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Abstract
A common way to accelerate shortest path algorithms on graphs is the use of a bidirectional
search, which simultaneously explores the graph from the start and the destination. It has been
observed recently that this strategy performs particularly well on scale-free real-world networks.
Such networks typically have a heterogeneous degree distribution (e.g., a power-law distribution)
and high clustering (i.e., vertices with a common neighbor are likely to be connected themselves).
These two properties can be obtained by assuming an underlying hyperbolic geometry.

To explain the observed behavior of the bidirectional search, we analyze its running time on
hyperbolic random graphs and prove that it is Õ(n2−1/α + n1/(2α) + δmax) with high probabil-
ity, where α ∈ (0.5, 1) controls the power-law exponent of the degree distribution, and δmax is
the maximum degree. This bound is sublinear, improving the obvious worst-case linear bound.
Although our analysis depends on the underlying geometry, the algorithm itself is oblivious to it.
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1 Introduction

Finding shortest paths between nodes in a network is among the most basic graph problems.
Besides being of independent interest, many algorithms use shortest path queries as a
subroutine. On unweighted graphs, such queries can be answered in linear time using a
breadth-first search (BFS). Though this is optimal in the worst case, it is not efficient enough
when dealing with large networks or problems involving many shortest path queries.

A way to heuristically improve the run time, is to use a bidirectional BFS [16]. It runs two
searches, simultaneously exploring the graph from the start and the destination. The shortest
path is then found once the two search spaces touch. Though this heuristic does not improve
the worst-case running time, recent experiments by Borassi and Natale [6] suggest that it
achieves a significant speedup on scale-free real-world networks. They also try to explain the
observed run times by proving that the bidirectional BFS runs in sublinear expected time
on different random graph models. Though this is a great result, we do not think that it
provides a satisfying explanation for the good practical performance for two reasons.

First, the bidirectional search performs particularly well on networks with a heterogeneous
degree distribution (i.e., few vertices with high degree, many vertices with low degree). A
common assumption is that the degree distribution follows a power-law, i.e., the number of
vertices of degree k is proportional to k−β . The constant β is called the power-law exponent
and is typically between 2 and 3. The above mentioned proof predicts a shorter execution
time for homogeneous graphs (e.g., for Erdős-Rényi graphs) than for heterogeneous graphs
(e.g., for Chung-Lu graphs), which contradicts the observed behavior.

Second, the proof relies on the independence of edges. In fact, this is the only assumption,
which makes the same proof hold for multiple different models. However, this assumption is
unrealistic for most real-world networks. The dependence between edges is typically measured
with the clustering coefficient. The local clustering coefficient of a vertex v is the probability
that two randomly chosen neighbors of v are adjacent. The clustering coefficient of the graph
is the average of all local coefficients. The assumption of independent edges thus implies
a clustering coefficient close to 0. In contrast, the three best performing instances in [6,
Figure 2] have comparatively high clustering coefficients 0.47, 0.49, and 0.57 [14].

In this paper, we analyze the bidirectional BFS on hyperbolic random graphs, which are
generated by randomly placing vertices in the hyperbolic plane and connecting each pair
that is geometrically close. This model was introduced by Krioukov et al. [13] with the aim
to generate graphs that closely resemble real-world networks. Hyperbolic random graphs in
particular have a power-law degree distribution and high clustering [12, 13]. Moreover, as
these properties emerge naturally from the hyperbolic geometry, the model is conceptually
simple, which makes it accessible to mathematical analysis. It has thus gained popularity in
different research areas and has been studied from different perspectives.

From the network-science perspective, the goal is to gather knowledge about real-world
networks. This is for example achieved by assuming that a real-world network has a hidden
underlying hyperbolic geometry, which can be revealed by embedding it into the hyperbolic
plane [1, 5]. From the mathematical perspective, the focus lies on studying structural
properties. Beyond degree distribution and clustering [12], the diameter [11], the component
structure [4], the clique size [3], and separation properties [2] have been studied successfully.

Finally, there is the algorithmic perspective, which is the focus of this paper. Usually
algorithms are analyzed by proving worst-case running times. Though this is the strongest
possible performance guarantee, it is rather pessimistic as practical instances rarely resemble
worst-case instances. Techniques leading to a more realistic analysis include parameterized
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or average case complexity. The latter is based on the assumption that instances are drawn
from a certain probability distribution. Thus, its explanatory power depends on how realistic
the distribution is. For hyperbolic random graphs, the maximum clique can be computed
in polynomial time [3], and there are several algorithmic results based on the fact that
hyperbolic random graphs have sublinear tree width [2]. Moreover, there is a compression
algorithm that can store a hyperbolic random graph using on O(n) bits in expectation [8, 15].
Finally, a close approximation of the shortest path between two nodes can be found using
greedy routing, which visits only O(log logn) nodes for most start-destination pairs [9].
The downside of all these algorithms is that they need to know the underlying geometry,
i.e., the coordinates of each vertex. Unfortunately, this is a rather unrealistic assumption
for real-world networks. To the best of our knowledge, we present the first analysis of an
algorithm on hyperbolic random graphs that is oblivious to the underlying geometry.

Contribution and Outline. After an introduction to hyperbolic random graphs in Section 2,
we analyze the bidirectional BFS in Section 3. We first prove in Section 3.1 that a certain
greedy strategy for deciding when to alternate between the forward and the backward search
is not much worse than any other alternation strategy. We note that this result is interesting
in its own right and does not depend on the input. In Section 3.2 we analyze the bidirectional
BFS on hyperbolic random graphs. We show that, for any pair of vertices, it computes a
shortest path in Õ(n2−1/α + n1/(2α) + δmax) time with high probability1, where α ∈ (0.5, 1)
controls the power-law exponent and δmax is the maximum degree of the graph (which is
Õ(n1/(2α)) almost surely [12]). We note that drawing the hyperbolic random graph is the only
random choice here; once this is done our analysis always assumes the worst case. Thus, the
bound in particular holds for every start-destination pair. Section 4 contains concentration
bounds that were left out in Section 3 to improve readability. In Section 5, we conclude by
comparing our theoretical results to empirical data.

2 Preliminaries

Let G = (V,E) be an undirected, unweighted, and connected graph. We denote the number
of vertices and edges with n and m, respectively. With N(v) = {w ∈ V | {v, w} ∈ E}, we
denote the neighborhood of a vertex v ∈ V . The degree of v is deg(v) = |N(v)|. We denote
the maximum degree with δmax. The soft O-notation Õ suppresses poly-logarithmic factors.

The Hyperbolic Plane. The major difference between hyperbolic and Euclidean geometry is
the exponential expansion of the hyperbolic plane. A circle of radius r has area 2π(cosh(r)−1)
and circumference 2π sinh(r), with cosh(x) = (ex + e−x)/2 and sinh(x) = (ex− e−x)/2, both
growing as ex/2 ± o(1). To identify points, we use radial coordinates with respect to a
designated origin O and a ray starting at O. A point p is uniquely determined by its
radius r, which is the distance to O, and the angle (or angular coordinate) ϕ between the
reference ray and the line through p and O. In illustrations, we use the native representation,
obtained by interpreting the hyperbolic coordinates as polar coordinates in the Euclidean
plane, see Figure 1 (left). Due to the exponential expansion, line segments bend towards the
origin O. Let p1 = (r1, ϕ1) and p2 = (r2, ϕ2) be two points. The angular distance between
p1 and p2 is the angle between the rays from the origin through p1 and p2. Formally, it is

1 With high probability and almost surely refer to probabilities 1−O(1/n) and 1− o(1), respectively.

ICALP 2018
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Figure 1 Left: A circle and several line segments in the native representation of the hyperbolic
plane. A disk of radius x is centered at p2. Right: Geometric shapes and their intersections.

∆(ϕ1, ϕ2) = π − |π − |ϕ1 − ϕ2||. The hyperbolic distance dist(p1, p2) is given by

cosh(dist(p1, p2)) = cosh(r1) cosh(r2)− sinh(r1) sinh(r2) cos(∆(ϕ1, ϕ2)).

Note how the angular coordinates make simple definitions cumbersome as angles are considered
modulo 2π, leading to a case distinction depending on where the reference ray lies. Whenever
possible, we implicitly assume that the reference ray was chosen such that we do not have
to compute modulo 2π. Thus, the above angular distance between p1 and p2 simplifies to
|ϕ1 − ϕ2|. A third point p = (r, ϕ) lies between p1 and p2 if ϕ1 ≤ ϕ ≤ ϕ2 or ϕ2 ≤ ϕ ≤ ϕ1.

Throughout the paper, we regularly use different geometric shapes, which are mostly
based on disks centered at the origin O, as can be seen in Figure 1 (right). With Dr2

r1
we

denote the set of points that have radius between r1 and r2. Note that Dr
0 is the disk of

radius r centered at O. The restriction of a disk Dr
0 to all points with angular coordinates in

a certain interval is called sector, which we usually denote with the letter S. Its angular width
is the length of this interval. For an arbitrary set of points A, Ar2

r1
denotes the restriction of

A to points with radii in [r1, r2], i.e., Ar2
r1

= A ∩Dr2
r1
.

Hyperbolic Random Graphs. A hyperbolic random graph is generated by drawing n points
uniformly at random in a disk of the hyperbolic plane and connecting pairs of points whose
distance is below a threshold. More precisely, the model depends on two parameters C
and α. The generated graphs have a power-law degree distribution with power-law exponent
β = 2α+ 1 and with an average degree depending on C. The n points are sampled within
the disk DR

0 of radius R = 2 logn + C. For each vertex, the angular coordinate is drawn
uniformly from [0, 2π]. The radius r is sampled according to the probability density function

f(r) = 1
2π

α sinh(αr)
cosh(αR)− 1 = Θ(eα(r−R)), (1)

for r ∈ [0, R]. For r > R, f(r) = 0. Two vertices are connected by an edge if and only if their
hyperbolic distance is less than R. The above probability distribution is a natural choice as
the probability for a vertex ending up in a certain region is proportional to its area (at least
for α = 1). Note that the exponential growth in r reflects the fact that the area of a disk
grows exponentially with the radius. It follows that a hyperbolic random graph typically
has few vertices with high degree close to the center of the disk and many vertices with low
degree near its boundary. The following lemma is common knowledge; see the full version of
the paper for a proof.
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I Lemma 1. Let G be a hyperbolic random graph. Furthermore, let v1, v2 be two nodes with
radii r1 ≤ r2 ≤ R, respectively, and with the same angular coordinate. Then N(v2) ⊆ N(v1).

Given two vertices with fixed radii r1 and r2, their hyperbolic distance grows with increas-
ing angular distance. The maximum angular distance such that they are still adjacent [12,
Lemma 3.1] is

θ(r1, r2) = arccos
(

cosh(r1) cosh(r2)− cosh(R)
sinh(r1) sinh(r2)

)
= 2e

R−r1−r2
2 (1 + Θ(eR−r1−r2)). (2)

The probability that a sampled node falls into a given subset A ⊆ DR
0 of the disk is given

by its probability measure µ(A) =
∫
A
f(r) dr, which can be thought of as the area of A.

There are two types of regions we encounter regularly: disks Dr
0 with radius r centered at

the origin and disks DR
0 (r, ϕ) of radius R centered at a point (r, ϕ). Note that the measure

of DR
0 (r, ϕ) gives the probability that a random vertex lies in the neighborhood of a vertex

with position (r, ϕ). Gugelmann et al. [12, Lemma 3.2] showed that

µ(Dr
0) = eα(r−R)(1 + o(1)), and (3)

µ(DR
0 (r, ϕ)) = Θ(e−r/2). (4)

For a given region A ⊆ DR
0 of the disk, let X1, . . . , Xn be random variables with Xi = 1

if i ∈ A and Xi = 0 otherwise. Then X =
∑n
i=1 Xi is the number of vertices lying in A.

By the linearity of expectation, we obtain that the expected number of vertices in A is
E[X] =

∑n
i=1 E[Xi] = nµ(A). To bound the number of vertices in A with high probability,

we regularly use the following Chernoff bound.

I Theorem 2 (Chernoff Bound [10, A.1]). Let X1, . . . , Xn be n independent random variables
with Xi ∈ {0, 1} and let X be their sum. For any δ > 0,

Pr[X > (1 + δ)E[X]] < exp
(
−δ

2

3 E[X]
)
.

I Corollary 3. Let X1, . . . , Xn be n independent random variables with Xi ∈ {0, 1} and let
X be their sum. Let f(n) = Ω(logn). If f(n) is an upper bound for E[X], then for any
constant c there is a constant c′ such that X ≤ c′f(n) holds with probability 1−O(n−c).

3 Bidirectional BFS

In this section, we analyze the running time of the bidirectional BFS on hyperbolic random
graphs. Our results are summarized in the following main theorem.

I Theorem 4. Let G be a hyperbolic random graph. With high probability the shortest path
between any two vertices in G can be computed in Õ(n2−1/α + n1/(2α) + δmax) time.

To prove this, we make use of the hyperbolic geometry in the following way; see Figure 2.
As long as the two searches visit only low-degree vertices, all explored vertices lie within a
small region, i.e., the searches operate locally. Once the searches visit high-degree vertices
closer to the center of the hyperbolic disk (gray area in Figure 2), it takes only few steps to
complete the search, as hyperbolic random graphs have a densely connected core. Thus, we
split our analysis in two phases: a first phase in which both searches advance towards the
center and a second phase in which both searches meet in the center. Note that this strategy

ICALP 2018
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s

t

DR
0

Dρ
0

Figure 2 Visualization of the two phases of each BFS in a hyperbolic random graph. Nodes that
are visited during the first phase are bold. The bold black edges denote the first encounter of a node
in the inner disk Dρ

0 (gray region). This corresponds to the first step in the second phase. The last
step then leads to a common neighbor via the dashed edges.

assumes that we know the coordinates of the vertices as we would like to stop a search once
it reached the center. To resolve this issue, we first show in Section 3.1 that there exists an
alternation strategy that is oblivious to the geometry but performs not much worse than any
other alternation strategy. We note that this result is independent of hyperbolic random
graphs and thus interesting in its own right. Afterwards, in Section 3.2, we actually analyze
the bidirectional search in hyperbolic random graphs.

3.1 Bidirectional Search and Alternation Strategies
In an unweighted and undirected graph G = (V,E), a BFS finds the shortest path between
two vertices s, t ∈ V by starting at s and exploring the graph level after level, where the ith
level Lsi contains the vertices with distance i to s. More formally, the BFS starts with the
set Ls0 = {s} on level 0. Assuming the first i levels Ls1, . . . , Lsi have been computed already,
one obtains the next level Lsi+1 as the set of neighbors of vertices in level Lsi that are not
contained in earlier layers. Computing Lsi+1 from Lsi is called an exploration step, which is
obtained by exploring the edges between vertices in Lsi and Lsi+1.

The bidirectional BFS runs two BFSs simultaneously. The forward search starts at s and
the backward search starts at t. The shortest path between the two vertices can then be
obtained, once the search spaces of the forward and backward search touch. Since the two
searches cannot actually be run simultaneously, they alternate depending on their progress.
When exactly the two searches alternate is determined by the alternation strategy. Note that
we only swap after full exploration steps, i.e., we never explore only half of level i of one
search before continuing with the other. This has the advantage that we can be certain to
know the shortest path once a vertex is found by both searches.
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In the following we define the greedy alternation strategy as introduced by Borassi and
Natale [6] and show that it is not much worse than any other alternation strategy. Assume the
latest layers of the forward and backward searches are Lsi and Ltj , respectively. Then the next
exploration step of the forward search would cost time proportional to csi :=

∑
v∈Ls

i
deg(v),

while the cost for the backward search is ctj :=
∑
v∈Lt

j
deg(v). The greedy alternation strategy

then greedily continues with the search that causes the fewer cost in the next exploration step,
i.e., it continues with the forward search if csi ≤ ctj and with the backward search otherwise.

I Theorem 5. Let G be a graph with diameter d. If there exists an alternation strategy
such that the bidirectional BFS explores f(n) edges, then the bidirectional BFS with greedy
alternation strategy explores at most d · f(n) edges.

Proof. Let A be the alternation strategy that explores only f(n) edges. First note that
the number of explored edges only depends on the number of layers explored by the two
different searches and not on the actual order in which they are explored. Thus, if the greedy
alternation strategy is different from A, we can assume without loss of generality that the
greedy strategy performed more exploration steps in the forward search and fewer in the
backward search compared to A. Let cs and ct be the number of edges explored by the
forward and backward search, respectively, when using the greedy strategy. Moreover, let j
be the last layer of the backward search (which is actually not explored) and, accordingly,
let ctj be the number of edges the next step in the backward search would have explored.
Then ct + ctj ≤ f(n) as, when using A, the backward search still explores layer j. Moreover,
the forward search with the greedy strategy explores at most ct + ctj (and therefore at
most f(n)) edges in each step, as exploring the backward search would be cheaper otherwise.
Consequently, each step in the forward and backward search costs at most f(n). As there
are at most d steps in total, we obtain the claimed bound. J

3.2 Bidirectional Search in Hyperbolic Random Graphs

To analyze the size of the search space of the bidirectional BFS in hyperbolic random graphs,
we separate the whole disk DR

0 into two partitions. One is the inner disk Dρ
0 centered at

the origin. Its radius ρ is chosen in such a way that any two vertices in Dρ
0 have a common

neighbor with high probability. The second part is the outer band DR
ρ , the remainder of the

whole disk. A single BFS now explores the graph in two phases. In the first phase, the BFS
explores vertices in the outer band. The phase ends, when the next vertex to be encountered
lies in the inner disk. Once both BFSs completed the first phase, they only need at most
two more steps for their search spaces to share a vertex. One step to encounter the vertex in
the inner disk and another step to meet at their common neighbor that any two vertices in
the inner disk have with high probability; see Figure 2.

For our analysis we assume an alternation strategy in which each search stops once
it explored one additional layer after finding the first vertex in the inner disk Dρ

0 . Of
course, this cannot be implemented without knowing the underlying geometry of the network.
However, by Theorem 5 the search space explored using the greedy alternation strategy
is only a poly-logarithmic factor larger, as the diameter of hyperbolic random graphs is
poly-logarithmic with high probability [11]. The following lemma shows for which choice of
ρ the above sketched strategy works.

I Lemma 6. Let G be a hyperbolic random graph. With high probability, G contains a vertex
that is adjacent to every other vertex in Dρ

0 , for ρ = 1
α (logn− log logn).

ICALP 2018
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Figure 3 Left: The sector S of angular width ϕ contains the search space of a BFS in the outer
band DR

ρ starting at v. The vertices v1 and v2 are at maximum angular distance to still be adjacent.
Right: Neighbor w of vertex v is in S (gray) or a neighbor of c1 or c2 (dark gray).

Proof. Assume v is a vertex with radius at most R− ρ. Note that the distance between two
points is upper bounded by the sum of their radii. Thus, every vertex in Dρ

0 has distance at
most R to v, and is therefore adjacent to v. Hence, to prove the claim, it suffices to show
the existence of this vertex v with radius at most R − ρ. As described in Section 2, the
probability for a single vertex to have radius at most R− ρ is given by the measure µ(DR−ρ

0 ).
Using Equation (3) we obtain

µ(DR−ρ
0 ) = e−αρ(1 + o(1))

= logn
n

(1 + o(1)).

Thus, the probability that none of the n vertices lies in DR−ρ
0 is O((1 − logn

n )n) = O( 1
n ).

Hence, there is at least one vertex with radius at most R− ρ with high probability. J

In the following, we first bound the search space explored in the first phase, i.e., before
we enter the inner disk Dρ

0 . Afterwards we bound the search space explored in the second
phase, which consists of two exploration steps. The first one to enter Dρ

0 and the second one
to find a common neighbor, which exists due to Lemma 6.

3.2.1 Search Space in the First Phase
To bound the size of the search space in the outer band, we make use of the network geometry
in the following way. For two vertices in the outer band to be adjacent, their angular distance
has to be small. Moreover, the number of exploration steps is bounded by the diameter of
the graph. Thus, the maximum angular distance between vertices visited in the first phase
cannot be too large. Note that following lemma restricts the search to a sublinear portion of
the disk, which we later use to show that also the number of explored edges is sublinear.

I Lemma 7. With high probability, all vertices a BFS on a hyperbolic random graph explores
before finding a vertex with radius at most ρ = 1

α (logn − log logn) lie within a sector of
angular width Õ(n1−1/α).

Proof. For an illustration of the proof see Figure 3 (left). Recall from Section 2 that θ(r1, r2)
denotes the maximum angular distance between two vertices of radii r1 and r2 such that
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they are still adjacent. As this angle increases with decreasing radii, θ(r1, r2) ≤ θ(ρ, ρ) holds
for all vertices in the outer band DR

ρ .
Now assume we start a BFS at a vertex v ∈ DR

ρ and perform d exploration steps without
leaving the outer band DR

ρ . Then no explored vertex has angular distance more than dθ(ρ, ρ)
from v. Thus, the whole search space lies within a disk sector of angular width 2dθ(ρ, ρ). The
number of steps d is at most poly-logarithmic as the diameter of a hyperbolic random graph
is poly-logarithmic with high probability [11]. Using Equation (2) for θ(ρ, ρ), we obtain

θ(ρ, ρ) = 2e
R−2ρ

2 (1 + Θ(eR−2ρ))

= 2eC/2n1−1/α log1/α n(1 + Θ((logn/n1−α)2/α)

= O(n1−1/α log1/α n),

which proves the claimed bound. J

Note that the expected number of vertices in a sector S of angular width ϕ is linear in nϕ
due to the fact that the angular coordinate of each vertex is chosen uniformly at random.
Thus, Lemma 7 already shows that the expected number of vertices visited in the first
phase of the BFS is Õ(n2−1/α), which is sublinear in n. It is also not hard to see that this
bound holds with high probability (see Corollary 3). To also bound the number of explored
edges, we sum the degrees of vertices in S. It is not surprising that this yields the same
asymptotic bound in expectation, as the expected average degree in a hyperbolic random
graph is constant. However, showing that this value is concentrated around its expectation
is more involved. Though we can use techniques similar to those that have been used to
show that the average degree of the whole graph is constant with high probability [7, 12], the
situation is complicated by the restriction to a sublinear portion of the disk. Nonetheless, we
obtain the following theorem.

I Theorem 8. Let G be a hyperbolic random graph. The degrees of vertices in every sector
of angular width ϕ sum to Õ(ϕn+ δmax) with high probability if ϕ = Ω(n1−1/α logn).

We note that δmax has to be included here, as the theorem states a bound for every
sector, and thus in particular for sectors containing the vertex of maximum degree. Recall,
that δmax = Õ(n1/(2α)) holds almost surely [12]. Moreover, we note that the condition
ϕ = Ω(n1−1/α logn) is crucial for our proof, i.e., the angular width of the sector has to be
sufficiently large for the concentration bound to hold. Fortunately, this matches the bound
found in Lemma 7. As the proof for Theorem 8 is rather technical, we defer it to Section 4.
Together with Lemma 7, we obtain the following corollary.

I Corollary 9. On a hyperbolic random graph, the first phase of the bidirectional search
explores with high probability only Õ(n2−1/α + δmax) many edges.

3.2.2 Search Space in the Second Phase
The first phase of the BFS is completed when the next vertex to be encountered lies in
the inner disk. Thus, the second phase consists of only two exploration steps. One step to
encounter the vertex in the inner disk and another step to meet the other search. Thus, to
bound the running time of the second phase, we have to bound the number of edges explored
in these two exploration steps. To do this, let V1 be the set of vertices encountered in the first
phase. Recall that all these vertices lie within a sector S of angular width ϕ = Õ(n1−1/α)
(Lemma 7). The number of explored edges in the second phase is then bounded by the sum of

ICALP 2018
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degrees of all neighbors N(V1) of vertices in V1. To bound this sum, we divide the neighbors
of V1 into two categories: N(V1) ∩ S and N(V1) \ S. Note that we already bounded the sum
of degrees of vertices in S for the first phase (see Theorem 8), which clearly also bounds this
sum for N(V1) ∩ S. Thus, it remains to bound the sum of degrees of vertices in N(V1) \ S.

To bound this sum, we introduce two hypothetical vertices (i.e., vertices with specific
positions that are not actually part of the graph) c1 and c2 such that every vertex in N(V1)\S
is a neighbor of c1 or c2. Then it remains to bound the sum of degrees of neighbors of these
two vertices. To define c1 and c2, recall that the first phase was not only restricted to the
sector S but also to points with radius greater than ρ, i.e., all vertices in V1 lie within SRρ .
The hypothetical vertices c1 and c2 are basically positioned at the corners of this region, i.e.,
they both have radius ρ, and they assume the maximum and minimum angular coordinate
within S, respectively. Figure 3 (right) shows these positions. We obtain the following.

I Lemma 10. Let G be a hyperbolic random graph and let v ∈ SRρ for a sector S. Then,
every neighbor of v lies in S or is a neighbor of one of the hypothetical vertices c1 or c2.

Proof. Let v = (r, ϕ) ∈ SRρ and w ∈ N(v) \ S. Without loss of generality, assume that c1
lies between v and w, as is depicted in Figure 3 (right). Now consider the point v′ = (ρ, ϕ)
obtained by moving v to the same radius as c1. According to Lemma 1 we have N(v) ⊆ N(v′).
In particular, it holds that w ∈ N(v′) and therefore dist(v′, w) ≤ R. Since v′ and c1 have
the same radial coordinate and c1 is between v′ and w, it follows that dist(c1, w) ≤ R. J

By the above argumentation, it remains to sum the degrees of neighbors of c1 and c2.
It is not hard to see that the degrees of the neighbors of a node with radius r sum to
O(ne−(α−1/2)r) in expectation. For c1 and c2, which both have radius ρ, the degrees of their
neighbors thus sum to Õ(n1/(2α)) in expectation. Note that this matches the claimed bound
in Theorem 4. However, to actually prove Theorem 4, we need to show that this bound holds
with high probability for every possible angular coordinates of c1 and c2. Again, showing this
concentration bound is rather technical and thus deferred to Section 4. Together with the
bounds on the sum of degrees in a sector of width ϕ = Õ(n1−1/α) (Theorem 8), we obtain
the following corollary, which concludes the proof of Theorem 4.

I Corollary 11. On a hyperbolic random graph, the second phase of the bidirectional search
explores with high probability only Õ(n2−1/α + n1/(2α) + δmax) many edges.

4 Concentration Bounds for the Sum of Vertex Degrees

Here we prove the concentration bounds that were announced in the previous section. For
the first phase, we already know that the search space is contained within a sector S of
sublinear width (Lemma 7). Thus, the running time in the first phase is bounded by the
sum of vertex degrees in this sector. Moreover, all edges explored in the second phase also
lie within the same sector S or are incident to neighbors of the two hypothetical vertices c1
and c2 (Lemma 10). Thus, the running time of the second phase is bounded by the sum of
vertex degrees in S and in the neighborhood of c1 and c2. We start by proving Theorem 8 to
bound the sum of degrees in a given sector. Afterwards, we consider the neighborhood of c1
and c2. To improve readability, we restate Theorem 8 here.

I Theorem 8. Let G be a hyperbolic random graph. The degrees of vertices in every sector
of angular width ϕ sum to Õ(ϕn+ δmax) with high probability if ϕ = Ω(n1−1/α logn).
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Due to space constraints, we only sketch the proof by explaining the overall strategy and
stating the core lemmas. A full proof can be found in the full version of the paper. The proof
of Theorem 8 basically works as follows. For each degree, we want to compute the number of
vertices of this degree and multiply it with the degree. As all vertices with a certain degree
have roughly the same radius, we can separate the disk into small bands, one for each degree.
Then summing over all degrees comes down to summing over all bands and multiplying the
number of vertices in this band with the corresponding degree. If we can prove that each of
these values is highly concentrated (i.e., probability 1−O(n−2)), we obtain that the sum is
concentrated as well (using the union bound). Unfortunately, this fails in two situations. For
large radii the degree is too small to be concentrated around its expected value. Moreover,
for small radii, the number of vertices within the corresponding band (i.e., the number of
high degree vertices) is too small to be concentrated.

To overcome this issue, we partition the sector S into three parts. An inner part Sρ1
0 ,

containing all points of radius at most ρ1, an outer part SRρ2
, containing all points of radius

at least ρ2, and a central part Sρ2
ρ1
, containing all points in between. We choose ρ2 in such

a way that the smallest degree in the central part Sρ2
ρ1

is Ω(logn), which ensures that all
vertex degrees in Sρ2

ρ1
are concentrated. Moreover, we choose ρ1 such that the number of

vertices with maximum degree in Sρ2
ρ1

is Ω(logn), which ensures that for each vertex degree,
the number of vertices with this degree is concentrated. To achieve this, we set

ρ1 = 2 logn− log(ϕn)− log logn
α

and ρ2 = logn
α

,

and show concentration separately for the three parts.

The Inner Part of a Sector. The inner part Sρ1
0 contains vertices of high degree. It is not

hard to see that there are only poly-logarithmically many vertices with radius at most ρ1.
Thus, we obtain the following lemma.

I Lemma 12. Let G be a hyperbolic random graph. For every sector S of angular width ϕ,
the degrees of the nodes in Sρ1

0 sum to Õ(δmax) with high probability.

The Central Part of a Sector. For each possible vertex degree k, we want to compute the
number of vertices with this degree in the central part Sρ2

ρ1
. First note, that by Equation (4)

a vertex with fixed radius has expected degree Θ(k) if this radius is 2 log(n/k). Motivated
by this, we define rk = 2 log(n/k). To bound the sum of degrees in the central part Sρ2

ρ1
, we

use that vertices with radius significantly larger than rk also have a smaller degree. More
formally, one can show that there exists a constant ε such that all vertices of degree k have
radius at most rk + ε with high probability. From this, we can derive a bound g(k) for the
number of vertices with degree at least k by bounding the number of vertices with radius at
most rk + ε. Then summing the vertex degrees boils down to integrating over g(k), which
yields the following lemma.

I Lemma 13. Let G be a hyperbolic random graph. For every sector S of angular width ϕ,
the degrees of the nodes in Sρ2

ρ1
sum to O(ϕn3−2α−1/(2α)) with high probability.

Note that 3 − 2α − 1/(2α) ≤ 1 for α ∈ [0.5, 1]. Thus, the lemma in particular shows that
Sρ2
ρ1

contains at most O(ϕn) edges, as claimed in Theorem 8.

The Outer Part of a Sector. The outer part SRρ2
contains many vertices, all of which have

low expected degree. To bound their sum with high probability, we consider the coordinates
of the vertices as random variables and the sum of their degrees as a function in these
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Figure 4 Left: The exponent of our theoretical bound depending on α. Right: The corresponding
empirically measured search spaces. The data was obtained by generating 20 hyperbolic random
graphs with average degree roughly 8 for each shown α and each n ∈ {100k, 200k, 300k}. For each
graph we sampled 300k start-destination pairs and report the maximum number of edges explored
in one search. The numbers are normalized with the total number of edges m of the graph such that
x is plotted for a search space of size mx.

variables. Then, our plan to show concentration is to apply a method of average bounded
differences [10, Theorem 7.2]. It is based on the fact that changing the value of a single
random variable (i.e., moving the position of a single vertex) has only little effect on the
function (i.e., on the sum of degrees). To make sure that this is actually true, we exclude
certain bad events that happen only with low probability: First, the maximum degree in SRρ2

should not be too high such that moving a single vertex can increase its degree only slightly.
Second, there should not be too many vertices in SRρ2

such that the sum of degrees actually
changes only for few vertices (as we do not count vertices not in SRρ2

). Overall we obtain the
following lemma.

I Lemma 14. Let G be a hyperbolic random graph. For every sector S of angular width ϕ,
the degrees of the nodes in SRρ2

sum to O(ϕn) with high probability if ϕ = Ω(n1−1/α logn).

The Neigborhood of a Vertex with Radius ρ. For the second phase, we showed in Sec-
tion 3.2.2 that it remains to bound the sum of degrees in the neighborhood of the corner
vertices. Recall that they both have radius ρ = 1/α(logn− log logn). Let v be a vertex with
radius ρ and let A be the disk with radius R around v. Note that we already know from
Section 3.2 that the maximum angular distance of neighbors of v with radius at least ρ is
Õ(n1−1/α). Thus, ARρ is contained within a sector of this width and we can use Theorem 8
to obtain the desired bound for this part. Moreover, as in Lemma 12, we can bound the
number of vertices with small radius. For all radii in between, A contains a sector of angular
width Ω(n1−1/α). It is thus not surprising that for each degree occurring in this part, the
number of vertices of this degree is concentrated around its expectation. Hence, similar
arguments as for Lemma 13, lead to the following lemma.

I Lemma 15. Let G be a hyperbolic random graph and let v be a hypothetical vertex with
radius ρ = 1/α(logn− log logn) and arbitrary angular coordinate. The degrees of neighbors
of v sum to Õ(n2−1/α + n1/(2α) + δmax) with high probability.
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5 Conclusion

To conclude, we discuss why we think that the bound Õ(n2−1/α + n1/(2α) + δmax) is rather
tight; see Figure 4 (left) for a plot of the exponents. Clearly, the maximum degree of the
graph is a lower bound, i.e., we cannot improve the δmax. As δmax = Θ̃(n1/(2α)) holds
almost surely [12], we also cannot improve below Õ(n1/(2α)). For the term n2−1/α we do
not have a lower bound. Thus, the gray region in Figure 4 (left) is the only part where
our bound can potentially be improved. However, by only making a single step from a
vertex with radius ρ = 1/α(logn − log logn), we can already reach vertices with angular
distance Θ(n1−1/α). Thus, it seems likely, that there exists a start-destination pair such that
all vertices within a sector of this angular width are actually explored. As such a sector
contains Θ(n2−1/α) vertices, our bound seems rather tight (at least asymptotically and up to
poly-logarithmic factors). For a comparison of our theoretical bound with actual search-space
sizes in hyperbolic random graphs, see Figure 4.
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