e.g., to maximize data throughput and
network transfer rates or to account for data specific requirements
regarding server location and data security (R4).

4.2 Workspace Manager
Theworkspacemanager handles information specific to aworkspace,
i.e., each user‘s private view of a specific data subset containing
custom selections, measurements, annotations, view positions, and
angles. Per default, each user operates in its own private workspace
rather than sharing one globally with everyone else to avoid con-
flicting modifications (R11). However, a given workspace may be
shared via links (R12). Each usermay also ownmultipleworkspaces.

Web3D ’18, June 20–22, 2018, Poznan, Poland Sören Discher, Rico Richter, and Jürgen Döllner

(a) Measuring of distances between points. (b) Measuring of areas defined by multiple points.

(c) Annotation of selected points or areas. (d) Selecting areas of interest.

Figure 3: Overview of implemented interaction techniques for 3D point clouds.

4.3 Geodata Manager
By application-specific geodata, we refer to additional geodata that
should be used and rendered in combination with a 3D point cloud
to provide application-specific information layers (R9). Examples
are digital terrain models, aerial images, BIM models, or 3D city
models. Similar to 3D point clouds, these data types also require
supplemental level-of-detail representations to allow for an inter-
active visualization. Application-specific geodata can be stored and
provided by independent geospatial databases or geodata services,
access to which is handled by the geodata manager.

4.4 Processing Engine
The processing engine conducts task and data specific operations
on a given data subset. These operations range from (a) essential
preprocessing steps (e.g., converting input data sets into a homo-
geneous georeference system or generating level-of-detail repre-
sentations), over (b) simple point cloud filtering (e.g., noise and
outlier removal (R5)) to (c) more complex analyses (e.g., surface
category extraction and change detection (R6)) deriving additional
per-point attributes. The operations can be accessed via web pro-
cessing services implemented as separate web services that are
individually combined and scheduled by the processing engine.
Thus, existing web processing services for 3D point clouds can be

easily integrated into the system. The results of each operation
are automatically stored by the point cloud manager and can be
seamlessly integrated by the rendering engine (Section 4.5) into
depictions of the corresponding site (R7).

4.5 Rendering Engine
Providing the core functionality of our system, the rendering en-
gine is responsible for interactively visualizing three types of data:
(a) 3D point clouds featuring a varying number of per-point at-
tributes, (b) task-specific geodata providing context (e.g., maps
(R9)), and (c) workspace elements resulting from user interactions
(e.g., annotations or selection and measurement indicators (R10)).
For each of those data types the corresponding manager is queried,
retrieving only data subsets that are relevant for the current view
and task. To highlight certain aspects of the data (e.g., temporal
changes or surface categories in an area), different point-based
rendering techniques and post processing effects can be combined
(R8). Changes to the currently applied render configuration can be
made dynamically via the interaction handler) (Fig. 4). In general,
retrieved data subsets will be transferred to and rendered on client
side, which minimizes the workload on the server (i.e., thick clients).
As an alternative, server-side rendering can be applied to reduce
the performance impact for clients (i.e., thin clients). Thus, the

A Scalable WebGL-based Approach for Visualizing Massive 3D Point Clouds Web3D ’18, June 20–22, 2018, Poznan, Poland

(a) Colors extracted from aerial imagery. (b) Height-based gradient from black to white.

(c) Colorization based on surface categories, i.e., green for vegetation,
red for buildings, and brown for ground.

(d) Colors from aerial imagery combined with change detection re-
sults, i.e., gradient from yellow to red indicates the degree of change.

Figure 4: Different point-based rendering styles can be selected and configured at runtime.

system scales for a broad range of devices, ranging from high-end
workstations to mobile devices (R3).

4.6 Interaction Handler
The interaction handler is responsible for handling user interactions
as well as for updating the rendered data and workspace elements
accordingly (R10). Users may

• define or load workspaces,
• select which data subsets to render,
• configure the presentation of the data (with regards to ap-
plied rendering techniques),

• select, query and highlight individual points or groups of
points,

• measure distances and areas between selected points,
• annotate selected points or areas,
• modify annotations,
• saving and loading view positions and angles.

5 RENDERING ENGINE IMPLEMENTATION
To seamlessly combine 3D point clouds, context providing geodata
and interactive workspace elements into a homogeneous visualiza-
tion, a multi-pass rendering pipeline is used that consists of three
distinct stages (Fig. 5):

5.1 Level-of-Detail and Data Subset Selection
While 3D point clouds may easily contain billions of points, only
a fraction of that data is required to render a frame. Subsets of
the 3D point cloud that are manageable by available CPU and
GPU capabilities can be queried dynamically from the point cloud
manager by specifying the current view frustum as well as device
specific metrics (e.g., an assigned memory budget) and task specific
qualifiers (e.g., value ranges for selected per-point attributes) that
further filter the corresponding data sets. To enable an efficient
subset retrieval, the data is hierarchically subdivided using multiple
layers, i.e., for each data set, a separate spatial data structure is
generated that best compliments the spatial distribution of the
corresponding points (e.g., quadtrees for airborne data sets, octrees
or kd-trees for terrestrial data sets). In turn, those spatial data
structures are integrated into an overarching quadtree, allowing
to efficiently answer queries stretching across multiple data sets.
Compared to uniform, single-layer spatial data structures, e.g., as
they are used by [Schütz and Wimmer 2015b], this avoids a time
consuming rebalancing when new 3D point clouds are added while
simultaneously ensuring balanced tree structures and minimal data
access times. Context providing geodata and workspace elements
are handled in similar fashion by their corresponding manager and
are queried simultaneously when required.

Web3D ’18, June 20–22, 2018, Poznan, Poland Sören Discher, Rico Richter, and Jürgen Döllner

Rendering Technique
Repository

3D Point Clouds

GPU Memory

(VBO)

GPU Memory

(FBO)

Screen

RendererRendererRenderer
Interaction

Handler
Image

Compositer
Level-of-Detail &
Memory Manager

Server ComponentServer Component Client/Server ComponentClient/Server Component Client ComponentClient Component

Rendering

Engine

Additional
Geodata

Workspace
Elements

G-
Buffer
G-

BufferG-Buffer

G-
Buffer
G-

BufferG-Buffer

G-
Buffer
G-

BufferG-B uffer

G-
Buffer
G-

BufferG-B uffer

G-
Buffer
G-

BufferG-B uffer

G-
Buffer
G-

BufferG-B uffer

Figure 5: Overview of the rendering pipeline. Each data type
is managed and rendered separately.

5.2 Rendering
After being queried from the respective managers, 3D point clouds,
context providing geodata and interactive workspace elements
are rendered into separate g-buffers [Saito and Takahashi 1990],
i.e., specialized frame buffer objects (FBO) combining multiple 2D
textures for, e.g., color, depth, normal, or id values. The use of id
values is important to separate point clouds from context data. Each
rendered point has a unique identifier, stored in an id texture, to
allow for an efficient point selection, e.g., to implement interaction
features (Section 5.3). In addition, different rendering styles can
be configured and applied at runtime. As an example, size and
color of each point can be modified based on selected per-point
attributes (e.g., surface categories, topological metrics) to enable
task specific visual filtering and highlighting (Fig. 4). Similarly,
several options exist to dynamically adjust the appearance of mesh-
based geometry, ranging from transparency settings to changeable
texture mappings.

5.3 Image Compositing
A final image compositing stage is used to merge the separate g-
buffers, i.e., to combine several independently generated views of
3D point sub-clouds into a final image. For example, image-based
post processing effects emphasizing edges and depth differences
(e.g., Screen Space Ambient Occlusion [Mittring 2007] or Eye Dome
Lighting [Boucheny 2009]) can be applied at that stage to improve
the visual identification of structures within 3D point cloud de-
pictions (Fig. 6). The id textures stored by the g-buffers provide
efficient means to identify which point was rendered at a specific
pixel. Thus, individual points can be selected in real-time, which is
an essential requirement to support annotating points or measuring
distances and areas.

5.4 Web-based Rendering
To accommodate for client devices with varying computation capa-
bilities, different web-based rendering concepts are combined with
the presented rendering pipeline (Fig. 7). We provide a thick-client
application that uses a central server infrastructure to organize,
process, select and distribute the data, but delegates the actual
rendering of selected data subsets to the clients. This approach
significantly reduces workload on server side, allowing to serve

Figure 6: Post-processing effects such as Eye Dome Lighting
facilitate visual filtering and highlighting.

Database

Thin

Client
Rendered
Images

Rendered
Images

Database

Thick

Client

Server ComponentServer Component Client ComponentClient Component

Selection Rendering Display

Selection Rendering Display

Relevant
Data

Figure 7: Comparison of web-based rendering concepts:
Thin clients vs thick clients

massive numbers of clients simultaneously. Transferred data sub-
sets are cached on client side up to a device specific limit, thus,
minimizing the frequency of data requests for subsequent frames.
In fact, additional data subsets are only required if the view frus-
tum changes significantly, whereas inspecting the transferred data
or changing the applied rendering style triggers no such requests.
Alternatively, in the sense of a thin-client approach, the data can
be rendered directly on the server, supplying only the resulting
images. While this comes with the drawback of increased work-
load on server side as any user interactions trigger a new data
request, hardware requirements for clients are notably reduced. A
common optimization for such thin-client applications is to render
and transfer cube-maps or virtual panoramas instead of individual
images [Döllner et al. 2012; Hagedorn et al. 2017]. This provides
clients with efficient means to locally reconstruct the 3D scene for
a specific view position. Thus, the data only has to be rendered
anew whenever the view center or the rendering style are modified,
which significantly reduces the frequency of data requests for sub-
sequent frames. Our system provides a thin-client application that
expands that concept, distributing not only traditional 2D panora-
mas but also stereoscopic panoramas. Thus, emerging virtual reality
technologies allowing for an immersive exploration of 3D point
clouds even on mobile devices can be easily integrated. We generate
those stereoscopic panoramas by rendering several equally-sized
image strips along a viewing circle that are stitched together in a
post-processing step [Peleg et al. 2001]. The visual quality of the

A Scalable WebGL-based Approach for Visualizing Massive 3D Point Clouds Web3D ’18, June 20–22, 2018, Poznan, Poland

Table 1: Devices used to evaluate the rendering engine. All web browsers were updated to the latest version as of 04/20/2018.

Client Device CPU Main Memory GPU Evaluated Web Browsers
Lenovo M710t Intel Core i7-6700 32GB GeForce GTX 1050Ti Chrome, Firefox, Opera, Edge

Macbook Pro 13” Intel Core i5-4278U 16GB Intel Iris 5100 Safari, Chrome, Firefox
iPhone SE Apple A9 @ 1.84 GHz 2GB PowerVR GT7600 Safari Mobile, Chrome Mobile
Galaxy s7 Samsung Exynos 8890 4GB ARM Mali-T880 MP12 Samsung Internet Browser, Chrome Mobile

(a) Terrestrial indoor scan. (b) Mobile mapping scan.

(c) Airborne scan of a city
(zoomed out)

(d) Airborne scan of a city
(zoomed in)

Figure 8: Scenes used during the performance evaluation.

Table 2: Average data throughput of the processing engine.

Processing Operation Average Data Throughput
Noise & Outlier Filtering 1.26B pts/hour

Surface Category Extraction 0.10B pts/hour
Change Detection 1.42B pts/hour
Kd-Tree Generation 4.85B pts/hour

panoramas depends on the requested resolution as well as the num-
ber of image strips; both settings can be specified upon requesting
a new panorama. To further reduce overall network load, both ap-
plications dynamically compress and decompress the transferred
data, using common standards such as gzip (for thick clients) and
png (for thin clients), respectively. We decided against using any
lossy compression standards (e.g., jpeg compression) to maximize
visual quality.

6 PERFORMANCE EVALUATION
We have implemented the presented concepts on the basis of several
C++ and Javascript libraries. The processing engine uses CUDA 1

and the Point Cloud Library 2. Regarding the rendering engine, we
useWebGL and Cesium 3 for thick client applications. For thin client

1https://developer.nvidia.com/cuda-zone
2http://pointclouds.org
3https://cesiumjs.org

applications, server-side rendering is based on OpenGL, glbinding 4

and GLFW 5. On client-side, Three.js 6, WebGL, and WebVR Poly-
fill 7 are combined to display 2D as well as stereoscopic panoramas.
For data compression we use gzip 8 and lodePNG 9, respectively.
Evaluated 3D point clouds are represented by separate kd-trees,
that in turn are integrated into an overarching quadtree. We opted
to use kd-trees to optimize the balancedness of the tree structures,
speeding up the subset retrieval, albeit at the cost of a prolonged
preprocessing. Those spatial data structures and corresponding
data subsets are serialized into files acting as a point cloud data-
base. Similar, file-based approaches are applied to store and access
context-providing geodata and workspace elements.

All server side operations were performed on a server featuring
an AMD Ryzen 7 1700 CPU, 32 GB main memory and an NVIDIA
GeForce GTX 1070 with 8 GB device memory. The test data sets
include a terrestrial, indoor scan of an individual site (1.33 billion
points), a mobile mapping scan (2.57 billion points) and a mas-
sive, multi-temporal data set of an urban region (120 billion points)
captured by airborne devices. For all data sets essential prepro-
cessing steps (i.e., spatial data structure generation) and filtering
(i.e., noise and outlier removal) were performed by the processing
engine. In addition, surface categories (i.e., ground, building, vege-
tation) and changes in comparison to earlier scans were extracted
for the airborne data set, allowing to evaluate the system’s ability
to dynamically combine different rendering styles. The average
data throughput for the applied processing operations is listed in
Table 2.

The rendering engine was evaluated based on four different
scenes (Fig. 8) with client applications running on a number of
different devices and web browsers (Table 1). Similar to [Schütz and
Wimmer 2015b], our thick client implementation allows to render
several millions of points simultaneously at interactive frame rates
(i.e., >30 fps) on standard desktop computers and notebooks (Ta-
ble 4). On mobile devices, frame rates are significantly lower due to
the more limited computing capabilities. However, arbitrary large
data sets can be visualized on all evaluated devices by assigning
device-specific memory budgets, thus, limiting the density of the
point cloud depiction. As an alternative, our thin client implementa-
tion provides a uniform rendering quality on all client devices since
the panoramas are generated on server side, minimizing workload
on client side. On all evaluated devices we measured frame rates
close to the corresponding display’s refresh rate (e.g., 60 fps on

4https://github.com/cginternals/glbinding
5http://www.glfw.org
6https://threejs.org
7https://github.com/immersive-web/webvr-polyfill
8http://www.gzip.org
9http://lodev.org/lodepng/

https://developer.nvidia.com/cuda-zone
http://pointclouds.org
https://cesiumjs.org
https://github.com/cginternals/glbinding
http://www.glfw.org
https://threejs.org
https://github.com/immersive-web/webvr-polyfill
http://www.gzip.org
http://lodev.org/lodepng/

Web3D ’18, June 20–22, 2018, Poznan, Poland Sören Discher, Rico Richter, and Jürgen Döllner

Table 3: Average data throughput of the rendering engine based on the scenes defined in Fig. 8. For thin clients, a stereoscopic
panorama was created per request. While the same, device-dependent resolution was requested for each scene, different en-
tropies affected the compressed image size.

Scene Thick Client Thin Client
Transferred Data Transfer Time Transferred Data Panorama Generation Time Transfer Time

Terrestrial 156.2 MB 16.18s 4.68 MB 5.27s 1.36s
Mobile Mapping 140.7 MB 14.15s 4.16 MB 5.05s 1.27s

Airborne (zoomed out) 16.1 MB 3.43s 4.15 MB 4.96s 1.22s
Airborne (zoomed in) 82.4 MB 8.09s 4.54 MB 5.13s 1.32s

Table 4: Average performance rate of the thick client for different point budgets based on the airborne data set (Fig. 8d).

Number of Points Transferred Data Transferred Data Lenovo M710t Macbook Pro 13” iPhone SE Galaxy s7(uncompressed) (compressed)
2M pts 29.5 MB 26.2 MB 122.63fps 53.85fps 41.83fps 39.96fps
4M pts 57.4 MB 50.9 MB 84.48fps 45.63fps 36.44fps 35.29fps
6M pts 85.6 MB 76.1 MB 63.23fps 39.08fps 26.36fps 24.83fps
8M pts 113.6 MB 100.7 MB 56.87fps 35.83fps 19.65fps 18.43fps

Table 5: Panorama generation time for different configurations based on the terrestrial data set (Fig. 8a).

Resolution Transferred Data Panorama Generation Time
90 image strips 120 image strips 160 image strips

2360x1600 px 2.33 MB 1.88s 2.26s 2.29s
2360x3200 px 4.68 MB 4.20s 4.68s 5.27s
2360x6400 px 9.35 MB 6.17s 7.14s 7.88s

the Galaxy S7), making our approach applicable to state-of-the-art
VR devices such as GearVR or Oculus Rift. The performance of
the panorama generation is primarily influenced by the requested
resolution and to a lesser degree on the number of image strips
used (Table 5).

For all evaluated scenes, thick client applications require to trans-
fer significantly more data for an individual scene than thin clients
as long as no reusable data subsets have been cached from previous
requests, even if gzip compression is applied (Table 3). However,
they do not require all those data subsets at once, allowing to up-
date the scene progressively. Furthermore, while exploring a 3D
point cloud, the view will usually change only gradually across
subsequent frames, allowing for thick clients to reuse many of the
previously transferred data subsets, thus, resulting in smaller and
faster scene updates over prolonged explorations. Changes to the
rendering style as well interaction techniques such as picking, se-
lecting or measuring don’t trigger any additional data requests at
all and can be applied even under unstable network conditions. For
thin client applications on the other hand, no parts of the previously
transferred data can be reused if the currently used panorama be-
comes invalid: Navigating -apart from merely looking around from
a fixed position- as well as rendering style adjustments require the
server to generate and transfer a new panorama as a replacement.
Similar to thick clients however, picking, selecting or measuring

can be conducted on the already transferred data and does not
trigger any new data requests.

7 CONCLUSION AND FUTUREWORK
Web-based visualization and exploration of massive 3D point clouds
from aerial, mobile, or terrestrial data acquisitions represent a key
feature for today’s and future systems and applications dealing
with digital twins of our physical environment. In our web-based
approach, we show a system architecture that scalably visualizes
massive 3D point clouds to web-based client devices. To cope with
extremely large number of points, the implementation relies on
spatial data structures and level-of-detail representations, combined
with different out-of-core rendering and web-based rendering con-
cepts. Since the rendering process can be shifted from client side to
server side, the system can be easily adapted to varying network
conditions and to clients with different computing and graphics
capabilities. Tests on data sets with up to 120 billion points show
the usability of the system and the feasibility of the approach. Vari-
ous rendering techniques allow us to filter and highlight subsets of
the data based on any available per-point attributes (e.g., surface
categories or temporal information), which is required to build
task-specific or application-specific tools. Various interaction meth-
ods (e.g., for collaborative measurements and annotations), built-in
support to display context-providing, mesh-based geodata, and

A Scalable WebGL-based Approach for Visualizing Massive 3D Point Clouds Web3D ’18, June 20–22, 2018, Poznan, Poland

the possibility to conduct different processing and analysis oper-
ations provide additional features. Our system could be further
extended by integrating additional analyses (e.g., for asset detec-
tion, or surface segmentation) [Jochem et al. 2012; Teo and Chiu
2015] as well as by specialized interaction techniques. For example,
[Scheiblauer and Wimmer 2011] and [Wand et al. 2008] propose
spatial data structures that allow for an interactive editing of 3D
point clouds. In addition, sophisticated visualization techniques
for multi-temporal 3D point clouds are becoming more and more
important to understand captured environments.

ACKNOWLEDGMENTS
We thank Pawel Böning and Pascal Führlich for their contributions
to the thin client implementation. Data sets have been provided by
Illustrated Architecture, SHH sp. z o.o. and virtualcitySYSTEMS.

REFERENCES
Mohammad Awrangjeb, Clive S Fraser, and Guojun Lu. 2015. Building change detection

from LiDAR point cloud data based on connected component analysis. ISPRS Annals
of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2 (2015),
393–400.

Matthew Berger, Andrea Tagliasacchi, Lee Seversky, Pierre Alliez, Joshua Levine,
Andrei Sharf, and Claudio Silva. 2014. State of the art in surface reconstruction
from point clouds. In EUROGRAPHICS star reports, Vol. 1. 161–185.

Christian Boucheny. 2009. Interactive Scientific Visualization of Large Datasets: To-
wards a Perceptive-Based Approach. Ph.D. Dissertation. Université Joseph Fourier,
Grenoble.

Alexandre Boulch, Bertrand Le Saux, and Nicolas Audebert. 2017. Unstructured
point cloud semantic labeling using deep segmentation networks. In Eurographics
Workshop on 3D Object Retrieval, Vol. 2. 1.

Howard Butler, David C Finnegan, Peter J Gadomski, and Uday K Verma. 2014. plas.
io: Open Source, Browser-based WebGL Point Cloud Visualization. In AGU Fall
Meeting Abstracts.

Dong Chen, Ruisheng Wang, and Jiju Peethambaran. 2017. Topologically aware
building rooftop reconstruction from airborne laser scanning point clouds. IEEE
Transactions on Geoscience and Remote Sensing 55, 12 (2017), 7032–7052.

Martin Christen and Stephan Nebiker. 2015. Visualisation of complex 3D city models
on mobile webbrowsers using cloud-based image provisioning. ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information Sciences 2 (2015), 517–522.

Rémi Cura, Julien Perret, and Nicolas Paparoditis. 2017. A scalable and multi-purpose
point cloud server (PCS) for easier and faster point cloud data management and
processing. ISPRS Journal of Photogrammetry and Remote Sensing 127 (2017), 39–56.

Jürgen Döllner, Benjamin Hagedorn, and Jan Klimke. 2012. Server-based rendering of
large 3D scenes for mobile devices using G-buffer cube maps. In Proceedings of the
17th International Conference on 3D Web Technology. 97–100.

Jan UH Eitel, Bernhard Höfle, Lee A Vierling, Antonio Abellán, Gregory P Asner,
Jeffrey S Deems, Craig L Glennie, Philip C Joerg, Adam L LeWinter, Troy S Magney,
et al. 2016. Beyond 3-D: The new spectrum of lidar applications for earth and
ecological sciences. Remote Sensing of Environment 186 (2016), 372–392.

Jan Elseberg, Dorit Borrmann, and Andreas Nüchter. 2013. One billion points in
the cloud–an octree for efficient processing of 3D laser scans. ISPRS Journal of
Photogrammetry and Remote Sensing 76 (2013), 76–88.

Zhenzhen Gao, Luciano Nocera, Miao Wang, and Ulrich Neumann. 2014. Visualizing
aerial LiDAR cities with hierarchical hybrid point-polygon structures. In Proceedings
of Graphics Interface 2014. 137–144.

Prashant Goswami, Fatih Erol, Rahul Mukhi, Renato Pajarola, and Enrico Gobbetti.
2013. An efficient multi-resolution framework for high quality interactive rendering
of massive point clouds using multi-way kd-trees. The Visual Computer 29, 1 (2013),
69–83.

Markus Gross and Hanspeter Pfister. 2011. Point-based graphics. Morgan Kaufmann.
Ralf Gutbell, Lars Pandikow, Volker Coors, and Yasmina Kammeyer. 2016. A framework

for server side rendering using OGC’s 3D portrayal service. In Proceedings of the
21st International Conference on Web3D Technology. 137–146.

Benjamin Hagedorn, Simon Thum, Thorsten Reitz, Volker Coors, and Ralf Gutbell.
2017. OGC 3D Portrayal Service 1.0. OGC Implementation Standard 1.0. Open
Geospatial Consortium.

Jing Huang and Suya You. 2016. Point cloud labeling using 3d convolutional neural
network. In Proceedings of the 23rd International Conference on Pattern Recognition.
2670–2675.

Andreas Jochem, Bernhard Höfle, Volker Wichmann, Martin Rutzinger, and Alexander
Zipf. 2012. Area-wide roof plane segmentation in airborne LiDAR point clouds.

Computers, Environment and Urban Systems 36, 1 (2012), 54–64.
Thomas P Kersten, Heinz-Jürgen Przybilla, Maren Lindstaedt, Felix Tschirschwitz, and

Martin Misgaiski-Hass. 2016. Comparative geometrical investigations of hand-held
scanning systems. ISPRS Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences (2016).

Tobias Langner, Daniel Seifert, Bennet Fischer, Daniel Goehring, Tinosch Ganjineh,
and Raúl Rojas. 2016. Traffic awareness driver assistance based on stereovision,
eye-tracking, and head-up display. In Proceedings of ICRA 2016. 3167–3173.

Oscar Martinez-Rubi, Stefan Verhoeven, Maarten Van Meersbergen, M Schûtz, Peter
Van Oosterom, Romulo Gonçalves, and Theo Tijssen. 2015. Taming the beast:
Free and open-source massive point cloud web visualization. In Proceedings of the
Capturing Reality Forum 2015.

Martin Mittring. 2007. Finding next gen: Cryengine 2. In ACM SIGGRAPH 2007 courses.
ACM, 97–121.

Matthias Müller and Benjamin Pross. 2015. OGC WPS 2.0 interface standard. Open
Geospatial Consortium Inc. (2015).

Stephan Nebiker, Susanne Bleisch, and Martin Christen. 2010. Rich point clouds in
virtual globes–A new paradigm in city modeling? Computers, Environment and
Urban Systems 34, 6 (2010), 508–517.

Steve Ostrowski, Grzegorz Jóźków, Charles Toth, and Benjamin Vander Jagt. 2014.
Analysis of point cloud generation from UAS images. ISPRS Annals of the Pho-
togrammetry, Remote Sensing and Spatial Information Sciences 2, 1 (2014), 45–51.

Viorica Pătrăucean, Iro Armeni, Mohammad Nahangi, Jamie Yeung, Ioannis Brilakis,
and Carl Haas. 2015. State of research in automatic as-built modelling. Advanced
Engineering Informatics 29, 2 (2015), 162–171.

Shmuel Peleg, Moshe Ben-Ezra, and Yael Pritch. 2001. Omnistereo: Panoramic stereo
imaging. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 3 (2001),
279–290.

Ruggero Pintus, Enrico Gobbetti, and Marco Agus. 2011. Real-time Rendering of Mas-
sive Unstructured Raw Point Clouds Using Screen-space Operators. In Proceedings
of VAST 2011. 105–112.

Florent Poux, Pierre Hallot, Romain Neuville, and Roland Billen. 2016. Smart point
cloud: Definition and remaining challenges. ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences 4 (2016), 119–127.

Reinhold Preiner, Stefan Jeschke, and Michael Wimmer. 2012. Auto Splats: Dynamic
Point Cloud Visualization on the GPU.. In Proceedings of the EGPGV. 139–148.

Fabio Remondino, Maria Grazia Spera, Erica Nocerino, Fabio Menna, Francesco Nex,
and Sara Gonizzi-Barsanti. 2013. Dense image matching: comparisons and analyses.
In Proceedings of DigitalHeritage 2013, Vol. 1. 47–54.

Rico Richter, Sören Discher, and Jürgen Döllner. 2015. Out-of-core visualization of
classified 3d point clouds. In 3D Geoinformation Science. Springer, 227–242.

Rico Richter, Jan E Kyprianidis, and Jürgen Döllner. 2013. Out-of-Core GPU-based
Change Detection in Massive 3D Point Clouds. Transactions in GIS 17, 5 (2013),
724–741.

Marcos B Rodriguez, Enrico Gobbetti, Fabio Marton, Ruggero Pintus, Giovanni Pin-
tore, and Alex Tinti. 2012. Interactive Exploration of Gigantic Point Clouds on
Mobile Devices.. In 13th International Conference on Virtual Reality, Archaeology
and Cultural Heritage. 57–64.

Szymon Rusinkiewicz andMarc Levoy. 2000. QSplat: A multiresolution point rendering
system for large meshes. In Proceedings of the 27th annual conference on Computer
graphics and interactive techniques. 343–352.

Heinz Rüther, Christoph Held, Roshan Bhurtha, Ralph Schroeder, and Stephen Wessels.
2012. From point cloud to textured model, the zamani laser scanning pipeline in
heritage documentation. South African Journal of Geomatics 1, 1 (2012), 44–59.

Takafumi Saito and Tokiichiro Takahashi. 1990. Comprehensible rendering of 3-D
shapes. In ACM SIGGRAPH Computer Graphics, Vol. 24. ACM, 197–206.

Claus Scheiblauer and Michael Wimmer. 2011. Out-of-core selection and editing of
huge point clouds. Computers & Graphics 35, 2 (2011), 342–351.

Markus Schütz and Michael Wimmer. 2015a. High-quality point-based rendering using
fast single-pass interpolation. In Proceedings of Digital Heritage 2015. 369–372.

Markus Schütz and Michael Wimmer. 2015b. Rendering large point clouds in web
browsers. Proceedings of CESCG (2015), 83–90.

Lance Simons, Stewart He, Peter Tittman, and Nina Amenta. 2014. Point-based ren-
dering of forest LiDAR. In Workshop on Visualisation in Environmental Sciences
(EnvirVis), The Eurographics Association. 19–23.

Tee-Ann Teo and Chi-Min Chiu. 2015. Pole-like road object detection from mobile
lidar system using a coarse-to-fine approach. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing 8, 10 (2015), 4805–4818.

Peter van Oosterom, Oscar Martinez-Rubi, Theo Tijssen, and Romulo Gonçalves. 2017.
Realistic benchmarks for point cloud data management systems. In Advances in 3D
Geoinformation. Springer, 1–30.

Michael Wand, Alexander Berner, Martin Bokeloh, Philipp Jenke, Arno Fleck, Mark
Hoffmann, BenjaminMaier, Dirk Staneker, Andreas Schilling, andHans-Peter Seidel.
2008. Processing and interactive editing of huge point clouds from 3D scanners.
Computers & Graphics 32, 2 (2008), 204–220.

Long Zhang, Qian Sun, and Ying He. 2014. Splatting lines: an efficient method for
illustrating 3D surfaces and volumes. In Proceedings of the 18th meeting of the ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games. 135–142.

	Abstract
	1 Motivation
	2 Related Work
	3 Requirements
	4 Concepts
	4.1 Point Cloud Manager
	4.2 Workspace Manager
	4.3 Geodata Manager
	4.4 Processing Engine
	4.5 Rendering Engine
	4.6 Interaction Handler

	5 Rendering Engine Implementation
	5.1 Level-of-Detail and Data Subset Selection
	5.2 Rendering
	5.3 Image Compositing
	5.4 Web-based Rendering

	6 Performance Evaluation
	7 Conclusion and Future Work
	Acknowledgments
	References

