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Abstract

Passwords are inherently vulnerable to dictionary attacks, but are quite secure if guessing attempts can be
slowed down, for example by an online server. If this server gets compromised, however, the attacker can again
perform an offline attack. The obvious remedy is to distribute the password verification process over multiple
servers, so that the password remains secure as long as no more than a threshold of the servers are compromised.
By letting these servers additionally host shares of a strong secret that the user can recover upon entering the cor-
rect password, the user can perform further cryptographic tasks using this strong secret as a key, e.g., encrypting
data in the cloud. Threshold password-authenticated secret sharing (TPASS) protocols provide exactly this func-
tionality, but the two only known schemes by Bagherzandi et al. (CCS 2011) and Camenisch et al. (CCS 2012)
leak the password if a user mistakenly executes the protocol with malicious servers. Authenticating to the wrong
servers is a common scenario when users are tricked in phishing attacks. We propose the first t-out-of-n TPASS
protocol for any n > t that does not suffer from this shortcoming. We prove our protocol secure in the UC frame-
work, which for the particular case of password-based protocols offers important advantages over property-based
definitions, e.g., by correctly modeling typos in password attempts.

1 Introduction

You wake up in a motel room. Where are you? How did you get here? You can’t remember anything. Or perhaps
you can. One word, a password, is engraved in your mind. You go outside and walk into the street. The first
person you meet doesn’t know you. The second seems to recognize you, or at least pretends to do so. He says he’s
your friend. He introduces you to other people who claim they are also your friends. They say they can help you
reconstruct your memory—if you give the correct password. But why would you trust them? What if they are not
your friends? What if they’re trying to plant false memories in your brain? What if they’re trying to learn your
password, so they can retrieve your real memories from your real friends? How can you tell?

The above scenario, inspired by the movie “Memento” in which the main character suffers from short-term
memory loss, leads to an interesting cryptographic problem that is also very relevant in practice. Namely, can a user
securely recover his secrets from a set of servers, if all the user can or wants to remember is a single password and
all of the servers may be adversarial? In particular, can he protect his precious password when accidentally trying
to run the recovery with all-malicious servers? A solution for this problem can act as a natural bridge from human-
memorizable passwords to strong keys for cryptographic tasks, all while avoiding offline dictionary attacks on the
password. Practical applications include secure password managers (where the shared secret is a list of strongly
random website passwords) and encrypting data in the cloud (where the shared secret is the encryption key) based
on a single master password.

A single master password may seem a bad idea given that over the past few years, hundreds of millions of
passwords have been stolen through server compromises, with major data breaches being reported at popular web-
sites such as LinkedIn, Adobe, Yahoo!, and Twitter. Storing passwords in hashed form offers hardly any protection
due to the efficiency of brute-force offline attacks using dictionaries. According to NIST [9], sixteen-character
human-memorizable passwords only have 30 bits of entropy on average. With current graphical processors testing
more than three hundred billion passwords per second [33], security must be considered lost as soon as an offline
attack against the password data can be performed. Indeed, more than ninety percent of the 6.5 million password
hashes pilfered from LinkedIn were cracked within six days [32]. Dedicated password hashes such as bcrypt [43]
or PBKDF2 [37] only give a linear security improvement: n times more effort to verify passwords for an honest
server makes offline dictionary attacks at most n times harder.
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However, as poorly as passwords stand their ground against offline attacks, they are actually fairly secure against
online attacks as long as attempts can be throttled by an honest server, e.g., by blocking accounts, presenting
CAPTCHAs, or introducing time delays. The problem is that if a single server can check the correctness of a
password, then that server—or any adversary breaking into it—must have access to some information that can be
exploited in an offline attack. The obvious solution is to verify passwords through a distributed protocol involving
multiple servers, in such a way that no single server, or no collusion up to a certain threshold, stores or obtains any
information that can enable an offline attack.

Scenario. Recall our original goal that we don’t just want to authenticate to a set of servers, we also want to store
a strong secret that the user can later reconstruct from a subset of the servers using a single password in such a way
that the servers don’t learn anything about the secret or the password. The secret can be used as a key for any other
cryptographic purposes, for example, to encrypt and store a file in the cloud containing strong passwords and other
credentials required for websites or online services. Those services thereby do not have to change their standard
authentication mechanisms, ensuring a smooth deployment path. A commercial product along these lines called
RSA Distributed Credential Protection [44] is already available.

When the user sets up his account, he carefully selects a list of names of servers that he will use in the protocol.
He may make his selection based on the servers’ reputation, perceived trust, or other criteria; the selection is impor-
tant, because if too many of the selected servers are malicious, his password and secret are already compromised
from the beginning. It is also clear that at setup the user must be able to authenticate the servers that he selected.
In previous work, setup is often assumed to take place out-of-band. Given the importance of the setup phase, we
follow Camenisch et al. [13] in that we explicitly model account setup and assume that a public-key infrastructure
(PKI) is in place to link server names to public keys.

When later the user wants to retrieve his secret, ideally, he should not need anything else than his username and
password. In particular, he should not even have to remember the names of the servers he selected at setup. The
list may be too long for the user to remember, and he can certainly not be expected to, at every retrieval, spend the
same amount of thought on composing the list of names of the servers as during setup. Also, the user may retrieve
his secret with a different device than the one that he used to create the account. For example, he may be logging
in from his phone instead of his laptop, he may be installing a new device, or he may be borrowing a friend’s tablet
PC. Of course, we do have to assume that the device on which the user enters his single password is “clean”, i.e.,
is not infected with malware, doesn’t have a key-logger attached, etc. We make the minimal requirement that the
user has a clean operating system and a clean web browser to work with, with hardcoded keys of root certification
authorities (CAs) and an implementation of our protocol. Indeed, we do not want to assume any user-specific state
information from the setup phase to be available on the device at the time of retrieval. Different users may select
different server names, so the names of the selected servers cannot be hardcoded in the browser either. The list of
servers that is used at retrieval may be different from that used at setup: the user may forget some servers when
authenticating, involve some servers that were not present at setup, mistype server URLs, or even be tricked into
running the protocol with a set of all-malicious servers through a sort of phishing attack. Note that a PKI doesn’t
prevent this: malicious servers also have certified keys. Also note that users cannot rely on the servers to store
user-specific state information that they later sign and send back to the user, because the servers during retrieval
may be malicious and lie about the content or wrongly pretend to have been part of the trusted setup set.

Existing Solutions. Threshold password-authenticated secret sharing (TPASS) schemes are the best fit for the above
problem: they allow a user to secret-share a secret K among n servers and protect it with a password p, so that
the user can later recover K from any subset of t + 1 of the servers using p, but so that no coalition smaller than t
learns anything about K or mount an offline attack on p. Unfortunately, the two currently known TPASS protocols
by Bagherzandi et al. [3] and Camenisch et al. [13] break down when the user tries to retrieve his secret from a set
of all-malicious servers. In the former, the password is exposed to offline attacks, in the latter it is plainly leaked.
We outline the attacks on both protocols in Appendix B. These attacks are of course quite devastating, as once the
password is compromised, the malicious servers can recover the user’s secret from the correct servers.

Our Contribution. We provide the first t-out-of-n TPASS protocol for any n > t that does not require trusted, user-
specific state information to be carried over from the setup phase. Our protocol requires the user to only remember a
username and a password; if he misremembers his list of servers and tries to retrieve his secret from corrupt servers,
our protocol prevents the servers from learning anything about the password or secret, as well as from planting a
different secret into the user’s mind than the secret that he stored earlier.

Our construction is inspired by the protocol of Bagherzandi et al. [3] by relying on a homomorphic threshold
cryptosystem, but the crucial difference is that in our retrieve protocol, the user never sends out an encryption of
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his password attempt. Instead, the user derives an encryption of the (randomized) quotient of the password used
at setup and the password attempt. The servers then jointly decrypt the quotient and verify whether it yields “1”,
indicating that both passwords matched. In case the passwords were not the same, all the servers learn is a random
value.

The Case for Universal Composability. We prove our protocol is secure in the universal composability (UC) frame-
work [16]. The particular advantages of UC security notions for the special case of password-based protocols have
been pointed out before [18, 13]; we recall the main arguments here. First, all property-based security notions for
threshold password-based protocols in the literature [40, 47, 38, 3] assume that honest users choose their passwords
from known, fixed, independent distributions. In reality, users share, reuse, and leak information related to their
passwords outside of the protocol, if only because users derive passwords from real-world phenomena. (Property-
based notions for dependent distributions are possible in principle [5], but it’s not clear whether the results carry
over to this stronger setting.) Second, all known property-based notions allow the adversary to observe or even
interact with honest users with their correct passwords, but not on incorrect yet related passwords—which is ex-
actly what happens when a user makes a typo while entering his password. In the UC framework, this is modeled
more naturally by letting the environment provide the passwords, so no assumptions need to be made regarding
their distributions, dependencies, or leakages. Finally, property-based definitions consider the protocol in isolation,
while the composition theorem of the UC framework guarantees secure composition with itself as well as with other
protocols. Composition with other protocols is of particular importance in the considered TPASS setting, where a
user shares and reconstructs a strong key K with multiple servers, and should be able to securely use that key in a
different protocol, for instance to decrypt data kept in the cloud. Modeling such secure composition of password-
based protocols is particularly delicate given the inherent non-negligible success probability of the adversary by
guessing the password. Following previous work [18, 13], our UC notion absorbs the inherent guessing attacks into
the ideal functionality itself. A secure protocol guarantees that the real world and ideal world are indistinguishable,
thus the composition theorem continues to hold.

Building a UC secure protocol requires many additional tools, such as simulation-sound non-interactive zero-
knowledge proofs with on-line witness extraction (which can be efficiently realized for discrete-logarithm based
relations in the random-oracle model) and CCA2-secure encryption. It is all the more surprising that our final
protocol is efficient enough for use in practice: It requires only 5n+ 15 and 14t+ 24 exponentiations from the user
during setup and retrieval, respectively. Each server has to perform n + 18 and 7t + 28 exponentiations in these
respective protocols.

Related Work. In spite of their practical relevance, TPASS protocols only started to appear in the literature very
recently. The t-out-of-n TPASS protocol by Bagherzandi et al. [3] was proved secure under a property-based
security notion in a PKI setting. As mentioned above, it relies on untamperable user memory and breaks down when
the user retrieves its secret from all-corrupt servers (see Appendix B). Our protocol can be seen as a strengthened
version of the Bagherzandi et al. protocol; we refer to Section 4 for a detailed comparison. The 1-out-of-2 TPASS
protocol by Camenisch et al. [13] was proved secure in the UC framework, but leaks the password and secret if a
user tries to retrieve his secret from all-corrupt servers.

Constructing TPASS protocols from generic multi-party computation (MPC) is possible but yields inefficient
protocols. Our strong security requirements require public-key operations to be encoded in the evaluated circuit,
while the state-of-the-art MPC protocols [23, 24, 22] require an expensive joint key-generation step to be performed
at each retrieval. We refer to Appendix C for details.

The closely related primitive of threshold password-authenticated key exchange (TPAKE) lets the user agree on
a fresh session key with each of the servers, but doesn’t allow the user to store and recover a secret. Depending on
the desired security properties, one can build a TPASS scheme from a TPAKE scheme by using the agreed-upon
session key to transmit the stored secret share over a secure channel [3].

The first TPAKE protocols due to Ford and Kaliski [29] and Jablon [36] were not proved secure. The first
provably secure TPAKE protocol was proposed by MacKenzie et al. [40], a t-out-of-n protocol in a PKI setting.
The 1-out-of-2 protocol of Brainard et al. [10] was proved secure by Szydlo and Kaliski [47] and is implemented
in EMC’s RSA Distributed Credential Protection [44]. Both protocols either leak the password or allow an offline
attack when the retrieval is performed with corrupt servers (see Appendix B). The t-out-of-n TPAKE protocols by
Di Raimondo and Gennaro [26] and the 1-out-of-2 protocol by Katz et al. [38] are proved secure under property-
based (i.e., non-UC) notions in a hybrid password-only/PKI setting, where the user does not know any public keys,
but the servers and an intermediate gateway do have a PKI. These protocols actually remain secure when executed
with all-corrupt servers, but are restricted to the cases that n > 3t and (t, n) = (1, 2).
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Boyen [8] presented a protocol related to TPASS, where a user can store a random value under a password with
a single server. While being very efficient, this protocol fails to provide most of the security properties we require,
i.e., the server can set up the user with a wrong secret, throttling is not possible, and no UC security is offered.

2 Definition of Security

Recall the goal of a TPASS scheme: at setup, a user secret-shares his data over n servers protected by a password p;
at retrieval, he can recover his data from a subset of t+ 1 of these n servers, assuming that at most t of the original
n servers are corrupt. For the sake of simplicity, we assume that the user’s data is a symmetric key K; the user can
then always use K to encrypt and authenticate his actual data and store the resulting ciphertext in the cloud.

We want the user to be able to retrieve his data remembering only his username uid and his password, and
perhaps the name of one or a couple of his trusted servers. The user cannot be assumed to store any additional
information, cryptographic or other. In particular, the user does not have to remember the names or public keys of
all of the servers among which he shared his key. Rather, in a step preceding the retrieval (that we don’t model
here), he can ask the servers that he thinks he remembers to remind him of his full list of servers. Of course, these
servers may lie if they are malicious, so the user may be tricked into retrieving his key from servers that weren’t
part of the original setup, some or even all of which may be malicious. We want to protect the user in this case and
prevent the servers from learning the password.

Certain attacks are inherent and cannot be protected against. For example, a corrupt user can always perform
an online attack on the user’s password p by doing several retrieval attempts. It is therefore crucial that honest
servers detect failed retrieval attempts, so that they can apply throttling mechanisms to slow down the attack, such as
blocking the user’s account or asking the user to solve a CAPTCHA. The throttling mechanism should count retrieval
attempts that remain pending for too long as failed attempts, since the adversary can always cut the communication
before some of the servers were able to conclude.

A second inherent attack is that if at least t+1 of the n servers at setup are corrupt, then these servers can mount
an off-line dictionary attack on the user’s password p. Given the low entropy in human-memorizable passwords and
the efficiency of offline dictionary attacks on modern hardware, one may conservatively assume that in this case the
adversary simply learns p and K—which is how we model it here.

A somewhat subtle but equally unavoidable attack is that when an honest user makes a retrieval attempt with
a set of all-corrupt servers, the servers can try to plant any key K∗ of their choice into the user’s output. This
attack is unavoidable, because the corrupt servers can always pretend that they participated in a setup protocol for a
“planted” password p∗ and a “planted” key K∗, and then execute the retrieve protocol with the honest user using the
information from this make-belief setup. If the planted password p∗ matches the password p′ the user is retrieving
with, the user will retrieve the planted key K∗ instead of his real key. Note that in the process, the adversary learns
whether p∗ = p′, giving him one free guess at the password p′. This planting attack is even more critical if the user
previously set up his account with at least t+ 1 corrupted servers, because in that case the adversary already knows
the real password p, which most likely is equal to the password p′ with which the user runs retrieval.

Finally, in our model, all participants are communicating over an adversarial network, which means that protocol
failures are unavoidable: the adversary may block communication between honest servers and the user. As a result,
we cannot guarantee that the user always succeeds in retrieving his data. In view of this fact, we chose to also
restrict the retrieval protocol to t + 1 servers: although this choice causes the retrieve protocol to fail if just one
server refuses to participate, failures were already unavoidable in our network model. We could still try to guarantee
some limited form of robustness (recall that, in the threshold cryptography literature, a protocol is robust if it can
successfully complete its task despite malicious behavior from a fraction of participants) by requiring that, when
t + 1 or more honest servers participate, and the network does not fail, the user successfully recovers his data;
however, while it seems not hard to add robustness to our protocols by applying the usual mechanisms found in the
literature, it turns out that modeling robustness would considerably complicate our (already rather involved) ideal
functionality.

2.1 Ideal Functionality

Assuming the reader is familiar with the UC framework [16], we now describe the ideal functionality FTPASS(t,n)

of TPASS that is parametrized with (t, n). For simplicity, we refer to FTPASS(t,n) as F from now on. It interacts
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with a set of users {U}, a set of servers {Si} and an adversaryA. We consider static corruptions and assume that F
knows which of the servers {Si} are corrupt.

The UC framework allows us to focus our analysis on a single protocol instance with a globally unique session
identifier sid . Security for multiple sessions follows through the composition theorem [16] or, if different sessions
are to share state, through the joint-state universal composition (JUC) theorem [19]. Here, we use the username
uid as the session identifier sid , and let each setup and retrieve query be assigned a unique sub-session identifier
ssid and rsid within the single-session functionality sid = uid . When those identifiers are established through
the functionality described in [4], they will consist of a globally unique string and the identifiers of the parties that
agreed on that identifier. We will later motivate these choices; for now, it suffices to know that a session identifier
sid = uid corresponds to a single user account, and that the sub-session identifiers ssid and rsid refer to individual
setup and retrieve queries for that account.

The functionality F has two main groups of interfaces, for setup and retrieve. For the sake of readability, we
describe the behavior of those interfaces in a somewhat informal way below, and provide the formal specification of
our functionality in Appendix A.

Setup Functionality: The SETUP-related interfaces allow a user U to instruct F to store the user’s key K , pro-
tected with his password p, among n servers S = (S1, . . . ,Sn) of the user’s choice.

1. A (SETUP, sid , ssid , p,K ) message from a user U initiates the functionality for user name uid = sid . (See
below for a discussion on session identifiers.) The sub-session identifier ssid contains a list of n different server
identities S = (S1, . . . ,Sn) among which U wants to share his key K protected by password p. If at least t+ 1
servers in S are corrupt, F sends the password and key to the adversary, otherwise it merely informs A that a
setup sub-session is taking place. F also creates a record s where it stores s.ssid , s.p, s.K and sets s.R ← U .

2. With a (JOIN, sid , ssid ,Si) message, the adversaryA instructs F to let a server Si join the setup. If Si is honest,
this means that Si registers the setup and will not join any further setups for this username uid = sid . The user
is informed that Si joined the setup.

3. The (STEAL, sid , ssid , p̂, K̂ ) message models a rather benign but unavoidable attack where the adversary “steals”
the sub-session ssid by intercepting and replacing the network traffic generated by U , allowing A to replace the
password and key provided by U with his own choice s.p← p̂, s.K ← K̂ . Note that this is not a very powerful
attack, since the adversary could achieve essentially the same effect by letting a corrupt user initiate a separate
setup session for p̂, K̂ . Thus, the only difference is that here the adversary uses the ssid generated by an honest
user, and not a fresh one. Servers are unaware when such an attack takes place, but the user U cannot be made
to believe that an honest server Si has accepted his inputs. This is modeled by setting the recipient of server
confirmations s.R to the adversary A.

Retrieve Functionality: The RETRIEVE-related interfaces allow U ′ to retrieve the key from t + 1 servers S′ if
S′ ⊆ S and U ′ furnishes the correct password; it also models the plant attack described above.

4. A (RETRIEVE, sid , rsid , p′) message is provided by a user U ′ to F to initiate a retrieval for username uid = sid
with password p′ from the set of t + 1 servers S′ = S1, . . . ,St+1 included in the sub-session identifier rsid .
F then creates a retrieve record r where it stores r.rsid , r.p′, sets r.R ← U ′ and initially sets r.ssid ← ⊥ and
r.K ← ⊥. If there is a setup session ssid that all honest servers in S′ have joined and where all servers in S′

also occur in S, then F links this retrieve to ssid by setting r.ssid ← ssid . F notifies the adversary and (with
an adversarially determined delay) also the honest servers in S′ that a new retrieval is taking place. Note that the
password attempt p ′ is not leaked to the adversary, even if all servers in S′ are corrupt.

5. A (PLANT, sid , rsid , p∗,K ∗) message allows the adversary A to perform the planting attack described above.
Namely, if all t + 1 servers in the retrieval are corrupt, A can submit a planted password p∗ and key K ∗. The
functionality tells A whether p∗ matched the password attempt p′. If so, F also sets the key r.K that will
eventually be returned in this session to the planted key K ∗ provided by the adversary.
Note that the adversary can perform only one planting attack per retrieval. So even if all t+1 servers are corrupt,
the adversary only obtains a single guess for the retrieval password p′.

6. A (STEAL, sid , rsid , p̂) message again allows the adversary to “steal” the sub-session identifier rsid , replacing
the original password attempt r.p′ with p̂ of his choice. Servers do not notice this attack taking place, but the
originating user will conclude that the protocol failed, or not receive any output at all. This is modeled again by
setting r.R ← A.
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7. After having been notified that a retrieval is taking place, each honest server Si can indicate its (un)willingness to
participate in the retrieval using a (PROCEED, sid , rsid , a) message specifying a ∈ {allow, deny}. This models
the opportunity for an external throttling mechanism to refuse this retrieval attempt. Only when all honest servers
have agreed to participate, the retrieval continues and the adversary learns whether the passwords matched (i.e.,
whether r.p′ = s.p with s being the setup record for ssid ). If they matched, F also sets the key to be returned
r.K to the key shared during setup s.K .

8. With a (DELIVER, sid , rsid ,P, a) message, the adversary can instruct F to output the final result of this retrieval
to an honest server Si or to the user r.U ′ (indicated by input P). The user will obtain the value r.K , where the
result will signal a successful retrieval only if r.K 6= ⊥, i.e., a key was assigned after the passwords matched.
The servers will receive either a success or failure notication, indicating whether the passwords matched. Note
that in both cases,A can still turn a successful result into a failed one by passing a = deny as an extra input. This
is because in the real world, the adversary can always make a party believe that a protocol ended unsuccessfully
by simply dropping or invalidating correct messages. However, the inverse is not possible, i.e., the adversary can
not make a mismatch of the passwords look like a match.

Session Identifiers. Our choice of (sub-)session identifiers merits some further explanation. In the UC framework,
all machine instances participating in a protocol execution, including ideal functionalities, share a globally unique
session identifier sid . Obviously, our SETUP and RETRIEVE interfaces must be called with the same sid to provide
the expected functionality, because otherwise the instance cannot keep state between setup and retrieval. However,
we insisted that a user can only be expected to remember a username and a password between setup and retrieve, but
no further information such as public keys or random nonces. The sid therefore consist only of the username uid
and thus cannot be used to uniquely identify different setup or retrieval sub-sessions for this username. To allow the
functionality to refer to multiple simultaneous setup and retrieve sub-sessions, the participants of each sub-session
establish a unique sub-session identifier ssid or rsid using the standard techniques mentioned earlier [4]. Therein,
a unique identifier is created by simply concatenating random nonces sent by all parties.

Relation to 2PASS. One can verify that a protocol that securely implementsFTPASS(1,2), i.e., the above functionality
for the 1-out-of-2 case, is also a secure implementation of the 2PASS ideal functionality due to Camenisch et al. [13].
The converse does not hold, since a 2PASS protocol may leak the password attempt p′ during a retrieve with two
corrupt servers.

Insecurity of Protocols with Trusted User-Memory. In Appendix B we show why existing password-based secret
sharing protocols [47, 13, 40, 3] are not secure according to the notion just presented. In a nutshell, the problem is
that those protocols rely on trusted-memory on the user side, i.e., the user has to remember the servers he run the
setup protocol with. If this memory can be tampered with, or the user simply mistypes a server name in the retrieve
phase, then a majority of malicious servers can fully recover the user password p′ used in the retrieval. However,
our functionality guarantees that even if all servers in the retrieval are malicious, the adversary will only get a single
guess p∗ for which he learns whether or not p ′ = p∗, but he will not learn the password p ′ itself.

3 Preliminaries

In this section we introduce the building blocks for our protocols. These are three kinds of public-key encryption
schemes, a signature scheme, and zero-knowledge proof protocols. We require two of the encryption schemes to be
compatible, i.e., the message space to be the same algebraic group. Thus we make use of a probabilistic polynomial-
time algorithm GGen that on input the security parameter 1τ outputs the description of a cyclic group G, its prime
order q, and a generator g, and require the key generation algorithms of the encryption scheme to take G as input
instead of the security parameter.

CPA-secure public-key encryption scheme: This scheme consists of three algorithms (KGen,Enc,Dec). The
key generation algorithm KGen on input (G, q, g) outputs a key pair (epk, esk). The encryption algorithm Enc
on input a public key epk and a message m ∈ G outputs a ciphertext C, i.e., C ← Encepk(m). The decryption
algorithm Dec on input the secret key esk and a ciphertextC outputs a messagem, i.e.,m← Decesk(C). We require
this scheme to satisfy the standard CPA-security properties (with key generation defined as KGen(GGen(1τ ))).
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Semantically secure (t, n)-threshold homomorphic cryptosystem: It consists of five algorithms (TKGen,TEnc,
PDec,VfDec,TDec). The key generation algorithm TKGen on input (G, q, g, t, n) outputs a public key tpk and n
partial key pairs (tpk1, tsk1), . . . , (tpkn, tskn). The encryption algorithm TEnc on input (tpk,m) for a message
m ∈ G outputs a ciphertext C. The partial decryption algorithm PDec on input (tski, C) outputs a decryption share
di and a proof πdi . The decryption share verification algorithm VfDec on input (tpki, C, di, πdi) verifies that di is
correct w.r.t. C and tpki. The threshold decryption algorithm TDec on input C and k ≥ t + 1 decryption shares
di1 , . . . , dik outputs a plaintext m or ⊥.

Our protocol will require that the threshold scheme has an appropriate homomorphic property, namely that
there is an efficient operation � on ciphertexts such that, if C1 ∈ TEnctpk(m1) and C2 ∈ TEnctpk(m2), then
C1 � C2 ∈ TEnctpk(m1 · m2). We will also use exponents to denote the repeated application of �, e.g., C2

1 to
denote C1 � C1.

Further, the scheme needs to be sound and semantically secure. In a nutshell, the former means that for a certain
set of public keys tpk, tpk1, . . . , tpkn a ciphertextC can be opened only in an unambiguous way. The latter property
of semantic security can be seen as an adaption of the normal semantic security definition to the threshold context,
where the adversary can now have up to t of the partial secret keys. More precisely, it consists of two properties:
(1) Indistinguishability: This notion is similar to standard indistinguishability and requires that an adversary know-
ing most t partial secret keys cannot link ciphertexts and messages. That is, for any subset {i1, . . . , it} ⊂ {1, . . . , n},
for any PPT adversary that on input (tpk, {tpki}) and t secret shares (tski1 , . . . , tskit), selects a pair of messages
m0 and m1, the ciphertexts C0 ← TEnctpk(m0) and C1 ← TEnctpk(m1) are indistinguishable.
(2) Simulatability: Roughly, this property guarantees that there is a simulator that on input t partial secret keys,
a ciphertext C and message m can produce decryption shares (d̂j , πd̂j ) that convincingly pretend that C is an
encryption of m. More precisely, there exists an efficient simulator S that on input the public values (tpk, {tpki}),
t secret shares (tski1 , . . . , tskit), a ciphertext C, and a message m, outputs (d̂j , πd̂j ) for all j /∈ {i1, . . . , it} such
that they are indistinguishable from the correct values (dj , πdj ) that would have been obtained if C was indeed an
encryption of m and was correctly decrypted with the tskj secret key.

Those definitions are an adaption of the definitions by Cramer, Damgård and Nielsen [20] for semantically
secure threshold homomorphic encryption. We refer to Appendix D for a more detailed description of the changed
properties and a construction based on the ElGamal cryptosystem that achieves our security notion.

CCA2-secure labeled public-key encryption scheme: We can use any standard CCA2-secure scheme (KGen2,
Enc2,Dec2) that supports labels [14]. Therein, (epk, esk) ← KGen2(1τ ) denotes the key generation algorithm.
The encryption algorithm takes as input the public key epk, a message m, a label l ∈ {0, 1}∗ and outputs a
ciphertext C ← Enc2epk(m, l). The decryption Dec2esk(C, l) of C will either output a message m or a failure
symbol ⊥. Roughly, the label can be seen as context information which is non-malleably attached to a ciphertext
C and restricts the decryption of C to that context, i.e., decryption with a different label from the one used for
encryption will fail. The CCA2-security for labeled encryption is defined similar to standard CCA2-encryption,
with the difference that the adversary can send tuples (m0, l) and (m1, l) to the challenge oracle which returns the
encryption Cb ← Enc2epk(mb, l). The adversary is allowed to query its decryption oracle on tuples (Ci, li) 6=
(Cb, l), i.e., Ci can even be the challenge ciphertext as long it comes with a different label.

Existentially unforgeable signature scheme: Denoted as (SKGen,Sign,Vf), with (spk, ssk) ← SKGen(1τ )
being the key generation algorithm. For the signing of a message m ∈ {0, 1}∗ we write σ ← Signssk(m), and with
b← Vfspk(m,σ) we denote the public verification algorithm that outputs 1 or 0 to indicate success or failure.

Simulation-sound zero-knowledge proof system: We further need a non-interactive zero-knowledge (NIZK)
proof system to prove certain relations among different ciphertexts. We use a somewhat informal notation for this
proof system, e.g., we use π ← NIZK{(m) : C1 = TEnctpk(m)∧C2 = Encepk(m)} (ctxt) to denote the generation
of a non-interactive zero-knowledge proof that is bound to a certain context ctxt and proves that C1 and C2 are both
proper encryptions of the same message m under the public key tpk and epk for the encryption scheme TEnc
and Enc, respectively. We require the proof system to be simulation-sound [45] and zero-knowledge. The latter
roughly says that there must exist a simulator that can generate simulated proofs which are indistinguishable from
real proofs from the view of the adversary. The simulation-soundness is a strengthened version of normal soundness
and guarantees that an adversary, even after having seen simulated proofs of false statements of his choice, cannot
produce a valid proof of a false statement himself.
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In Appendix E we give concrete realizations of the NIZK proofs that we require in our protocols assuming
specific instantiations of the encryption schemes described.

4 Our TPASS Protocol

The core of our construction bears a lot in common with that of Bagherzandi et al. [3], which however does rely on
trusted user storage and is not proven to be UC secure. Thus, we first summarize the idea of their construction and
then explain the changes and extensions we made to remove the trusted storage assumption and achieve UC security
according to our TPASS functionality.

Setup : U(p,K ,S) with public parameters G, q, g, t, n
User generates threshold keys (tpk, (tpki, tski)i=1,...,n)← TKGen(G, q, g, t, n),
encrypts p and K : Cp ← TEnctpk(p) , CK ← TEnctpk(K ), and
sends (Cp, CK , tpk, tski) to each server Si in S.

Retrieve : U(p′,S, tpk) 
 (S1(Cp, CK , tpk, tsk1), . . . ,Sn(Cp, CK , tpk, tskn))

User U : Cp′ ← TEnctpk(p′), send Cp′ to each server in S
Server Si: compute Ctest,i ← (Cp � (Cp′)−1)ri for random ri, send Ctest,i to U
User U : compute Ctest ←

⊙n
i=1 Ctest,i, send Ctest to each server in S

Server Si: compute di ← PDectski
(Ctest � CK), send di to U

User U : output K ′ ← TDec(Ctest � CK , d1, . . . , dn)

Figure 1: Construction outline of the Bagherzandi et al. protocol. For the sake of simplicity, we slightly deviate from the
notation introduced in Section 3 and omit the additional output of πdi

of PDec.

The high-level idea of Bagherzandi et al. [3] is depicted in Figure 1 and works as follows: In the setup protocol,
the user encrypts both the password p and the key K using a threshold encryption scheme and sends these encryp-
tions and secret key shares to all n servers in S. In addition to its username and password, the user has to remember
the main public key tpk of the threshold scheme and the servers he run the setup with. In the retrieve protocol, the
user encrypts his password attempt p ′ under tpk and sends the ciphertext to all the servers in S. The servers now
compute the encrypted password quotient p/p′ and jointly decrypt the combined ciphertext of the quotient and the
key K . If p = p′, the quotient will decrypt to 1 and thus the decryption shares will yield the original key K .

It is easy to see that the user must correctly remember tpk and the exact set of servers, as he sends out an
encryption of his password attempt p′ under tpk. If tpk can be tampered with and changed so that the adversary
knows the decryption key, then the adversary can decrypt p′. (Bagherzandi et al. [3] actually encrypt gp

′
, so that

the malicious servers must still perform an offline attack to obtain p ′ itself. However, given the efficiency of offline
attacks and the low entropy of password, the password p ′ can be considered as leaked.)

Retrieve : U(p′,S′) 
 (S1(Cp, CK , tpk, tsk1), . . . ,Sn(Cp, CK , tpk, tskn))

User U : request ciphertexts and threshold public key from all servers in S′

Server Si: send (Cp, CK , tpk)i to U
User U : if all servers sent the same (Cp, CK , tpk), compute Ctest ← (Cp � TEnctpk(1/p′))r

for random r and send Ctest to each server in S′

Server Si: compute Ctest,i ← (Ctest)
ri for random ri, send Ctest,i to U

User U : compute C ′test ←
⊙n

i=1 Ctest,i, send C ′test to each server in S′

Server Si: compute di ← PDectski(C
′
test), send di to U

User U : if TDec(C ′test, d1, . . . , dn) = 1, send d1, . . . , dn to each server in S′

Server Si: if TDec(C ′test, d1, . . . , dn) = 1, compute d′i ← PDectski
(CK), send d′i to U

User U : output K ′ ← TDec(CK , d
′
1, . . . , d

′
n)

Figure 2: Construction outline of our retrieval protocol (setup idea as in Figure 1).

Removing the Trusted User-Storage Requirement. Roughly, we change the retrieval protocol such that the user never
sends out an encryption of his password attempt p ′, but instead sends an encryption of the randomized quotient p/p ′.
Thus, if the user mistakenly talks to adversarial servers instead of his true friends, the adversary gets one free guess
at p ′, but does not learn anything more. Our retrieval protocol begins with the user requesting the servers in S′
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(which may or may not be a subset of S) to send him the ciphertexts and threshold public key he allegedly used
in setup. If all servers respond with the same information, the user takes the received encryption of p and uses
the homomorphism to generate a randomized encryption of p/p′. The servers then jointly decrypt this ciphertext.
If it decrypts to 1, i.e., the two passwords match, then the servers send the user their decryption shares for the
ciphertext encrypting the key K . By separating the password check and the decryption of K , the user can actually
double-check whether his password was correct and whether he reconstructed his real key K .

Making The Protocol UC-Secure. The second main difference of our protocol is its UC security, which requires
further mechanisms and steps added to the construction outlined in Figure 2. We briefly summarize the additional
changes; the detailed description of our protocol is in the following section. First, for simulatability in the security
proof, we need to be able to extract p, p ′, and K from the protocols. This is achieved through a common reference
string (CRS) that contains the public key PK of a semantically secure encryption scheme and the parameters for
a non-interactive zero-knowledge (NIZK) proof system. Extractable values are encrypted under PK with NIZK
proofs to ensure that the correct value is encrypted. Further, all t + 1 servers explicitly express their consent with
previous steps by signing all messages. The user collects, verifies, and forwards these signatures, so that all servers
can verify the consent of all other servers. Some of these ideas were discussed by Bagherzandi et al., but only
for a specific instantiation of ElGamal encryption and without aiming for full-blown UC security. Our protocol,
on the other hand, is based on generic building blocks and securely implements the UC functionality presented in
Section 2.

How to Remember the Servers. For the retrieve protocol, we assume that the input of the user contains t+ 1 server
names. In practice, however, the user might not remember these names. This is an orthogonal issue and there are a
number of ways to deal with it. For instance, if the user remembers a single server name, he can contact that server
and ask to be reminded of the names of all n servers. The user can then decide with which t + 1 of these servers
to run the retrieve protocol. The user could even query more than one server and see whether they agree on the full
server list. Again, the crucial point is that the security of our protocol does not rely on remembering the t+ 1 server
names correctly, as the security of the password p′ is not harmed, even when the user runs the retrieve protocol with
t+ 1 malicious servers.

A Note on Robustness. As discussed in Section 2, the restriction to run the retrieve protocol with exactly t+1 servers
rather stems from the complexity that robustness would add to our ideal functionality, than from an actual protocol
limitation. With asynchronous communication channels, one can achieve only a very limited form of robustness
where the protocol succeeds if there are enough honest players and the adversary, who controls the network, lets the
honest players communicate. Conceptually, one could add such limited robustness by running the retrieve protocol
with all n servers and in each step continue the protocol only with the first k servers that sent valid response, where
t+ 1 ≤ k ≤ n. Bagherzandi et al. [3] handle robustness similarly by running the protocol with all n servers, mark
servers that cause the protocol to fail as corrupt, and restart the protocol with at least t + 1 servers that appear to
be good. To obtain better robustness guarantees, one must impose stronger requirements on the network such as
assuming synchronous and broadcast channels, as is often done in the threshold cryptography literature [1, 2, 20].
With synchronous channels, protocols can achieve a more meaningful version of robustness, where it is ensured
that inputs of all honest parties will be included in the computation and termination of the protocol is guaranteed
when sufficient honest parties are present [39]. However, in practice, networks are rarely synchronous, and it is
known that the properties guaranteed in a synchronous world cannot simultaneously be ensured in an asynchronous
environment [21, 7]. Thus, given the practical setting of our protocol, we prefer the more realistic assumptions over
modeling stronger (but unrealistic) robustness properties.

4.1 Detailed Descriptions

In the following, when we say that a party sends a message m as part of the setup or retrieve protocol, the party
actually sends a message (SETUP, sid , ssid , i,m) or (RETRIEVE, sid , rsid , i,m), respectively, where i is a sequence
number corresponding to the step number in the respective part of the protocol. Each party will only accept the first
message that it receives for a specific identifier and sequence number. All subsequent messages from the same party
for the same step of the protocol will be ignored.

Each party locally maintains state information throughout the different steps of one protocol execution; servers
Si additionally maintain a persistent state variable sti[sid ] associated with the username sid = uid that is common
to all executions. Before starting a new execution of the setup or retrieve protocol, we assume that the parties use
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standard techniques [16, 4] to agree on a fresh and unique sub-session identifier ssid ′ and rsid ′, respectively, that
is given as an input to the protocol. Each party then only accepts messages that include a previously established
sub-session identifier, messages with unknown identifiers will be ignored. We also assume that the sub-session
identifiers ssid and rsid explicitly contain the identities of the communicating servers S and S′, respectively. Using
the techniques described in [4], the sub-session id would actually also contain the identifier of the user. However, as
we do not assume that users have persistent public keys, we could not verify whether a certain user indeed belongs
to a claimed identifier, and thus we discard that part of the output. Finally, we implicitly assume that whenever a
checks fails, the checking party will abort the protocol.

4.1.1 The Setup Protocol

We assume that the system parameters contain a group G = 〈g〉 of prime order q = Θ(τ) and that the password
p and the key K can be mapped into G (in the following we assume that p and K are indeed elements of G).
We further assume that each server Si has a public key (epki, spki) where epki is a public encryption key for the
CCA2-secure encryption scheme generated by KGen2 and spki is a signature verification key generated by SKGen.
We also assume a public-key infrastructure where servers can register their public keys, modeled by the ideal
functionality FCA by Canetti [17]. Moreover, we require a common reference string, retrievable via functionality
FCRS , containing a public key PK ∈ G of the CPA-secure public-key encryption scheme, distributed as if generated
through KGen, but to which no party knows the corresponding secret key.

The user U , on input (SETUP, sid , ssid , p,K ) with ssid = (ssid ′,S), runs the following protocol with all
servers in S. Whenever a check fails for a protocol participant (either the user or one of the servers), the participant
aborts the protocol without output.

Step S1. The user U sets up secret key shares and note:
(a) Query FCRS to obtain PK and, for each Si occurring in S, query FCA with (RETRIEVE, sid ,Si) to obtain Si’s

public keys (epki, spki).
(b) Run (tpk, tpk1, . . . , tpkn, tsk1, . . . , tskn) ← TKGen(G, q, g, t, n) and encrypt the password p and the key K

under tpk and PK , i.e., compute
Cp ← TEnctpk(p) , CK ← TEnctpk(K ), C̃p ← EncPK (p) , C̃K ← EncPK (K ).

(c) Generate a non-interactive zero-knowledge proof π0 that the ciphertexts encrypt the same password and key,
bound to context = (sid , ssid , tpk, tpk, Cp, CK , C̃p, C̃K) where tpk = (tpk1, . . . , tpkn):

π0 ← NIZK{(p,K ) : Cp = TEnctpk(p) ∧ CK = TEnctpk(K )

∧ C̃p = EncPK (p) ∧ C̃K = EncPK (K ) } ( context )

(d) Set note = (ssid , tpk, tpk, Cp, CK , C̃p, C̃K , π0).

(e) Compute CS,i ← Enc2epki(tski, (sid ,note)) and send a message (note, CS,i) to server Si for i = 1, . . . , n.

Step S2. Each server Si checks & confirms user message:
(a) Receive (note, CS,i) with note = (ssid , tpk, tpk, Cp, CK , C̃p, C̃K , π0). Check that the variable sti[sid ] has

not been initiated yet. Check that the note is valid, i.e., that the proof π0 is correct and that the sets tpk and
S have the same cardinality (recall that S is included in ssid ). Further, check that Dec2eski(CS,i, (sid ,note))
decrypts to a valid threshold decryption key tski w.r.t the received public keys.

(b) Sign the sid and note as σ1,i ← Signsski(sid ,note) and send the signature σ1,i to U .

Step S3. The user U verifies & forwards server signatures:
(a) When valid signatures (σ1,1, . . . , σ1,n) are received from all servers Si in S forward them to all servers in S.

Step S4. Each server Si verifies & confirms server consent:
(a) Upon receiving a message (σ1,1, . . . , σ1,n) from U check that all signatures σ1,i for i = 1, . . . , n are valid

w.r.t the local note .
(b) Store necessary information in the state sti[sid ]← (note, tski).
(c) Compute σ2,i ← Signsski((sid ,note), success) and send σ2,i to U . Output (SETUP, sid , ssid ,S).

Step S5. The user U outputs servers’ acknowledgments:
(a) Whenever receiving a valid signature σ2,i from a server Si in S , output (SETUP, sid , ssid ,Si).
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4.1.2 The Retrieve Protocol

The user U ′ on input (RETRIEVE, sid , rsid , p′) where rsid = (rsid ′,S′) runs the following retrieve protocol with
the list of t + 1 servers specified in S′. Whenever a check fails for a protocol participant, the participant sends
a message (RETRIEVE, sid , rsid , fail) to all other parties and aborts with output (DELIVER2S, sid , rsid , fail) if
the participant is a server, or with output (DELIVER2U, sid , rsid ,⊥) if it is the user. Further, whenever a participant
receives a message (RETRIEVE, sid , rsid , fail), it aborts with the same respective outputs.

Step R1. The user U ′ creates ephemeral encryption key & requests notes:
(a) Query FCRS to obtain PK and, for each Si in S′, query FCA with (RETRIEVE, sid ,Si) to obtain Si’s public

keys (epki, spki).
(b) Generate a key pair (epkU , eskU ) ← KGen2(1τ ) for the CCA2-secure encryption scheme that will be used to

securely obtain the shares of the data key K from the servers.
(c) Encrypt the password attempt p ′ under the CRS as C̃p′ ← EncPK (p′).

(d) Request the note from each server by sending (epkU , C̃p′) to each server Si in S′.

Step R2. Each server Si retrieves & sends signed note:
(a) Upon receiving a retrieve request (epkU , C̃p′), check if a record sti[sid ] = (note, tski) exists. Parse note =

(ssid , tpk, tpk, Cp, CK , C̃p, C̃K , π0) and check that all servers in S′ also occur in S. (Recall, that sid and rsid
are contained in the header of the message, S′ is included in rsid and S in ssid .)

(b) Query FCA with (RETRIEVE, sid ,Sj) for all Sj in S′ to obtain the public keys (epkj , spkj) of the other servers.
(c) Compute σ4,i ← Signsski(sid , rsid , epkU , C̃p′ ,note) and send (note, σ4,i) back to the user.

Step R3. The user U ′ verifies & distributes signatures:
(a) Upon receiving the first message (notei, σ4,i) from a server Si ∈ S′, verify the validity of σ4,i w.r.t. the

previously sent values and parse notei as (ssid , tpk, tpk, Cp, CK , C̃p, C̃K , π0). Check that all servers in S′

occur in S, that the lists tpk and S are of equal length, and that the proof π0 is valid w.r.t. sid . If all checks
succeed, set note ← notei.

(b) Upon receiving any subsequent message (notej , σ4,j) from Sj in S′, check that σ4,j is valid for the same note
the first server sent, i.e., notej = note . Only proceed after (notej , σ4,j) messages from all servers Sj in S′

have been received and processed.
(c) Send (σ4,j)Sj∈S′ to all servers in S′.

Step R4. Each server Si proceeds or halt:
(a) Upon receiving a message (σ4,j)Sj∈S′ from the user, verify the validity of every signature σ4,j w.r.t. to the local

note . Output (RETRIEVE, sid , rsid) to the environment.
(b) Upon input (PROCEED, sid , rsid , a) from the environment, check that a = allow, otherwise abort the protocol.
(c) Compute a signature σ5,i ← Signsski(rsid , allow) and send σ5,i to U ′.

Step R5. The user U ′ computes the encrypted password quotient:
(a) Upon receiving a message σ5,i from a server Si in S′, check that σ5,i is a valid signature for allow. Only

proceed after a valid signature σ5,i has been received from all servers Si in S′.
(b) Use the homomorphic encryption scheme to encrypt p′ and entangle it with the ciphertext Cp from note ,

which supposedly encrypts the password p. That is, select a random r ←R Zq and compute Ctest ← (Cp �
TEnctpk(1/p

′))r.

(c) Generate a proof thatCtest and C̃p′ are based on the same password attempt p′. To prevent man-in-the-middle at-
tacks, the proof is also bound to sid , rsid ,note , and the values provided by the user so far, i.e., epkU , Ctest, C̃p′ :

π1 ← NIZK{(p′, r) : Ctest = (Cp�TEnctpk(1/p
′))r ∧ C̃p′ = EncPK (p′)}(sid , rsid ,note, epkU , Ctest, C̃p′).

(d) Send a message (Ctest, π1, (σ5,j)Sj∈S′) to all servers in S′.

Step R6. Each server Si re-randomizes the quotient encryption:
(a) Upon receiving a message (Ctest, π1, (σ5,j)Sj∈S′), verify the proof π1, and validate all signatures σ5,j .
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(b) Choose ri ←R Zq , compute the re-randomized ciphertext C ′test,i ← (Ctest)
ri and the proof of correctness

π2,i ← NIZK{(ri) : C ′test,i = (Ctest)
ri}. Sign the ciphertext together with the session information as σ6,i ←

Signsski(sid , rsid , Ctest, C̃p′ , C
′
test,i). Send the message (C ′test,i, π2,i, σ6,i) to U ′.

Step R7. The user U ′ verifies & distributes the re-randomized quotient encryptions:
(a) Upon receiving (C ′test,j , π2,j , σ6,j) from all servers Sj in S′ where the proof π2,i and the signature σ6,i are valid

w.r.t. the previously sent Ctest, send (C ′test,j , π2,j , σ6,j)Sj∈S′ to all servers in S′.

Step R8. Each server Si computes combined quotient encryption & sends its decryption share:
(a) Upon receiving the t + 1 tuples (C ′test,j , π2,j , σ6,j)Sj∈S′ from the user, verify all proofs π2,j and all signatures

σ6,j . Compute C ′test ←
⊙

Sj∈S′ C
′
test,j .

(b) Compute the decryption share ofC ′test as (di, πdi)← PDectski(C
′
test) and sign the share as σ7,i ← Signsski(rsid ,

C ′test, di).
(c) Send (di, πdi , σ7,i) to U ′.

Step R9. The user U ′ checks if p = p′ & distributes shares:
(a) When receiving a tuple (di, πdi , σ7,i) from a server Si in S′, verify that the signature σ7,i and the proof πdi for

the decryption share are valid w.r.t. the locally computed C ′test ←
⊙
Sj∈S′ C

′
test,j .

(b) After having received correct decryption shares from all t+1 servers in S′, check whether the passwords match
by verifying that TDec(C ′test, {dj}Sj∈S′) = 1.

(c) Send all decryption shares, proofs, and signatures, (dj , πdj , σ7,j)Sj∈S′ , to all servers Si in S′.

Step R10. Each servers Si checks if p = p′ & sends decryption share for K:
(a) Upon receiving the t + 1 tuples (dj , πdj , σ7,j)Sj∈S′ , verify that all proofs πdj and signatures σ7,j are valid

w.r.t. the locally computed C ′test.
(b) Check whether TDec(C ′test, {dj}Sj∈S′) = 1.
(c) Compute the verifiable decryption share for the data key as (d′i, πd′i)← PDectski(CK).

(d) Compute the ciphertext CR,i ← Enc2epkU ((d′i, πd′i), (epkU , spki)) using the user’s public key and its own
signature public key as label, generate σ8,i ← Signsski(rsid , CR,i), and send (CR,i, σ8,i) to the user. Output
(DELIVER2S, sid , rsid , success).

Step R11. The user U ′ reconstructs K:
(a) Upon receiving a pair (CR,i, σ8,i) from a server Si in S′, check that σ8,i is valid and, if so, decrypt CR,i to

(d′i, πd′i) ← Dec2eskU (CR,i, (epkU , spki)). Verify the validity of d′i by verifying the proof πd′i w.r.t CK taken
from note .

(b) Once all t+ 1 valid shares have been received, restore the data key as K ′ ← TDec(CK , {d′j}Sj∈S′) and output
(DELIVER2U, sid , rsid ,K ′).

4.2 Security and Efficiency

We now provide the results of our security analysis, the proof of Theorem 4.1 is given in Appendix F.

Theorem 4.1 If (TKGen,TEnc,PDec,VfDec,TDec) is a (t, n)-semantically secure threshold homomorphic cryp-
tosystem, (KGen,Enc,Dec) is a CPA-secure encryption scheme, (KGen2,Enc2,Dec2) is a CCA2-secure labeled
encryption scheme, the signature scheme (SKGen,Sign,Vf) is existentially unforgeable, and a simulation-sound
concurrent zero-knowledge proof system is deployed, then our Setup and Retrieve protocols described in Section 4
securely realize F in the FCA and FCRS -hybrid model.

When instantiated with the ElGamal encryption scheme [27] for (TKGen,TEnc,PDec,VfDec,TDec) (as de-
scribed in Section D) and (KGen,Enc,Dec), ElGamal with Fujisaki-Okamoto padding [30] for (KGen2,Enc2,Dec2),
Schnorr signatures [46, 42] for (SKGen, Sign,Vf), and the Σ-protocols of Section E, then by the UC composition
theorem and the security of the underlying building blocks we have the following corollary:

Corollary 1 The Setup and Retrieve protocols described in Section 4 and instantiated as described above, securely
realize F under the DDH-assumption for the group generated by GGen in the random-oracle and the FCA,FCRS -
hybrid model.
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Efficiency Analysis: With the primitives instantiated as for Corollary 1, the user has to do 5n+15 exponentiations
in G for the Setup protocol and 14t + 24 exponentiations in the Retrieve protocol. The respective figures for each
server are n + 18 and 7t + 28. (This includes also the procedure to establish the sub-session identifier ssid , rsid ,
where each party simply sends a random nonce and the concatenation of all inputs is used as unique identifier [4].)
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A Ideal Functionality

We now give the full description of our ideal functionality as described in Section 2. In Figures 3 and 4, depicting
the Setup and Retrieve related interfaces respectively, we make the following assumptions to save on notation which
would only distract from the main ideas:
(i) For each combination of message type (e.g., SETUP, JOIN, etc.), party (U , U ′, Si orA) and sub-session identifier
(ssid , rsid ), the ideal functionality considers only the first incoming message. Subsequent messages in the same
sub-session for the same interface and party will be ignored.
(ii) For all incoming messages except SETUP and RETRIEVE messages, the functionality always checks if for a
message with sub-session identifier ssid (respectively, rsid ) a record s exists with s.ssid (respectively, a record r
with r.rsid ). If so, it retrieves that record and uses the information stored therein for the handling of the message.
If no such record exists, F ignores the message.
(iii) When receiving messages that include the identity of an honest server Si or is coming from an honest server
Si for a sub-session ssid or rsid , F only continues if Si is supposed to participate in that sub-session, i.e., if
ssid = (ssid ′,S) then it must hold that Si ∈ S, and similarly, if rsid = (rsid ′,S′) then Si must appear in S′.

1. Upon input (SETUP, sid , ssid , p,K ) from a user U , where the setup sub-session identifier ssid = (ssid ′,S)
contains a list of n different server identities S = (S1, . . . ,Sn):

• If F does not have a setup record associated with ssid yet, it creates such a record s in which it stores
U , p and K , and sets the response recipient to s.R ← U .
• If at least t + 1 of the servers in S are corrupt, F sends (SETUP, sid , ssid ,U , p,K ) to A; otherwise, it

sends (SETUP, sid , ssid ,U) to A.

2. Upon receiving (JOIN, sid , ssid ,Si) from the adversary A for a server identity Si:
• If Si is honest and has not joined another setup sub-session for the same username uid = sid , then F

outputs (SETUP, sid , ssid) to Si and sends a public delayed output (SETUP, sid , ssid ,Si) to s.R.
• If Si is corrupt, F outputs (SETUP, sid , ssid ,Si) to s.U .

3. Upon receiving (STEAL, sid , ssid , p̂, K̂ ) from the adversary A:

• If no honest server has joined the setup session yet, F replaces the original input for ssid by setting
s.p ← p̂, s.K ← K̂ and s.R ← A.

Figure 3: The Setup-related Interfaces of our Single-Session Functionality F with sid = uid

B Tampering Attacks on Trusted-Memory Protocols

We now briefly discuss why existing password-based secret sharing protocols [47, 13, 40, 3] are not secure accord-
ing to the notion just presented. For the protocols by Szydlo-Kaliski [47] and Camenisch et al. [13] it is easy to
see that the password is plainly revealed to the adversary, when the retrieval is performed with malicious servers.
To learn the password p′ in the protocols by Bagherzandi et al. [3] and MacKenzie et al. [40] we can mount the
following attacks:

In the TPAKE protocol of MacKenzie et al. [40], the client stores a public key y = gx in its trusted memory,
of which the corresponding secret key x is shared among the servers, as well as an ElGamal ciphertext EC =
(yαgp

−1
, gα), where p is the user’s password. During the authentication protocol with password attempt p′, the

user sends a ciphertext B = (yβ, gβ) × (EC)p
′ × (g−1, 1) to all servers. If the adversary replaces the values

y and EC in the client’s memory with y′ = gx
′

and EC = (g, 1) for a known x′, respectively, then we have that
B = (gx

′β+p′−1, gβ), from which the adversary can compute gp
′

and perform an offline attack on p′.
Similarly, the TPASS protocol of Bagherzandi et al. [3] lets the client store a public key y in trusted memory,

and during authentication sends an ElGamal ciphertext (cp′ , dp′) = (gr, yrhp
′
) to all servers. If an adversary

replaces y with y′ = gx
′

for a known x′, then it can use (cp′ , dp′) to mount an offline attack on p′.
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4. Upon input (RETRIEVE, sid , rsid , p ′) from a user U ′ where the sub-session identifier rsid = (rsid ′,S′)
contains a list of t+ 1 different server identities S′:

• If F does not have a retrieve record associated with rsid yet, it creates such a record r in which it
stores p′ and initially sets r.K ← ⊥, r.R ← U ′, and r.ssid ← ⊥.
• If there is at least one honest server in S′, F will link the retrieval to the correct setup record. That is,
F checks if a setup session ssid = (ssid ′,S) exists with S′ ⊆ S and that all honest servers in S′ have
joined. If so, F links this retrieval to that setup by setting r.ssid ← ssid .
• F sends (RETRIEVE, sid , rsid ,U ′) to A and if r.ssid 6= ⊥ it further sends a public delayed output

(RETRIEVE, sid , rsid) to each honest server in S′.

5. Upon receiving (PLANT, sid , rsid , p∗,K ∗) from the adversary A:

• If all t + 1 servers in S′ are corrupt, then F sends (NOTIFY, sid , rsid , c) to A, where c ← correct if
r.p′ = p∗ and c← wrong otherwise. If c = correct, F sets r.K ← K ∗.

6. Upon receiving (STEAL, sid , rsid , p̂) from the adversary A:

• If no message (RETRIEVE, sid , rsid) was delivered to any honest server yet, F sends the public delayed
output (DELIVER2U, sid , rsid ,⊥) to U ′ and sets r.p′ ← p̂ and r.R ← A.

7. Upon input (PROCEED, sid , rsid , a) from an honest server Si where a ∈ {allow, deny}:
• F notifies the adversary by sending (PROCEED, sid , rsid ,Si, a) to A.
• If all honest servers in S′ have agreed to proceed, F obtains the setup record s for r.ssid and sends

(NOTIFY, sid , rsid , c) to A where c ← correct if r.p ′ = s.p and c ← wrong otherwise. If c =
correct, F sets r.K ← s.K .

8. Upon input (DELIVER, sid , rsid ,P, a) from the adversary, where P is either an honest server Si, a user U ′,
or the adversary A, and where a ∈ {allow, deny}:
• If a = allow and r.K 6= ⊥, then F outputs (DELIVER2S, sid , rsid , success) to P if P = Si, or

outputs (DELIVER2U, sid , rsid , r.K ) to r.R if P = r.R.
• Otherwise, F outputs (DELIVER2S, sid , rsid , fail) to P if P = Si or outputs

(DELIVER2U, sid , rsid ,⊥) to r.R if P = r.R.

Figure 4: The Retrieve−related Interfaces of our Single-Session Functionality F with sid = uid

C On Generic Constructions from Multi-Party Computation

Constructing a TPASS scheme a from multi-party computation (MPC) protocol is actually not quite as simple as one
might think. One can easily design an arithmetic circuit that tests password correctness: for example, t = (p−p′)·r,
where r is a jointly generated random value, is zero if p = p′ and is random otherwise. Evaluating this circuit in
a way that meets our stringent security and memory restrictions is not so straightforward, however. First, the ideal
functionality for arithmetic multi-party computation [23] and the state-of-the-art protocols [23, 24, 22] are all for
n participants up to n − 1 of whom can be corrupted, i.e., the threshold t is fixed to n − 1. They also require that
all protocol participants be online during the circuit evaluation. The user machine U that performs setup and would
provide the input p to the circuit is not necessarily online during retrieval, however. Alternatively, one could let U
secret-share p to all servers and, at retrieval, let each server provide his share as input and let the user U ′ provide
p ′. To satisfy our security notion, the secret shares distributed by U at setup must be extractable by the simulator,
however, for example by encrypting them under a public key in a CRS and giving all ciphertexts to all servers.
Moreover, the circuit must use these ciphertexts to check that the shares used as input by the servers are the same
as those given to them during setup, so the circuit must encode public-key operations. Finally, the state-of-the-art
protocols mentioned above all require an initialization step during which all participants jointly generate a shared
encryption key pair. Such protocols are very inefficient, e.g., even if we compromise on security and tolerate a covert
adversary with 2−20 cheating probability, it takes 99.4 seconds on a 2.80 GHz Intel Core i7 for the minimum of
three participants (two servers and the user) [22]. Since the user U ′ cannot trust the key material that is given to him
by the servers, and since the password attempt p′ will be encrypted under these keys, this step must be performed
anew at each retrieval with the participation of U ′, making the protocol hopelessly inefficient.
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D Threshold cryptosystem

Below we provide the details of our definition for semantically secure threshold homomorphic encryption, which is
an adaption of the definition of Cramer, Damgård and Nielsen [20]. The differences between our definition and that
of CDN are as follows: (1) to simplify exposition, our definition is less general when it comes to access structures,
since we only concern ourselves with the threshold access structure; (2) not only do we require that there is a secure
protocol for threshold decryption, but we also require that it has a certain structure: each server has a public share
of the public key that corresponds to its private share of the secret key, and outputs a share of the decryption and a
proof that it computed it correctly corresponding to its public share; (3) the homomorphic properties we need are
only a subset of those that CDN need.

Let (TKGen,TEnc,PDec,VfDec,TDec) be a theshold encryption scheme with algorithms as defined in Sec-
tion 3. These algorithms constitute a semantically secure threshold homomorphic cryptosystem if the following
properties hold:

Correctness: For any message m, and key tuple (tpk, {(tpki, tski)}) generated through TKGen, for all C ∈
TEnctpk(m), any 1 ≤ i ≤ n, any (di, πdi) ∈ PDectski(C), VfDectpki(C, di, πdi) accepts; moreover, for any
{i1, . . . , it+1} ⊂ [n], TDec(C, di1 , . . . , dit+1) outputs m.

Soundness/robustness: For all PPT adversaries, for all (tpk, {tpki}) generated through TKGen, for all C ∈ C, for
all i there exists a unique di such that the adversary can compute πdi that will be accepted by VfDec with non-
negligible probability (over the choice of the system parameters/random oracle); moreover, for these unique
(d1, . . . , dn), for all subsets {i1, . . . , it+1} ⊂ [n], TDec(C, di1 , . . . , dit+1) outputs the same value.

Threshold semantic security: The cryptosystem is semantically secure even when the adversary has t of the partial
secret keys; formally, it consists of two properties: (1) indistinguishability: for any subset {i1, . . . , it} ⊂ [n],
for any PPT adversary, that, on input (tpk, {tpki}), and t secret shares (tski1 , . . . , tskit), selects a pair of
messages m0 and m1, the ciphertexts C0 and C1 are indistinguishable, where Cb ← TEnctpk(mb). (2)
simulatability: there exists an efficient simulator S that, on input the public values (tpk, {tpki}), t secret
shares (tski1 , . . . , tskit), a ciphertext C and a message m outputs (dj , πdj ) for all j /∈ {i1, . . . , it} such that,
if m is the correct decryption of C then the simulator’s output is indistinguishable from the correct values
(dj , πdj ).

Homomorphism: The message space is the multiplicative group G. Moreover, there is an efficient operation � on
ciphertexts such that, if C1 ∈ TEnctpk(m1) and C2 ∈ TEnctpk(m2), then C1 � C2 ∈ TEnctpk(m1 · m2).
(We will often omit the operation and just talk about multiplying messages and ciphertexts.)

Lemma D.1 Let (TKGen,TEnc,PDec,VfDec,TDec) be a semantically secure threshold homomorphic cryptosys-
tem, and let S be its simulator. Then for all n, t, stateful PPT adversaries A, for all subsets I = {i1, . . . , it} ⊂ [n],
EA0,I ≡ EA1,I where the experiment EAb,I(1

τ ) is defined as follows:

• The encryption key tpk and the partial keys pairs ((tpk1, tsk1, ) . . . , (tpkn, tskn)) are generated by TKGen.
• The adversary A is given all the public keys, as well as the secret keys for subset I; the adversary A selects a

message m ∈M .
• Let m0 = m, m1 = 1 (i.e., m1 is the identity element of the message space M ). Generate ciphertext C ←

TEnctpk(mb).
• The simulator S((tpk, {tpki}), (tski1 , . . . , tskit), C,m) computes (dj , πdj ) (i.e. pretends that C decrypts to
m).

• A receives the values (dj , πdj ) and outputs its view.

Proof. Suppose that a PPT adversary A exists such that the two views are distinguishable by a distinguisher D.
Then consider a PPT adversaryB that breaks semantic security as follows: on input (tpk, {tpki}), and t secret shares
(tski1 , . . . , tskit), B runs A and gets a message m. B sets m0 = m, m1 = 1 and gives (m0,m1) to its challenger.
It then receives the challenge ciphertext C, and runs the simulator S((tpk, {tpki}), (tski1 , . . . , tskit), C,m) to
compute (dj , πdj ). It sends (dj , πdj ) to A and, once A outputs its view, feeds this view to D, and outputs whatever
D outputs. Note that all the inputs to A are distributed as in EA0,I if C is an encryption of m0, and as in EA1,I if C is
an encryption of m1; therefore, the lemma follows. �
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D.1 Construction

The following construction is based on the ElGamal cryptosystem [27]. It has appeared in the literature before [25],
but not with the same definition, so we reproduce it here for completeness.

Message space and key generation: The message space is a group G = 〈g〉 of prime order q = Θ(τ) in which the
decisional Diffie-Hellman problem is hard. The key generation algorithm TKGen takes (G, g, q, t, n) as input.
It picks t + 1 coefficients (a0, . . . , at) at random from Zq; let p(x) =

∑t
k=0 akx

k mod q be the polynomial
defined by these coefficients. Then tski = p(i), tpki = gtski , and tpk = ga0 = gp(0) = tpk0.

Encryption This is the standard ElGamal encryption with public key tpk: to encrypt a message m ∈ G, pick a
random r ∈ Zq, and output C = TEnctpk(m) = (gr, tpkrm).

Partial decryption: PDec on input C = (U, V ) and partial secret key tskj outputs the partial decryption value
dj = U tskj and a robust NIZK proof πdj that dj is correct (the NIZK is done in the RO model, using the Fiat-
Shamir heuristic applied to the Schnorr-Pedersen Σ-protocol for proving knowledge and equality of discrete
logarithms, see Section E.4).

Verification of partial decryption: The algorithm VfDec on input (tpkj , C, πdj , dj) verifies the proof πdj w.r.t.
tpkj , C and dj .

Decryption: The algorithm TDec takes as input the ciphertext C = (U, V ) and t + 1 partial decryptions corre-
sponding to some subset I = {i1, . . . , it+1} of the servers, dik = U tskik = Up(ik). Note that, by standard
polynomial interpolation techniques, if I = {i0, i1, . . . , it} ⊆ [n] is of size t + 1, then tskj = p(j) can
be expressed as a linear function fj,I of p(i0), p(i1), . . . , p(it): fj,I =

∑t
k=0 ukp(ik) mod q. We can use

polynomial interpolation in the exponent to compute Up(0) as follows: express the value p(0) as a linear
combination of p(i1), . . . , p(it+1), say p(0) = f0,I =

∑t+1
k=1 ukp(it+1). Then let W =

∏t+1
k=1 d

uk
ik

, and output
m = V/W .

Theorem D.2 The construction above constitutes a semantically secure threshold homomorphic cryptosystem un-
der the decisional Diffie-Hellman assumption in the random-oracle model.

Proof. We give a proof sketch. To verify correctness, observe that W =
∏t+1
k=1 d

uk
ik

=
∏t+1
k=1(U

p(ik))uk =

U
∑t+1

k=1 p(ik)uk=U
p(0)

= grp(0) = (gp(0))r = tpkr. Soundness/robustness follows because t + 1 points uniquely
define a polynomial of degree t.

The indistinguishability part of threshold semantic security follows by a reduction from the security of the
standard ElGamal cryptosystem, as follows: let A be an adversary that breaks semantic security for subset I . Let
us describe our reduction B: on input the standard ElGamal public key h = gx (where x is the secret key), B picks
tski1 , . . . , tskik at random from Zq, and sets tpk = tpk0 = h, and tpkik = gtskik for 1 ≤ k ≤ t. For j /∈ I , B
computes tpkj by using polynomial interpolation fj,I∪{0} in the exponent. Now B can run A and obtain the two
messagesm0 andm1; it forwards them to its own challenger and obtains a challenge ciphertext C which it proceeds
to forward to A. It then outputs whatever A outputs. Note that, whenever C is an encryption of mb, A receives the
view that is distributed as if its challenger picked mb; therefore, B is correct wheneverA is, and indistinguishability
follows.

For the simulatability part of threshold semantic security, consider the following construction for the simulator:
on input (tpk, tpk1, . . . , tpkn) and the values (tski1 , . . . , tskit), a ciphertext C = (U, V ) and a message m, the
simulator computes Up(0) = W = V/m, partial decryptions Up(ik) = dik = U tskik , and for j /∈ I , solves for
the values Up(j) = dj using polynomial interpolation fj,I∪{0} in the exponent. It computes the proofs πj using
the zero-knowledge simulator. Note that, if the ZK simulator is perfect (which is true for these types of RO-based
simulators), then the values output by the simulator is distributed identically to what honest servers output.

Finally, our threshold version of the ElGamal cryptosystem is homomorphic, just as the regular ElGamal cryp-
tosystem is: if C1 = (U1, V1) = (gr1 , tpkr1m1) ∈ TEnctpk(m1) and C2 = (U2, V2) = (gr2 , tpkr2m2) ∈
TEnctpk(m2), then C1 � C2 = (U1U2, V1V2) = (gr1+r2 , tpkr1+r2m1m2) ∈ TEnctpk(m1 ·m2). �
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E Concrete Instantiations of Proof Protocols

We now describe how to instantiate the different proofs used in our protocol. For a concrete instantiation of the
threshold encryption scheme we refer to Appendix D.

Assume that the ElGamal encryption scheme is used for Enc and the threshold ElGamal encryption scheme is
used for TEnc. Also assume the system parameters contain a group G = 〈g〉 of prime order q = Θ(τ) that is used
by both these encryption schemes, i.e., let FCRS return an element PK ∈ G and let (G, g, q) be the input TKGen so
that the values tpk, tpki output by TKGen are elements of G. In this discrete-logarithm-based setting, the various
NIZK’s used in our protocol can be instantiated using so-called generalized Schnorr protocols [46, 11].

When referring to such proof protocols, we use the following notation [15, 11]. For instance, SPK{(a, b, c) :
y = gahb ∧ ỹ = gahc}(m) denotes a “Signature based on a zero-knowledge Proof of Knowledge of integers a, b,
c such that y = gahb and ỹ = gahcholds,” where y, g, h, and ỹ are elements of G and where m is included into
the hash that is used to make the proof of knowledge protocol non-interactive (Fiat-Shamir transformation). The
convention is that the letters in the parenthesis (a, b, c) denote quantities of which knowledge is being proven, while
all other values are known to the verifier.

Given a protocol in this notation, it is straightforward to derive an actual protocol implementing the proof.
Indeed, the computational complexities of the proof protocol can be easily derived from this notation: basically for
each term y = gahb, the prover and the verifier have to perform an equivalent computation, and to transmit one
group element and one response value for each exponent. We refer to, e.g., Camenisch, Kiayias, and Yung [11] for
details on this.

The most efficient way to make these protocol concurrent zero-knowledge and simulation-sound is by the Fiat-
Shamir transformation [28]. In this case, we will have to resort to the random-oracle model [6] for the security
proof. To make the resulting non-interactive proofs simulation-sound, it suffices to let the prover include context
information as an argument to the random oracle in the Fiat-Shamir transformation, such as the system parame-
ters, uid , rsid , and the protocol step in which the statement is being proven, and a collision-resistant hash of the
communication transcript that the prover and verifier have engaged in so far, so that the proof is resistant to a man-
in-the-middle attack. In particular, notice that all the statements we require the parties to prove to each other are
proofs of membership (i.e., that some computation was done correctly) and not proofs of knowledge. Therefore, it
is not necessary that the prover can be re-wound to extract the witnesses.

We note, however, that there are alternative methods one could employ instead to make Σ-protocols non-
interactive that do not rely on the random oracle model (e.g., [41, 31, 12]). Unfortunately, these methods come
with some performance penalty.

We now provide the concrete instantiations of all NIZK that our scheme requires.

E.1 Realization of NIZK π0

The first proof

π0 ← NIZK{(p,K ) : Cp = TEnctpk(p) ∧ CK = TEnctpk(K )

∧ C̃p = EncPK (p) ∧ C̃K = EncPK (K ) } ( context )

with context = (uid , ssid , tpk, tpk, Cp, CK , C̃p, C̃K).

is used in Step S1(c) of the Setup protocol, where the user needs to prove that the same p and K are encrypted
under both PK and tpk. Let Cp = TEnctpk(p) = (c11, c12) ← (gr1 , tpkr1p), CK = TEnctpk(K ) = (c21, c22) ←
(gr2 , tpkr2K ), C̃p = EncPK (p) = (c̃11, c̃12)← (gr3 ,PK r3p), and C̃K = EncPK (K ) = (c̃21, c̃22)← (gr4 ,PK r4K ).
Then π0 can be realized as follows

π0 ← SPK{(r1, r2, r3, r4) :

c11 = gr1 ∧ c21 = gr2 ∧ c̃11 = gr3 ∧ c̃21 = gr4 ∧
c12/c̃12 = tpkr1PK−r3 ∧ c22/c̃22 = tpkr2PK−r4}( context ).

Considering the decryption algorithms, it is not hard to see that this protocol indeed proves that both Cp and C̃p will
decrypt to the same message as c12/tpkr1 = c̃12/PK

r3 holds (and similarly for CK and C̃K).
Note: the efficiency of the protocol can be improved by using the same randomness r for all four ciphertexts

and only have the same element gr in all ciphertexts.
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E.2 Realization of NIZK π1

The next proof is used in Step R5(c) of the retrieve protocol:

π1 ← NIZK{(p ′, r) : Ctest = (Cp � TEnctpk(1/p
′))r ∧

C̃p′ = EncPK (p ′)}(sid , rsid ,note, epkU , Ctest, C̃p′).

Here the user proves that Ctest and C̃p′ are based on the same password attempt p′. More precisely, the user proves
that the plaintext underlying C̃p′ is also used in the computation of Ctest from Cp. Let Cp = (c11, c12) and Ctest =

(c′11, c
′
12) = (Cp � TEnctpk(1/p

′))r ← ((c11/g
r′1)r, (c12/(tpk

r′1p′))r) with (r, r′1) ←R Z2
q . Recall that C̃p′ =

EncPK (p ′) = (c̃′11, c̃
′
12) = (gr̃1 ,PK r̃1p′). Then this proof can be implemented as

π1 ← SPK{(r, r̃1) : c̃′11 = gr̃1 ∧ c11 = c′11
1/r
g−r

′
1 ∧

c12c̃
′
12 = c′12

1/r
tpk−r

′
1PK r̃1}(sid , rsid ,note, epkU , Ctest, C̃p′).

This proof is somewhat more involved. By definition c̃′12/PK
r̃1 is the decryption of C̃p′ . Rewriting the last equation

in the proof we get c′12
1/r = c12tpk

r′1(c̃′12/PK
r̃1) and, together with c′11

1/r = c11g
r′1 , the statement we wanted to

show follows.

E.3 Realization of NIZK π2,i

The NIZK π2,i ← NIZK{(ri) : C ′test,i = (Ctest)
ri} is used in Step R6(b) where each server Si proves that the

new ciphertext C ′test,i is a correct randomization of the original ciphertext Ctest. While at an abstract level, this proof
looks like a proof of knowledge it is in fact a proof of correctness as we shall see from the instantiation below. Let
Ctest = (c′11, c

′
12) and C ′test,i = (c′11,i, c

′
12,i) ← (c′11

ri , c′12
ri) and thus π2,i ← SPK{(ri) : c′11,i = c′11

ri ∧ c′12,i =

c′12
ri)}. This proof is rather straightforward – it just shows that the two ciphertext components of C ′test,i we obtained

from the two components of Ctest are raised to the same value.

E.4 Realization of NIZK’s πdi and πd′i

The last NIZK’s πdi and πd′i appear in Step R8 and R9, respectively, where each server has to prove that the
decryption share sent was computed correctly. This proof depends on the threshold encryption scheme used and in
our case is as follows πdi ← SPK{(tski) : di = c′′11

tski ∧ tpki = gtski}, where C ′test = (c′′11, c
′′
12). It proves that

the server Si indeed computed di by raising c′′11 to its secret key. The proof πd′i can be done analogously using CK
instead of C ′test.

F Proof of Theorem 4.1

We now prove that our protocol presented in Section 4 indeed securely implements our ideal functionality described
in Section 2.

Setup Assumptions Our protocol relies on two underlying ideal functionalities. The first is FCRS , which mod-
els the availability of a public common reference string. The second is the certification functionality FCA by
Canetti [17], which models the existence of some form of a public-key infrastructure, i.e., servers can register
their public keys and the user can look up these public keys on input a server identifier. We refer to [17] for the
detailed description of the FCA functionality. As our protocol relies on those functionalities, we have designed it in
a hybrid world where parties can make calls to FCRS and FCA.

F.1 Sequence of Games

Our proof consist of a sequence of games that a challenger runs with the real-world adversary. Therein, we stepwise
change parts of the simulation, mainly replacing protocol messages either by “dummy” messages that do not depend
on p,K and p′ anymore but that are indistinguishable from the real ones, or we derive them based only on knowing
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whether or not the passwords p and p′ match. In our final game we then make the transition to let the challenger run
internally the ideal functionality F and simulate all messages based merely on the information he can obtain from
F .

We will now describe each game i and why we have GAMEi ≈ GAMEi−1 for each transition, meaning that the
environment can not distinguish between GAMEi and GAMEi−1. In our series of games, the challenger plays the
role of all honest parties, obtaining their inputs from and passing their outputs to the environment.

GAME 1 The challenger simply executes the real protocol for all honest players, thereby giving the environment
the same view as in the real world.

GAME 2 In this game we abort whenever the challenger sees a valid signature σi under the public key spki of an
honest server Si on a message that was never signed by Si. Clearly, we have GAME1 ≈ GAME2 by the existential
unforgeability of the signature scheme (SKGen,Sign,Vf).

In particular, this means that whenever an honest server proceeds beyond Step (S.4) in a setup protocol execution
or beyond Step (R.4) in a retrieve execution, then all other honest servers in S or S′ agree on the same note and,
in the case of a retrieve, also on the same rsid , epkU , C̃ ′p and S′. Since note contains ciphertexts Cp, C̃p, CK , C̃K
which encrypt the password p and data key K , this in particular means that they agree on the same p and K .
Moreover, when an honest server proceeds beyond Step (R.8) in a retrieve protocol, then they also agree on the
same ciphertext C ′test that encrypts the randomized password quotient p\p′.

GAME 3 Here we replace all non-interactive zero-knowledge proofs, when provided by honest parties, by simula-
tions. Any environment distinguishing this game from the previous one breaks the zero-knowledge property of the
proof system.

GAME 4 We now substitute the public key in the CRS by (PK ,SK ) ← KGen(1k) generated by the challenger,
i.e., he knows the corresponding secret key. Whenever an honest server then receives a ciphertext C̃p or C̃K in
setup or a ciphertext C̃p′ in retrieve from a corrupt user, the challenger decrypts these ciphertexts using SK . He
then stores the recovered p, K , and p ′ in a local record s using s.sid and s.ssid as identifiers. Further, whenever
completing the setup protocol for an honest user and less than t+ 1 corrupt servers, the challenger also stores all the
created threshold key pairs as s.TKeys ← (tpk1, tsk1), . . . , (tpkn, tskn). This game hop is purely conceptional
and hence has no influence on the adversary’s view of the game.

GAME 5 We replace all honestly generated ciphertexts C̃p, C̃K or C̃p′ under the CRS public key by “dummy”
ciphertext, i.e., by encrypting 1. Thus from now on, all those ciphertexts, when coming from an honest party, are
independent of p,K and p ′. Clearly, we have GAME5 ≈ GAME4 by the semantic security of the CPA-encryption
scheme (KGen,Enc,Dec). (We do not require CCA-security here, because in the game above we decrypted the
adversarial provided ciphertexts only for internal book-keeping, i.e., in the reduction we would not be able to
maintain such a record, but that remains invisible to the adversary.)

Note that the simulated zero-knowledge proofs π0 and π1 now actually prove false statements, as the encryptions
under the threshold public key and the CRS public key are not consistent anymore. The simulation-soundness of the
proof system guarantees that an adversary, even after having seen such simulated proofs of false statements, cannot
produce a valid proof of a false statement himself.

GAME 6 In this game we change how the encrypted password quotient is computed in a retrieval done by an
honest user. Namely, we exploit the challenger’s knowledge of whether or not the passwords match to compute
ciphertexts containing the correct information but without using Cp. That is, if p = p′ he replaces Ctest, for the
honest user, and C ′test,i for an honest server, by random encryptions of “1”: TEnctpk(1). Likewise, if p 6= p ′, the
challenger replaces Ctest and C ′test,i by encryptions of random values, indicating that the passwords did not match.
Recall that for the latter case, the user and all servers contribute (secret) randomness to the finally derived ciphertext
C ′test, i.e., if the password did not match and at least one honest party participates, the adversary can not predict the
outcome of the (joint) decryption of C ′test. Thus, the replacement by random chosen values for the case p 6= p′ is
legitimate.
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Note that the challenger always knows whether p = p′ before such a ciphertext must be generated. Namely, the
challenger knows p ′ as the retrieval is done by an honest user. The original password p is obtained from the local
record s for s.sid and s.ssid being the values contained in the note file to which all servers have given their consent
in Step (R.4a) of the retrieval. The password p stored in s.p either stems from having created the corresponding
account as honest user, or by having decrypted C̃p when the account was created by a corrupt user. Thus, if the
account was created by a corrupt user, the challenger has to rely on the fact that C̃p indeed encrypts the same p as
Cp. Since A has to prove that fact in π0, he can provide inconsistent ciphertexts with negligible probability only.

Recall that we replaced the ciphertext C̃p in the previous game by a dummy ciphertext and provided a “false”
proof π0 whenever a setup was done by an honest user. Thus, if the adversary, when running a setup for a dishonest
user, manages to re-use such a ciphertext pair of a real Cp and faked C̃p, he would be able to distinguish the current
game hop. However, this will happen with negligibly probability only, as the (faked) proof of knowledge π0 of the
supposedly same p is bound to (sid , ssid , tpk, tpk,S, Cp, CK , C̃p, C̃K ). That is, if an adversary wants to transfer
(a derivation of) Cp, C̃p to a different setup context, he must forge the corresponding proof π0.

Overall, we have GAME5 ≈ GAME6 based on the simulation-soundness of the proof system.

GAME 7 We now substitute the encryptions CS,i of the threshold secret keys by “dummy” ciphertexts whenever
they are sent by an honest user to an honest server in a setup with less than t+1 corrupt servers. That is, in Step (S.1e)
those ciphertexts are replaced by encryptions of “1”: Enc2epki(1, (sid ,note)). An honest server receiving such a
ciphertext sent by the honest user, continues with the protocol without decrypting CS,i. In the retrieval for such a
record, the honest servers simply uses its threshold secret key stored by the challenger in s.TKeys.

However, if an honest server received a pair (note, CS,i) that does not stem from the honest user, it decrypts
the ciphertext and checks if it contains a valid threshold secret key. Such an even can occur if (i) an honest server
receives a different ciphertext CS,i than the honest user had sent, but the sub-session ssid got not stolen, i.e., the
note is the same, or (ii) the sub-session ssid gets stolen, i.e., an honest server receives a ciphertext CS,i with a
different note that was originally sent by the honest user. If the decryption leads to a valid threshold secret key tski,
the honest servers keeps it in its local record, and in case of event (ii) the challenger also sets s.TKeys = ∅. In case
the decryption or the verification of tski fails, the honest server will abort normally and thereby forces the entire
setup to fail (as it requires the consent of all servers).

Note, that due to the CCA2-security of the encryption scheme and the fact that it is labeled with the note of a
session, which in turn includes the session identifier (ssid ′,S) with the set of servers S, the adversary will not be
able to re-use a dummy ciphertext CS,i in a different context.

More precisely, any adversaryA that with non-negligible probability distinguishes between GAME6 and GAME7,
allows to construct an adversary B breaking the semantic security of the labeled CCA2-secure encryption scheme
(KGen2,Enc2,Dec2) (using a series of hybrids, replacing the ciphertexts one by one). Thereby, whenever A sends
a “fresh” combination of ciphertext CS,i and label note that needs to be decrypted by the challenger, B forwards
both to its decryption oracle. As it does so only for ciphertext/label pairs that are different to what he had sent
before, all those oracle calls are legitimate.

GAME 8 In this game we abort if the adversary manages to replace a dummy ciphertext CS,i by a ciphertext that
actually decrypts to a valid threshold secret key. That is, we abort whenever a “successful” event (i) as described
in the game above occurs. Therein, the honest user sends a dummy ciphertext CS,i instead of an encryption of tski
to each honest server. If an honest server now receives a different ciphertext C ′S,i that decrypts to a valid threshold
secret key (w.r.t. the public keys generated by the honest user), the challenger halts.

If an adversary A can distinguish between GAME8 and GAME7 with non-negligible probability, we derive
an adversary B against the semantic security of the threshold encryption scheme. To this end, B upon receiving
(tpk, {tpki}) and t secret shares (tski1 , . . . tskit) as input, embeds those challenge keys in one of the setup sessions
initiated by an honest user. Thus, it guesses a session i in which he sends the known challenge secret shares
(tski1 , . . . , tskit) to the corrupt servers and dummy ciphertexts to the honest servers. If adversary B in the role of
an honest server then receives a ciphertext CS,i which is not the one he had sent out and that decrypts to a valid
threshold secret key tskit+1 , he can use that t+ 1 share to immediately break the semantic security of the threshold
scheme. Namely, he simply chooses two random plaintexts m0,m1 for the challenge oracle and then decrypts the
returned challenge ciphertext with his knowledge of the t+ 1 secret key shares. Note though, that we have to abort
the game after the i-th setup session even if no ciphertext got replaced, as B does not know the secret keys of the
honest servers, and thus could not correctly simulate a retrieval for that account.
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GAME 9 We now change the way the challenger performs the threshold encryption and decryption steps whenever
dealing with an account that was created by an honest user with at most t corrupt servers. At setup, the challenger
(as honest user) replaces the threshold encryptions Cp and CK of p and K , respectively, by encryptions of 1, i.e
Cp = TEnctpk(1), CK = TEnctpk(1). As the adversary knows at most t secret keys of the threshold scheme, he
can not distinguish between a correct and dummy ciphertext under tpk due to the semantic security of the threshold
encryption scheme.

When the challenger subsequently participates in a retrieval for such an account where the adversary pretends
to be the former honest user, the challenger also replaces all decryption shares that are computed by honest servers.
This is done using the threshold simulator as described in Section 3 and exploiting the knowledge of the threshold
secret keys of the dishonest servers (those are stored for honestly generated setups since GAME4) and the knowledge
of the ciphertexts and their corresponding plaintexts. That is, for shares (di, πdi), the challenger uses the received
C ′test and its knowledge of whether or not p = p′. Recall that p is known to the challenger as the setup was done
by an honest user and p ′ was extracted from C̃p′ sent by the adversary in the first step of the retrieval. Further,
the challenger retrieves all threshold keys from its local record s.TKeys and invokes the threshold simulator on
input (tpk, {tpki})Si∈S, the at most t secret shares (tskj) of the corrupt servers that participated in the setup, the
ciphertext C ′test computed in Step (R.8a) and a message m where m ← 1 if p = p′ and m ← R for a random R if
p 6= p ′. The threshold simulator then outputs verifiable decryption shares (dj , πdj ) for all honest servers Sj , which
Sj then sends instead of the real values in Step (R.8c).

Conditioned on the fact that C̃p′ contains the same p′ that was used to derive Ctest, and all C ′test,i provided by
the adversary are correct, the semantic security of the threshold encryption scheme guarantees that the view of the
adversary has not significantly changed. More precisely, according to the threshold semantic security it follows that
the adversary holding at most t secret keys1 can distinguish with negligible probability only, if the shares (dj , πdj )
are simulated or the correct shares that would have been computed if C ′test is indeed the encryption of m. The
condition that this simulation is based on “correct” ciphertexts holds due to the security of the proof system, as the
adversary has to prove the consistency between Ctest and C̃p′ in π1, and the correctness of C ′test,j in π2,i.

Similarly, the shares (d′i, πd′i) for the data key K are simulated usingCK and K , both are known to the challenger
from the honest setup.

Overall, we have GAME8 ≈ GAME9 conditioned on the semantic security of the threshold encryption scheme
and the simulation-soundness of the proof system.

GAME 10 We now abort the game whenever the challenger recognizes some inconsistency between his knowledge
about p,K or p′ and the information provided by the adversary. More precisely, he halts if he receives decryption
shares di such that the joint decryption of the password quotient leads to 1 but p 6= p′ (we do not have to consider
the opposite case, as the protocol then fails anyway), or he receives decryption shares d′i leading to a key K ′ 6= K .
An adversary will notice the change only when he was able to provoke such inconsistent decryptions in the previous
game. That could happen if (1) adversarial provided ciphertexts Cp, CK , C ′test were not consistent with C̃p, C̃K , C̃p′ ,
or (2) the adversary was able to produce valid decryption shares that opened a ciphertext of the threshold scheme to
a different value that was originally encrypted.

However, case (2) implies breaking the soundness of the threshold encryption scheme and case (1) requires
the adversary to forge the corresponding proofs that must always be provided in combination with the ciphertexts.
Note that the adversary can also not re-use dummy ciphertexts and faked proofs that the challenger sends in other
sessions, as those proofs are always bound to the context the ciphertexts are supposed to be used in. In case of
π0 the proof was bound to (sid , ssid , tpk, tpk, Cp, CK , C̃p, C̃K ) and for π1 the context was (rsid ,note, epkU ,

Ctest, C̃p′). Thus, whenever the adversary wants to re-use a randomized version of such dummy ciphertexts (which
is not excluded, as we only have CPA security for those), or use the same ciphertext in a different sub-session, or
in combination with a different public key epkU , the context changes which prevents the adversary to re-use the
(faked) proof seen by the challenger. Instead, he needs to come up with a proof of a false statement himself, which
will succeed only with negligible probability due to the simulation-soundness of the zero-knowledge proof system.

Thus we have GAME9 ≈ GAME10 based on the soundness of the threshold encryption scheme and the simulation-
soundness of the proof system.

1Note that the definition of threshold semantic security considers an adversary holding exactly t secret keys, whereas the adversary here
gets only at most t keys. However, security for that case follows trivially.
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GAME 11 In this game we also modify the ciphertextsCR,i that are supposed to securely transport the shares of the
data key K in the retrieval. Again, those ciphertexts are replaced by “dummy” ciphertexts Enc2epkU (1, (epkU , spki))
whenever sent by an honest server to an honest user. Using the public signing key of the sending server spki as
well as the ephemeral public key epkU of the user as label thereby ensures that the adversary can not re-use such a
“dummy” ciphertext.

If an adversary can distinguish between GAME10 and GAME11 with non-negligible probability, we can turn him
into an adversary breaking the CCA2-security of the encryption scheme (KGen2,Enc2,Dec2). We need CCA2-
security here, as the challenger will still receive correct ciphertexts CR,j from the corrupt servers that he has to
decrypt. Including the public signing key of the sending server as label ensures that even when the adversary
provides a ciphertext CR,j for a corrupt server that equals a previously send dummy ciphertext from one of the
honest servers, it results in a legitimate query to the decryption oracle. Likewise, using the ephemeral public key
epkU of the user as label ensures that a dummy ciphertext from one session can not be maliciously reused in another
retrieval session started by the honest user.

GAME 12 In our final game we now make the transition from letting the challenger run the “real” protocol
(w.r.t. GAME11) to letting him internally run the ideal functionality F and simulate all messages based merely
on the information he can obtain from F . For that, it is crucial to observe that in the series of games we have
replaced several messages by dummy messages, that are indistinguishable from the real ones but do not depend on
p,K and p′ anymore. However, others we have derived based on the knowledge of whether or not p = p ′, and
some are still depending on the real values of p,K and p′. Thus, for those messages it remains to be shown that
we can obtain the necessary information in time from F as well. The description of how to build such a simulator
depending on the different combinations of honest and corrupts parties is given in following part.

F.2 The Simulator

We finally have to show that there exist a simulator SIM such that for any environment E and adversary A that
controls a fixed subset of the parties, the view of the environment in the real world, when running the protocol
(according to GAME11) with the adversary, is indistinguishable from its view in the ideal world where it interacts
with the ideal functionality and the simulator (which corresponds to GAME12).

To do so, we describe the simulator for the different cases, i.e., different combinations of corrupt parties.
Thereby, the simulator will play the role of all honest parties in the real protocol, which is denoted by “Si” for
a simulated server, or “U” for a simulated user. The simulator will store all records created by an honest party,
according to the real protocol. We denote by Sc ⊆ S the set of corrupt servers, and with Sh ⊆ S the set of all honest
servers.

F.2.1 Setup - Simulation

F.2.1.1 Honest User
The setup process is triggered when the environment invokes the ideal functionality F , on behalf of an honest user
U , on some input (SETUP, sid , ssid , p,K ) with ssid = (ssid ′,S). The ideal functionality then signals the initiated
setup towards the simulator SIM, where the information it reveals to SIM depends on the number of corrupt
servers in S. Thus, we split our simulation in two cases, where in the first case less than t + 1 servers in S are
corrupt, and in the second case the threshold of t+ 1 corrupt servers is reached.

Less than t + 1 Servers are Corrupt. The simulator SIM receives (SETUP, sid , ssid) and then runs the real
setup protocol for a simulated “U” on input sid , ssid and p = K = ⊥ where it also plays the role of all honest
servers “Si” ∈ Sh. Thus, instead of computing Cp, CK , C̃p, C̃K , π0, (CS,i)Si∈Sh

, as in the real protocol, “U”
encrypts only ones and simulates the corresponding proofs. See GAME3,GAME5 and GAME7. The simulator also
creates a record s with s.sid← sid , s.ssid← ssid , s.p← ⊥, s.K ← ⊥ and stores all the threshold keys created by
“U” as s.TKeys← {(tpk1, tsk1), . . . , (tpkn, tskn)}. The rest of the protocol is then done correctly, i.e., “U” and
all “Si” ∈ Sh follow the steps as described in Section 4, except that the honest servers do not decrypt the received
ciphertext CS,i unless it is different than the one “U” had sent out before. Thereby, the simulator also aborts when
an honest server receives a replaced ciphertext CS,i which decrypts to a valid threshold key (see GAME8).

When the first honest server “Si” outputs (SETUP, sid , ssid ,Si), indicating that all servers gave their consent to
a common note file, SIM checks if “Si” received a note that is different than the one originally sent by “U”. If
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so, the simulator recognizes the session as being “stolen” by the adversary, decrypts C̃p, C̃K contained in note to
obtain p̂, K̂ and sends (STEAL, sid , ssid , p̂, K̂ ) to F . It also sets s.p ← p̂, s.K ← K̂ and s.TKeys← ∅. The rest
of the simulation then continues as in the case of a setup done by a dishonest user. Thus, the description below only
considers sessions where the adversary did not steal the sub-session identifierssid .

The simulator subsequently sends (JOIN, sid , ssid ,Si) toF . This message triggers the output (SETUP, sid , ssid)
for Si and the public delayed output (SETUP, sid , ssid ,Si) for U . The latter is delivered to U only if “U” in the real
word outputs (SETUP, sid , ssid ,Si).

For every further honest server “Sj” ∈ Sh that outputs (SETUP, sid , ssid) in the real world, SIM directly sends
(SETUP, sid , ssid ,Sj) to F . Again, the output from F to U is only delivered if “U” outputs (SETUP, sid , ssid ,Sj).

When “U” outputs (SETUP, sid , ssid ,Sk) for a corrupt server Sk ∈ Sc, the simulator sends (JOIN, sid , ssid ,Sk)
to F .

At the end of a successfully completed setup, the simulator maintains a record where p = K = ⊥ and it stores
all the secret threshold keys of the honest and corrupt servers. Further, the ciphertexts Cp, CK , C̃p, C̃K contained in
the note that is stored by all servers, are encryptions of ones with a corresponding faked proof of correctness.

At least t+ 1 Servers are Corrupt. The simulator SIM receives (SETUP, sid , ssid , p,K ) and starts the simula-
tion of “U” with the same input and creates a record s.sid ← sid , s.ssid← ssid , s.p← p, s.K ← K , s.TKeys =
∅. It also simulates all honest servers “Si” ∈ Sh. Due to the knowledge of p,K , the simulation in this case simply
follows the normal protocol instructions. Whenever an honest party outputs a message, the simulator mimics the
output in ideal world as well.

When the setup session identifier ssid gets stolen, i.e., an honest server “Si” outputs (SETUP, sid , ssid) but re-
ceived a different note file than was sent by “U”, SIM decrypts C̃p, C̃K to p̂, K̂ and sends (STEAL, sid , ssid , p̂, K̂ )

to F . It also sets s.p ← p̂, s.K ← K̂ and continues the simulation as in the case of a dishonest user.
At the end of a successfully completed setup, the simulator maintains a record where p,K are the same values as

stored in the ideal functionality, and the ciphertextsCp, CK , C̃p, C̃K contained in the note file are proper encryptions
of p,K .

F.2.1.2 Dishonest User (and at least one Honest Server)
If the user is dishonest, we do not have to condition our simulation on the number of corrupt servers in S, as
the simulator can extract p,K from the adversary (and the knowledge of p,K was the main difference between
the two cases above). In this simulation, SIM plays the role of the honest servers Si ∈ Sh 6= ∅ and waits
for a setup request sent by the corrupt user in the real world. An honest server “Si” upon receiving the message
(SETUP, sid , ssid , 1,note, CS,i) then starts with the protocol as specified. The simulator also extracts p,K from
the note by decrypting C̃p, C̃K and creates a setup record with s.sid ← sid , s.ssid ← ssid , s.p ← p, s.K ←
K , s.TKeys ← ∅. SIM further sends (SETUP, sid , ssid , p,K ) to F , thereby “simulating” an honest user in the
ideal world, ensuring that a record with the correct values p,K will be created. Whenever an honest server “Si”
outputs (SETUP, sid , ssid) in the real world, the simulator sends (JOIN, sid , ssid ,Si) to F . Note that the real world
adversary could sent different notes (and thus possibly different p,K ) to the honest servers, however, then the setup
would fail for all of them.

At the end of a successfully completed setup, the simulator maintains a record where p,K are the same values as
stored in the ideal functionality, and the ciphertextsCp, CK , C̃p, C̃K contained in the note file are proper encryptions
of p,K .

F.2.2 Retrieval - Simulation

The retrieval protocol is run among a user U ′ and t + 1 servers, denoted as S′. Whenever a simulated honest user
“U ′” in the real world outputs (DELIVER2U, sid , rsid ,⊥), the simulator sends (DELIVER, sid , rsid ,U ′, deny) to
F . Likewise, if an honest server “Si” played by the simulator outputs (DELIVER2S, sid , rsid , fail), SIM sends
(DELIVER, sid , rsid ,Si, deny) to F .

F.2.2.1 Honest User
When the retrieve is initiated by an honest user, the environment will invoke the ideal functionality on some input
(RETRIEVE, sid , rsid , p ′) which in turn sends (RETRIEVE, sid , rsid ,U ′) to SIM. Recall that rsid contains the set
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of servers S′ the user wishes to tun the retrieval with. The rest of simulation then depends if either all t+ 1 servers
in S′ are corrupt, or at least one honest server participates. We start the description with the latter case.

Less than t+ 1 Servers are Corrupt. The simulator upon receiving (RETRIEVE, sid , rsid ,U ′) from F starts the
real-world retrieval protocol on behalf of the honest user “U ′” for input (RETRIEVE, sid , rsid ,⊥). That is, using
p′ = ⊥ instead of the real password attempt, which is unknown to the simulator. Thus, in Step (R.1c) the honest
user “U ′” sends C̃p′ as being an encryption of ones, according to GAME5. SIM also simulates the protocol for all
honest servers whenever a server receives a retrieve request (RETRIEVE, sid , rsid , 1, epkU , C̃p′).

If an honest server “Si” outputs (NOTIFY, sid , rsid) in Step (R.4a), SIM checks whether the received cipher-
text C̃p′ is different than the one “U ′” had sent. If this is the case, i.e., the retrieve session got stolen, SIM obtains p̂
by decrypting C̃p′ and sends (STEAL, sid , rsid , p̂) to F2. The simulation of a stolen retrieve session then continues
as the simulation for a dishonest user. Thus, the rest of the simulation described here only considers intact sessions.

An honest server, upon successfully passing Step (R.4a) then asks the environment for permission to proceed,
which is done accordingly in the ideal world by delivering the message (NOTIFY, sid , rsid) to Si. This message
was released as a public delayed output already in the first interface of the ideal functionality. The same is repeated
for any subsequent honest server outputting (NOTIFY, sid , rsid).

When SIM in turn receives a message (PROCEED, sid , rsid ,Si, a) from F it sends (PROCEED, sid , rsid , a) to
“Si” and proceeds with the protocol in case a = allow.

At some point, namely when the environment has allowed all honest servers to proceed, the simulator will
finally obtain the message (NOTIFY, sid , rsid , c), with c indicating whether p ′ 6= p or not, where p is the original
password stored by the ideal functionality. Depending on whether the passwords match or not, “U ′” now has to
prepare the encrypted password quotient Ctest such that it either encrypts 1 in case of c = correct or a random
value otherwise (see GAME6). Thus, it simply encrypts the targeted result as Ctest and fakes the corresponding proof
π1. The simulation of the honest user and servers then continues as in the normal protocol. Note that consequently
all decryption shares released by the honest servers are correct and not simulated. This is important as the adversary,
despite being present with only |Sc| < t+1 servers in the retrieve, actually knows |Sc| ≥ |S′c| valid threshold secret
keys from the corresponding setup (plus even the secret keys of the honest servers, in case the account was created
by a dishonest user). Thus, the adversary must be able to take any subset of the shares di and obtain a decrypted
value that is consistent with the rest of the protocol. This is ensured by our procedure as described above.

If in Step (R.9b) the threshold decryption of C ′test did not result in 1, all honest parties will subsequently abort
the protocol which is reflected by the simulator in the ideal-world as well. The simulation will also abort if the
decryption leads to 1 but c = wrong. This is justified in GAME10. Thus, the rest of the simulation is now conditioned
on the fact that p ′ = p. In Step (R.10d) of the protocol, an honest server has to compute its threshold share d′i of the
data key K and send it encrypted under epkU to “U ′”. As the simulator might not know K (namely if the setup was
done by an honest user and less than t + 1 corrupt servers), it let “Si” simply compute CR,i as encryption of ones
and sends it signed to “U ′”. This is a legitimate simulation, because we only consider non-stolen retrieval sessions
here, and thus, the adversary does not know eskU . See also GAME3 and GAME10. Whenever an honest party “Si”
then outputs (DELIVER2S, sid , rsid , success), SIM also sends (DELIVER, sid , rsid ,Si, allow) to F .

If the user “U ′” receives “valid” shares (meaning that the associated proofs were correct) from all corrupt
servers, he is supposed to reconstruct and output his data key K . Thus, when “U ′” ends with output (DELIVER2U,
sid , rsid ,K ′) (where K ′ is a random key), SIM sends (DELIVER, sid , rsid ,U ′, allow) to F which will lead to
the output (DELIVER2U, sid , rsid ,K ′) to the environment, with K ′ being the correct key as stored by the ideal
functionality. The latter is guaranteed, since we considered intact sessions (i.e., rsid got not stolen for another
session), we have at most t corrupt servers in the retrieval and the simulator only reached that point in case it
learned that p′ = p.

All t+1 Servers are Corrupt. In this case, the simulator will only play the role of the honest user in the real word.
Thus, upon receiving (RETRIEVE, sid , rsid ′,U ′) from F , SIM starts the real-world retrieval protocol on behalf of
the honest user “U ′” for input (RETRIEVE, sid , rsid ,⊥). That is, again using p′ = ⊥ instead of the real password
attempt (which is unknown to the simulator), and thus simulating C̃p′ by encrypting only ones (see GAME5).

2Note that the adversary could potentially send different ciphertexts C̃p′ to all honest servers. That would also result in different steal
calls to the ideal functionality (with different p̂) which, except for the first call, would be ignored by F . However, such an “attack” would
result in a failed retrieval in Steps (R.4c) / (R.5a) of the protocol (and thus also in the ideal world) anyway.
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If “U ′” passes Step (R.3b), i.e., he received the same note = (ssid , tpk, tpk, Cp, CK , C̃p, C̃K , π0) correctly
signed by all servers in S′, he extracts p∗,K ∗ by decrypting C̃p, C̃K from the note file. Note that those ciphertext
will (whp) not be dummy ciphertext the simulator has produced for another session, as those dummy ciphertexts
(i.e., encryptions of “1”) were only used by accounts that were setup by an honest user and less than t + 1 corrupt
servers. Since they must come with a proof of correctness which is bound to the setup server set S, it is ensured that
A cannot reuse some dummy ciphertexts in a different context, e.g., adding more corrupt servers to S.

The simulator then sends (PLANT, sid , rsid , p∗,K ∗) to F , obtaining (NOTIFY, sid , rsid , c) in return where c =
correct if p′ = p∗ and c = wrong otherwise. This information is then used by the simulator to set the ciphertext
Ctest correctly. Namely, if c = correct the simulator computes Ctest in Step (R.5c) as an encryption of ones, and
of a random value R otherwise. The proof π1 is simulated w.r.t. the ciphertext C̃p′ that “U ′” has already sent.

When “U ′” in Step (R.9) receives decryption shares of all servers, which result in the joint decryption into 1
and we had c = correct the simulator proceeds with the normal protocol. Otherwise “U ′” aborts the protocol and
SIM sends (DELIVER, sid , rsid ,U ′, deny) to F . Thus, we will abort also when the adversary sends decryption
shares which are not consistent with the information that “U ′” had encrypted in Ctest, as justified in GAME9.

When “U ′” eventually ends with output (DELIVER2U, sid , rsid ,K ) where K = K ∗, SIM sends (DELIVER, sid ,
rsid , ,U ′, allow) to F , and aborts otherwise.

F.2.2.2 Dishonest User (and at least one Honest Server)
In case the user U ′ doing the retrieval is corrupt, we only have to consider the case that at least one server is honest,
as otherwise all the communication will be internal to the adversary.

The simulator plays the part of all honest servers in S′, and will start the simulation when an honest server “Si”
receives a message (RETRIEVE, sid , rsid , 1, epkU , C̃p′). SIM then extracts p′ from C̃p′ and invokes F on input
(RETRIEVE, sid , rsid , p′), thus, starting the retrieve on behalf of U ′ in the ideal world. Whenever an honest server
“Si” successfully passes Step (R.4a) of the protocol with output (RETRIEVE, sid , rsid), SIM delivers the message
(RETRIEVE, sid , rsid) to Si in the ideal world as well. Hereby, GAME2 again ensures that all honest servers agree
on the same note, epkU and C̃p′ , or the protocol will have already failed at that point.

The simulator then obtains its setup record record s for s.sid = sid and s.ssid = ssid where the latter is taken
from the received note file. The rest of the simulation will now branch into two cases, depending on how the setup
record s was created3. If s.p = s.K = ⊥, which can only happen if the account was created by an honest user
with less than t + 1 corrupt servers, the simulator continues with CASE 1 below. CASE 2 then covers the accounts
that were created (i) by an honest user and at least t + 1 corrupt servers; or (ii) by a dishonest user (either directly
or via ssid -stealing). Recall that in those settings the simulator has stored the correct values p,K in its record s
and, more importantly, also the note file stored by all servers contains encryptions Cp, CK of the real values p and
K . Thus, whenever we are in CASE 2 the simulation can proceed according to the normal protocol instructions,
with the simulator simply reflecting all outputs obtained in the real world equivalently in the ideal world as well.
Whereas in CASE 1, the simulator did not know p,K yet, and thus also the ciphertexts Cp, CK stored in the note
file by all servers merely contain encryptions of ones. On the other hand, the simulator therein knows the threshold
secret keys of all corrupt servers, which he can exploit to tweak the decryption shares of the honest servers the way
he needs it:

CASE 1 – s.p = s.K = ⊥. The simulator upon receiving a message (PROCEED, sid , rsid ,Si, a) from the envi-
ronment, forwards the same message to “Si”. If a = allow, the honest server proceeds with the normal protocol
and waits until it receives a valid input (Ctest, π1, (σ5,j)Sj∈S′) from the dishonest U ′. Note that the tuple includes
signatures of all honest servers, and thus this input can only arrive if the environment allowed all honest servers
to proceed, which in turn will have triggered the delivery of (NOTIFY, sid , rsid , c) from F to SIM. Therein,
c← {correct, wrong} indicates whether the password attempt p′ matches p as maintained by the ideal function-
ality or not. This information will later be used by SIM to provide consistent decryption shares of the supposed
encrypted password quotient. Before that, the honest servers when reaching Step (R.6b) derive C ′test,i correctly
by re-randomizing the received ciphertext. Thus, the ciphertext C ′test is also merely an encryption of “1”, which
however the adversary is not able to recognize as we now tweak the decryption shares to make C ′test look like the
“correct” ciphertext:

3The third case of running the retrieve for an account that was never successfully created will result – due to the presence of at least one
honest server – in the termination of the protocol in Step (R.4a), thus nothing further needs to be simulated there.

27



When subsequently the first server reaches Step (R.8b), and thus must release its decryption share ofC ′test, SIM
uses the simulation property of the threshold scheme (as described in GAME7) to derive the shares and correctness
proof for all honest servers, such that they are consistent with c. More precisely, the simulator computes (di, πdi)
for all honest Si ∈ S′h such that TDec(C ′test, (dj)Sj∈S′) = 1 if c = correct and TDec(C ′test, (dj)Sj∈S′) = R for
a random R if c = wrong. Note that the threshold secret keys of the at most t corrupt parties (which are needed
for that trick) are stored by the simulator as s.TKeys in the record s, as the account was set up by an honest user
(=simulator). For any honest server “Si” reaching Step (R.8b), SIM uses the (di, πdi) values from the threshold
simulation.

If an honest servers “Si” obtains decryption shares in Step (R.10b) that indicate that p ′ = p, and c was indeed
correct, the simulation sends (DELIVER, sid , rsid ,Si, allow) to F and (DELIVER, sid , rsid ,Si, deny) otherwise
(i.e., SIM also aborts the protocol if the joint decryption leads to 1 but c = wrong, as described in GAME9).
Now, the simulator has to produce decryption shares that will allow U ′ to open CK to the correct value. How-
ever, as CK was just a dummy encryption we need again the threshold simulator to tweak the decryption share
accordingly. To learn the required plaintext message K to which the shares for CK are supposed to decrypt, the
simulator sends (DELIVER, sid , rsid ,U ′, allow) to F . The ideal functionality will in turn respond with the message
(DELIVER, sid , rsid ,K ) where K will be the correct data key, since we only reached that step whenF has indicated
that the passwords matched.

The simulator now invokes the threshold simulation on input the at most t secret keys of all corrupt servers
that participated in the setup and are kept in SIM’s record, the ciphertext CK and the message K. The simulator
outputs verifiable decryption share tuples (d′i, πd′i) for all honest servers which are sent instead of the “real” values
derived from the dummy ciphertext.

CASE 2 – s.p = p, s.K = K . The simulation of the second case is much simpler, as the simulator already knew
p,K in the setup of the account that is now used in the retrieval. Consequently, the ciphertexts Cp, CK that are
included in the note file and that were accepted by the honest servers, are proper encryptions of p,K . Thus, the
honest servers – for which the environment allowed to proceed – simply follow the normal protocol instructions and
whenever outputting a message, the simulator mimics the behaviour towards the ideal functionality. Note, that this
means that we actually base our simulation on the real ciphertextCtest as provided by the adversary, but have invoked
the ideal functionality p ′ extracted from C̃p′ . Thus, we will end up in an inconsistent simulation if the adversary
managed to provide inconsistent ciphertexts Ctest and C̃p′ , i.e., that were not based on the same password attempt
p ′. However, as this requires the adversary to forge the proof π1, this can only occur with negligible advantage due
to the soundness of the proof system.

We also let SIM abort the protocol as soon as it detects such an inconsistency, i.e., if in Step (R.10b) an honest
server receives decryption shares, such that the joint decryption results in 1 (indicating that the password matches),
but p 6= p′. This is a legitimate action according to GAME9.

Thus, we have shown how to construct a simulator for all combinations of honest and corrupt parties that,
conditioned on the simulation-soundness of the proof-system, provides a view that is indistinguishable to the one
described in GAME11, which concludes our proof. �
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