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ABSTRACT
Real-time rendering for 3D point clouds allows for interactively exploring and inspecting real-world assets, sites, or
regions on a broad range of devices but has to cope with their vastly different computing capabilities. Virtual reality
(VR) applications rely on high frame rates (i.e., around 90 fps as opposed to 30 - 60 fps) and show high sensitivity
to any kind of visual artifacts, which are typical for 3D point cloud depictions (e.g., holey surfaces or visual clutter
due to inappropriate point sizes). We present a novel rendering system that allows for an immersive, nausea-free
exploration of arbitrary large 3D point clouds on state-of-the-art VR devices such as HTC Vive and Oculus Rift.
Our approach applies several point-based and image-based rendering techniques that are combined using a multi-
pass rendering pipeline. The approach does not require to derive generalized, mesh-based representations in a pre-
processing step and preserves precision and density of the raw 3D point cloud data. The presented techniques have
been implemented and evaluated with massive real-world data sets from aerial, mobile, and terrestrial acquisition
campaigns containing up to 2.6 billion points to show the practicability and scalability of our approach.
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1 INTRODUCTION
Virtual reality (VR) devices, for example Oculus Rift1

or HTC Vive2, open up new ways to present digital 3D
models on standard consumer hardware, granting users
the perception of being physically present in a 3D vir-
tual environment [1, 2]. In general, the corresponding
3D models can be designed and modeled for a particu-
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1 https://www.oculus.com/rift/
2 https://www.vive.com

lar purpose (e.g., game environment) or can be derived
by captured data from real-world sites or assets (e.g.,
building models).

For complex sites, e.g., buildings with a highly detailed
interior, or large areas, e.g., cities and landscapes, man-
ually modeling 3D contents is neither time efficient
nor cost efficient due to the required effort [26]. As
a remedy, there is a strong demand for methods and
techniques that (1) automatically and efficiently capture
real-world sites of arbitrary size and complexity with
high precision and that (2) directly integrate the result-
ing 3D contents into VR applications without having to
sacrifice any captured details.

In recent years, automatically capturing real-world sites
by means of 3D point clouds has become increasingly
cost efficient and time efficient due to technological ad-
vances in remote and in-situ sensing technology [11].
As an example, active and passive sensing technology,



a Airborne scan of a city. b Terrestrial indoor scan.

Figure 1: Examples of massive 3D point clouds being immersively visualized using our rendering system and an
HTC Vive. Supported interaction techniques include measuring of distances as well as rotating and scaling of the
rendered data.

such as light detection and ranging (LiDAR), radar, or
aerial and digital cameras, provides precision rates of
up to a few centimeters or millimeters [17, 27]. By at-
taching those sensors to moving vehicles, such as cars
or unmanned aircraft systems (UAS), large areas can be
covered within few hours, resulting in massive data sets
containing hundreds of gigabytes of raw data [21, 31].

Large unstructured collections of 3D points, called
3D point clouds, can be directly used as interactively
explorable models by combining level-of-detail (LoD)
concepts, out-of-core strategies, and external memory
algorithms [32, 14]: State-of-the-art rendering systems
are capable of handling enormous amounts of 3D point
cloud data, e.g., billions of points for a non-immersive
inspection and visualization on a multitude of devices
with vastly different CPU and GPU capabilities [24, 7].
However, they typically focus on non-immersive
applications, carefully balancing the trade-off between
rendering quality and performance [36]. In VR
applications additional challenges are raised:

• Stereo rendering. To generate a stereoscopic im-
age, each scene has to be rendered for two displays
simultaneously.

• High rendering quality. Visual artifacts such as
visible holes between neighboring points or visual
clutter tend to be more noticeable on VR displays,
can easily break the immersion [37] and, therefore,
need to be fixed.

• High frame rates of 90 fps. Nausea, i.e., the feel-
ing of motion sickness, typically occurs when the
motion-to-photon-latency, i.e., the time required for
the depicted images to update after a physical move-
ment by the user, becomes too high. As a remedy,
the built-in displays of VR devices such as Oculus
Rift or HTC Vive operate at 90 Hz [39]. Hence,
frames have to be rendered at a considerably higher
speed compared to non-immersive applications, for

which frame rates between 30 and 60 fps are usually
sufficient.

For these reasons, applications for VR devices fre-
quently have to reduce the precision and density of the
data, either by thinning the respective point clouds [29]
or by converting them into generalized 3D meshes [3].
In this paper, we present a rendering system (Section 3)
that allows for an interactive, immersive, and nausea-
free visualization of arbitrary large 3D point clouds
on state-of-the-art VR devices (Fig. 1). To that end,
we combine selected rendering techniques for 3D point
clouds that can be roughly sorted into two categories:
Performance optimization techniques that speed up the
rendering pipeline (Section 4) and image optimization
techniques that improve the overall image quality (Sec-
tion 5). All techniques have been implemented and are
evaluated for two massive, real-world data sets. We end
with a conclusion and an overview of future work.

2 RELATED WORK
3D point clouds are widely used in a variety of geospa-
tial [9] and non-geospatial applications [38], used in di-
verse areas such as building information modeling [28],
urban planning and development [25] or the digital
preservation of cultural heritage [24]. As fundamen-
tal geospatial data representation, 3D point clouds pro-
vide highly detailed geometry information about a site
that can be further extracted and leveraged by apply-
ing point-based analysis algorithms [6, 8]. Although
this not being the focus, our approach provides efficient
means to visualize results of those analyses, e.g., by ap-
plying different per-point color schemes (Fig. 3).
Presentation and interactive visualization of 3D point
clouds have to cope with the corresponding massive
amount of data, which generally exceeds available CPU
and GPU capabilities [15]. To render massive data
sets with billions of points, out-of-core rendering con-
cepts and spatial data structures are required to decou-
ple rendering efforts from data management such as
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Figure 2: Overview of the rendering pipeline and data flow between hard disk drive (HDD), random-access mem-
ory (RAM), vertex buffer objects (VBO), and frame buffer objects (FBO). Different 3D point clouds are rendered
separately but share a single memory budget.

quadtrees [13], octrees [12], or kd-trees [14] to subdi-
vide 3D point clouds into small, representative subsets
that are suitable for real-time rendering. Out-of-core
approaches and web-based rendering concepts are fre-
quently combined. For example, a central server in-
frastructure can be used to organize and distribute the
corresponding 3D point clouds, which limits workload
and data traffic on client side [36, 7]. While those ap-
proaches allow to visualize massive data sets on client
devices with vastly different hardware and graphics ca-
pabilities, they generally provide neither visual quality
nor rendering performance as required by an immersive
visualization.
Real-time rendering is based on performance optimiza-
tion techniques: While techniques such as view frus-
tum culling and detail culling can be easily applied to
3D point clouds, occlusion, backface, and portal culling
are designed with mesh-based geometry and closed sur-
faces in mind [1]. Due to the unstructured nature of 3D
point clouds those techniques require adaptation before
being applicable to point-based rendering. Our render-
ing system implements occlusion culling based on the
reverse painter’s algorithm [19]. We decided against
adapting backface and portal culling as both techniques
require specific knowledge or preprocessed information
about a 3D point cloud (e.g., per-point normals, seman-
tic information) that might not always be available. Per-
formance optimization techniques specifically for VR
applications have been discussed by [39]. Some of
those techniques, such as the hidden mesh or the single-
pass stereo rendering, are implemented and evaluated
by our rendering system.
Visual optimization techniques for 3D point clouds
are discussed by several authors, an overview is given

Figure 3: Different color schemes can be applied at run-
time. Left: RGB colors extracted from aerial imagery.
Right: Colorization based on surface categories.

by [15]. Visual clutter and holes between neighboring
points can be addressed by applying appropriate
size, orientation, and color schemes to each point
[36, 32]. While leading to good visual results, those
techniques also raise the computational cost due to
calculating point sizes in object space – either in a
pre-processing step [4] or during rendering [30]. As
an alternative that scales better for massive data sets,
visual artifacts can be eliminated via post-processing
using image-based rendering techniques, e.g., to
fill holes ([10], [33]), to blur visual clutter [22], or
to emphasize depth cues [5, 23]. In the context of
VR applications Schütz [37] introduces the usage of
point cloud mipmaps as well as multisampling for a
reduction of z-fighting and softer edges, which we also
evaluate in this paper.

3 SYSTEM OVERVIEW
Our implementation of the rendering system is based
on a multi-pass rendering pipeline (Fig. 2) that can



Figure 4: Culling techniques used to reduce the amount
of points to be rendered: View frustum culling (yellow),
occlusion culling (orange), detail culling (red).

be divided into three distinct stages: Data subset se-
lection, point cloud rendering, and image-based post-
processing.

3.1 Level-of-Detail and Data Subset Se-
lection

Instead of rendering every point of a given data set,
we determine a representative subset of points that can
be managed by available CPU and GPU capabilities.
Those subsets are determined on a per-frame basis us-
ing two major criteria (Fig. 4): First, points outside the
current view frustum are excluded as they would not
be visible anyway (i.e., view frustum culling). Second,
points are aggregated based on their spatial position to
accommodate for the perspective distortion resulting in
areas farther away from the current view position to ap-
pear smaller on screen (i.e., detail culling). To pro-
vide an efficient access to representative data subsets,
the 3D point cloud is hierarchically subdivided using
a kd-tree, i.e., a binary tree whose splitting planes can
be freely positioned alongside the respective coordinate
axes. This allows for minimal tree traversal times dur-
ing rendering as the resulting tree structures are guar-
anteed to be balanced independently of the data’s spa-
tial distribution. For each 3D point cloud a separate
kd-tree is generated in a preprocessing step. A flexi-
ble memory budget is defined to limit the amount of
points that can be rendered per frame. While each 3D
point cloud is rendered separately, the memory budget
is shared among them. As the performance may vary
based on scene complexity and applied rendering tech-
niques, the memory budget is adjusted dynamically to
guarantee 90 fps at any time.

3.2 Point Cloud Rendering
Selected data subsets are rendered into so-called
g-buffers [34], i.e., specialized frame buffer objects
(FBO) that combine multiple 2D textures for, e.g.,
color, depth, or normal values. This provides efficient
means to apply varying post-processing effects that

Figure 5: A separately rendered mesh serves as a mask
to discard fragments beyond the visible area of an VR
device’s screens early on.

improve the visual quality of the final image being
displayed on the VR device. Furthermore, different
rendering techniques for 3D point clouds can be con-
figured, selected, and combined at runtime, allowing to
dynamically adjust a 3D point cloud’s appearance (e.g.,
size and color scheme applied to each point) (Fig. 3) as
well as the overall rendering performance (Section 4).

3.3 Image-Based Post-Processing
The rendering pipeline’s final stage operates recursively
on the previously generated g-buffers, allowing to con-
figure and combine several image-based rendering tech-
niques. As an example, rendering techniques for hole-
filling, blurring, anti-aliasing as well as edge detect-
ing and highlighting can be efficiently combined to im-
prove the visual quality of the rendering (Section 5).

3.4 Interaction Handling
An interaction handler is responsible for managing user
interactions and for updating the visualization accord-
ingly. Users may (1) change view position and an-
gle, (2) configure and select applied rendering tech-
niques and color schemes, (3) measure distances be-
tween points, or (4) scale and rotate rendered 3D point
clouds.

4 PERFORMANCE OPTIMIZATION
TECHNIQUES

To further improve the performance of our rendering
system on state-of-the-art VR devices, we have imple-
mented and evaluated three rendering techniques: Hid-
den mesh rendering, reverse painter’s algorithm, and
single-pass stereo rendering.

4.1 Hidden Mesh Rendering
Due to the radially symmetric distortion produced by
the lenses of an VR device, the actually visible area of
the built-in screens is restricted to a circular area (Fig.
5). To prevent unnecessary fragment shader operations,
fragments outside that area are discarded early, using a



separately rendered mesh representing the hidden parts
of the screen as a mask that is evaluated using early
fragment testing [39].

4.2 Reverse Painter’s Algorithm
As a GPU-based occlusion culling technique (Fig. 4),
the reverse painter’s algorithm [19] describes efficient
means to prevent occluded fragments from being un-
necessarily processed by the fragment shader. Based
on early fragment testing, scene objects should be ren-
dered in order of their distance to the view position for
the technique to have a measurable effect. Calculating
such an order on a per-point basis would be inefficient.
As each point belongs to a specific node of the kd-tree
however, we can instead perform that calculation on a
per-node basis, considering only those nodes that have
been selected for rendering.

4.3 Single-Pass Stereo Rendering
VR devices require to render all view dependent items
from two different views representing the left and right
eye, respectively. Single-pass stereo rendering aims
to reduce the CPU overhead by rendering both views
in a single render pass [20]. To that end, the frame
buffer size is doubled, assigning each half to one eye.
Instanced rendering is used to avoid duplicated draw
calls. It duplicates each point and applies the corre-
sponding view transform at the vertex shader stage. To
minimize the probability of points spilling over into the
opposite half of the frame buffer, we apply a heuris-
tic that shrinks points close to the border. Preventing
such artifacts completely would require to discard af-
fected fragments explicitly, which would be incompat-
ible to early fragment testing as required by the tech-
niques presented above.

5 IMAGE OPTIMIZATION TECH-
NIQUES

The immersiveness of a virtual scene is negatively af-
fected by any kind of visual artifacts or inconsistencies
one would not expect in the real-world, such as aliasing,
z-fighting, and insufficient or missing depth cues [1].
In 3D point cloud depictions, the most noticeable arti-
facts arise when points representing a continuous sur-
face are sized inappropriately, resulting in either a ho-
ley appearance of those surfaces or visual clutter due
to overlapping points (Fig. 8a+b). We aim to mini-
mize such artifacts by applying the following render-
ing techniques: Adaptive point sizes, paraboloid ren-
dering, image-based post-processing (i.e., edge high-
lighting, blurring, filling), and multisampling.

5.1 Adaptive Point Sizes
The different nodes of LoD data structures exhibit no-
ticeable differences regarding the point density. Thus,
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Figure 6: Fragment f1 is detected as a hole based on
depth differences to its neighbors and gets assigned the
minimum depth value within its neighborhood; f2 and
f3 remain unchanged as they fail the distance threshold
and the minimum number of neighbors, respectively.

Figure 7: Contrasting color values can be harmonized
using blurring to smooth aliasing and z-fighting.

assigning all points a uniform size results in either
holes between neighboring points or overlaps and vi-
sual clutter. Schütz addresses that issue by adjusting
each point’s size based on the maximum LoD within
its local neighborhood [36]. While we also adjust point
sizes adaptively, our technique operates on a per-node
instead of a per-point basis, thus, avoiding the need for
a separate render pass to calculate each point’s LoD. In
that regard, our technique is similar to the one proposed
by Scheiblauer [35]. However, we use inherently bal-
anced kd-trees in favor of octrees. For each node, we
determine its deepest descendant that has been selected
for rendering. The adaptive point size for that descen-
dant is then applied to all of its ancestors. Furthermore,
we calculate point sizes based on a node’s bounding
box rather than its LoD since nodes of the same LoD
might still feature drastically different point densities.
While our technique drastically and effectively reduces
holes and overlaps, it does not exclude those artifacts
entirely. For example, if nodes selected for rendering
form a heavily unbalanced tree, some points might be
rendered too small (Fig. 8c). We fill the resulting holes
via post-processing.
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Figure 8: Incorrectly sized points may lead to a holey appearance (a – point size of 1px) or visual clutter (b – point
size of 5px). An adaptive point size strikes a balance between both artifact types, but does not eliminate them
completely (c). This can be minimized by applying paraboloid rendering (d – diameter of 5px) or filling (e – 5x5
filter kernel and point size of 1px).

5.2 Paraboloid Rendering

Paraboloid rendering is a technique introduced by
Schütz [36] that aims to further reduce visual clutter
by rendering points not as flat, screen-aligned disks
but as paraboloids oriented towards the view position.
By adding a depth offset to fragments based on their
distance to the corresponding point’s center, undesired
occlusions are drastically reduced (Fig. 8d). As this
technique requires us to modify depth values at the
fragment shader stage however, it is incompatible

with early fragment testing and thus for most of the
techniques discussed in Section 4.

5.3 Post-Processing
We use several post-processing techniques to further
improve the visual quality: Screen space ambient oc-
clusion (SSAO) [23] and eye-dome lighting (EDL) [5]
add depth cues and highlight silhouettes, blurring [22]
smoothes aliasing and z-fighting (Fig. 7). Furthermore,
we fill remaining holes between points representing the
same surface (Fig. 8e). To that end, we adapt the tech-



a Pedestrian view of a mobile mapping scan. b Birds-eye view of a mobile mapping scan. c Close-up view of a terrestrial indoor scan.

Figure 9: Scenes used during the performance evaluation.

nique presented by Dobrev et al. [10], applying two
one-dimensional filter kernels instead of a single two-
dimensional one for a performance speed up. The fil-
ter kernel checks a pixel’s neighborhood for significant
depth differences and overwrites corresponding pixels
with interpolated values from those neighbors being
closest to the view position (Fig. 6).

5.4 Multisampling
A technique to further smooth aliasing and reduce
z-fighting would be multisampling, which provides
a smoother color transition between neighboring
fragments by sampling them several times. While
this technique also reduces the visibility of outliers,
we ultimately opted against it as it would require us
to render fragments several times, thus, drastically
affecting the performance, especially when combined
with post-processing effects.

6 PERFORMANCE EVALUATION
We have implemented the presented rendering system
using C++, OpenGL, GLSL, and OpenVR3. The test
system featured an Intel Core i7-5820K CPU, 16 GB
main memory (DDR4, 1200 MHz), a GeForce GTX
980 with 4096 MByte device memory(GDDR5, driver
version 390.77) as well as an HTC Vive as the output
device. Measurements on an Oculus Rift lead to com-
parable, slightly better results due to the tighter view
frustum. The test data sets comprised a mobile map-
ping scan of an urban area (2.6 billion points) and a
terrestrial indoor scan of an individual site (1.5 billion
points). The performance evaluation was conducted for
three different scenes (Fig. 9): A close up and a zoomed
out view of the urban area (Scene 1 and 2) as well as a
close up view of the individual site (Scene 3). We dis-
abled the dynamic memory budget, which guarantees

3 https://github.com/ValveSoftware/openvr

the constant framerate of at least 90 fps, for the evalua-
tion to ensure the comparability of the measured values.

Both hidden mesh and reverse painter’s algorithm
improve the rendering performance. However, their
effectiveness varies, depending on the number of
affected fragments (Table 1). Single-pass stereo
rendering proved to be less effective as the primary
rendering bottleneck is the GPU, not the CPU. On
the contrary, the technique even slows the rendering
pipeline as view frustum culling needs to be combined
for both eyes, thus notably increasing the amount of
unnecessarily rendered points per side. Regarding
image optimization techniques, paraboloid rendering
and multisampling -as expected- significantly reduces
the rendering performance (Table 2) and thus should
only be used, if the z-fighting becomes too prominent
and significantly affects the immersion. On the other
hand, post-processing effects and adaptive point sizes
only have a moderate performance impact. While
combining all post-processing techniques would
amount to a significant performance drop, doing so will
hardly be necessary. As an example, EDL and SSAO
aim for similar effects, whereas blurring will only be
noticeable in specific scenes, e.g., if color values of
neighboring points are inconsistent due to an erroneous
capturing process.

7 CONCLUSIONS AND FUTURE
WORK

We have presented a point-based and image-based
multi-pass rendering technique that allows for vi-
sualizing massive 3D point clouds on VR devices
in non immersion-breaking quality (i.e., reducing
visual artifacts) and at nausea-avoiding frame rates
(i.e., around 90 fps). The multi-pass approach offers
many degrees of freedom for graphics and application
design because the applied rendering techniques can
be selected and configured at runtime. We envision



Scene 1 Scene 2 Scene 3
#Rendered points 19.8M 6.9M 11.6M

Default 15.93ms 9.23ms 12.15ms
Hidden Mesh 15.59ms 9.19ms 11.87ms

Reverse Painter’s 12.95ms 9.27ms 11.11ms

Single-Pass Stereo 17.48ms 9.82ms 13.54ms

Table 1: Average rendering performance of perfor-
mance optimization techniques in ms/frame. All test
runs include view frustum and detail culling. Dynamic
memory budget was disabled to ensure comparability
of measured values.

Scene 1 Scene 2 Scene 3
#Rendered points 19.8M 6.9M 11.6M

Default 12.82ms 9.21ms 10.77ms
Adaptive Pt. Size 13.88ms 9.48ms 12.46ms

SSAO + 2.67 ms
EDL + 0.32 ms

Filling + 1.07 ms
Blurring + 2.17 ms

Multisampling 17.91ms 10.14ms 16.94ms
Paraboloids Def. 12.72ms 10.77ms 10.26ms

Paraboloids 15.17ms 18.45ms 15.62ms

Table 2: Average rendering performance of image opti-
mization techniques in ms/frame. For paraboloids, hid-
den mesh rendering and the reverse painter’s algorithm
were deactivated and an oversized point size (5 px) was
used. Dynamic memory budget was disabled to ensure
comparability of measured values.

the presented approach to be highly beneficial for
applications in the fields of digital documentation,
preservation, and presentation of natural and cultural
heritage as it allows users to remotely explore and
inspect digital twins of endangered or hardly accessible
sites in a much more immersive way than existing
solutions [24]. In building information modeling or
urban planning and development, it facilitates planning
processes by providing efficient means to integrate ad-
ditional, mesh-based geometry such as 3D floor plans
or building models into the generated stereoscopic 3D
point cloud depictions. Tests on data sets with up to
2.6 billion points show the feasibility and scalability of
our rendering system.

Future work could focus on performance improvements
by distributing the stereo rendering across two separate
GPUs as proposed by [40]. To support hardware that
is not specifically designed for VR, we plan to integrate
web-based rendering concepts for thin clients [18, 16].
Using a centralized server to generate and distribute
stereoscopic images would support VR applications on
mobile devices with limited CPU and GPU capabilities.
In addition, many applications require more sophisti-

cated interaction techniques such as placing annotations
or directly manipulating data subsets. We plan to inves-
tigate how such interaction techniques can be integrated
into the presented rendering system.
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