
Short Threshold Dynamic Group Signatures

Jan Camenisch1, Manu Drijvers1, Anja Lehmann2, Gregory Neven1 and
Patrick Towa3,4

1 DFINITY
2 Hasso-Plattner-Institute, University of Potsdam

3 IBM Research – Zurich
4 DIENS, École Normale Supérieure, CNRS, PSL University

Abstract. Traditional group signatures feature a single issuer who can
add users to the group of signers and a single opening authority who
can reveal the identity of the group member who computed a signature.
Interestingly, despite being designed for privacy-preserving applications,
they require strong trust in these central authorities who constitute sin-
gle points of failure for critical security properties. To reduce the trust
placed on authorities, we introduce dynamic group signatures which dis-
tribute the role of issuer and opener over several entities, and support
tI -out-of-nI issuance and tO-out-of-nO opening. We first define threshold
dynamic group signatures and formalize their security. We then give an
efficient construction relying on the pairing-based Pointcheval–Sanders
(PS) signature scheme (CT-RSA 2018), which yields very short group
signatures of two first-group elements and three field elements. We also
give a simpler variant of our scheme in which issuance requires the par-
ticipation of all nI issuers, but still supports tO-out-of-nO opening. It is
based on a new multi-signature variant of the PS scheme which allows
for efficient proofs of knowledge and is a result of independent inter-
est. We prove our schemes secure in the random-oracle model under a
non-interactive q-type of assumption.

1 Introduction

Group signatures [23] are a fundamental cryptographic primitive which
allows members of a user group to anonymously sign on behalf of the
group after interacting with an issuer. That is, anyone can verify that
a signature was computed by a group member, but only a designated
authority called opener can reveal the identity of the signer. Variants of
group signatures are for instance used for privacy-preserving authentica-
tion of Trusted Platform Modules (TPMs) in user devices [30,17,34,28,18]
and of vehicles in Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure
(V2I) communication [53,45,44].

The standard definition of group signatures places trust on a single
issuer and a single opener. It means that a corrupt issuer can create cre-
dentials of which the signatures would open to no group member, and

that there is no anonymity against a corrupt opener. For many applica-
tions, and in particular for V2V communication, it is simply prohibitive
to have a single authority able to issue untraceable credentials or to have
a single opener able to trace all users. The standard solution in such cases
is to use threshold cryptography [51,25] to distribute the capabilities of
the issuer and opener over multiple entities, of whom a threshold number
must collaborate to add a user or open a signature.

Many group signature schemes follow a modular “sign-and-encrypt-
and-prove” approach [1,4,11], where a user’s signing key is a certificate on
her identity, and a group signature contains an encryption of her identity
and a zero-knowledge proof (bound to the signed message) that the user
knows a valid certificate for the encrypted identity. The modular use of en-
cryption to enable opening readily allows for threshold opening: it suffices
to replace the underlying encryption scheme with another that supports
threshold decryption [25], as Blömer et al. [9] pointed out. Nevertheless,
lifting a group-signature scheme to a threshold-issuance setting is not as
straightforward.

Short Group Signatures. The most efficient (“GetShorty”) group signa-
tures [8,46] depart from the sign-and-encrypt paradigm though, yielding
the shortest signature sizes to date [41]. Instead of adding an encryp-
tion of the user’s identity to every signature, they rely on the issuer for
opening. To reveal the identity of the user that generated a signature, the
issuer maintains a list of the membership credentials he has generated and
tests the signature against each entry. It makes opening expensive for the
benefit of having short signatures, which perfectly fits for all applications
where signatures must be short and opening an uncommon practice, such
as in V2X communication. A disadvantage of this GetShorty approach is
that it merges the roles of issuer and opener into a single party that has
to be trusted for anonymity and unforgeability.

Unfortunately, these schemes are difficult to map to a threshold set-
ting. A first problem is that to trace the signatures of a user, her identifier
generated during the issuance protocol is necessary. A second issue is that
their underlying base signature schemes, namely Camenisch–Lysyanskaya
[21] and Pointcheval-Sanders [46,47] signatures, are not a priori suitable
to a multi-signer setting as needed to distribute issuance. Indeed, with
those signature schemes, all signers would have to agree on a common
randomness.

2

Contributions. In this paper we propose the first provably-secure group
signatures that no longer require trust in single authorities for issuance
and opening, but instead distribute their roles over several parties.

Security Model for Threshold Group Signatures. We start by formalizing
threshold dynamic group signatures and define their security in the pres-
ence of multiple issuers and openers. Our model features a number nI of
issuers and a number nO of openers separate from the issuers. Any quo-
rum of tI + 1 issuers can add users to the group, whereas no collusion of
tI issuers can generate a valid credential. Besides, any tO +1 openers can
recover the identity of a signer, but anonymity is guaranteed against up
to tO corrupt openers.

Short Threshold Group Signatures. We then present an efficient, provably
secure instantiation based on Pointcheval–Sanders (PS) signatures [47]. It
shares ideas with the “GetShorty” approach and adapts them to a thresh-
old setting. We show that the roles of issuer and opener can be separate
even with this approach, as long as the openers can still access the open-
ing information generated during issuance. Nevertheless, the openers do
not partake in the issuance protocol and are the only parties who should
be able to retrieve it. The challenge thus consists in making sure, during
issuance, that the opening information is correct, and that the openers
(and only them) can later retrieve it.

The signatures of our scheme are short as they comprise only 2 first-
group elements and 3 exponents. The computation and verification of our
group signatures only costs a few exponentiations in the first group and
pairing computations (see Table 1). They respectively consist in proving
and verifying knowledge of a PS signature obtained from a threshold num-
ber of issuers. The size and computational efficiency of our threshold group
signatures therefore make them suitable for practical privacy-preserving
applications. We prove our construction secure in the random-oracle model
under a non-interactive q-type of assumption.

Simpler Distributed Group Signatures and Multi-Signatures. In appendix F,
we also present a variant of our scheme that requires the participation of
all nI issuers to add users to the group, but still caters for threshold
opening. It has the benefit of permitting the corruption of all issuers but
one. It is based on a multi-signature variant of the PS scheme that we
build (in Appendix E.2) and prove secure in the plain public-key model
(i.e., the signers do not have to prove knowledge of their secret keys) un-
der the same q-assumption. This PS multi-signature scheme constitutes a

3

contribution of independent interest. Multi-signatures compress the sig-
natures of multiple signers on the same message into a single compact
signature and are for instance used to optimize consensus protocols in dis-
tributed ledgers and blockchains. Unlike existing multi-signature schemes
[43,10,12,42], PS multi-signatures allow for efficient zero-knowledge proofs
of signatures, making them an interesting tool for the design of privacy-
enhancing cryptographic protocols.

Related Work. Soon after their introduction by Chaum and Van Heyst
[23], several group-signature schemes were presented, but Bellare, Mic-
ciancio and Warinschi [4] were the first to formalize the security prop-
erties of static group signatures. Later on, Bellare, Shi and Zhang [7]
gave formal security definitions for dynamic group signatures in which
users can join the group at any time. Early schemes were based on the
strong RSA assumption [1,20], but the focus later shifted to bilinear
maps [11,14,21,8,37,46,24] due to their better efficiency. Recently, with the
possible advent of quantum computers, several group-signature schemes
[36,38,16,39,13] have been proposed, but they remain inefficient compared
to their pairing-based counterparts in terms of key or signature sizes, and
signing cost. Even the scheme of Ling et al. [39] is far from being as
efficient as pairing-based schemes, although it is the first scheme with
signature size independent of the group size. Moreover, none of the post-
quantum schemes so far supports threshold issuance, and building a fully
distributed post-quantum group signature scheme is still an open problem.

Ghadafi [33] and Blömer et al. [9] considered group signatures with
threshold opening, but did not address the more challenging task of thresh-
old issuance. Manulis [40] introduced democratic group signatures in which
there is no group manager. All members must participate to add a user to
the group, and any member can open all group signatures, i.e., there is no
anonymity within the group. Zheng et al. [54] extended democratic group
signatures to enforce that at least a threshold number of members must
collaborate to open signatures. In a sense, the extension of democratic
group signatures due to Zheng et al. can be viewed as group signature
schemes with distributed issuance and threshold opening. However, in ad-
dition to the poor anonymity guarantees that they provide, democratic
group signature schemes are not applicable to a dynamic setting in which
members join the group at a high frequency since public keys must then
be refreshed. Furthermore, the public keys and signatures of the construc-
tions of Manulis and of Zheng et al. are linear in the group size, making
them impractical.

4

In their “Coconut” paper [52], Sonnino et al. proposed an anonymous
credential system with threshold issuance and selective disclosure of user
attributes. Though their techniques to achieve threshold issuance are sim-
ilar to ours, their solution does not consider the issue of threshold opening,
and therefore leaves aside the difficulty of realizing both threshold issuance
and threshold opening while having short signatures. Besides, the authors
do not provide a security model to analyze the security of their scheme.
They only informally state properties that a scheme with threshold is-
suance and selective disclosure should satisfy, and then argue that their
scheme does.

Gennaro, Goldfeder and Ithurburn recently proposed [31] extensions of
the BBS [11] and CL [21] group-signature schemes that support threshold
issuance. To achieve threshold opening, since those schemes follow the
sign-and-encrypt paradigm, the authors point out that it suffices to replace
the underlying encryption scheme with a threshold one as did Ghadafi [33]
and Blömer et al. [9]. Nonetheless, this paradigm results in large signatures
as explained above. Furthermore, Gennaro et al. do not provide a security
model for threshold group-signature schemes. For the BBS scheme, they
give a simulation argument for their threshold issuance protocol. For the
CL scheme, they give a game-based proof that an adversary controlling less
than a threshold number of parties cannot issue new credentials. Without
a model that takes into account all the other aspects of group signatures
scheme, especially threshold opening, it is difficult to grasp the exact
security guarantees of their schemes.

2 Preliminaries

This section introduces the notations used throughout the paper as well
as the building blocks on which our constructions are based.

2.1 Notation

Vectors are denoted in bold font. For an integer n ≥ 1, [n] denotes the
set {1, . . . , n}. For an integer k,

([n]
k

)
represents the set of subsets of [n] of

cardinality k. If k ≤ 0 or k > n, then
([n]
k

)
:= ∅. The notation

([n]
≤k
)
stands

for the set of subsets of [n] of cardinality no greater than k. Given a group
G with neutral element 1G, G∗ denotes G\{1G}.

2.2 Pairing Groups

An asymmetric pairing group consists of a tuple (p,G, G̃,GT , e) such that
p is a prime number, G, G̃ and GT are p-order groups, and such that

5

e : G×G̃→ GT is a pairing, i.e., an efficiently computable non-degenerate
(e 6= 1GT , i.e., the constant map to 1GT) bilinear map. Type-3 pairing
groups are pairing groups for which there is no efficiently computable
homomorphism from G̃ to G.

2.3 Hardness Assumptions

Strong Diffie–Hellman Assumption. Pointcheval and Sanders intro-
duced [47] a new non-interactive q-type of assumption that they called the
Modified q-Strong Diffie–Hellman (q-MSDH-1) assumption. They proved
that it holds in the generic bilinear group model.

Definition 1 (q-MSDH-1 Assumption). Let G be a type-3 pairing-
group generator. The q-MSDH-1 assumption over G is that for all PPT
adversary A, for all λ ∈ N, for all Γ =

(
p,G, G̃,GT , e

)
← G

(
1λ
)
, given

Γ , g ∈R G∗, g̃ ∈R G̃∗, and two tuples
(
gx

`
, g̃x

`
)q
`=0
∈ (G × G̃)q+1 and

(ga, g̃a, g̃ax) ∈ G × G̃2 for x, a ∈R Z∗p, the probability that A computes a
tuple

(
w,P, h1/x+w, ha/P (x)

)
, with h ∈ G∗, P a polynomial in Zp[X] of

degree at most q and w ∈ Zp such that the polynomials X + w and P are
coprime, is negligible.

Symmetric Discrete-Logarithm Assumption. The following assump-
tion a generalization of the standard discrete-logarithm assumption to
bilinear-group structures

Definition 2 (Symmetric Discrete-Logarithm Assumption). Let
G be a type-3 pairing-group group generator. The Symmetric Discrete-
Logarithm (SDL) assumption [8] over G is that for all PPT adversary
A, for all λ ∈ N Γ =

(
p,G, G̃,GT , e

)
← G

(
1λ
)
, g ∈R G∗, g̃ ∈R G̃∗,

x ∈R Z∗p, given (Γ, g, g̃, gx, g̃x) as an input, the probability that A returns
x is negligible.

Note that given (Γ, g, g̃, h, h̃), one can always verify that it is a valid
SDL tuple by testing the equality e(g, h̃) = e(g̃, h). Notice also that the
SDL assumption is implied by the q-MSDH-1 assumption (Definition 1).

Knowledge-of-Exponent Assumption. Fuchsbauer and Orru intro-
duced an analog of the Diffie–Hellman Knowledge-of-Exponent assump-
tion [3] in an asymmetric setting called the Asymmetric Diffie–Hellman
Knowledge-of-Exponent assumption [29]. It is primarily used in the con-
text of subversion-resistant non-interactive witness-indistinguishable proofs.

6

Definition 3 (Asymmetric Diffie–Hellman Knowledge-of-Exponent
Assumption). The (first-group) Asymmetric Diffie–Hellman Knowledge-
of-Exponent (ADH-KE) game, parametrized by λ ∈ N, for a type-3 pairing-
group generator G, an adversary A and an extractor Ext is defined as
follows:

◦ Γ := (p,G, G̃,GT , e) ← G(1λ); g ∈R G∗
◦ (X,Y, Z)← A(Γ, g)
◦ s← Ext (Γ, g,X, Y, Z)

◦ return b←
(
gs 6= X ∧ gs 6= Y ∧ Z = Y dlogg(X)

)
.

In other words, A wins the game if (g,X, Y, Z) is a Diffie–Hellman tuple,
but algorithm Ext can extract neither dlogg(X) nor dlogg(Y).

The ADH-KE assumption over a type-3 pairing-group generator G is
that there exists an efficient algorithm Ext such that for all efficient ad-
versary A for the ADH-KE game, Pr[b = 1] is negligible in λ.

2.4 Signatures

A signature scheme consists of 4 algorithms: a setup algorithm Setup(1λ)→
pp, a key-generation algorithm KG(pp) → (vk , sk), a signing algorithm
Sign(sk ,m)→ σ and a verification algorithm Verf(vk ,m, σ)→ {0, 1}.

2.5 Pointcheval–Sanders Signature Scheme

Pointcheval and Sanders [47] proposed an efficient signature scheme that
allows to sign message blocks (m1, . . . ,mk) at once, and also to efficiently
prove knowledge of signatures in zero-knowledge. They proved this scheme
to be existential unforgeable under the q-MDSH-1 assumption [47] stated
in Definition 1.

Given a type-3 pairing-group generator G and security parameter λ ∈
N, the PS-signature scheme in a pairing-group Γ =

(
p,G, G̃,GT , e

)
←

G(1λ) consists of the following algorithms.

PS.Setup(1λ, Γ, k)→ pp : generate g̃ ∈ G̃∗. Return pp ← (Γ, g̃, k).
PS.KG(pp)→ (vk , sk) : generate x, y1, . . . , yk+1 ∈R Zp, compute X̃ ← g̃x,

Ỹj ← g̃yj for j ∈ [k + 1], and set and return vk ← (X̃ , Ỹ1, . . . , Ỹk+1)
and sk ← (x, y1, . . . , yk+1).

PS.Sign (sk , (m1, . . . ,mk))→ σ : choose h ∈R G∗, m ′ ∈R Zp and return(
m ′, h, hx+

∑k
j=1 yjmj+yk+1m

′
)
.

7

PS.Verf (vk , (m1, . . . ,mk), σ)→ b : parse σ as (m ′, σ1, σ2), verify that σ1 6=
1G and that e

(
σ1, X̃

∏k
j=1 Ỹ

mj
j Ỹ m ′

k+1

)
= e(σ2, g̃). If so, return 1, oth-

erwise return 0.

Pointcheval and Sanders proved this scheme to be existential unforge-
able under the q-MDSH-1 assumption [47] stated in Definition 1.

In the random oracle model, the scheme remains secure under the
same assumption if m ′ is computed as H(m1, . . . ,mk) [47, Corollary 12].
Noticing that the verification algorithm does not verify any property on
m ′, and in particular that m ′ = H(m1, . . . ,mk), the scheme still allows for
efficient zero-knowledge proofs of knowledge if m ′ is computed as such.

Proving Knowledge of a PS Signature. An important feature of the
PS signature scheme is that one can efficiently prove in zero-knowledge
knowledge of a signature. In Section 4, we show how to apply similar ideas
to threshold dynamic group signatures.

PS signatures allow to efficiently prove knowledge of signatures since
the group elements in the signatures can be re-randomized, and since the
verification of a signature does not require to check any hash relation
between the extra exponent m ′ and the signed message block. Given a
verification key vk as above, to prove knowledge of (m , σ = (m ′, σ1, σ2))

such that e
(
σ1, X̃

∏k
i=1 Ỹ

mi
i Ỹ m ′

k+1

)
= e(σ2, g̃),

– the prover parses σ as (m ′, σ1, σ2), generates r, t ←$ Z∗p, computes
(σ′1, σ

′
2)← (σr1, (σ2σ

t
1)
r) and sends the latter couple to the verifier

– the verifier checks that σ′1 6= 1G1 , and if so, the prover and the ver-
ifier engage in a Schnorr zero-knowledge proof of knowledge [49] of
(m ,m ′, t) such that

k∏
i=1

e
(
σ′1, Ỹi

)mi
e
(
σ′1, Ỹk+1

)m ′
e(σ′1, g̃)

t = e(σ′2, g̃)e(σ
′
1, X̃)−1.

Indeed, (m ,m ′, t) 7→
∏k
i=1 e

(
σ′1, Ỹi

)mi
e
(
σ′1, Ỹk+1

)m ′
e(σ′1, g̃)

t is a

group homomorphism from Zk+2
p to GT .

It is a proof of knowledge since the Schnorr proof is, and it is zero-
knowledge as σ′1 and σ′2 can be simulated by generating random values
and as the Schnorr proof is zero-knowledge. Moreover, since the protocol
is public-coin, it can be turned into a non-interactive proof-system in the

8

random oracle model [6] using the Fiat–Shamir heuristic [27]. This non-
interactive version can be turned into a signature of knowledge [22] on a
message m by including m to the hash computation.

3 Threshold Dynamic Group Signatures

This section formally defines threshold dynamic group signatures. Clas-
sical dynamic group signatures [7] allow users to join a group of signers
at any time by interacting with an issuer, and then sign anonymously
on behalf of the group. A verifier is then assured that a valid signature
stems from a group member but cannot infer any information about her
identity. Only a dedicated authority, the opener, can recover the identity
of a member who computed a valid signature.

In terms of security, group signatures should guarantee anonymity
even in the presence of a corrupt issuer and unforgeability (also known as
traceability) even when the opener is corrupt. Still, trust in each entity
is necessary for the respective properties. It is even worse for schemes in
which the roles of issuer and opener are assumed by the same party [14,19]
who then has to be trusted for both anonymity and unforgeability. This
holds in particular for the GetShorty-type of signatures [8,46] which yield
the most efficient instantiations to date.

The capabilities of the issuer and the opener are here distributed over
several entities to prevent them from becoming single points of failure.
To reflect the difference between issuer and opener, two thresholds are
introduced: schemes are defined with nI > 1 issuers of whom tI + 1 ≤ nI
are required to add users to the group. Similarly, there are nO > 1 openers
and at least tO+1 openers must collaborate to open a signature and reveal
the signer’s identity. This distinction of the thresholds is also to account for
the fact that in practice, the issuance threshold would typically be lower
than the opening threshold. Indeed, the issuance threshold would not
be too high to ensure service availability, whereas the opening threshold
would be high to protect users’ privacy.

First comes the syntax of dynamic group signatures with threshold
issuance and threshold opening. The security requirements that can be
expected from such schemes are then formalized.

3.1 Syntax

Formally, a (tI , tO)-out-of-(nI , nO) DGS scheme, or
(
nI ,nO
tI ,tO

)
-DGS scheme,

with identity space ID (assumed not to contain⊥) consists of the following
algorithms:

9

GSetup(1λ, nI , nO, tI , tO)→ pp : on the input of a security parameter, a
number nI of issuers, a number nO of openers and two integer thresh-
old values, generates public parameters which are assumed to be an
implicit input to all the other algorithms. Those parameters are also
assumed to contain nI , nO, tI and tO. Moreover, each issuer is as-
signed a public, fixed index i ∈ [nI]. Similarly, each opener is assigned
a public index i ∈ [nO].

〈{IKG(pp, i)}nIi=1〉 → 〈{(ipk , isk i, st i)}
nI
i=1〉 : a key-generation protocol be-

tween all nI issuers. At the end of the protocol, the issuers agree on a
public key, and each of them holds a secret key and a state (initially
empty). The state later contains the identities of the users that are
added to the group. The issuer public key is used to add users to the
group, and to compute and verify group signatures.

〈{OKG(pp, i)}nOi=1〉 → 〈{(opk , osk i, regi)}
nO
i=1〉 : a key-generation protocol

run by the openers. At the end of the protocol, the issuers agree on
a public opening key opk , an each of them holds a secret key osk i
(assumed to contain i and opk) and a register regi initially empty.
The public opening key is needed to add users to the group, and to
compute and verify signatures. The secret keys and the registers are
needed to open signatures.

The group public key gpk consists of ipk and opk , i.e., gpk ← (ipk , opk).

〈GJoin.U(id , I, gpk)
 {GJoin.I(st i, isk i, id , I, gpk)}i∈I〉 → 〈gsk[id]/⊥, st ′i〉 :
is a protocol between a user with identity id and tI + 1 =: |I| issuers.
If id ∈ st i for any i ∈ [nI], then the ith issuer aborts the protocol. At
the end of the protocol, the user algorithm returns a user group secret
key gsk[id] (or ⊥ if the protocol fails) and the state st i of each issuer
is updated.

GSign(gpk ,gsk[id],m)→ σ : a probabilistic algorithm that computes a
signature σ on a message m on behalf of the group.

GVerf(gpk ,m, σ)→ b ∈ {0, 1} : a deterministic algorithm that verifies a
group signature σ on a message m w.r.t. to a group public key gpk .

〈{GOpen(regi, osk i, O, gpk ,m, σ)}i∈I〉 → 〈{id i/⊥}i∈O〉 : is a protocol be-
tween tO+1 =: |O| openers, at the end of which each algorithm returns
the identity of the user who computed σ on m, or ⊥ in case of failure.
It is here assumed that the openers are given access to public and
authentic information from all the successful issuance protocol exe-
cutions, and that they use it to update their registers. Although this
information is public, it is clear that for anonymity to later hold, no
information about a signer can be inferred from it without the opener
secret keys.

10

Note that contrarily to the model of Bellare et al. [7], in the model
above, each opener maintains a register separate from the state of the
issuers. These registers are necessary to open signatures, in addition to
the opener secret keys. Those registers should rather be thought as the
registers in the model of Bichsel et al. [8].

Correctness. Correctness captures the property that all honest issuers
must agree on the same group public key. A signature σ computed on
a message m with the secret key of a group-member id should also be
accepted by the verification algorithm. Lastly, by executing the opening
protocol, any set of tO + 1 openers should all return id . These properties
should hold with overwhelming probability regardless of the order in which
users are added to the group.

3.2 Security Model

The security requirements for threshold DGS schemes are similar to the
conventional ones for dynamic group signatures with a single issuer and
a single opener [7], but adapted to a threshold setting. Those require-
ments are anonymity, which guarantees that a group signature reveals no
information about the member who computed it, and traceability, which
expresses the unforgeability property of group signatures.

Essentially, no collusion of tI issuers should be able to add users and
no collusion of tO openers should be able to open signatures. The defini-
tions are flexible in the sense that they can require an additional fraction
of openers to be honest for traceability, and of issuers to be honest for
anonymity. This allows for more efficient schemes that may need slightly
stronger assumptions to prove their security.

Corruption. The corruption of the authorities is static, i.e., the author-
ities are corrupted at the beginning of the security experiments. As for
the users, they are dynamically corrupted during the experiments.

Global Variables. In the security experiments for
(
nI ,nO
tI ,tO

)
-DGS schemes,

the challenger maintains global variables which are accessible to the ex-
periment oracles (defined hereunder). These variables are a group public
gpk , a table of honest-user group secret keys gsk of size |ID |, and

◦ QGJoin a set of user identities id that have joined the group, whether
honestly via a GJoin.U query or dishonestly via a GJoin.Ii query

11

◦ QCorrupt a set of user identities id either corrupt from the beginning
via a GJoin.Ii query or of which the group secret key has been revealed
◦ QGSign a set of signing queries (id ,m, σ) made by the adversary and

the responses to those
◦ QGOpen a set of message–signature pairs (m, σ) for which the adversary

has made an opening query.

The sets QGJoin, QCorrupt, QGSign and QGOpen are initially empty, and the
entries of gpk and gsk are initially set to ⊥.

Oracles. This sections describes the oracles in the security experiments
for
(
nI ,nO
tI ,tO

)
-DGS schemes. The oracles have access to global variables pri-

orly defined and maintained by the challenger in each security experi-
ment. Whenever the adversary queries a protocol-algorithm (for joining
or opening) oracle, a protocol execution is triggered with all the other
honest parties on the same inputs, and the adversary plays the role of the
dishonest parties (dishonest users, or dishonest issuers or openers). During
these executions, the adversary controls the network, i.e., it can forward,
delay, drop or modify the messages sent by the various parties. However,
as in prior models [8], protocols can only be executed in sequential or-
der, i.e., the adversary cannot start a protocol execution if all the prior
ones have not terminated. In particular, the adversary cannot interleave
messages between protocol executions or execute multiple sessions of the
same protocol in parallel.

In the following description of the oracles, if a verification fails, the
oracle returns ⊥. It is implicitly assumed that id is always in ID . Given a
set Q, the statement “adds x to Q” means that Q← Q∪{x}. The oracles
in the security experiments are then

O.GJoin.U(id , I) : checks that I ∈
(
[nI]
tI+1

)
. It adds id to QGJoin. It runs the

user joining algorithm on (id , I, gpk). An execution of protocol GJoin
is triggered and during it, the challenger plays the role of the (honest)
user and of the honest issuers, and the adversary plays the role of
the corrupt issuers. At the end of the protocol, if algorithm GJoin.U
returns a key gsk[id], the challenger updates gsk accordingly.

O.GJoin.Ii(id , I) : (for each honest issuer i) checks that i ∈ I ∈
(
[nI]
tI+1

)
. It

adds id to QGJoin and QCorrupt. It runs the issuer joining algorithm on
(st i, isk i, id , I, gpk). An execution of protocol GJoin is triggered and
during it, the adversary plays the role of the (corrupt) user and of the
corrupt issuers. The challenger plays the role of the honest issuers.

12

O.GSign(id ,m) : checks that id ∈ QGJoin \ QCorrupt. It computes σ ←
GSign(gpk ,gsk[id],m). It adds (id ,m, σ) to QGSign and returns σ.

O.GOpeni(O,m, σ) : (for each honest opener i) checks that i ∈ O ∈(
[nO]
tO+1

)
. It adds (m, σ) to QGOpen. It runs the opening algorithm on

(regi, osk i, O, gpk ,m, σ). A GOpen protocol execution is triggered and
the adversary plays the role of the corrupt openers, while the challenger
plays that of the honest ones.

O.RevealU(id) : adds id to QCorrupt and returns gsk[id].
O.ReadReg(i, id) : returns regi[id].
O.WriteReg(i, id , v) : (for each honest opener i) sets regi[id]← v, i.e., it

write value v on the register of the ith opener for user id .

Anonymity. Anonymity ensures that a group signature reveals no in-
formation about the identity of the member who computed it as long as
at most tO openers are corrupt and the signature has not been opened.
User identities are not hidden during the joining protocol, and it is in
fact necessary to open signatures. In other words, anonymity is only guar-
anteed w.r.t. to group signatures, but it is not a restriction per se as in
most practical scenarios, group signatures are computed at a much higher
frequency than members are added. Signatures are therefore much more
critical from a privacy perspective.

The definition is indistinguishability-based as the adversary chooses
two honest users and a message. It receives a group signature computed
with the key of either of them, and it must determine the signer’s iden-
tity better than by guessing. The adversary is given access to an opening
oracle which it can query on all but the challenge signature, capturing
a CCA-2 type of anonymity [11]. Dynamic corruption of group members
is allowed, i.e., a signer may initially be honest but later corrupt. How-
ever, anonymity is guaranteed only for fully honest users, i.e., there is no
forward anonymity. See Figure 1 for the detailed experiment.

The classical notion of anonymity relies on the honesty of the opener,
which is adjusted to a threshold setting and allows the adversary to cor-
rupt up to tO out of nO openers. Without loss of generality, corrupt en-
tities are always assumed to be the first ones, i.e., openers 1, . . . , tO are
controlled by the adversary and tO + 1, . . . , nO are run by the challenger.

Concerning the issuers, the definition is flexible. Ideally, in schemes
where the issuer and the opener are distinct entities, the issuer can be
fully malicious in the anonymity game. In a distributed setting, it would
translate in corrupting all nI issuers. However, enforcing the corruption of

13

Experiment Expano−b
DGS,λ,nI ,nO,tI ,tO

(A) :
pp ← GSetup(1λ, nI , nO, tI , tO)
〈stA, {(ipk , isk i, st i)}i>t∗

I
〉 ← 〈A(keygen, pp), {IKG(pp, i)}i>t∗

I
〉

〈st ′A, {(opk , osk i, st i)}i>tO
〉 ← 〈A(stA), {OKG(pp, i)}i>tO

〉
gpk ← (ipk , opk)

O ←
{
GJoin.U, (GJoin.Ii)i>t∗

I
,GSign, (GOpeni)i>tO ,RevealU,WriteReg

}
(st ′′A, id

∗
0, id

∗
1,m

∗)← AO(gpk,(regi)i,gsk,·)(choose, st ′A)
σ∗ ← GSign(gpk ,gsk[id∗b],m

∗)

b′ ← AO(gpk,reg,gsk,·)(st ′′A, σ
∗)

if id∗0, id∗1 ∈ QGJoin \QCorrupt and gsk[id∗0],gsk[id
∗
1] 6= ⊥ and (m∗, σ∗) /∈ QGOpen

return b′

else
return 0

Experiment Exptrace
DGS,λ,nI ,nO,tI ,tO

(A) :
pp ← GSetup(1λ, nI , nO, tI , tO)
〈stA, {(ipk , isk i, st i)}i>tI

〉 ← 〈A(keygen, pp), {IKG(pp, i)}i>tI
〉

〈st ′A, {(opk , osk i, st i)}i>t∗
O
〉 ← 〈A(stA), {OKG(pp, i)}i>t∗

O
〉

gpk ← (ipk , opk)

O ←
{
GJoin.U, (GJoin.Ii)i>tI ,GSign, (GOpeni)i>t∗

O
,RevealU,ReadReg

}
(O∗,m∗, σ∗)← AO(gpk,(regi)i,gsk,·)(forge, st ′A)

if O∗ /∈
({t∗O+1,...,nO}

tO+1

)
then return 0

〈{id∗i }i∈O∗〉 ← 〈{GOpen(regi, osk i, O
∗, gpk ,m∗, σ∗)}i∈O∗〉

if GVerf(gpk ,m∗, σ∗) = 1 and (case 1 or case 2)
with

case 1) opening failed i.e.,
∃i ∈ O∗ : id∗i = ⊥ or ∃i, j ∈ O∗ : id∗i 6= id∗j

case 2) opening was “incorrect”, i.e., setting id∗ ← id∗maxO∗ ,
id∗ /∈ QGJoin or (id∗ ∈ QGJoin \QCorrupt and (id∗,m∗, σ∗) /∈ QGSign)

return 1
else

return 0

Fig. 1. Security Experiments for
(
nI ,nO
tI ,tO

)
-DGS Schemes.

all issuers may exclude some efficient schemes. The anonymity definition
is thus parametrized to additionally limit the number of issuers that may
be corrupt. In the experiment, the adversary corrupts t∗I issuers, with t∗I
being a function of tI . The strongest anonymity guarantees are achieved
when t∗I = nI , in which case the adversary would output the issuer public
key itself. The scheme presented in Section 4 realizes anonymity for t∗I =
tI < nI/2, i.e., the largest possible value for an interactive key-generation
process to guarantee termination (robustness).

14

Lastly, it is worth noting that w.r.t. key generation, this model is
stronger than that of Bellare et al. [7] in the sense that the keys of corrupt
authorities are not assumed to be honestly generated.

Definition 4 (Anonymity). A
(
nI ,nO
tI ,tO

)
-DGS scheme DGS is anonymous

if for every efficient adversary A, the advantage Advano
DGS,nI ,nO,tI ,tO,A (λ)

of A defined as∣∣∣Pr[Expano−0
DGS,λ,nI ,nO,tI ,tO

(A) = 1]− Pr[Expano−1
DGS,λ,nI ,nO,tI ,tO

(A) = 1]
∣∣∣

is negligible in λ.

Traceability. This notion captures the unforgeability property expected
from dynamic group signatures and guarantees that only users who have
joined the group can compute valid group signatures. With single author-
ities, the opener can be corrupt but the issuer must be honest. Therefore,
adapted to a threshold setting, up to tI out of nI issuers can be corrupt.

Traceability is then formalized through the opening capabilities of
group signatures as described in Figure 1. It guarantees that for any valid
signature σ on a message m, opening can neither fail (Case 1) nor reveal
an “incorrect” identity (Case 2). The first case means that an opener can-
not identify any signer or that the openers do not agree on the identity
of the signer. The second case means that the revealed identity has ei-
ther never joined the group of signers, or has joined and is honest, but
never signed m. The latter is sometimes formalized through a dedicated
non-frameability requirement, and the choice of combining both notions
is discussed below.

Similarly to the case of anonymity, the number of openers that the
adversary can additionally corrupt is parametrized via a bound t∗O. The
strongest traceability notion is achieved when t∗O = nO, i.e., when all
openers can be corrupted. This is however not achievable when openers
maintain state critical for opening, since the winning condition depends
on a correct execution of protocol GOpen. In case of stateful opening, this
requires the non-corrupt registers of at least tO +1 openers. Therefore, in
such settings, at most t∗O = nO − tO − 1 openers can be corrupt.

In comparison, in the traceability definition of Bellare et al. [7] for
single-authority dynamic group signatures, the opener can be fully corrupt
since the register needed to open signatures is rather maintained by the
issuer (and the opener must have read access to it). However, this has the
effect that in their anonymity definition, even if the honestly generated
issuer key is given to the adversary, the challenger must maintain a register

15

on its own to answer opening queries, and the adversary cannot read the
register (though it can write on it) otherwise it would trivially win the
anonymity game. It means that their model only captures a situation in
which the issuer’s key is compromised, but its state is not entirely. In
this sense, even if their traceability definition captures a full corruption of
the opener, the consequence is that their anonymity definition does not
capture full corruption of the issuer.

Definition 5 (Traceability). A
(
nI ,nO
tI ,tO

)
-DGS scheme DGS is traceable if

for all efficient adversary A, Pr
[
Exptrace

DGS,λ,nI ,nO,tI ,tO
(A) = 1

]
is negligible

in λ.

On Non-Frameability. Classical definitions of group signatures with
single authorities also include the notion of non-frameability. It reflects the
idea that even if the issuer and opener are corrupt, they cannot falsely
claim that an honest user computed a given valid signature. Since the
opening algorithm in those definitions returns a long-term user public key,
in practice, a public-key infrastructure would have to bind those keys to
real-world identities; and such an infrastructure would be built with one or
several certification authorities. However, if these certification authorities
collude with the issuer and the opener, they would be able to frame an
honest user. In other words, in real-world applications, users still need to
trust some certification authority to protect them from malicious group-
signature authorities even though the goal of non-frameability is precisely
to avoid trust assumptions.

On the other hand, the rationale of threshold cryptography is that if
there are many parties, some of them might in practice be corrupt but
not all. Since group-signature schemes with several issuers and openers are
now considered, the requirement is that if less than respective threshold
numbers of them are corrupt, no efficient adversary can forge a signature
and falsely claim that an honest user computed it. It is precisely this
requirement that is captured by the last winning condition of the above
definition of traceability. The scheme in Section 4 satisfies this property,
but would not satisfy a definition in which all group-signature authorities
are corrupt.

4 Our Threshold Dynamic Group Signatures

In this section, we build a threshold DGS scheme from (a variant of)
PS signatures. We adopt the GetShorty approach of Bichsel et al. [8] in-
stead of the traditional sign-and-encrypt paradigm. This approach avoids

16

the extra encryption of user identities and enables schemes with highly
compact signatures despite supporting signature opening. Our resulting
signatures are short, and computing and verifying them only require a
few exponentiations in the first group and some pairing computations
(see Table 1).

The efficiency of the GetShorty scheme of Bichsel et al. [8] comes at the
price of fully trusted authority responsible for both issuance and opening.
A threshold setting allows to preserve the efficiency of the GetShorty
approach, yet avoid the need for a single trusted entity. Our scheme shows
that even with the GetShorty approach, the role of issuer and opener can
be separated and distributed, and it enables tI -out-of-nI issuance and tO-
out-of-nO opening. We still pay a small price for the efficiency, as not all
issuers can be corrupt for anonymity and, likewise, not all openers can
be malicious for traceability (contrarily to what might be expected). Still,
moving to a threshold setting already avoids the most critical assumption,
namely a fully trusted party, and instead tolerates corruption of some of
them.

One challenge in designing our scheme is to separate the role of is-
suers and openers. It is necessary in the scheme of Bichsel et al. as the
information needed for opening is created during issuance. Our scheme
avoids that by assuming a public ledger to which users can upload their
opening information during isssuance. This information is encrypted un-
der the opener keys during issuance, and a user must prove to the issuers
that she uploaded a valid ciphertext. In Appendix C, we also present a
scheme that does not assume a ledger but instead combines the roles of
issuer and opener anew, and supports threshold issuance and opening.

We first define the variant of the PS signature scheme on which our
scheme is based and then describe our threshold group signatures.

4.1 Variant of the PS Signature Scheme

Consider the PS signature scheme (Section 2.5) in which the extra scalar
m ′ is computed as H(m). In the same vein, the group element h could also
be returned by the hash function, i.e., (m ′, h)← H(m). This would allow
several signers of the same message to agree on a common base h. The
scheme remains unforgeable and the main difference from the unforgeabil-
ity proof of Pointcheval and Sanders [47, Section 4.3] is that when H is
queried on a message m different from the challenge message, the reduc-
tion algorithm already prepares (σ1, σ2) to be later returned in case the
adversary makes a signing query on m . For more detail, see the unforge-

17

ability proof of the PS multi-signature scheme (introduced in Section E.2)
which relies on the same idea.

This technique is similar to that of Sonnino et al. [52] for their cre-
dential system. They hash a commitment to the signed message to obtain
a base h, even though they apply it to the CT-RSA’16 version of the
PS scheme (so without m ′) and do not formally prove that the scheme
remains secure.

Moreover, assume that the messages to be signed are publicly indexed,
i.e., that for every message m there exists a unique value idxm known to
any signer. To sign a message m , instead of hashing to determine a scalar
m ′ and a base h, a signer could instead compute m ′ as H(idxm). If the
number of messages to be signed is known in advance to be polynomial,
the scheme remains unforgeable under the same assumption since indexing
messages to determine (m ′, h) is equivalent to specifying in the public
parameters a pair (m ′, h) for each message m . It is this variant of the
scheme that is considered in our construction of threshold group signatures
in Section 4.2. Therein, the messages signed are user secret keys sk id
indexed by the user identities id .

4.2 Construction with Separate Issuers and Openers

We first explain the main ideas of our construction, and then detail the
protocols and algorithms.

Key Generation. During set-up, the issuers run the distributed key-
generation protocol of Gennaro et al. [32] with tI as a threshold to
generate a public key for the PS signature scheme so that each of
them holds a share of the secret key. The protocol guarantees that if
tI < nI/2, then the protocol terminates (which cannot be enforced
with a dishonest majority) and no colluding tI issuers can infer any
information about the secret key, whereas any tI + 1 issuers can re-
construct it.
As for the openers, each of them simply generates a pair of ElGamal
keys.

Join. For tI + 1 issuers to add a user to the group, they all blindly sign
with their PS secret-key share a random secret key sk id chosen by the
user. To do so, they need to agree on a common PS base h, so we
used the variant from Section 4.1 of the PS signature scheme. The
user group secret key consists of sk id and the PS signature on it.
For each opener, the user encrypts a tO-out-of-nO Shamir share of
sk id and proves that the ciphertexts are correctly computed. With the

18

ElGamal public keys of the openers, the issuers can verify the proofs
and thus be convinced that the any tO + 1 openers will later be able
to retrieve correct shares of the user secret key if they can access the
ciphertexts.
To make sure that these shares can later be retrieved by the openers,
we assume the existence of an append-only ledger L accessible to all
users, issuers and openers. Once the user has encrypted the shares of
her secret key and has proved that she did so, she writes the encrypted
shares and the proofs on the ledger. The issuers then send their PS
signature-shares only after verifying the proofs. Therefore, each opener
can later retrieve his shares of all group-member secret keys from the
ledger.
Note that since honest issuers add a given user identity id to the group
only once and when the proofs are correct, there is only one entry with
valid proofs per user that can open her signatures. This entry is the
one denoted L[id] in the descripiton of the opening algorithm.

Sign & Verify. To compute a group signature on a message m, the user
computes a signature of knowledge on m of a valid PS signature on a
user secret key sk id . Verifying a signature on a message simply consists
in verifying the signature of knowledge on it.

Open. To open a signature, any tO + 1 openers first retrieve from the
ledger their shares of user secret keys and store them in their regis-
ters. Once the openers’ registers are updated, they test the signature
to be opened against each entry in their registers until they find a user
for which the shares match. It makes opening expensive for the benefit
of having short signatures, which perfectly fits most practical scenar-
ios, in which signatures should be short and opening an uncommon
practice performed by resourceful authorities.

Scheme Description. To formally define the construction, letH0 : {0, 1}∗
→ Zp×G∗, and H1 : {0, 1}∗ → Zp be two random oracles (the latter is to
compute non-interactive proofs of knownledge via the Fiat–Shamir heuris-
tic [27]). Let also ID ⊆ Zp denote a user identity space. The construction
requires as building blocks

– the Section-4.1 variant of the PS signature scheme, further denoted
PS, to sign user secret keys.

– an append-only ledger L with user identities as keys that is available
to all users, issuers and openers

– secure (i.e., authenticated and confidential) channels

19

– a broadcast channel, i.e., a protocol between several parties that allows
a sender to distribute a value to all the other parties so that the
following three properties are satisfied:
1. (termination) the protocol terminates
2. (consistency) all honest parties receive the same value and
3. (validity) if the sender is honest, then the value received by all

honest parties is that of the sender.

Given a type-3 pairing group generator G and a security parame-
ter λ ∈ N, Our

(
nI ,nO
tI ,tO

)
-DGS scheme PS-DGS in a pairing group Γ =(

p,G, G̃,GT , e
)
← G(1λ) is the following:

GSetup(1λ, nI , nO, tI , tO)→ pp : generate (g, g̃) ∈R G∗ × G̃∗. Set ppPS ←
(Γ, g̃, 1) and return pp ← (ppPS, g, nI , nO, tI , tO).

〈{IKG(pp, i)}nIi=1〉 → 〈{(ipk , isk i, st i)}
nI
i=1〉 : is a protocol between all the

issuers who proceed as follows
– the issuers run three times the distributed key-generation protocol

of Gennaro et al. [32] with tI as a threshold in group G̃ to obtain
three uniformly distributed public values X̃ , Ỹ0 and Ỹ1. At the end
of the protocol, each issuer i ∈ [nI] holds shares xi, y0,i and y1,i
such that for any I ∈

(
[nI]
tI+1

)
, if wi denotes the Lagrange coefficient

of issuer i, then x := dlogg̃ X̃ =
∑

i∈I xiwi, and similarly for y0 :=
dlogg̃ Ỹ0 and y1 := dlogg̃ Ỹ1.

– issuer i ∈ [nI] returns
(
ipk ←

(
X̃ , Ỹ0, Ỹ1

)
, isk i ← (i, xi, y0,i, y1,i),

stI ← ⊥). The issuers send ipk to a certification authority which
is assumed to make it publicly available so that anyone can get an
authentic copy of it.

〈{OKG(pp, i)}nOi=1〉 → 〈{(opk , osk i, regi)}
nO
i=1〉 : for each opener, generate

an ElGamal pair of keys (f̃i ← g̃zi , zi) ∈ G̃∗ × Z∗p and initialize an
empty register regi. Set opk i ← f̃i and osk i ← (i, f̃i, zi), and opk ←
((i, opk i))

nO
i=1. For each opener, return (opk , osk i, regi). The opener

send opk to a certification authority.

The group public key gpk is set to (ipk , opk).

GJoin : Assume that there is a broadcast channel between a user U and
the tI + 1 issuers Ii in I ∈

(
[nI]
tI+1

)
. Assume also that there is a se-

cure channel between U and every issuer Ii. In particular, this implies
that an adversary cannot modify the messages sent by the user to the

20

issuers: it can only forward, delay or drop them. Throughout the fol-
lowing description of the protocol, whenever an algorithm receives an
abort or an ill-formed message, or when a verification fails, it inter-
rupts the protocol execution by broadcasting an abort message to all
participants and returning ⊥. The joining protocol between the user
and the issuers is as follows:

1. GJoin.U, on input
(
id , I, gpk =

(
ipk = (X̃ , Ỹ0, Ỹ1), opk

))
,

– choose sk id ∈R Z∗p
– (a′, h)← H0(id)
– hsk ← hsk id ; gsk ← gsk id . Therefore, (g, h, gsk , hsk) is a DDH

tuple. It helps the reduction algorithm of the traceability proof
to efficiently extract the secret keys of adversarial users (under
the ADH-KE assumption).

– π ← NIZK.Prove{sk id : hsk = hsk id ∧ gsk = gsk id}
– generate p1, . . . , ptO ∈R Zp and set P ← sk id +

∑tO
`=1 p`X

` ∈
Zp[X]

– for i ∈ [nO], compute si ← P (i), i.e., Shamir shares of sk id for
each opener

– for ` ∈ [tO], compute h` ← hp` , i.e., verification values as in the
Feldman verifiable secret sharing scheme [26]

– for all i ∈ [nO]:
∗ ri ←$ Zp
∗ C̃i := (C̃i,0, C̃i,1)←

(
g̃ri , f̃ rii Ỹ si

0

)
∗ πi ← NIZK.Prove

{
ri : C̃i,0 = g̃ri , e

(
h, C̃i,1/f̃

ri
i

)
=

e
(
hsk
∏tO
`=1 h

i`

` , Ỹ0

)}
, i.e., compute a proof that C̃i en-

crypts the ith share of sk id

– set L[id]←
(
gsk , hsk , h1, . . . , htO , π,

(
C̃i, πi

)
i∈[nO]

)
– broadcast written to all Ii

2. GJoin.I, for i ∈ I, on input (st i, isk i = (i, xi, y0,i, y1,i), id , I, gpk)

– abort if id ∈ st i
– upon receiving written from U :
∗ (a′, h)← H0(id)

∗ parse L[id] as
(
gsk , hsk , h1, . . . , htO , π,

(
C̃i, πi

)
i∈[nO]

)
∗ NIZK.Verf(g, h, gsk , hsk , π)

?= 1, i.e., verify that it is a DDH
tuple

21

∗ for j ∈ [nO],NIZK.Verf
(
h, (h`)

tO
`=1, Ỹ0, f̃j , C̃j , πj

)
?= 1, i.e.,

verify that the ciphertexts encrypt correct shares for each
opener

∗ Σi,2 ← hxi+yi,1a
′
h
yi,0
sk (i.e., blindly sign sk id via hsk)

∗ st i ← st i ∪ {id}
∗ send Σi,2 to U over a secure channel

3. GJoin.U, upon receiving Σi,2 from all Ii for i ∈ I,
– Σ ←

(
a′, h,

∏
i∈I Σ

wi
i,2 = hx+y0sk id+y1a

′
)
, i.e., reconstruct the

PS signature w.r.t. to ipk
– PS.Verf(ipk , sk id , Σ) ?= 1
– return gsk[id]← (sk id , Σ)

GSign(ipk ,gsk[id],m)→ σ : parse gsk[id] = (sk id , Σ = (a′, Σ1, Σ2)). Gen-
erate r ∈R Z∗p. Compute (Σ′1, Σ

′
2)← (Σr

1 , Σ
r
2) and

π ← NIZK.Prove{(sk id , a′) : PS.Verf(ipk , sk id , (a′, Σ′1, Σ′2)) = 1}(m).

That is, compute, with H1 as random oracle, a Schnorr signature
of knowledge π = (c, vsk , va′) ∈ Z3

p on m of a pair (sk id , a
′) such

that e
(
Σ′1

sk id , Ỹ0

)
e
(
Σ′1

a′ , Ỹ1

)
= e(Σ′2, g̃)e(Σ

′
1, X̃)−1. Return σ ←

(Σ′1, Σ
′
2, π).

GVerf(ipk ,m, σ)→ b ∈ {0, 1} : parse σ as (Σ1, Σ2, π). Return the truth
value of NIZK.Verf(gpk , Σ1, Σ2,m, π). That is, return 1 if

c = H1

(
ipk , Σ1, Σ2, e

(
Σ1

vsk , Ỹ0

)
e
(
Σ1

va′ , Ỹ1

)
e (Σ2

c, g̃) e
(
Σ1
−c, X̃

)
,m
)

and 0 otherwise.

GOpen : is run by tO + 1 openers Oi (for i ∈ O) to recover the identity
of the user who computed a valid group signature σ = (Σ1, Σ2, π)
on a message m. To do so, the openers first update their registers by
checking the public ledger L. Then, the opening algorithms loop over
the entries of their registers regi containing encryptions of shares Ỹ si

0

recorded during executions of protocol GJoin. For each identity id for
which they have a share, the opening algorithms use their shares to
determine whether (a′, Σ1, Σ2) (with (a′, h) = H0(id)) is a valid PS
signature on the unique value determined by their tO+1 shares of the
secret key of user id . If it is the case, the algorithms return id . If no

22

such identity is found, the opening algorithm returns ⊥. The protocol
assumes a broadcast channel between the participating openers, and
also that the protocol is aborted as soon as an algorithm receives an
abort or an ill-formed message.
Formally, GOpen (regi, osk i = (i, zi) , I, gpk ,m, σ = (Σ1, Σ2, π)) is as
follows:
1. if GVerf(ipk ,m, σ) = 0 then return ⊥
2. for all id such that L[id] 6= ⊥, if regi[id] = ⊥ then parse L[id] as(

gsk , hsk , h1, . . . , htO , π, (C̃i, πi)i∈[nO]

)
and set regi[id]← C̃i,1/C̃

zi
i,0

3. for all id such that regi[id] 6= ⊥, compute Tid ,i ← e
(
Σ1, C̃i,1/C̃

zi
i,0

)
4. broadcast Si ← {(id , Tid ,i)}id : regi[id] 6=⊥ to all the openers in I
5. upon receiving Sj from all the other openers Oj (for j ∈ I\{i}),

– for j ∈ I, compute wj ←
∏
`∈I\{j} `/(` − j), i.e., the jth La-

grange coefficient
– for all (id , Tid ,i) ∈ Si (in lexicographic order of user identities)
∗ if ∃j ∈ I : (id , ∗) /∈ Sj then continue
∗ (a′, h)← H0(id)
∗ for all j ∈ I\{i}, retrieve (id , Tid ,j) from Sj

∗ if e
(
Σ1, X̃ Ỹ a′

1

)∏
j∈I T

wj
id ,j = e(Σ2, g̃) then return id

6. return ⊥ (i.e., in case the previous equality holds for no tuple in
regi).

Remark 1. The signing and verification algorithms only need the short
issuer public key, not the entire group public key.

Correctness & Security. PS-DGS is correct. It is also anonymous under
the first-group DDH and the SDL assumptions over the pairing-group
generator G for any tO < nO/2 and tI = t∗I < nI/2. Moreover, denoting
by qH0 the number of H0 queries, scheme PS-DGS satisfies traceability
under the qH0-MSDH-1, the ADH-KE and the SDL assumptions over
the pairing-group generator G for any tI < nI/2, tO < nO and t∗O =
min(tO, nO − tO − 1). The hardness assumptions are recalled in Section
2.3 and proofs of these statements are given in Appendix B.

Discussion. The anonymity of the scheme is only guaranteed if less than
half of the issuers are corrupt, and not all as one would hope. One reason
is that the generation of the issuer keys is interactive, so for the protocol
to terminate, there cannot be a dishonest majority. Another reason is that
the reduction to the DDH requires to know all issuer secret keys which are

23

shares of the PS secret key obtained during the key-generation protocol.
To be able to reconstruct the shares of the corrupt issuers, the number
n− t∗I of honest issuers must be greater than t∗I .

Concerning traceability, it requires the number of corrupt openers not
only to be smaller than nO − tO − 1 as explained in Section 3, but also
smaller than tO. It is due to the fact that even though the openers are
separate from the issuers, they must still obtain user secret key shares from
the joining protocol to be able to open signatures. In this sense, opening
is not completely independent of issuance, and it is precisely what allows
the signatures of the scheme to be so short. This constraint on the number
of corrupt openers appears in the proof of Lemma 3 in which the forked
algorithm must simulate shares of user secret keys, and it can only do so
if at most tO openers are corrupt since the opening threshold is tO + 1.

Efficiency. On a Cocks–Pinch pairing curve [35] defined over a field of or-
der 2544 and with embedding degree 8, group elements in G take 68 Bytes
for a group of 256-bit order. Note that this curve provides 131 bits of
security [35].

A group signature from our scheme consists of two G elements and
three Zp elements, totalling 232 Bytes. The hash value in the proof of
knowledge of a multi-signature can actually be shortened to second-preima-
ge resistant length, further shortening a group signature to 216 Bytes.

Considering only group operations, computing a signature costs 4 ex-
ponentiations in G and the product of 2 pairing values. Verifying a sig-
nature costs 4 exponentiations in G and the multiplication of 4 pairing
values.

Comparison with other Schemes. Table 1 gives a comparison of our
threshold DGS scheme of with other CCA-anonymous dynamic group
signatures schemes based on pairings. Lattice-based schemes are absent
from the table since have considerably larger signatures than pairing-based
ones, and are therefore less preferred for practical applications.

Note that unlike the scheme of Bichsel et al. [8] and the scheme of
Pointcheval and Sanders [46, Appendix A.1], our scheme supports thresh-
old issuance and threshold opening, and does not rely on an interactive
assumption, but rather a q-type of assumption.

The table features the CL and BBS* scheme. As explained in the in-
troduction, Gennaro et al. extended [31] those schemes to make them sup-
port threshold issuance. Since those schemes follow the sign-and-encrypt

24

Scheme Sig. Size Sign Verify tI < tO <

PS-DGS [Section 4] 2G+ 3Zp 4G+ 1P 2 4G+ 1P 4 nI/2 nO/2

PS [46] 2G+ 2Zp 2G+ 1GT 3G+ 1P 3 7 7

Bichsel et al. [8] 3G+ 2Zp 3G+ 1GT 1G+ 1G2 + 2P 2 7 7

CL [21,31] 7G+ 4Zp 11G+ 1G2 + 1G2
T

1G+ 2G2 + 2G3

nI/2 nO/2
+1G̃2 + 2P 2

BBS* [8,31] 4G+ 5Zp 5G+ 3G2 + 1G5
T

4G2 + 1G3 + 1G4

nI/2 nO/2
+1P 2

Coconut [52] 3G+ 1G̃+ 3Zp 4G+ 1G̃3 + 1G̃2 1G+ 1G2 + 1G̃4

nI/2 7
+P 2

Table 1. Comparison of our PS-DGS scheme with other schemes in terms of signature
sizes, and the cost to compute and verify signatures. For the signing and verification
costs, G` indicates an `-exponentiation in G, and similarly for G̃ and GT . P denotes the
number of pairing computations required, and P ` stands for the product of ` pairing
values, which is more efficient than computing ` pairings separately. The cost for open-
ing is given asymptotically in the number of registered users. The table also gives strict
upper bounds for the number of issuers and openers that can be corrupt for traceability
and anonymity to hold, respectively. These bounds assume that all key-generation pro-
tocols terminate, hence a necessary honest majority. The mention 7 appears in case a
property is not defined (in a distributed setting) for the scheme. Note that the bounds
for the CL and BBS* schemes are only purported as there is no formal model for their
threshold versions [31].

paradigm, the CL and BBS* scheme also easily allow for threshold open-
ing. Note that generating the decryption key in a distributed and robust
way (e.g., with the protocol of Gennaro et al.) would require an honest
majority of openers. However, the security guarantees of those scheme in a
threshold setting are unclear since Gennaro et al. did not provide a formal
model for threshold group signatures schemes.

The table also includes the “Coconut” credential system which is based
on the CT-RSA16 version of the PS signature scheme. The first reason is
that their system and our scheme are related as presenting a credential
consists in proving that a user knows a signature from an authority on her
attributes. It is also how our group signatures are computed. It should be
noted that the verification of a coconut token involves a multiplication in
G, which is approximately as expensive as a squaring, so it was counted as
an exponentiation. Their system is further related to ours in that it sup-
ports threshold issuance. However, since it is a credential system, there is
no need for opening, and it therefore avoids the challenge of also achiev-
ing (threshold) opening while maintaining signatures short. Besides, the
authors did not provide a security model to analyze their scheme.

25

One can see that, except for the PS group signatures (of which the
non-threshold traceability relies on an interactive assumption) which are
not defined in a threshold setting, the signatures of our scheme are the
shortest. Indeed, even when compared to the signatures of Bichsel et al. [8],
our signatures are shorter since Zp elements are typically shorter than G
elements.

Acknowledgments. Most of the work of the first four authors was
done while being at IBM Research – Zurich. The authors thank David
Pointcheval for helpful discussions. This work was supported by the CHIST-
ERA USEIT project and the EU H2020 Research and Innovation Program
under Grant Agreement No. 786725 (OLYMPUS).

References

1. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably secure
coalition-resistant group signature scheme. In M. Bellare, editor, CRYPTO 2000,
volume 1880 of LNCS, pages 255–270. Springer, Heidelberg, Aug. 2000.

2. A. Bagherzandi, J. H. Cheon, and S. Jarecki. Multisignatures secure under the
discrete logarithm assumption and a generalized forking lemma. In P. Ning, P. F.
Syverson, and S. Jha, editors, ACM CCS 08, pages 449–458. ACM Press, Oct.
2008.

3. M. Bellare, G. Fuchsbauer, and A. Scafuro. NIZKs with an untrusted CRS: Secu-
rity in the face of parameter subversion. In J. H. Cheon and T. Takagi, editors,
ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 777–804. Springer, Hei-
delberg, Dec. 2016.

4. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures:
Formal definitions, simplified requirements, and a construction based on general
assumptions. In E. Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS,
pages 614–629. Springer, Heidelberg, May 2003.

5. M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a
general forking lemma. In A. Juels, R. N. Wright, and S. Vimercati, editors, ACM
CCS 06, pages 390–399. ACM Press, Oct. / Nov. 2006.

6. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for de-
signing efficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73. ACM
Press, Nov. 1993.

7. M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of
dynamic groups. In A. Menezes, editor, CT-RSA 2005, volume 3376 of LNCS,
pages 136–153. Springer, Heidelberg, Feb. 2005.

8. P. Bichsel, J. Camenisch, G. Neven, N. P. Smart, and B. Warinschi. Get shorty
via group signatures without encryption. In J. A. Garay and R. D. Prisco, editors,
SCN 10, volume 6280 of LNCS, pages 381–398. Springer, Heidelberg, Sept. 2010.

9. J. Blömer, J. Juhnke, and N. Löken. Short group signatures with distributed
traceability. In I. S. Kotsireas, S. M. Rump, and C. K. Yap, editors, Mathemat-
ical Aspects of Computer and Information Sciences, pages 166–180, Cham, 2016.
Springer International Publishing.

26

10. A. Boldyreva. Threshold signatures, multisignatures and blind signatures based on
the gap-Diffie-Hellman-group signature scheme. In Y. Desmedt, editor, PKC 2003,
volume 2567 of LNCS, pages 31–46. Springer, Heidelberg, Jan. 2003.

11. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin,
editor, CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer, Heidelberg,
Aug. 2004.

12. D. Boneh, M. Drijvers, and G. Neven. Compact multi-signatures for smaller
blockchains. In T. Peyrin and S. Galbraith, editors, ASIACRYPT 2018, Part II,
volume 11273 of LNCS, pages 435–464. Springer, Heidelberg, Dec. 2018.

13. D. Boneh, S. Eskandarian, and B. Fisch. Post-quantum EPID group signatures
from symmetric primitives. Cryptology ePrint Archive, Report 2018/261, 2018.
https://eprint.iacr.org/2018/261.

14. D. Boneh and H. Shacham. Group signatures with verifier-local revocation. In
V. Atluri, B. Pfitzmann, and P. McDaniel, editors, ACM CCS 04, pages 168–177.
ACM Press, Oct. 2004.

15. D. Boneh and V. Shoup. A Graduate Course in Applied Cryptography. 2017.
16. C. Boschini, J. Camenisch, and G. Neven. Floppy-sized group signatures from

lattices. In B. Preneel and F. Vercauteren, editors, ACNS 18, volume 10892 of
LNCS, pages 163–182. Springer, Heidelberg, July 2018.

17. E. F. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. In
V. Atluri, B. Pfitzmann, and P. McDaniel, editors, ACM CCS 04, pages 132–145.
ACM Press, Oct. 2004.

18. J. Camenisch, L. Chen, M. Drijvers, A. Lehmann, D. Novick, and R. Urian. One
TPM to bind them all: Fixing TPM 2.0 for provably secure anonymous attestation.
In 2017 IEEE Symposium on Security and Privacy, pages 901–920. IEEE Computer
Society Press, May 2017.

19. J. Camenisch and J. Groth. Group signatures: Better efficiency and new theoretical
aspects. In C. Blundo and S. Cimato, editors, SCN 04, volume 3352 of LNCS, pages
120–133. Springer, Heidelberg, Sept. 2005.

20. J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to
efficient revocation of anonymous credentials. In M. Yung, editor, CRYPTO 2002,
volume 2442 of LNCS, pages 61–76. Springer, Heidelberg, Aug. 2002.

21. J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials
from bilinear maps. In M. Franklin, editor, CRYPTO 2004, volume 3152 of LNCS,
pages 56–72. Springer, Heidelberg, Aug. 2004.

22. M. Chase and A. Lysyanskaya. On signatures of knowledge. In C. Dwork, editor,
CRYPTO 2006, volume 4117 of LNCS, pages 78–96. Springer, Heidelberg, Aug.
2006.

23. D. Chaum and E. van Heyst. Group signatures. In D. W. Davies, editor, EU-
ROCRYPT’91, volume 547 of LNCS, pages 257–265. Springer, Heidelberg, Apr.
1991.

24. D. Derler and D. Slamanig. Highly-efficient fully-anonymous dynamic group sig-
natures. In J. Kim, G.-J. Ahn, S. Kim, Y. Kim, J. López, and T. Kim, editors,
ASIACCS 18, pages 551–565. ACM Press, Apr. 2018.

25. Y. Desmedt and Y. Frankel. Threshold cryptosystems. In G. Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 307–315. Springer, Heidelberg, Aug.
1990.

26. P. Feldman. A practical scheme for non-interactive verifiable secret sharing. In
28th FOCS, pages 427–437. IEEE Computer Society Press, Oct. 1987.

27

https://eprint.iacr.org/2018/261

27. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In A. M. Odlyzko, editor, CRYPTO’86, volume 263 of
LNCS, pages 186–194. Springer, Heidelberg, Aug. 1987.

28. I. O. for Standardization, 2015.
29. G. Fuchsbauer and M. Orrù. Non-interactive zaps of knowledge. In B. Preneel and

F. Vercauteren, editors, ACNS 18, volume 10892 of LNCS, pages 44–62. Springer,
Heidelberg, July 2018.

30. T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A virtual
machine-based platform for trusted computing. In Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles, SOSP ’03. ACM.

31. R. Gennaro, S. Goldfeder, and B. Ithurburn. Fully distributed group signatures,
2019.

32. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key gener-
ation for discrete-log based cryptosystems. In J. Stern, editor, EUROCRYPT’99,
volume 1592 of LNCS, pages 295–310. Springer, Heidelberg, May 1999.

33. E. Ghadafi. Efficient distributed tag-based encryption and its application to group
signatures with efficient distributed traceability. In D. F. Aranha and A. Menezes,
editors, LATINCRYPT 2014, volume 8895 of LNCS, pages 327–347. Springer, Hei-
delberg, Sept. 2015.

34. T. C. Group. Trusted platform module library specification,family “2.0”, 2014.
35. A. Guillevic, S. Masson, and E. Thomé. Cocks–pinch curves of embedding degrees

five to eight and optimal ate pairing computation. 2019.
36. B. Libert, S. Ling, F. Mouhartem, K. Nguyen, and H. Wang. Adaptive obliv-

ious transfer with access control from lattice assumptions. In T. Takagi and
T. Peyrin, editors, ASIACRYPT 2017, Part I, volume 10624 of LNCS, pages 533–
563. Springer, Heidelberg, Dec. 2017.

37. B. Libert and M. Yung. Dynamic fully forward-secure group signatures. In D. Feng,
D. A. Basin, and P. Liu, editors, ASIACCS 10, pages 70–81. ACM Press, Apr. 2010.

38. S. Ling, K. Nguyen, H. Wang, and Y. Xu. Lattice-based group signatures: Achiev-
ing full dynamicity with ease. In D. Gollmann, A. Miyaji, and H. Kikuchi, editors,
ACNS 17, volume 10355 of LNCS, pages 293–312. Springer, Heidelberg, July 2017.

39. S. Ling, K. Nguyen, H. Wang, and Y. Xu. Constant-size group signatures from
lattices. In M. Abdalla and R. Dahab, editors, PKC 2018, Part II, volume 10770
of LNCS, pages 58–88. Springer, Heidelberg, Mar. 2018.

40. M. Manulis. Democratic group signatures on example of joint ventures. Cryptology
ePrint Archive, Report 2005/446, 2005. http://eprint.iacr.org/2005/446.

41. M. Manulis, N. Fleischhacker, F. Günther, F. Kiefer, and B. Poettering. Group
signatures: Authentication with privacy, 2012.

42. G. Maxwell, A. Poelstra, Y. Seurin, and P. Wuille. Simple schnorr multi-signatures
with applications to bitcoin. Designs, Codes and Cryptography, 2019.

43. S. Micali, K. Ohta, and L. Reyzin. Accountable-subgroup multisignatures: Ex-
tended abstract. In ACM CCS 01, pages 245–254. ACM Press, Nov. 2001.

44. G. Neven, G. Baldini, J. Camenisch, and R. Neisse. Privacy-preserving attribute-
based credentials in cooperative intelligent transport systems. In 2017 IEEE Ve-
hicular Networking Conference, VNC 2017, pages 131–138. IEEE, 2017.

45. J. Petit, F. Schaub, M. Feiri, and F. Kargl. Pseudonym schemes in vehicular
networks: A survey. IEEE Communications Surveys and Tutorials, 17(1):228–255,
2015.

46. D. Pointcheval and O. Sanders. Short randomizable signatures. In K. Sako, ed-
itor, CT-RSA 2016, volume 9610 of LNCS, pages 111–126. Springer, Heidelberg,
Feb. / Mar. 2016.

28

http://eprint.iacr.org/2005/446

47. D. Pointcheval and O. Sanders. Reassessing security of randomizable signatures.
In N. P. Smart, editor, CT-RSA 2018, volume 10808 of LNCS, pages 319–338.
Springer, Heidelberg, Apr. 2018.

48. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, 13(3):361–396, June 2000.

49. C.-P. Schnorr. Efficient identification and signatures for smart cards. In G. Bras-
sard, editor, CRYPTO’89, volume 435 of LNCS, pages 239–252. Springer, Heidel-
berg, Aug. 1990.

50. C.-P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, Jan. 1991.

51. A. Shamir. How to share a secret. Communications of the Association for Com-
puting Machinery, 22(11):612–613, Nov. 1979.

52. A. Sonnino, M. Al-Bassam, S. Bano, and G. Danezis. Coconut: Threshold issuance
selective disclosure credentials with applications to distributed ledgers. CoRR,
abs/1802.07344, 2018.

53. W. Whyte, A. Weimerskirch, V. Kumar, and T. Hehn. A security credential man-
agement system for V2V communications. In 2013 IEEE Vehicular Networking
Conference, pages 1–8. IEEE, 2013.

54. D. Zheng, X. Li, C. Ma, K. Chen, and J. Li. Democratic group signatures with
threshold traceability. Cryptology ePrint Archive, Report 2008/112, 2008. http:
//eprint.iacr.org/2008/112.

A Generalized Forking Lemma

This section presents the generalized forking lemma which provides key
arguments in the security proofs of our group signatures.

The original forking lemma was formulated by Pointcheval and Stern
[48] to analyze the security of Schnorr signatures [50]. The lemma rewinds
a forger A against the Schnorr signature scheme in the random-oracle
model (ROM) to a “crucial” random-oracle query (typically, the query in-
volved in a forgery) and runs A again from the crucial query with fresh
random-oracle responses. The lemma essentially translates that if A has
non-negligible success probability in a single run, then the forking algo-
rithm will generate two successful executions with non-negligible proba-
bility.

Bellare and Neven [5] generalized the forking lemma to apply to any
algorithm A in the random-oracle model using a single rewinding, while
Bagherzandi, Cheon, and Jarecki [2] generalized the lemma even further to
multiple subsequent rewindings on multiple crucial queries. This section
recalls a slight modification of the latter version.

Let A be an algorithm that is given an input in as well as randomness
f = (ρ, h1, . . . , hqH), where ρ is A’s random tape and h1, . . . , hqH are
random values from Zq. Let Ω be the space of all such vectors f and
let f |i = (ρ, h1, . . . , hi−1). Consider an execution of A on input in and

29

http://eprint.iacr.org/2008/112
http://eprint.iacr.org/2008/112

randomness f with access to oracle O, denoted AO(in, f), as successful
if it outputs a tuple (J, {out j}j∈J , aux), where J is a multi-set that is a
non-empty subset of {1, . . . , qH}, {out j}j∈J is a multi-set of side outputs,
and aux is an additional set of auxiliary outputs. A is said to have failed
if it outputs J = ∅. Let ε be the probability that A(in, f) is successful
for fresh randomness f ←$ Ω and for an input in ←$ IG generated by an
input generator IG.

For a given input in, the generalized forking algorithm GFA is defined
as follows:

GFA(in):
f = (ρ, h1, . . . , hqH)←$ Ω
(J, {out j}j∈J , aux)← AO(in, f)
If J = ∅ then return fail
Aux ← aux
Let J = {j1, . . . , jn} such that j1 ≤ . . . ≤ jn
For i = 1, . . . , n do

succi ← 0 ; ki ← 0 ; kmax ← 8nqH/ε · ln(8n/ε)
Repeat until succi = 1 or ki > kmax

f ′′ ←$ Ω such that f ′′|ji = f |ji
Let f ′′ = (ρ, h1, . . . , hji−1, h

′′
ji
, . . . , h′′qH)

(J ′′, {out ′′j }j∈J ′′ , aux)← AO(in, f ′′)
Aux ← Aux ∪ aux
If h′′ji 6= hji and J ′′ 6= ∅ and ji ∈ J ′′ then

out ′ji ← out ′′ji ; succi ← 1

If succi = 1 for all i = 1, . . . , n
Then return (J, {out j}j∈J , {out ′j}j∈J ,Aux)
Else return fail

GFA is considered successful if it does not return fail. The main difference
to Bagherzandi et al.’s forking lemma [2] is A’s access to the oracle O and
the additional auxiliary output aux that gets accumulated in Aux over all
runs of A, including failed runs. If the oracle O is deterministic, meaning
that it always answers the same query with the same response, it is easy
to see that these extensions do not impact the bounds of their forking
lemma, so the following statement still holds.

Lemma 1 (Generalized Forking Lemma [2]). Let IG be a randomized
algorithm and A be a randomized algorithm running in time τ with access
to a deterministic oracle O that succeeds with probability ε. If q > 8nqH/ε,
then GFA(in) runs in time at most τ ·8n2qH/ε·ln(8n/ε) and succeeds with

30

probability at least ε/8, where the probability is over the choice of in ←$ IG
and over the coins of GFA.

B Security of our Threshold Dynamic Group Signatures

In this section, we prove the lemmas and theorems in Section 4.

Lemma 2 (Unanimity). Protocol GOpen is unanimous between honest
openers in the anonymity and traceability security experiments. That is,
for all (O,m, σ), if id i denotes the output of the ith opening algorithm and
HO the index set of honest openers, then id i = id j for all i, j ∈ O ∩HO.

Proof. During GOpen protocol executions, the broadcast protocol and the
fact that the ledger is publicly available ensure that all honest openers
receive the same opening sets Sj . Moreover, the opening algorithms test
the signature verification equality only on identities for which they all
have an entry in their registers. As they proceed in the same order (i.e.,
lexicographic order), the claim follows. ut

Lemma 3 (Forgery). If the SDL assumption over the pairing-group gen-
erator G holds, then in the anonymity and traceability security experiments
for PS-DGS, no efficient adversary A can forge, with non-negligible proba-
bility, a signature that opens to an honest user for which it has not queried
the secret keys. That is, no efficient adversary A can, with non-negligible
probability, make an oracle query GOpen(O,m, σ), or, in the traceability
experiment, output (I∗,m∗, σ∗), such that the identity id/id∗ output by
the opening algorithms of the honest openers in O/O∗ is so that id/id∗ ∈
QGJoin\QCorrupt (which implies id/id∗ 6= ⊥) and (id ,m, σ)/(id∗,m∗, σ∗) /∈
QGSign.

Proof. This lemma can be proved by contradiction as follows. Assume
that there exists an adversary A that computes such a forgery in either of
the games with probability at least ε and in time τA. Assume p > 8qH1/ε.
Consider a reduction algorithm B which interacts with the SDL challenger.

On the input of an SDL tuple (g, g̃, gµ, g̃µ), the idea of the proof is to
compute a PS signature on µsk id∗ with sk id∗ ∈R Z∗p chosen by B for a
random user identity id∗. If this identity is the one for which A forges a
signature, then B can extract µsk id∗ , so also µ and win the SDL game. To
extract µsk id∗ , algorithm B runs the forking algorithm of the generalized
forking lemma (Lemma 1) on an algorithm A′ of which A is a sub-routine.

In more detail, A′ runs on the input of public parameters pp as in the

scheme, of a tuple (g1, g̃1, g2, g̃2) ∈
(
G∗ × G̃∗

)2
and of a random tape ρ.

31

A′ answers random-oracle queries as follows:

– H0(id) : forward the query to B.
– H1(b ∈ {0, 1}∗) : if (b, ∗) /∈ QH1 then generate c ∈R Zp, do ctr ←

ctr + 1, add (b, c, ctr) to QH1 and return c; else retrieve (b, c, ι) from
QH1 and return c.

During the key-generation phase, A′ proceeds as in the real scheme.
At the end of the protocol, it reconstructs the secret keys x, y0 and y1
using the shares of the honest issuers. It can do so since there are at least
tI + 1 honest issuers by assumption. If y0 = 0 mod p, which occurs with
probability at most 1/p, algorithm B aborts its interaction with A and
sends a uniformly random Z∗p element to the SDL challenger.
A′ then answers game-oracle queries as follows (if a check fails or if it

ever aborts, A′ returns (∅, ∅, ∅)):

– GJoin.U(id , I) : check that I ∈
(
[nI]
tI+1

)
. Add id to QGJoin. A GJoin

execution is triggered and B plays the role of the user and of the
honest issuers.
∗ if id 6= id∗, follow the protocol but also save sk id in regj [id] for

each honest opener Oj .
∗ if id = id∗, first check that id∗ /∈ st i for all honest issuer Ii. Make

an internal query (a′∗, r∗)← H0(id
∗). Next, generate sk id∗ ∈R Z∗p

and shares (si)i∈[nO] of 0Zp (, so
∑

j∈I sjwj = 0 mod p for all O ∈(
[nO]
tO+1

)
). Compute hsk ← g

r∗sk id∗
2 = g

r∗µsk id∗
1 and gsk ← g

sk id∗
2 . To

compute verification values (h1, . . . , htO) that convince all corrupt
issuers and openers that si is a valid share of dloggr∗1 (hsk) = µsk id∗ ,
solve via Gaussian elimination the linear system (with the notation
x · g := gx for x ∈ Zp and g ∈ G)

[
i · · · itO

]
i∈CO

 h1...
htO

 =
[
(gr
∗

1)si(h∗sk)
−1]

i∈CO

with unknowns h1, . . . , htO and CO as the set of corrupt openers.
This linear system has a solution since

[
i · · · itO

]
i∈CO is full-rank,

for it is a sub-matrix of a Vandermonde matrix and the positions
i ∈ CO are pairwise distinct. It should be noted that unlike the
case of the real protocol, there is no relation between the value
µsk∗id signed by the issuers and the shares si.

32

Now, programH1 to simulate a proof of knowledge π of dlogg1(gsk) =
dloggr∗1

(hsk). For i ∈ CO, compute as in the scheme ciphertexts C̃i
using the h1, . . . , htO values obtained by solving the linear system,
as well as proofs πi. For each honest opener i, choose uniformly
random C̃i and program oracle H1 to simulate proofs of knowl-
edge πi.
Set L[id] as in the real protocol, and playing the role of the user,
broadcast written. Under the DDH assumption over G̃, from the
point of view of A, the distribution of L[id] is indistinguishable
from its distribution in the real protocol since A can decrypt at
most tO shares. The distinguishing advantage of A is at most nO
times the advantage of B running it as a sub-routine and attempt-
ing to win DDH game in G̃.
Compute signature shares on µsk id∗ (using hsk) for each the honest
issuers and send them to the user after adding id∗ to their states.
Upon receiving signature shares from A, reconstruct the PS signa-
ture and verify the result as in the proof of each of the properties
(anonymity of traceability). The resulting signature is(

a′
∗
, Σ∗1 ← gr

∗
1 , Σ

∗
2 ←

(
gr
∗

1

)x+y0µsk id∗+y1a
′∗)

,

i.e., it is a signature on µsk id∗ . Set gsk[id∗] ← (⊥, (a′∗, Σ∗1 , Σ∗2))
and for all honest Oj , set regj [id∗] as in the scheme but also ap-
pend (si)

nO
i=1.

– GJoin.Ii(id , I) : check that i ∈ I ∈
(
[nI]
tI+1

)
. Add id toQGJoin andQCorrupt

(note that id 6= id∗ in the event in which the adversary outputs a
forgery, necessarily). A GJoin protocol execution is triggered. Play the
role of the honest issuers and follow the protocol. If the protocol suc-
ceeds, reconstruct Ỹ sk id

0 with the shares given by the adversary (recall
that there are at least tO + 1 honest openers in either game) for is-
suers in I, and append Ỹ sk id

0 to regj [id] for each honest opener Oj . If
the reconstructed value is not consistent with the share of an honest
opener (which can be verified with the pairing), abort the protocol for
it means that A broke the soundness of the zero-knowledge proof. It
occurs with probability at most (qH1 + 1)/p. The probability that it
occurs for any of the identities is then at most |ID |(qH1 + 1)/p.

– GSign(id ,m) : check that id ∈ QGJoin \ QCorrupt. If id 6= id∗ then
compute σ ← GSign(ipk ,gsk[id],m), add (id ,m, σ) to QGSign and re-
turn σ. If id = id∗ then fetch (⊥, (a′∗, Σ∗1 , Σ∗2)) ← gsk[id∗], generate

33

α ∈R Z∗p, compute (Σ′1, Σ′2)← (Σ∗1 , Σ
∗
2)
α, simulate a proof π of knowl-

edge of µsk∗id and a′∗ by programmingH1, add (id ,m, σ = (Σ′1, Σ
′
2, π))

to QGSign, and return σ.
– GOpeni(O,m, σ = (Σ1, Σ2, π)) : check that i ∈ O ∈

(
[nO]
tO+1

)
. Add

(m, σ) to QGOpen. A GOpen execution is triggered. Play the role of
the honest openers in O. Check that GVerf(ipk ,m, σ) = 1. Update the
registers as in the real scheme. Test the equality

e
(
Σ1, g̃

x+y1a′
∗

1 g̃
y0sk id∗
2

)
= e(Σ2, g̃1).

∗ If the equality does not hold but e
(
Σ1, g̃

x+y1a′

1 Ỹ sk id
0

)
= e(Σ2, g̃1)

for an identity id 6= id∗ ∈ QGJoin\QCorrupt, where (a′, h)← H0(id),
then A forged a signature on an honest identity id 6= id∗ for which
it does not have the secret key. Abort the interaction with A and
send a uniformly random Z∗p element to the SDL challenger. This is
to make sure that the first identity for which A forges a signature
is id∗ with probability 1/|ID |.
∗ If it holds, if id∗ ∈ QGJoin and if (id∗,m, σ) /∈ QGSign then A has

forged σ on m for id∗.
Parsing σ as (Σ1, Σ2, π = (c, vsk , va′)), let ισ be the computation
step at which A queried H1 on bσ ← (ipk , Σ1, Σ2, u,m) with

u := e
(
Σvsk

1 , Ỹ0

)
e
(
Σ
va′
1 , Ỹ1

)
e
(
Σ−c1 , X̃

)
e (Σc

2, g̃1) ,

be it the step at which it outputs the forgery, i.e., ισ is such that
(bσ, c, ισ) ∈ QH1 . Algorithm A′ sets J ← {ισ} and aux ← ∅, and
returns (J, {σ}, aux).
∗ If the equality holds and if (id∗,m, σ) ∈ QGSign (which implies
id∗ ∈ QGJoin) then fetch regi[id

∗] = (∗, (si)nOi=1). For j ∈ I \ {i},
compute Tid∗,j ← e

(
Σ1, Ỹ0

)sj
. Compute

Tid∗,i ←

e(Σ1, g̃
y0sk id∗
2

) ∏
j∈I\{i}

T
−wj
id∗,j

1/wi

= e
(
Σ1, Ỹ0

)(µsk id∗−
∑
j 6=i sjwj)/wi

= e
(
Σ1, Ỹ0

)µsk id∗/wi+si
.

The values (Tid∗,j)j∈I are indistinguishable from the values in the
real protocol since µsk id∗/wi+si and (sj)j∈I\{i} are valid shares of
µsk id∗ (recall that

∑
j∈I sjwj = 0 for all O ∈

(
[nO]
tO+1

)
). Therefore,

34

with Tid∗,i thus computed, the corrupt participating openers, if
they follow the protocol, will open to id∗. For the identities id 6=
id∗ such that regi[id] 6= ⊥, compute the Tid ,i values as in the
scheme. Follow the rest of the protocol.
∗ If the equality does not hold and id∗ ∈ QGJoin, proceed as in the

previous case in which the equality held and (id∗,m, ∗) ∈ QGSign.
The same indistinguishability arguments apply.
∗ If the equality does not hold and id∗ /∈ QGJoin then follow the

protocol.
– RevealU(id) : if id = id∗ then abort the interaction with A and send

a uniformly random Z∗p element to the SDL challenger. Add id to
QRevealU. Return gsk[id].

– ReadReg(i, id) : (in the traceability experiment only) return regi[id].
– WriteReg(i, id , v) : (in the anonymity experiment only) set regi[id]←
v.

– In the anonymity experiment Expano−b
DGS,λ,nI ,nO,tI ,tO

(A) for b ∈ {0, 1},
at the challenge phase, if id∗ 6= id b then return GSign(ipk ,gsk[id b],
m∗). If id b = id∗ then generate α ∈R Z∗p, compute Σ1 ← gα1 and
Σ2 ← Σx+y1a′

∗

1 (g2)
αy2sk

∗
id . Simulate a proof π of knowledge of µsk id∗

and a′∗ by programming H1. Return (Σ1, Σ2, π).

If A never forges a signature for an honest identity, A′ returns (∅, ∅, ∅).
The reduction algorithm B then proceeds as follows. Upon receiving Γ

and (g1, g̃1, g2, g̃2) from the challenger, B sets ppPS ← (Γ, g̃1, 1) and pp ←
(ppPS, g, nI , nO, tI , tO). It then runs A′ on the input of pp, (g1, g̃1, g2, g̃2)
and a uniformly random tape ρ.

Throughout its interaction with A′, algorithm B answers random-
oracle queries as follows:

– H0(id) : if (id , ∗) /∈ QH0 then forward the query to C, receive (a′, h),
add (id , (a′, h)) toQH0 and return (a′, h); else retrieve (id , (a′, h)) from
QH0 and return (a′, h).

Recall that p > 8tqH1/ε by assumption. With probability at least ε/8
and with running time at most 8qH1/ε · ln(8/ε) · τA, the forking algo-
rithm of the generalized forking lemma (Lemma 1) applied to A′ returns
({ισ}, {σ}, {σ′},Aux). That is, it returns two forgeries for honest identi-
ties.

Parsing σ as (Σ1, Σ2, π = (c, vsk , va′)), the computation step at which
A queried H1 on (ipk , Σ1, Σ2, u,m) with

u := e
(
Σvsk

1 , Ỹ0

)
e
(
Σ
va′
1 , Ỹ1

)
e
(
Σ−c1 , X̃

)
e (Σc

2, g̃1)

35

is the same step at which it queried H1 on (gpk , Σ′1, Σ
′
2, u
′,m ′) for u′

similarly defined. The answers c and c′ to these queries are also distinct
modulo p.

As the inputs to A and its randomness are identical until that H1

query, Σ1 = Σ′1, Σ2 = Σ′2, u = u′ and m = m ′ necessarily. It also implies
id∗ = id ′ by the initial equality test. It follows that

e
(
Σ1, Ỹ

(vsk−v′sk)/(c
′−c)

0 Ỹ
(va′−v′a′)/(c

′−c)
1

)
= e(Σ2, g̃1)e

(
Σ1, X̃

)−1
= e

(
Σ1, g̃

y1a′
∗

1 g̃
y0sk id∗
2

)
with the second equality due to the initial test equality. Therefore,

g̃
(y0(vsk−v′sk)+y1(va′−v

′
a′))/(c

′−c)
1 = g̃y1a

′∗

1 g̃
y0sk id∗
2 .

Compute and send to the SDL challenger the value(
y0(vsk − v′sk) + y1

(
(va′ − v′a′)− a′

∗
(c′ − c)

))
/(c′ − c)y0sk id∗ ,

thereby winning the SDL game.
In the event in which A forges with non-negligible probability a signa-

ture that opens to an honest user for which it has not queried the secret
keys, the first identity for which it does is id∗ with probability 1/|ID |.
Algorithm B then wins the SDL game with probability at least

1/|ID | · ε/8 · (1− 1/p)− |ID |(qH1 + 1)/p− nO|ID |AdvDDH−2
G,λ (B(A))

and with running time at most 8qH1/ε · ln(8/ε) · τA + O(|ID |). If ε were
negligible, B would contradict the SDL assumption. Consequently, ε is
necessarily negligible. ut

Theorem 1 (Anonymity). Scheme PS-DGS is anonymous under the
first-group DDH and the SDL assumptions over the pairing-group gener-
ator G for any tO < nO/2 and tI = t∗I < nI/2.

Proof. The anonymity of DGS can be proved via the following hybrid argu-
ment. Denote by Cb the challenger of experiment Expano−b

DGS,λ,nI ,nO,tI ,tO
(A).

Let ∆ be an algorithm that proceeds exactly like C0 except for the chal-
lenge query. To answer the challenge query, ∆ sends two random G el-
ements as re-randomized group elements of the PS multi-signature in
gsk[id b], and programs oracle H1 to compute a proof of knowledge of
sk idb and a

′
b, and complete the challenge group signature.

36

To show that DGS satisfies anonymity, it suffices to show that C0 and C1
are both computationally indistinguishable from ∆ under the first-group
DDH and the SDL assumptions.

Assume that the SDL assumption holds over G and that there exists
an efficient adversary A that can distinguish C0 from ∆ with probability
at least ε and in time τA. Assume that p > 8qH1/ε. Consider an algorithm
B that runs A as a subroutine and interacts with a DDH challenger CDDH

β

that outputs a Diffie–Hellman tuple if β = 1 or a uniformly random tuple
if β = 0.

Upon receiving the description of a pairing group Γ = (p,G, G̃,GT , e)

and of a tuple (g1, g2, g3, g4) =
(
g1, g

µ
1 , g

ν
1 , g

ξ
1

)
from the DDH challenger,

B sets g1 as the generator of G in the public parameters and generates
the other DGS parameters.
B starts by executing the key-generation protocol with A and recon-

structing the shares of the dishonest managers (which is possible since
there are at least tI + 1 honest issuers). Algorithm B then chooses two
identities id∗0 and id∗1 uniformly at random. To answer game-oracle queries,
B proceeds as algorithm A′ in Lemma 3, except that everything done for
id∗ is duplicated for id∗0 and id∗1, and except for GSign queries on (id∗d, ∗, ∗)
for d ∈ {0, 1}, for all GOpen queries and for the challenge query. For those
queries, B proceeds as follows:

– GSign(id∗d,m) : check that id∗ ∈ QGJoin\QCorrupt. Fetch (⊥, (a′d
∗, Σ∗d,1, Σ

∗
d,2))

← gsk[id∗d], generate α ∈R Z∗p, compute (Σ′1, Σ
′
2) ← (Σ∗d,1, Σ

∗
d,2)

α,
simulate a proof π of knowledge of µsk id∗d and a′d

∗ by programming
H1. Add (id ,m, σ = (Σ′1, Σ

′
2, π), α) to QSign and return σ. The ran-

dom α used to compute the signature is necessary to later correctly
simulate the opening of group signatures as B does not have access to
g̃µ2 as in the previous lemma.

– GOpeni(O,m, σ = (Σ1, Σ2, π)) : check that i ∈ O ∈
(
[nO]
tO+1

)
. Add

(m, σ) to QGOpen. A GOpen execution is triggered. Play the role of the
honest openers in I. Check that GVerf(ipk ,m, σ) = 1. By Lemma 3,
this query cannot be a forgery for id∗0 or id∗1 (in the event in which
A queries Ch on (id∗0, id

∗
1, ∗) and receives an answer different from ⊥).

For all (id ,m, σ, α) in QSign, test the equality

e
(
Σ1, g̃

x+y1a′
∗

1

)
e

(
g
r∗dα
2 , Ỹ

sk id∗
d

0

)
= e(Σ2, g̃1).

for all d ∈ {0, 1}. If it holds for some d ∈ {0, 1} and if (id∗d,m, ∗) ∈
QGSign (which implies id∗d ∈ QGJoin) then fetch regi[id

∗
d] = (∗, (sd,i)nOi=1).

37

For j ∈ I \ {i}, compute Tid∗d,j ← e(Σ1, Ỹ0)
sd,j . Compute

Tid∗d,i ←

e(gr∗dαsk id∗
d

2 , Ỹ0

) ∏
j∈I\{i}

T
−wj
id∗d,j

1/wi

= e(Σ1, Ỹ0)

(
µsk id∗

d
−
∑
j 6=i sjwj

)
/wi .

The values (Tid∗d,j)j∈I are indistinguishable from the values in the real
protocol (in which case it would be sk id∗d instead of µsk id∗d) as A never
receives g2. For the identities id 6= id∗d such that regi[id] 6= ⊥, compute
the Tid ,i values as in the scheme. Continue as in Lemma 3.

– For the challenge query, if (id0, id1) 6= (id∗0, id
∗
1) then halt the interac-

tion with A and send 0 to the DDH challenger. Check that id∗0 and id∗1
are in QGJoin \QCorrupt, that gsk[id∗d] 6= ⊥ for both d ∈ {0, 1} and that

(∗,m∗, σ∗) /∈ QGSign. Set Σ1 ← g3 and Σ2 ← g
x+y1a′0

∗

3 g
sk id∗0
4 . Compute

a simulated proof π of knowledge of µsk id∗0 and a′0
∗ by programming

H1. Return σ ← (Σ1, Σ2, π).

Note that if β = 1, then the σ has the same distribution as the chal-
lenge signature computed by C0, whereas in case β = 0, Σ2 is uniformly
random in G∗, and therefore σ has the same distribution as the signa-
ture computed by ∆.

If β = 1 then algorithm B is perfectly indistinguishable from C0, and
if β = 0 then it is perfectly indistinguishable from ∆. The advantage of B
in the DDH game is then at least ε.

It follows that

ε ≤|ID |2AdvDDH−1
G,B(A) (λ) +

8p

p− 1
|ID |AdvSDL

G,B(A) (λ)

+
|ID |(qH1 + 1)

p
+ nO|ID |AdvDDH−2

G,λ (B(A)) .

Similarly, if A can distinguish ∆ from C1, then B (by using gsk[id∗1]
instead of gsk[id∗0] for the challenge query) wins the DDH game with
probability at least ε.

38

Therefore,

Advano
G,PS-DGS,nI ,nO,tI ,tO,A (λ) ≤ 2 (|ID |2AdvDDH−1

G,B(A) (λ)

+
8p

p− 1
|ID |AdvSDL

G,B(A) (λ)

+
|ID |(qH1 + 1)

p

+nO|ID |AdvDDH−2
G,λ (B(A))

)
and the theorem follows. ut

Theorem 2 (Traceability). Denoting by qH0 the number of H0 queries,
scheme PS-DGS satisfies traceability under the qH0-MSDH-1, the ADH-
KE and the SDL assumptions over the pairing-group generator G for any
tI < nI/2, tO < nO and t∗O = min(tO, nO − tO − 1).

Proof. The proof consists in reducing the traceability of DGS to the ex-
istential unforgeability of the PS signature scheme. As its unforgeability
relies on the qH0-MSDH-1 assumption, the theorem follows. (Notice that
GJoin.U, GJoin.Ii and GOpen queries induce H0 queries.)

The proof idea is to apply the forking algorithm of the generalized
forking lemma (Lemma 1) to an algorithm A′ that runs A as a subroutine
in order to obtain two distinct group signatures from which a PS signature
forgery can be computed.

Suppose that there exists an adversary A that wins the
(
nI ,nO
tI ,tI

)
trace-

ability game for DGS with probability at least ε and in time τA. Further
assume that p > 8qH1/ε.

We first define A′ and then a reduction algorithm B that interacts
with the forgery-game challenger C for PS and applies the general forking
lemma to A′ to win the forgery game.
A′ is an algorithm that runs on the input of public parameters pp as

in the scheme, of a public key (X̃ , Ỹ0, Ỹ1) for the PS signature scheme
and of a random tape ρ.

Throughout its interaction with A, algorithm A′ maintains the same
global variables as the challenger of the traceability game. It initializes a
counter ctr ← 0 and sets QH1 ← ∅.

Throughout the experiment, A′ answers random-oracle queries as fol-
lows:

– H0(id) : forward the query to B.

39

– H1(b ∈ {0, 1}∗) : if (b, ∗) /∈ QH1 then generate c ∈R Zp, do ctr ←
ctr + 1, add (b, c, ctr) to QH1 and return c; else retrieve (b, c, ι) from
QH1 and return c.

At the beginning of the experiment, A′ runs three times the simulator
of key-generation protocol of Gennaro et al. with A on each X̃ , Ỹ0 and
Ỹ1 respectively, and plays the role of the honest issuers. At the end of
the protocol executions, all honest issuers return an issuer public key ipk .
Moreover, as there are at least tI +1 honest issuers, so A′ can reconstruct
the share xi, yi,0 and yi,1 of the dishonest issuers. Let X̃ ′, Ỹ ′0 and Ỹ ′1 be
the group elements defined by the shares generated during the simulation,
i.e., X̃ ′ = g̃

∑
i∈I xiwi (and x′ :=

∑
i∈I xiwi) for any set I ∈

(
[nI]
tI+1

)
, where

wi is the Lagrange interpolation coefficient at position i; and similarly for
Ỹ ′0 and Ỹ ′1.

For each of the honest openers, A′ generates a pair of keys as in the
scheme.

Algorithm A′ then answers oracles queries as follows (if a check fails
or if it ever aborts, A′ returns (∅, ∅, ∅)):

– GJoin.U(id , I) : check that I ∈
(
[nI]
tI+1

)
. Add id to QGJoin. A GJoin

execution is triggered. Play the role of the user and of the honest
issuers with the shares generated by the simulator of the distributed
key-generation protocol.
Upon receiving signature shares Σ2,i from each of the corrupt issuers
played by the adversary, test whether the equality

e
(
Σ1, X̃

′Ỹ
′sk id
0 Ỹ

′a′
1

)
= e

(∏
i∈I

Σwi
i,2, g̃

)

holds, i.e., test whether the signature is valid for the key (X̃ ′, Ỹ ′0, Ỹ
′
1).

If not, abort the protocol, otherwise make a signing query to C on sk
and receive a signature Σ = (a′, Σ1, Σ2). Note that Σ2 6=

∏
i∈I Σ

wi
2,i

with overwhelming probability, because of the simulator of the key-
generation protocol. Follow the joining protocol and set gsk[id] ←
(sk , Σ). Note also that even if A causes the protocol to abort, or delays
or drops messages, B has already added to QGJoin at the beginning of
the protocol.

– GJoin.Ii(id , I) : check that i ∈ I ∈
(
[nI]
tI+1

)
. Adds id to QGJoin and

QCorrupt. A GJoin protocol execution is triggered. Play the role of the
honest issuers.

40

Upon receiving written from the user played by A, parse L[id] as in
the protocol. Make an internal query (a′, h) ← H0(id). Perform the
same verifications as in the real scheme for each of the honest issuers.
If the verification of the proof on the encrypted shares holds but that
the shares are not actually valid i.e., the soundness of the NIZK proof
was broken, abort the protocol and return (∅, ∅, ∅). Note since there
are at least tO + 1 honest openers, A′ can test whether the shares are
valid as it then has enough shares to recompute the user polynomial.
If the verification NIZK.Verf(g, h, gsk , hsk , π)

?= 1 succeeds, then (g, gsk ,
h, hsk) is a Diffie–Hellman tuple. Run sk id ← Ext(Γ, g, gsk , h, hsk).
Abort the interaction with A if the extraction fails. Unless A can solve
the discrete-logarithm problem in G, which occurs only with negligible
probability under the SDL assumption over G (which is itself implied
by the q-MSDH-1 assumption), sk id = dlogg(gsk) = dlogh(hsk). If
the equality does not hold, then abort the interaction with A. Oth-
erwise, make a signing query on sk id to C and receive a signature
Σ = (a′, Σ1 = h,Σ2).
For the honest issuers j 6= i, compute Σ2,j ← hxj+yj,0sk id+yj,1a

′ .
For issuer i, compute

Σ2,i ←

Σ2

∏
j∈I\{i}

Σ
−wj
2,j

1/wi

= h(x−x
′+(y0−y′0)sk id+(y1−y′1)a′)/wi+xi+yi,0sk id+yi,1a

′
.

Follow the rest of the protocol.
Note that even if A causes the protocol to abort, or delays or drops
messages, A′ has already added to QGJoin and QCorrupt at the beginning
of the protocol. It implies that if B has made a signing query on an
identity id , then id ∈ QGJoin.

– GSign(id ,m) : check that id ∈ QGJoin\QCorrupt. Compute σ ← GSign(ipk ,
gsk[id],m). Add (id ,m, σ) to QGSign. Return σ.

– GOpeni(O,m, σ) : (for i ∈ HM) check that i ∈ O ∈
(
[nO]
tO+1

)
. Add

(m, σ) to QGOpen. Play the role of the honest openers in I and follow
the protocol.

– RevealU(id) : add id to QRevealU. Returns gsk[id].
– ReadReg(i, id) : return regi[id].

In the event in which A wins the game, it ultimately outputs a tu-
ple (O∗,m∗, σ∗). Algorithm A′ verifies that O∗ /∈

({t∗O+1,...,nO}
tO+1

)
and that

41

GVerf(ipk ,m∗, σ∗) = 1. If A does not output such a tuple or if the verifi-
cations fail, then A′ returns (∅, ∅, ∅), otherwise it runs

〈{id∗i }i∈O∗〉 ← 〈{GOpen(regi, osk i, O∗, gpk ,m∗, σ∗)}i∈O∗〉.

By Lemma 2, for all i, j ∈ O∗, id∗i = id∗j .
Moreover, since for each honest opener, any id for which regi[id] 6= ⊥

is such that id ∈ QGJoin (for A′ starts by adding to QGJoin the identity of
any joining query), it is impossible that the opening algorithms return an
identity that is not in QGJoin. That is, setting id∗ ← maxO∗, if id∗ 6= ⊥,
then id∗ ∈ QGJoin necessarily.

The winning conditions thus imply that in the event in which A wins
the traceability game, either id∗ = ⊥, or id∗ ∈ QGJoin \ QCorrupt and
(id∗,m∗, σ∗) /∈ QGSign.

By Lemma 3, (id∗,m∗, σ∗) /∈ QGSign, i.e., the second case occurs with
negligible probability under the SDL assumption.

If A did not win the traceability game, A′ returns (∅, ∅, ∅). Otherwise,
parsing σ∗ as (Σ∗1 , Σ∗2 , π∗ = (c∗, v∗sk , v

∗
a′)), let ισ∗ be the computation step

at which A queried H1 on bσ∗ ← (ipk , Σ∗1 , Σ
∗
2 , u
∗,m∗) with

u∗ := e
(
Σ∗1

v∗sk , Ỹ0

)
e
(
Σ∗1

v∗
a′ , Ỹ1

)
e
(
Σ∗1
−c, X̃

)
e (Σ∗2

c, g̃1) ,

be it the step at which it outputs the forgery, i.e., (bσ∗ , c∗, ισ∗) ∈ QH1 .
Algorithm A′ returns ({ισ∗}, σ∗, ∅).

Set

ε̃← ε− |ID|
(
AdvADH−KE

G,λ (B(A)) +AdvDLOG−1
G,λ (B(A))

)
− 8p

p− 1
|ID |AdvSDL

G,B(A) (λ)−
|ID |(qH1 + 1)

p

− nO|ID |AdvDDH−2
G,λ (B(A)) .

It is a lower bound on the probability that A wins the traceability
game for DGS, that A′ never aborts during GJoin execution (prompted by
a GJoin.Ii query) due to extraction failure of a user secret key and that
the identity output by the honest openers at the forgery phase is ⊥.

Let then B be an algorithm that runs A′ as subroutine and interacts
with the forgery-game challenger C for PS.

Upon receiving ppPS and vk from the challenger, B generates g ∈R G∗
and sets pp ← (ppPS, g, nI , nO, tI , tO). It then runs A′ on the input of pp,
(X̃ , Ỹ0, Ỹ1) and a uniformly random tape ρ.

Throughout its interaction with A′, algorithm B answers random-
oracle queries as follows:

42

– H0(id) : if (id , ∗) /∈ QH0 then forward the query to C, receive (a′, h),
add (id , (a′, h)) toQH0 and return (a′, h); else retrieve (id , (a′, h)) from
QH0 and return (a′, h).

Recall that p > 8tqH1/ε by assumption. With probability at least ε̃/8
and with running time at most 8qH1/ε̃ · ln(8/ε̃) · τA, the forking algo-
rithm of the generalized forking lemma (Lemma 1) applied to A′ returns
({ισ∗}, {σ∗}, {σ∗′}) with σ∗ and σ∗′ as group-signature forgeries that open
to ⊥. The lemma ensures that for σ∗ = (Σ∗1 , Σ

∗
2 , π
∗ = (c∗, v∗sk , v

∗
a′)) and

σ∗′ similarly parsed, the computation step at which the challenges c∗ and
c∗′ were computed are the same, and those challenge are distinct modulo
p.

As the inputs to A and its randomness are identical until that H1

query, Σ∗1 = Σ∗1
′, Σ∗2 = Σ∗2

′, u∗ = u∗′ and m∗ = m∗′ necessarily. It follows
that

e

(
Σ∗1 , Ỹ

(v∗sk−v
∗
sk
′)/(c∗′−c∗)

0 Ỹ
(v∗
a′−v

∗
a′
′)/(c∗′−c∗)

1

)
= e(Σ∗2 , g̃1)e(Σ

∗
1 , X̃)−1.

Set sk∗ ← (v∗sk − v∗sk
′)/(c∗′ − c∗), a′∗ ← (v∗a′ − v∗a′

′)/(c∗′ − c∗) and
Σ∗ ← (a′∗, Σ∗1 , Σ

∗
2). The latter is then a valid multi-signature on sk∗.

However, no honest issuer ever signed sk∗ as there would otherwise
exist an identity id∗ 6= ⊥ such that regi[id

∗] = s∗i for all opener i ∈ O∗
and sk∗ =

∑
i∈I∗ s

∗
iwi. It is the case since in each execution of GOpen, the

openers always start by updating their registers. That identity id∗ would
have then be returned by the honest openers.

Algorithm B then sends sk∗ and Σ∗ to C as forgery and wins the
existential forgery game for PS with probability at least ε̃/8. Therefore,

Advtrace
G,DGS,N,t ,A (λ) ≤ 8AdvEUF−CMA

G,PS,1,A (λ)

+ |ID |
(
AdvADH−KE

G,B(A) (λ) +AdvDLOG−1
G,B(A) (λ)

)
+

8p

p− 1
|ID |AdvSDL

G,B(A) (λ) +
|ID |(qH1 + 1)

p

+ nO|ID |AdvDDH−2
G,λ (B(A))

As the first-group discrete logarithm and the SDL assumptions are both
implied by the qH0-MSDH-1 assumption, the theorem follows. ut

C Threshold Group Signatures without Ledger

The construction in Section 4 requires an append-only ledger for users
to communicate their secret-key shares to the openers. Such ledgers can

43

be implemented in practice, but it is yet an additional assumption. We
therefore also propose a scheme that does not require a ledger. However,
this comes for the price of combining the roles of issuer and opener, as it
is the case the case for the original GetShorty scheme of Bichsel et al. [8].
The authorities are now referred to as managers, and suppose that there
are n of them.

For the sake of simplicity, assume now that the issuance and opening
thresholds are the same and denote it t . However, instead of having the
same threshold for corruption, one could define (t , tc)-out-of-n threshold
group signatures as group signatures with n managers, of which t + 1
must collaborate to add a user or to open a signature, and of which at
most tc can be corrupt. Defining a separate corruption threshold gives the
flexibility to corrupt some managers, but not to many so that any two sets
of t have at least one honest manager in common. This property ensure
that any manager who did not add a user can recover her secret-key shares
from an honest manager who added her when a signature is to be opened.

In this model, the main changes from the previous construction are as
follows.

Key Generation. The managers now simply generate ElGamal keys
separately and run the distributed key-generation protocol of Gennaro
et al. [32] to generate PS keys. They use t as reconstruction threshold
and tc as corruption threshold.
Note that the original protocol of Gennaro et al. does not distinguish
the reconstruction from the corruption threshold. However, their pro-
tocol can be adapted to a setting with two thresholds. It remains
secure and robust (i.e., it terminates) as long as the number of honest
parties (at least n − tc) is greater than the reconstruction threshold
(t in the present case), so that the honest parties can reconstruct the
shares of qualified participants who received a valid complaint during
the extraction phase [32, Fig. 2]. The two thresholds t and tc must
only satisfy n− tc > t .

Join. As before, the user encrypts a t-out-of-n Shamir share of sk id for
each manager, even for the non-participating ones, and proves the
validity of the ciphertexts. Each participating manager then verifies
the correctness of the proofs. The difficulty is to ensure that the non-
participating managers indeed get those ciphertexts now that there is
no ledger.
Assuming t ≥ (n + tc − 1)/2 (≥ tc), any two manager sets I and J
of size t + 1 have an intersection I ∩ J of size |I| + |J | − |I ∪ J | ≥
2(t+1)−n ≥ tc+1. It means that for every group member, any set of

44

t + 1 managers will always contain at least one honest manager that
added her.
To ensure that the non-participating managers can later recover the
shares, it suffices to have each manager in the joining protocol sign the
encrypted shares of the user secret key with a multi-signature scheme
(BLS [12, Section 3.1] for instance) after verifying the shares. Each
manager then saves the shares and their multi-signatures in registers.

Update Registers. Afterwards, any set of t + 1 managers can synchro-
nize their registers and retrieve shares of every group-member secret
key by first broadcasting the list of users they added. Next, turn by
turn in lexicographic order, they broadcast the encrypted shares and
multi-signatures for each user such that there is a manager who did
not add her, and for which shares with a valid multi-signature have
not not been broadcast yet.
Since t ≥ tc, a valid multi-signature by t + 1 managers on a set of
shares implies that at least one honest manager has signed them (after
verifying them), so they are authentic. The managers can then update
their registers by decrypting the shares they receive. Moreover, for
every group member, the set of t + 1 managers that added her has at
least tc+1 managers in common with the t+1 managers synchronizing
their registers. Therefore, at least one honest manager will broadcast
valid shares of her secret key, and each manager is guaranteed that his
register now contains a valid secret-key share for every user that was
ever added.

Sign&Verify. Computing and verifying signatures are done as in the
Section 4 construction.

Open. As for opening, after synchronizing their registers, the managers
participating in the opening protocol proceed as before.

Overall, the scheme is secure if n − tc > t ≥ (n + tc − 1)/2 (which
implies tc < min(t , n/3)). An interpretation of these bounds is that the
joining threshold should be large enough so that for every group member,
any set of openers contains at least one honest manager who added her,
but not too large for the honest managers to be able to securely generate
issuance keys.

D Multi-Signatures with Key Aggregation

A multi-signature scheme [43] allows a number n ≥ 1 of signers to jointly
compute a short signature on the same message. Given the public verifi-

45

cation keys of the n signers, one can verify that all n signers signed the
message.

Syntax. Formally, for an integer n > 0, an n-signature scheme MS (with
key aggregation) consists of the following algorithms:

MS.Setup(1λ, n, aux)→ pp : returns public parameters on the input of a
security parameter, a number of signers and an auxiliary input.

MS.KG(pp)→ (vk , sk) : returns a pair of verification–signing keys on the
input of public parameters.

MS.KAggreg(vk1, . . . , vkn)→ avk : aggregates the verification keys of n
signers and returns a short aggregated key avk that can be used to
verify aggregated signatures.

MS.Sign(sk ,m)→ σ : a signing algorithm which takes as an input a sign-
ing key sk and a message m. It returns a signature σ.

MS.SAggreg((vk i)
n
i=1,m, (σi)

n
i=1)→ σ : an algorithm that aggregates the

signatures on a single message m computed by n signers and returns
a short aggregated signature σ.

MS.Verf(avk ,m, σ)→ b ∈ {0, 1} : on the input of an aggregated verifica-
tion key, a message and an aggregated signature, returns a bit indi-
cating whether the signature is valid w.r.t. the aggregated verification
key.

An alternative definition in which the verification keys are aggregated
during signature verification could be considered but would be less efficient
in a setting in which the set of signers is fixed (or at least rarely changes).
Indeed, if the set of signers is fixed, their keys can be aggregated once for
all and the resulting aggregated key can be used every time a signature is
to be verified.

Security Model. The security of an n-signature scheme [5]MS is defined
via a security game between an adversary A and a challenger C. At the be-
ginning of the game, C generates parameters pp ← MS.Setup(1λ, n, aux)
and sends them to A. Adversary A then sends a target honest-signer
identity i∗ to C. Challenger C proceeds by generating keys (vk i∗ , sk i∗) ←
MS.KG(pp) and sending vk i∗ to A. Adversary A is now allowed to issue
signing queries on arbitrary messages m. To answer such a query, C com-
putes and sends σi∗ ← MS.Sign (sk i∗ ,m) to A. After the query phase, A
outputs a set of verification keys K such that vk i∗ ∈ K, a message m
for which no signing query has been made and a signature σ. Adversary
A wins the game if and only if MS.Verf(MS.KAggreg(K),m, σ) = 1. A

46

multi-signature scheme is existentially unforgeable under chosen-message
attacks (or EUF-CMA secure) if no efficient adversary can win this secu-
rity game with a non-negligible probability.

A weak unforgeability can also be defined via a variant of the previous
game in which A outputs, along with index i∗ (so before getting key
vk i∗), a list of messages that C signs with key sk i∗ and sends back the
results with vk i∗ . Adversary A cannot make signing queries afterwards.
Scheme MS is weakly existentially unforgeable (or EUF-wCMA secure) if
no efficient adversary A has a non-negligible probability of winning this
variant of the security game.

E PS Multi-Signatures

This section presents the original PS signature scheme and then proves
the unforgeability of the PS multi-signature scheme in Section E.2.

E.1 Original Pointcheval–Sanders Signature Scheme

Pointcheval and Sanders [46] introduced a single-message signature scheme
that they proved [47, Section 5.1] to be weakly existentially unforge-
able under chosen-message attacks (or EUF-wCMA secure) under the
q-MDSH-1 assumption (Section 1). It is actually also existentially un-
forgeable under chosen-message attacks (EUF-CMA) under an interactive
assumption [46, Assumption 2] that Pointcheval and Sanders proved to
hold in thegeneric group model.

Given a type-3 pairing-group generator G and a security parameter
λ ∈ N, the Pointcheval–Sanders (PS) signature scheme in a pairing group
Γ =

(
p,G, G̃,GT , e

)
← G(1λ) consists of the following algorithms:

PS.Setup(1λ, Γ)→ pp : generate g̃ ∈R G∗. Return pp ← (Γ, g̃).
PS.KG(pp)→ (vk , sk) : generate x, y ∈R Z∗p, compute X̃ ← g̃x, Ỹ ← g̃y,

and set vk ←
(
g̃, X̃ , Ỹ

)
and sk ← (x, y). Return (vk , sk).

PS.Sign(sk ,m)→ σ : choose h ∈R G∗ and return σ ← (h, hx+ym);
PS.Verf(vk ,m, σ)→ b : parse σ as (σ1, σ2), verify that σ1 6= 1G1 and that

e
(
σ1, X̃ Ỹ m

)
= e(σ2, g̃). If so, return 1, otherwise return 0.

This scheme can be extended to a multi-message version [46, Section
4.2] as follows. To sign a tuple of messages (m1, . . . ,mk) ∈ Zkp with a
signing key (x, y1, . . . , yk) for which the corresponding verification key
is
(
g̃, X̃ = g̃x, Ỹ1 = g̃y1 , . . . , Ỹk = g̃yk

)
, the signing algorithm generates

h ∈R G∗ and returns σ ←
(
h, hx+

∑
yjmj

)
. The verification algorithm then

checks that σ1 6= 1G and that e
(
σ1, X̃

∏
Ỹ
mj
j

)
= e
(
σ2, g̃

)
.

47

E.2 Pointcheval–Sanders Multi-Signatures

This section introduces a novel multi-signature scheme based on the CT-
RSA’18 version of the Pointcheval–Sanders signature scheme. The CT-
RSA’18 version of the PS signature scheme is referred to as the modified
PS scheme, and the unforgeability proof of the multi-signature scheme
makes a gradual reduction starting from the original PS signatures, i.e.,
the CT-RSA’16 version [46]. The core difference between the original and
modified versions of PS signatures is that the original one can only be
proved to be weakly unforgeable from the q-MDSH-1 assumption, whereas
the modified scheme leverages an extra scalar to lift the security to stan-
dard unforgeability.

For each version of their signatures, Pointcheval and Sanders also dis-
tinguish the single-message variant that allows to sign a single message
in Zp from the multi-message variant that allows to sign blocks of mes-
sages. This distinction is also made for PS multi-signatures and is further
relevant in the unforgeability proof.

The modified PS signature scheme can be turned into a multi-signature
scheme by having each signer generate her pair of keys separately. How-
ever, to produce a signature for a given message, the signers need to agree
on a common base h and a common extra-message m ′. They can do so by
hashing the message to be signed with a random oracle H0 : Zkp → Zp×G∗
to obtain these5. Moreover, to securely aggregate keys, as for BLS multi-
signatures [12], another random oracle H1 : G̃n(k+2) → Θn ⊆ Znp (with
1/|Θ| negligible in λ) is introduced.

Given a type-3 pairing-group generator G and a security parameter λ ∈
N, the (modified) PS (multi-message) multi-signature scheme in a pairing
group Γ =

(
p,G, G̃,GT , e

)
← G(1λ) consists of the following algorithms:

PSM.Setup(1λ, n, k, Γ)→ pp : generate g ∈R G∗, g̃ ∈R G̃∗ and return
pp ← (Γ, g, g̃, n, k). Integer n is the number of signers, and k is the
number of messages to be signed.

PSM.KG(pp)→ (vk , sk) : generate x, y1, . . . , yk+1 ∈R Z∗p, compute X̃ ←
g̃x, Ỹj ← g̃yj for j ∈ [k + 1], and set vk ←

(
X̃ , Ỹ1, . . . , Ỹk+1

)
, sk ←

(x, y1, . . . , yk+1). Return (vk , sk).

5 Note that Pointcheval and Sanders already suggested [47, Section 4.3] to use a ran-
dom oracle to generate m ′ deterministically in their single-signer signature scheme.
Using a hash function to generate h is a variation of this idea which has also been
considered by Sonnino et al. [52], but with the original PS signature scheme and
without proving that the scheme remains secure.

48

PSM.KAggreg
(
vk1, . . . , vkn

)
→ avk : compute (t1, . . . , tn)← H1(vk1, . . . ,

vkn) and return avk ←
∏n
i=1 vk

ti
i .

PSM.Sign
(
sk ,m = (m1, . . . ,mk)

)
→ σ : compute (m ′, h)← H0(m) ∈ Zp×

G∗ and return σ ← (m ′, h, hx+
∑k
j=1 yjmj+yk+1m

′
)
.

PSM.SAggreg((vk i)
n
i=1,m , (σi)

n
i=1)→ σ : parse σi as (m ′i, σi,1, σi,2) for i ∈

[n]. If m ′1 = · · · = m ′n and σ1,1 = · · · = σn,1, compute (t1, . . . , tn) ←

H1(vk1, . . . , vkn) and σ2 ←
∏n
i=1 σ

ti
i,2 = σ

ξ+
∑k
j=1 ujmj+uk+1m

′

1,1 , with
ξ =

∑n
i=1 xiti, uj =

∑n
i=1 yi,jti for j ∈ [k] and uk+1 =

∑n
i=1 yi,k+1ti.

Return σ ←
(
m ′1, σ1,1, σ2

)
. Otherwise, return ⊥.

PSM.Verf
(
avk ,m = (m1, . . . ,mk), σ

)
→ b : parse σ as (m ′, σ1, σ2). If σ1 6=

1G1 and e
(
σ1, X̃

∏k
i=1 Ỹ

mi
i Ỹ m ′

k+1

)
= e(σ2, g̃) then return 1, else re-

turn 0.

Remark 2. Note that the original PS signature scheme (Appendix E.1)
can also be turned into a multi-signature scheme in the random oracle
model in the same way, except for m ′ which is omitted.

Theorem 3. In the random oracle model, denoting by qH0 the maximum
number of H0 oracle queries, the PS multi-signature scheme in a pairing
group generated by G is EUF-CMA under the qH0-MSDH-1 assumption
over G.

Proof. Similarly the proof [47, Section 5] of the existential unforgeability
under CMA of the modified PS multi-message signature scheme, this proof
is in two steps. First, the original single-message multi-signature scheme
is proved to be EUF-wCMA secure under the qH0-MSDH-1 assumption
(this proof requires the following rewinding lemma, then the existential
unforgeability of the modified multi-message multi-signature scheme un-
der adaptive CMAs is reduced to the weak existential unforgeability of the
original single-message multi-signature scheme (notice that each signing
query implies an H0 query). The fact that the qH0-MSDH-1 assumption
implies the SDL assumption then implies the theorem.

Lemma 4 (Rewinding Lemma [15, Variant of Lemma 19.2]). Let
S, Θ and T be non-empty finite sets. Consider a function f : S×Θ×T →
{0, 1}. Let X, Y , Y ′, Z and Z ′ be mutually independent random variables
such that X takes values in S, Y and Y ′ take values in Θ, and Z and Z ′

take values in T . Setting ε = Pr[f(X,Y, Z) = 1],

Pr[f(X,Y, Z) = 1, f(X,Y ′, Z ′) = 1, Y 6= Y ′] ≥ ε2 − ε/|Θ|.

49

Lemma 5. In the random oracle model, denoting by qH0 the amount
of non-adaptive signing queries, the original PS single-message multi-
signature scheme is EUF-wCMA secure under the qH0-MSDH-1 assump-
tion.

Proof. For λ ∈ N, consider a pairing group Γ ← G(1λ). Suppose that
there exists an efficient adversary A that wins the weak existential un-
forgeability game with at most one query to oracle H1 (the general case
will be considered further) with probability at least ε. Consider a reduc-
tion algorithm B which runs A as a subrountine and receives a q-MSDH-
1 instance from a challenger, i.e., receives two tuples

(
gx

`
, g̃x

`
)q
`=0
∈

(G∗)q+1 and (ga, g̃a, g̃ax) ∈ G∗×(G̃∗)2. Algorithm B has to output a tuple(
w,P, h1/x+w, ha/P (x)

)
with h ∈R G∗, P a polynomial in Zp[X] of degree

at most q and w ∈ Zp such that the polynomials X+w and P are coprime.
At the beginning of the weak unforgeability game, adversary A sends to
B a tuple of messages (w1, . . . , wq) ∈ Zqp for which it expects signatures.
B computes group elements G ← g

∏q
`=1(x+w`) and G̃ ← g̃

∏q
`=1(x+w`), and

sends (G, G̃, n, 1) to adversary A as public parameters. A sends the index
i∗ ∈ [n] of a target (honest) signer. B sets X̃i∗ ← g̃ax and Ỹi∗ ← g̃a, and
outputs

(
X̃i∗ , Ỹi∗

)
as the verification key of signer i∗. Notice that this

implicitly sets

xi∗ =
ax∏q

`=1(x+ w`)
, yi∗ =

a∏q
`=1(x+ w`)

.

For ` = 1, . . . , q, algorithm B computes a signature on w` as follows: it
generates t` ∈R Z∗p, and computes and stores

σ` = (σ`,1, σ`,2) =

((
g
∏
r 6=l(x+wr)

)t`
, (ga)t`

)
.

Algorithm B can compute σ` from the q-MSDH-1 instance as the discrete
logarithm of σ`,1 to base g is a polynomial of degree q− 1 in x and σ`,2 is
a single exponentiation of ga. Note that

σ
xi∗+yi∗w`
`,1 =

(
G

t`
x+w`

) ax+aw`∏q
`=1

(x+w`)

=

(
G

t`
x+w`

) a∏
r 6=l(x+w`)

= gat` = σ`,2,

and thus σ` is a valid signature on w` for the verification key
(
X̃i∗ , Ỹi∗

)
.

Algorithm B then returns σ1, . . . , σq to adversary A.

50

Whenever adversary A queries random oracle H0 on a message m,
algorithm B checks whether m ∈ {w`}q`=1. If m = w` for some ` ∈ [q],
algorithm B returns σ`,1 as an answer to the random oracle query, oth-
erwise if m has not been queried before, it generates, stores and returns
h ∈R G∗, otherwise (m is none of the w` and has been queried before),
algorithm answers the query as it priorly did.

Whenever A makes its (unique) query to oracleH1 on (vk1, . . . , vkn) ∈
G̃2n, algorithm B generates and returns (t1, . . . , tn) ∈R Θn. Adversary
A eventually outputs a list of verification keys

(
X̃i, Ỹi

)
i 6=i∗

and a valid

forgery σ on a message w /∈ {w`}q`=1. If the unique query of A to H1 is not
such that vk i =

(
X̃i, Ỹi

)
for i = 1, . . . , n, then the forgery can be valid

with probability at most 1/|Θ|, in which case algorithm B returns ⊥ to
the q-MSDH-1 challenger. Otherwise (the query to H1 is as such), as σ is
a valid forgery, σ1 6= 1G and

e

(
σ1,

n∏
i=1

X̃ ti
i · Ỹ

wti
i

)
= e

σ1,∏
i 6=i∗

X̃ ti
i Ỹ wti

i

 e
(
σ1, X̃

ti∗
i∗ Ỹ

wti∗
i∗

)
= e

(
σ2, G̃

)
.

Algorithm B then rewinds A to the computation step at which it
made its query to H1. Algorithm B generates t′i∗ ∈R Θ and replies with
(t1, . . . , ti∗−1, t

′
i∗ , ti∗+1, . . . , tn). Adversary A can make queries anew, and

if it eventually outputs another forgery σ′, then σ′1 6= 1G and

e

σ′1,∏
i 6=i∗

X̃ ti
i Ỹ wti

i

 e
(
σ′1, X̃

t′
i∗
i∗ Ỹ

wt′
i∗

i∗

)
= e

(
σ′2, G̃

)
.

On that account,

e
(
σ
′t′
i∗

1 /σ
ti∗
1 , X̃i∗Ỹ

w
i∗

)
= e

(
σ′2/σ2, G̃

)
,

so
e
(
σ
′t′
i∗

1 /σ
ti∗
1 , g̃a(x+w)

)
= e

(
σ′2/σ2, g̃

∏q
`=1(x+w`)

)
.

It follows that
(
σ
′t′
i∗

1 /σti∗ , σ′2/σ2

)
is then of the form

(
hx+w, h

a∏q
`=1

(x+w`)

)
.

Setting P =
∏q
`=1(x+w`), note that P is coprime with (X+w) as w /∈

{w`}q`=1. Algorithm B then returns the tuple
(
w,P, σ

′t′
i∗

1 /σti∗ , σ′2/σ2

)
and

51

wins the q-MSDH-1 challenge. The rewinding lemma (Lemma 4) implies
that adversary A outputs another forgery with probability at least

(
ε2 −

ε/|Θ|
)
by considering (for the application of the lemma) X as the inputs

of A (including its random tape) up to its to query to H1 in the first
run and its response, excluding ti∗ ; Y and Y ′ as ti∗ and t′i∗ respectively;
Z and Z ′ as the inputs given to A strictly after the query to H1 in the
first and second run respectively; f as the function which outputs 1 if A
outputs another forgery and 0 otherwise. If adversary A does not output
another forgery, B returns ⊥. It follows that algorithm B wins the q-
MSDH-1 challenge with probability at least

(
1 − 1/|Θ|

)(
ε2 − ε/|Θ|

)
. As

1/|Θ| is negligible, if ε were non-negligible, B would win the q-MSDH-1
game with non-negligible probability: a contradiction. Such an adversary
A can therefore not exist.

In the general case, i.e., for an adversary which makes qH1 > 1 queries
to H1 and wins the weak forgery game with probability ε, there exists
an adversary A′ which runs A as a subroutine, makes only one query to
H1, and wins the q-MSDH-1 challenge with probability at least ε/qH1 .
Indeed, consider A′ an algorithm which chooses uniformly at random one
of the qH1 queries to H1 and forwards it to the challenger, and replies
to the rest of the H1-queries with by choosing uniformly random values
itself. It also forwards to the challenger all the other type of queries that
A makes. When A outputs a forgery together with a list of public keys, if
those latter are the ones in the query A′ chose to forward, A′ submits the
forgery, otherwise it returns ⊥. Algorithm A′ then wins the weak forgery
game with probability at least ε/qH1 . Therefore, if there exists an efficient
adversary A that wins the weak forgery game with probability at least ε
by making q non-adaptive signing queries and qH1 queries to oracle H1,
there exists an algorithm B with running time essentially twice that of A,
which wins the q-MSDH-1 game with probability at least

(
1−1/|Θ|

)(
ε2−

ε/|Θ|
)
/qH1 . Under the q-MSDH-1 assumption, ε must be negligible, and

the PS single-message multi-signature is thus EUF-wCMA secure. ut

Lemma 6. If the SDL assumption holds over the group-generator G and
the PS single-message multi-signature scheme is EUF-wCMA secure, then
the modified PS multi-message multi-signature scheme is EUF-CMA se-
cure.

Proof. The proof consists in showing that if there exists an efficient algo-
rithm that can win the forgery game for the modified PS k-message multi-
signature scheme, then, if the SDL assumption holds, there exists an effi-
cient algorithm that can win the weak forgery game of the original single-

52

message signature-scheme. Let A be an adversary that wins the forgery
game for the modified PS k-message multi-signature scheme, for an inte-
ger k ≥ 1, with a non-negligible probability ε. As a signing query implies a
query toH0, adversary Amakes at most qH0 signing queries. For ` ∈ [qH0],
denote by m` = (m`,1, . . . ,m`,k) the messages for which A makes a signing
query. Under the SDL assumption, if i∗ is the index of the target (honest)
signer, then the message m = (m1, . . . ,mk) for which A outputs a forgery
is such that

∑k
j=1 yi∗,jmj + yi∗,k+1mk+1 6=

∑k
j=1 yi∗,jm`,j + yi∗,k+1m`,k+1

for ` ∈ [qH0] (if ` if strictly greater than the number of signing queries,
set m` = ⊥).

Indeed, would it not be the case, consider a algorithm B which runs
A as a subroutine and interacts with an SDL challenger which outputs
an instance

(
g, g̃, Y = gy, Ỹ = g̃y

)
. Given a target (honest) signer index

i∗ ∈ [n] from A, algorithm B generates xi∗ ∈R Zp and aj , bj ∈R Zp for
j = 1, . . . , k + 1, and sets and sends X̃i∗ = g̃xi∗ , Ỹi∗,j = g̃aj Ỹ bj for
j = 1, . . . , k + 1 to A. It implicitly sets yi∗,j = aj + ybj .

To answer H1 queries, B chooses uniformly random values. To answer
the `-th H0 query on a new message m`, algorithm B prepares and stores
a signature on m`, i.e., generates m ′`, t` ∈R Zp, sets σ`,1 ← gt` and

σ`,2 ←
(
gxi∗+

∑k
j=1 ajm`,j+ak+1m

′
` · Y

∑k
j=1 yjm`,j+yk+1m

′
`

)t`
= σ

xi∗+
∑
j yi∗,jm`,j+y`,k+1m

′
`

`,1 .

Algorithm B then replies with σ`,1. Later, if A makes a signing query
on m`, algorithm B replies with (m ′`, σ`,1, σ`,2). If A makes a signing query
on a message m for which it has not made a H0-query yet, algorithm B
proceeds as before but also outputs the signature instead of only storing
it. If A makes a H0-query for a message for which it has already made a
signing or H0 query, algorithm B answers as it priorly did.

When A eventually outputs a forgery (m ′, σ1, σ2) on a message m such
that

∑k
j=1 yi∗,jmj + yi∗,k+1mk+1 =

∑k
j=1 yi∗,jm`,j + yi∗,k+1m`,k+1 mod p

for some ` ∈ [qH0] and a message m` for which it has made a signing
query, then

g̃
∑k
j=1 aj(mj−m`,j)+ak+1(m ′−m ′`,j) = Ỹ

∑k
j=1 bj(mj−m`,j)+bk+1(m ′−m ′`,j).

53

Since the distribution of the bj values conditioned on the input of adver-
sary A is uniformly random (because of the aj values),

k∑
j=1

bj (mj −m`,j) + bk+1

(
m ′− m ′`,j

)
= 0 mod p

with probability 1/p. Consequently, algorithm B wins the SDL challenge
with probability at least (1− 1/p)ε, which is non-negligible and the SDL
assumption is thus contradicted. It follows that if the SDL assumption
holds, then the message m = (m1, . . . ,mk) for which A outputs a forgery
is necessarily such that

∑k
j=1 yi∗,jmj + yi∗,k+1mk+1 6=

∑k
j=1 yi∗,jm`,j +

yi∗,k+1m`,k+1 for ` ∈ [qH0].
Consider then an algorithm B which runs A as a sub-routine and

interacts with a challenger for the weak unforgeability game of the PS
k-message multi-signature scheme. On the input of public parameters, B
forwards them to A, receives a target signer index i∗, and forwards it to
the challenger together with qH0 messages w1, . . . , wqH0

chosen uniformly

at random. The challenger outputs a verification key
(
X̃i∗ , Ỹi∗

)
for signer

i∗ and signatures σ1, . . . , σqH0
.

Next, algorithm B generates uj ∈R Zp for j = 1, . . . , k + 1, and
computes Ỹi∗,1 ← Ỹ and Ỹi∗,j ← Ỹ uj for j = 2, . . . , k + 1. Algo-
rithm B then outputs vk i∗ ←

(
X̃i∗ , Ỹi∗,1, . . . , Ỹi∗,k+1

)
. This implicitly

sets sk i∗ = (xi∗ , yi∗,1 = yi∗ , yi∗,2 = u2yi∗ , . . . , yi∗,k+1 = uk+1yi∗). To an-
swer H1 queries, B chooses uniformly random values. To answer the `-th
H0 query on a new message m`, algorithm B prepares and stores a signa-
ture on m` by setting

m ′` ← u−1k+1

w` − k∑
j=1

ujm`,j

 mod p

with u1 = 1. Since yi∗,1w` =
∑k

j=1 yi∗,1ujm`,j+yi∗,1uk+1m
′
` =

∑k
j=1 yjm`,j

+ yk+1m
′
`, the tuple (m ′`, σ`,1, σ`,2) is a valid signature on m`. Algorithm

B then replies the H0-query with σ`,1. Later, if A makes a signing query
on m`, algorithm B replies with (m ′`, σ`,1, σ`,2). If A makes a signing query
on a message m for which it has not made a H0-query yet, algorithm B
proceeds as before but also outputs the signature instead of only storing
it. If A makes a H0-query for a message for which it has already made a
signing or H0 query, algorithm B answers as it priorly did.

When A eventually outputs a list of verifications keys for i 6= i∗ and
a forgery (m ′, σ1, σ2) on a new message m (i.e., for which no signing

54

query was made) such that
∑k

j=1 yi∗,jmj+yi∗,k+1mk+1 6=
∑k

j=1 yi∗,jm`,j+

yi∗,k+1m`,k+1 mod p for all ` ∈ [qH0], setting w =
∑k

j=1 ujmj + uk+1m
′,

note that yi∗,1w 6= yi∗,1w` for ` ∈ [qH0]. Therefore, (σ1, σ2) is a valid
forgery for the new message m. Algorithm B then perfectly simulates to
A the challenger of the forgery game for the modified PS k-message multi-
signature scheme, and wins with the same probability with which A wins
the weak forgery game for the PS single-message multi-signature scheme.
Hence the statement of the lemma. ut

This concludes the proof of theorem. ut

Proving Knowledge of a PS Multi-Signature. Proving knowledge
of a PS multi-signature valid w.r.t. an aggregated verification key avk can
be done exactly as in Section 2.5 for proving knowledge of a PS signature
valid w.r.t. a verification key vk .

F Distributed Group Signatures from Multi-Signatures

In practice, the ability to open signatures with a threshold number of
openers seems to be a natural requirement. For privacy concerns, it is
desirable to distribute the role of the opener over many entities. If this
number is high, not all potential openers can be expected to be perma-
nently available, or to agree in case of legal dispute for instance. Therefore,
only a threshold amount of them should be required to open signatures.

The threshold aspect is, however, less critical for issuance. Although
the ability to add users to the group should be distributed to several
entities for stronger security, the number of issuers generally does not
need to be as high as the number of potential openers. Effectively, issuers
would be a few service providers, whereas openers would be judges or
jurors. Besides, the eventuality of a disagreement about adding a user is
less likely than a dispute about opening a signature. Distributed issuance
instead of threshold issuance might then be satisfactory for many real-
world scenarios.

Distributed Group Signatures. On this account, this section presents a
group signature scheme with distributed issuance and threshold opening.
The benefit of this dedicated distributed scheme is that the traceability of
the scheme now holds even if all issuers but one are corrupt. It means that
even if all but one issuer collude, they can neither compute an untraceable
valid group signature nor forge a group signature that opens to an honest

55

user who never computed it. In contrast, our scheme PS-DGS in Section 4
does not allow to corrupt nI − 1 issuers because of the tI < nI/2 bound
stemming from the key-generation protocol of Gennaro et al. [32].

Restricting issuance to a distributed setting rather than a threshold
one allows to dispense with a key-generation protocol. Instead, we base our
distributed scheme on PS multi-signatures. Relying on multi-signatures
not only overcomes the tI < nI/2 bound but also features a simpler,
non-interactive key generation phase.

In terms of signature size and computational costs, this group signa-
ture scheme still has the same efficiency as the scheme in Section 4. It also
supports the same threshold opening capabilities as the previous schemes.

F.1 Our Distributed Group Signatures with Threshold
Opening

Building on PS multi-signatures, we can now describe our dynamic group
signatures with distributed issuance and threshold opening. The main
differences compared to the scheme in Section 4 are in the key-generation
phase and the issuance protocol.

Key Generation. Given that PS multi-signatures support public key
aggregation, the issuers can now generate their PS keys separately
instead of executing a protocol. The PS public keys generated by the
issuers can later be aggregated with a random oracle H1 to obtain
a global issuer public key that can be used for signing and verifying
signatures.
Nevertheless, the security proofs still require to be able to extract the
keys of dishonest issuers, so they additionally have to prove knowledge
of their PS secret keys. It is worth stressing that proving knowledge
of secret keys is not needed for the stand-alone PS multi-signature
scheme, but rather needed to prove the group-signature scheme secure.
The opener keys are generated as in the scheme in Section 4.
The group public key is now the concatenation of all issuer-and-opener
public keys.

Issuance. During issuance, each issuer blindly signs hsk with his secret
key. After receiving signatures from all issuers, the user aggregates
them and verifies their validity with respect to the global issuer public
key, i.e., the PS aggregated public key. Therefore, user certificates are
now PS multi-signatures instead of PS signatures.

Update Registers, Sign, Verify & Open. Updating registers, and com-
puting, verifying and opening signatures are done as in the scheme of

56

Section 4, except that signing and verifying are now done with another
hash function H2 modeled as a random oracle.

Formally, the key-generation and key-aggregation algorithms of the
issuers and the issuance protocol are as follows.

IKG(pp, i ∈ [n])→ (ipk i, isk i, st i)) : generate (vk , sk)← PSM.KG(pp) and
set (pk i, sk i) ← (vk , sk). Denote by RPSM the relation of honestly
generated PS multi-signature public and secret keys. Compute πi ←
NIZK.Prove{sk i : (pk i, sk i) ∈ RPSM}. Set ipk i ← (i, pk i, πi) and isk i ←
(ipk i, sk i). Initialize an empty state st i. Return (ipk i, isk i, st i). The
vector of all issuer public keys is denoted ipk .

IKAggreg(ipk1, . . . , ipkn)→ ipk : for i ∈ [n], parse ipk i as (i, pk i, πi). Ver-
ify that for all i ∈ [n], NIZK.Verf(g̃, pk i, πi) = 1. Compute an aggre-
gated key avk ← PSM.KAggreg(pk1, . . . , pkn). Set an return ipk ←
avk .

The group public key gpk is set to (ipk ,opk).

GJoin The protocol assumes a secure channel between U and every issuer
Ii as well as a broadcast channel. Formally,
1. GJoin.U, on input (id , gpk),
– choose sk id ∈R Z∗p
– (a′, h)← H0(id)
– hsk ← hsk id ; gsk ← gsk id

– π ← NIZK.Prove{sk id : hsk = hsk id ∧ gsk = gsk id}
– generate p1, . . . , ptO ∈R Zp and set P ← sk id +

∑tO
`=1 p`X

` ∈ Zp[X]
– for i ∈ [nO], compute si ← P (i)
– for ` ∈ [tO], compute h` ← hp`

– for all i ∈ [nO]:
∗ ri ←$ Zp
∗ C̃i := (C̃i,0, C̃i,1)←

(
g̃ri , f̃ rii Ỹ si

0

)
∗ πi ← NIZK.Prove

{
ri : C̃i,0 = g̃ri , e

(
h, C̃i,1/f̃

ri
i

)
= e

(
hsk
∏tO
`=1 h

i`

` , Ỹ0

)}
– set L[id]←

(
gsk , hsk , h1, . . . , htO , π,

(
C̃i, πi

)
i∈[nO]

)
– broadcast written to all Ii

2. GJoin.I, for i ∈ [nI], on input (st i, isk i = (i, xi, y0,i, y1,i), id , I, gpk)
– abort if id ∈ st i
– upon receiving written from U :
∗ (a′, h)← H0(id)

57

∗ parse L[id] as
(
gsk , hsk , h1, . . . , htO , π,

(
C̃i, πi

)
i∈[nO]

)
∗ NIZK.Verf(g, h, gsk , hsk , π)

?= 1

∗ for j ∈ [nO],NIZK.Verf
(
h, (h`)

tO
`=1, Ỹ0, f̃j , C̃j , πj

)
?= 1

∗ Σi,2 ← hxi+yi,1a
′
h
yi,0
sk

∗ st i ← st i ∪ {id}
∗ send Σi,2 to U over a secure channel

3. GJoin.U, upon receiving Σi,2 from all Ii,
– ipk ← PSM.KAggreg(pk)
– Σ ← PSM.SAggreg(pk , sk id , (a

′, h,Σi,2)
nI
i=1)

– PSM.Verf(ipk , sk id , Σ) ?= 1
– return gsk[id]← (sk id , Σ).

Security. The anonymity of the scheme holds under the DDH and the
SDL assumptions over the group generator if tO < nO/2. It is not nec-
essary to assume that less than half of the issuers are corrupt since the
issuer secret keys can be extracted from their proofs of knowledge.

As for traceability, it holds under the qH0-MSDH-1, the ADH-KE and
the SDL assumptions if at most nI−1 issuers are corrupt. It is because no
colluding nI−1 PS signers can, with non-negligible probability, compute a
multi-signature that is valid w.r.t. the aggregated key of all the nI signers.
The assumption that at most min(tO, nO − tO − 1) openers are corrupt is
still necessary though. Indeed, no more than tO openers can be corrupt in
the simulation of shares of µsk id in the proof that no honest user can be
framed by nI − 1 corrupt issuers; and the winning condition still depends
on a correct execution of protocol GOpen which requires the non-corrupt
registers of at least tO + 1 openers.

58

	Short Threshold Dynamic Group Signatures
	Introduction
	Contributions.
	Related Work.

	Preliminaries
	Notation
	Pairing Groups
	Hardness Assumptions
	Strong Diffie–Hellman Assumption.
	Symmetric Discrete-Logarithm Assumption.
	Knowledge-of-Exponent Assumption.

	Signatures
	Pointcheval–Sanders Signature Scheme
	Proving Knowledge of a PS Signature.

	Threshold Dynamic Group Signatures
	Syntax
	Correctness.

	Security Model
	Corruption.
	Global Variables.
	Oracles.
	Anonymity.
	Traceability.
	On Non-Frameability.

	Our Threshold Dynamic Group Signatures
	Variant of the PS Signature Scheme
	Construction with Separate Issuers and Openers
	Scheme Description.
	Discussion.
	Efficiency.
	Comparison with other Schemes.

	Generalized Forking Lemma
	Security of our Threshold Dynamic Group Signatures
	Threshold Group Signatures without Ledger
	Multi-Signatures with Key Aggregation
	Syntax.
	Security Model.

	PS Multi-Signatures
	Original Pointcheval–Sanders Signature Scheme
	Pointcheval–Sanders Multi-Signatures
	Proving Knowledge of a PS Multi-Signature.

	Distributed Group Signatures from Multi-Signatures
	Our Distributed Group Signatures with Threshold Opening
	Security.

