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Abstract. The Trusted Platform Module (TPM) is an international standard for a security chip that
can be used for the management of cryptographic keys and for remote attestation. The specification of
the most recent TPM 2.0 interfaces for direct anonymous attestation unfortunately has a number of
severe shortcomings. First of all, they do not allow for security proofs (indeed, the published proofs are
incorrect). Second, they provide a Diffie-Hellman oracle w.r.t. the secret key of the TPM, weakening the
security and preventing forward anonymity of attestations. Fixes to these problems have been proposed,
but they create new issues: they enable a fraudulent TPM to encode information into an attestation
signature, which could be used to break anonymity or to leak the secret key. Furthermore, all proposed
ways to remove the Diffie-Hellman oracle either strongly limit the functionality of the TPM or would
require significant changes to the TPM 2.0 interfaces. In this paper we provide a better specification of
the TPM 2.0 interfaces that addresses these problems and requires only minimal changes to the current
TPM 2.0 commands. We then show how to use the revised interfaces to build q-SDH- and LRSW-
based anonymous attestation schemes, and prove their security. We finally discuss how to obtain other
schemes addressing different use cases such as key-binding for U-Prove and e-cash.

1 Introduction

The amount of devices connected to the Internet grows rapidly and securing these devices and our electronic
infrastructure becomes increasingly difficult, in particular because a large fraction of devices cannot be
managed by security professional nor can they be protected by firewalls. One approach to achieve better
security is to equip these devices with a root of trust, such as a Trusted Platform Module (TPM), a Trusted
Execution Environment (TEE), and Software Guard Extensions (SGX), and then have that root of trust
attest to the state of the device or to computations made. When doing such attestations, it is crucial that
they be privacy-protecting. On the one hand, to protect the privacy of users of such devices, and on the
other hand, to minimize the information available to attackers. Realizing this, the Trusted Computing Group
(TCG) has developed a protocol called direct anonymous attestation (DAA) [BCC04] and included it in their
TPM 1.2 specification [Tru04]. The protocol allows a device to authenticate as a genuine device (i.e., that it
is certified by the manufacturer) and attest to messages without the different attestations being linkable to
each other and has since been implemented in millions of chips.

Later, Brickell and Li [BL11] proposed a scheme called Enhanced-privacy ID (EPID) that is based on
elliptic curves and adds signature-based revocation which is a revocation capability based on a previous
signature of a platform. This scheme has become Intel’s recommendation for attestation of a trusted system,
has been incorporated in Intel chipsets and processors, and is recommended by Intel to serve as the industry
standard for authentication in the Internet of Things. Being based on elliptic curves, EPID is much more
efficient than the original RSA-based DAA scheme. Therefore, the TCG has revised the specification of the
TPM and switched to elliptic curve-based attestation schemes [Tru14, CL13]. The design idea of this new
specification is rather beautiful: the TPM only executes a simple core protocol that can be extended to build
different attestation schemes. Essentially, the core protocol is a Schnorr proof of knowledge of a discrete
logarithm [Sch91], the discrete logarithm being the secret key stored and protected inside the TPM. Chen



and Li [CL13] describe how to extend this proof of knowledge to DAA schemes, one based on the q-SDH
assumption [BB08] and one based on the LRSW assumption [LRSW99]. The idea here is that the host in
which the TPM is embedded extends the protocol messages output by the TPM into messages of the DAA
protocol. They further show how to extend it to realize device-bound U-Prove [PZ13], so that the U-Prove
user secret key is the one stored inside the TPM.

Unfortunately, the core protocol as specified has severe shortcomings. First, the random oracle based
security proof for attestation unforgeability by Chen and Li is flawed [XYZF14] and indeed it seems impossible
to prove that a host cannot attest to a message without involving the TPM. Second, the core protocol can be
abused as a Diffie-Hellman oracle w.r.t. the secret key tsk inside the TPM. It was shown that such an oracle
weakens the security, as it leaks a lot of information about tsk [BG04]. Further, the presence of the oracle
prevents forward anonymity, as an attacker compromising a host can identify the attestations stemming from
this host.

These issues were all pointed out in the literature before and fixes have been proposed [XYZF14,CDL16c,
CDL16a]. However, the proposed fixes either introduce new problems or are hard to realize. Xi et al. [XYZF14]
propose a change to the TPM specification that allows one to prove the unforgeability of TPM-based at-
testations. This change introduces a subliminal channel though, i.e., a subverted TPM could now embed
information into the values it produces and thereby into the final attestation. This covert channel could
be used to break anonymity of the platform and its user, or to leak the secret key held in the TPM. The
proposed fixes to remove the static Diffie-Hellman oracle [XYZF14, CDL16c, CDL16a] either require sub-
stantial changes to the TPM to the extend that they are not implementable, or restrict the functionality
of the TPM too much, excluding some major DAA schemes from being supported. For instance, it was
priorly proposed to have the host prove in zero knowledge that a new base is safe to use for the TPM, who
then needs to verify that proof. This does not only take a heavy toll on the resources of the TPM but also
excludes signature-based revocation, thus not meeting the requirements of the TCG. We refer to Section 3
for a detailed discussion of the existing proposals and their shortcomings.

Our Contributions. In this paper we provide a new specification of the DAA-related interfaces of the TPM
that requires only minimal changes to the current TPM 2.0 commands. It is the first one that addresses
all the issues discussed and that can easily be implemented on a TPM. We then show what kind of proof
of knowledge statements can be proven with the help of our new TPM interfaces and how to build secure
DAA schemes with them. Our specification supports both LRSW-based and q-SDH-based direct anonymous
attestation, signature-based revocation, and extensions to attributes. Our LRSW-based scheme has a new
way to issue credentials that is much more efficient than prior ones that aimed to avoid a DH-oracle in the
TPM interfaces. To achieve this, we use a slight modification of the LRSW assumption (which we prove to
hold in the generic group model). Avoiding this modification would be possible, but would require a second
round of communication with the issuer.

We further show how to extend our DAA schemes to support attributes and signature-based revocation
and give security proofs for all of that. The TPM interfaces that we give can also be used to realize other
schemes, such as device-bound U-Prove [PZ13] and e-cash [CHL05], for which it is beneficial that a secret
key be kept securely inside a TPM.

To make the construction of such schemes easier, we give for the first time a thorough characterization
of statements that can be proven with a TPM w.r.t. a secret key inside the TPM. We provide a generic
protocol that orchestrates our new TPM interfaces and allows one to generate TPM-based proofs for a wide
class of statements. We further prove the security of such generated TPM-based proofs. This facilitates the
use of the TPM interfaces for protocol designers who can simply use our generic proof protocol to devise
more complex protocols.

Some of the changes to the TPM 2.0 interfaces we propose have already been adopted by the TCG and
will appear in the forthcoming revision of the TPM 2.0 specifications. The remaining changes are currently
under review by the TPM working group. Furthermore, the authors are in discussion with the other bodies
standardizing DAA protocols to adopt our changes and schemes, in particular ISO w.r.t. to ISO/IEC 20008-
2, Intel for EPID, and with the FIDO alliance for their specification of anonymous attestation [CDE+], so
that all of these standards will define provably secure protocols that are compatible with each other.
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Outline. We start by presenting the necessary preliminaries in Section 2. In Section 3, we describe the
current TPM 2.0 commands and their inherent security issues and also discuss how previous work aims to
overcome these problems. Section 4 then presents our proposed changes to the TPM 2.0 specification and our
generic proof protocol to create TPM-based attestations. How to build direct anonymous attestation with
signature-based revocation and attributes is described in Section 5. We discuss forward anonymity separately
in Section 6, show other applications of the revised TPM interfaces in Section 7, and conclude in Section 8.

2 Building Blocks and Assumptions

This section introduces the notation for signature proofs of knowledge and the complexity assumptions
required for our schemes. Here we also present the new generalized version of the LRSW assumption.

2.1 Bilinear Maps

Let G1, G2, and GT be groups of prime order p. A bilinear map e : G1 ×G2 → GT must satisfy bilinearity,
i.e., e(gx1 , g

y
2 ) = e(g1, g2)xy for all x, y ∈ Zq; non-degeneracy, i.e., for all generators g1 ∈ G1 and g2 ∈ G2,

e(g1, g2) generates GT ; and efficiency, i.e., there exists an efficient algorithm G(1τ ) that outputs the bilinear
group (p,G1,G2,GT , e, g1, g2) and an efficient algorithm to compute e(a, b) for any a ∈ G1, b ∈ G2.

Galbraith et al. [GPS08] distinguish three types of pairings: Type-1, in which G1 = G2; Type-2, in which
G1 6= G2 and there exists an efficient isomorphism ψ : G2 → G1; and Type-3, in which G1 6= G2 and no such
isomorphism exists. Type-3 pairings currently allow for the most efficient operations in G1 given a security
level using Barreto-Naehrig curves with a high embedding degree [BN06]. Therefore it is desirable to describe
a cryptographic scheme in a Type-3 setting, i.e., without assuming G1 = G2 or the existence of an efficient
isomorphism from G2 to G1.

2.2 Complexity Assumptions

We recall some existing complexity assumptions and introduce a variation of one of them (which we prove to
hold in the generic group model). Let G(1τ ) generate random groups G1 = 〈g1〉, G2 = 〈g2〉, GT = 〈e(g1, g2)〉,
all of prime order p where p has bith length τ , with bilinear map e.

Recall the q-SDH assumption [BB08] and the LRSW assumption [LRSW99] in a bilinear group.

Assumption 1 (q-SDH) Define the advantage of A as:

Adv(A) = Pr
[
(G1,G2,GT , e, q)← G(1τ ), x←$ Z∗p,

(c, h)← A(g1, g
x
1 , g

(x2)
1 , . . . , g

(xq)
1 , g2, g

x
2 ) : h = g

1
x+c

1

]
.

No PPT adversary has Adv(A) non-negligible in τ .

Assumption 2 (LRSW) Let X = gx2 and Y = gy2 , and let OX,Y (·) be an oracle that, on input a value

m ∈ Zp, outputs a triple (a, ay, ax+xym) for a randomly chosen a. Define the advantage of A as follows:

Adv(A) = Pr
[
(G1,G2,GT , e, q)← G(1τ ), (x, y)←$ Z2

p,

X ← gx2 , Y ← gy2 , (a, b, c,m)← AOX,Y (·)(X,Y ) :

m 6∈ Q ∧ a ∈ G1 ∧ a 6= 1G1
∧ b = ay ∧ c = ax+xym

]
.

No PPT adversary has Adv(A) non-negligible in τ .
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We introduce a generalized version of the LRSW assumption where we split the oracle OX,Y into one
that first gives the values a and b, the two elements that do not depend on the message, and one that later
provides c upon input of m. That is, after receiving a, b, the adversary may specify a message m to receive
c = ax+xym.

Assumption 3 (Generalized LRSW) Let X = gx2 and Y = gy2 , and let Oa,b
X (·) return (a, b) with a←$ G1

and b ← ay. Let Oc
X,Y (·) on input (a, b,m), with (a, b) generated by Oa,b

X,Y , output c = ax+xym. It ignores

queries with input (a, b) not generated by Oa,b
X,Y or inputs (a, b) that were queried before. Define the advantage

of A as follows.

Adv(A) = Pr
[
(G1,G2,GT , e, q)← G(1τ ), (x, y)←$ Z2

p,

X ← gx2 , Y ← gy2 , (a, b, c,m)← AO
a,b
X (·),Oc

X,Y (·)(X,Y ) :

m 6∈ Q ∧ a ∈ G1 ∧ a 6= 1G1
∧ b = ay ∧ c = ax+xym

]
.

No PPT adversary has Adv(A) non-negligible in τ .

Note that our assumption implies the LRSW assumption, but the contrary is not true. In our assumption,
the adversary may let m depend on (a, b). Intuitively, it is clear that this does not give any meaningful
advantage, as a is random in G1. We formalize this intuition and prove that Assumption 3 holds in Shoup’s
generic group model [Sho97] in Appendix A.

2.3 Proof Protocols

For zero-knowledge proofs of knowledge of discrete logarithms and statements about them, we will follow
the notation introduced by Camenisch and Stadler [CS97] and formally defined by Camenisch, Kiayias, and
Yung [CKY09]. For instance, PK{(a) : y = ga} denotes a “zero-knowledge Proof of Knowledge of integer a
such that y = ga holds.” SPK{. . .}(m) denotes a signature proof of knowledge on m, that is a non-interactive
transformation of a zero-knowledge proof PK with the Fiat-Shamir heuristic [FS87] in the random oracle
model [BR93].

(S)PK protocols have three moves: In the first move the prover sends to the verifier what is often referred
to as a commitment message or t-values. In the second move, the verifier sends a random challenge c to
which the prover responds with the so-called s-values.

When describing our protocols at a high-level, we use the following, more abstract notation. By NIZK{(w) :
statement(w)}(ctxt) we denote any non-interactive zero-knowledge proof that is bound to a certain context
ctxt and proves knowledge of a witness w such that the statement statement(w) is true.

3 Related Work & Current TPM 2.0 Specification

We now summarize the specification of current TPM 2.0 DAA interfaces and discuss its inherent security
and privacy issues and how existing work aims to overcome them.

TPM 2.0 Interface and SPKs. For realizing DAA, and signature proofs of knowledge of a TPM secret key
in general, the TPM 2.0 specification offers four main commands TPM.Create, TPM.Hash, TPM.Commit, and
TPM.Sign. Calling TPM.Create triggers the creation of a secret key tsk ∈ Zp and a public key tpk ← ḡtsk ,
where ḡ and Zp are fixed parameters. Roughly, for signing a message m via a signature proof of knowledge
(SPK) of tsk w.r.t. a basename bsnL, the host first invokes TPM.Commit on input a group element g and
basename bsnL upon which the TPM outputs (commitId , E,K,L) with K ← HG1

(bsnL)tsk , and the t-values
of the SPK, denoted E ← gr and L← HG1

(bsnL)r. The TPM also internally stores (commitId , r). The host
then calls TPM.Hash to obtain a hash c on the message (m, (E,L)). If the TPM wants to sign this message, it
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marks c as safe to sign. The proof gets completed by invoking the TPM.Sign command on input a safe-to-sign
hash c and a reference commitId to the randomness r upon which the TPM outputs s← r + c · tsk .

Due to this generic interface, the TPM 2.0 can be used to construct multiple DAA schemes. Chen and
Li [CL13] show that the TPM 2.0 supports both LRSW-based DAA [CPS10] and q-SDH-based DAA [BL10],
whereas the TPM 1.2 only supported the original RSA-based DAA scheme [BCC04]. Unfortunately, the
current TPM 2.0 interfaces have some drawbacks: the signature proofs of knowledge the TPM makes cannot
be proven to be unforgeable and there exists a static Diffie-Hellman oracle leaking information about the
TPM key.

3.1 Unforgeability Flaw for TPM 2.0-based SPKs

The SPKs that are created via the TPM commands should be unforgeable, i.e., a host must not be able
to compute an SPK on message m without calling TPM.Sign on a hash c that was previously cleared via a
TPM.Hash call on m. Chen and Li [CL13] aim to prove this property, but the proof is incorrect, as pointed
out by Xi et al. [XYZF14]. In the proof, the authors simulate the TPM without knowing its secret key tsk .
To simulate an SPK on message m, the authors use the standard approach of randomly choosing the c and
s values, and then derive the t-values E and L in TPM.Commit based on c, s, and tpk . For the reduction to
go through, one must ensure that the randomly chosen c becomes the hash value of (m, t) (via TPM.Hash
and modeling the hash as random oracle), and then let TPM.Sign respond with s whenever that c is given as
input. However, given that an adversary has arbitrary access to the TPM interfaces, it can query TPM.Hash
on many different messages (m1, t), . . . , (mn, t) containing the same t value. The reduction does not know
which of these queries the adversary will later use to complete the signature, and thus only has a 1/n chance
to correctly simulate the proof.

Unforgeability Fix Breaks Privacy. This problem is inherent in the current TPM interface, but could be
solved by a simple modification to the TPM.Sign method as proposed by Xi et al. [XYZF14]: when signing,
the TPM first chooses a nonce nt and computes c′ ← H(nt, c) and s ← r + c′ · tsk . This allows to prove
the unforgeability of TPM generated SPKs, as the reduction can now program the random oracle on c′ only
when the TPM.Sign query is made.

However, this would also introduce a subliminal channel for the TPM, as nt would be part of the final
signature and a subverted TPM can embed arbitrary information in that nonce, breaking the anonymity
without a host noticing. Recent revelations of subverted cryptographic standards and tampered hardware
indicate that such attacks are very realistic. We propose changes to the TPM that provably prevent such
subliminal challenges and at the same time allow to prove the unforgeability of the SPKs, as we will show
in Section 4.

3.2 Static Diffie-Hellman Oracle

Another problem in the TPM 2.0 interface is the static Diffie-Hellman (DH) oracle, as pointed out by Acar
et al. [ANZ13]. For any chosen point g ∈ G1, the host can learn gtsk by calling (commitId , E,K,L) ←
TPM.Commit(g, bsn), s ← TPM.Sign(commitId , c) and computing gtsk ← (gs · E−1)1/c. This leaks a lot of
information about tsk , Brown and Gallant [BG04] and Cheon [Che06] show that the existence of such an
oracle makes finding the discrete log much easier. The reason is that the oracle can be used to compute a

q-SDH sequence gtsk , gtsk
2
, . . . , gtsk

q
for very large q, which in turn allows to recover tsk faster than had one

been given only ḡtsk . On Barreto-Naehrig (BN) curves [BN06], one third of the security strength can be lost
due to a static DH oracle. For example, a 256 bit BN curve, which should offer 128 bits of security, only
offers 85 bits of security with a static DH oracle.

The static DH oracle also prevents forward anonymity. Forward anonymity guarantees that signatures
made by an honest platform remain anonymous, even when the host later becomes corrupted. In existing
schemes, even anonymous signatures contain a pair (gi, Ui,k) where gi is a random generator and Ui,k = gtskki .
With a static DH oracle, a host upon becoming corrupt can use the TPM to compute U ′i = gtski for all previous
signatures, test whether U ′i = Ui,k, breaking the anonymity of these signatures.
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Cleared Generators for LRSW-based Schemes. Xi et al. [XYZF14] propose an approach to remove the static
DH oracle while preserving the support for the both LRSW- and q-SDH-based DAA schemes. They introduce
a new TPM.Bind command that takes as input two group elements P and K and a proof πP ← SPK{α : P =
ḡα ∧ K = tpkα}. The TPM verifies the proof and, if correct, stores P as cleared generator. The TPM.Commit
interface will then only accept such cleared generators as input for g. This removes the static DH oracle
because the proof πP shows that P tsk = K is already known. A similar approach was also used in the recent
LRSW-DAA scheme by Camenisch et al. [CDL16c].

However, this approach has two crucial problems. First, it is very hard to implement this functionality
on a TPM. The TPM stores only a small number of root keys due to the very limited amount of storage
available. For all other keys, the TPM creates a “key blob” that contains the public part of the key in the
clear and the private part of the key encrypted with one of the root keys. The TPM would have to similarly
store an authenticated list of generators which have been cleared via the TPM.Bind interface. However, this
would be a new type of key structure, which is a significant change to the current TPM 2.0 specification.

Second, this interface does not support signature-based revocation, which is an important extension to
anonymous signatures. This type of revocation was introduced in EPID [BL11] and allows one to revoke
a platform given a signature from that platform. Roughly, for signature-based revocation, every signature
includes a pair (B,nym) where B ←$ G1 and nym← Btsk . The signature revocation list SRL contains tuples
{(Bi,nymi)} from signatures of the platforms that are revoked. When signing, the TPM must also prove
that it is not the producer of any of these revoked signatures. To do so, it proves πSRL,i ← SPK∗{(tsk) :
nym = Btsk ∧ nymi 6= Btsk

i } for each tuple in SRL. Using the changes proposed by Xi et al. [XYZF14], a
host cannot input the generators Bi to the TPM anymore as it is not able to produce proofs πBi that are
required in the TPM.Bind interface.

Random Generators via Hashing. Another approach to remove the static DH oracle is to determine the base
g by hashing. That is, instead of inputing g in TPM.Commit, the host provides a basename bsnE upon which
the TPM derives g ← HG1(bsnE). By assuming that the hash function is a random oracle, g is now enforced
to be a random instead of a chosen generator which avoids the static DH oracle, as the host can no longer
create the large q-SDH sequences that are the basis of the static DH attacks.

Interestingly, this approach was included in the revision from TPM 1.2 to TPM 2.0 to avoid another
static DH oracle that was present in the earlier standard. In TPM 1.2, the TPM.Commit interface received a
generator j instead of bsnL and directly computed K ← jtsk and L ← jr, whereas TPM 2.0 now receives
bsnL and first derives j ← HG1(bsnL).

While applying the same idea on g would solve the problem, it would also significantly limit the function-
ality of the TPM interface. Recall that TPM 2.0 was designed to support both, LRSW- and q-SDH-based
DAA schemes. While q-SDH schemes could be easily ported to these new interfaces, no current LRSW-
based scheme would be supported. All existing LRSW-based schemes require the TPM to prove knowledge
of d = btsk for a generator b ← ay chosen by the DAA issuer. As the issuer must be privy of the discrete
logarithm y, it cannot produce a basename bsnE such that b = HG1

(bsnE) holds at the same time.
Another protocol that would, in its current forms, not be compatible with this change is the afore-

mentioned signature-based revocation [BL11], which needs the TPM to use basenames Bi defined in the
revocation list SRL. Camenisch et al. [CDL16a] recently proposed to use B ← HG1

(bsn) instead of B ←$ G1

to avoid the DH oracle, i.e., the TPM gets bsn as input and the SRL has the form {(bsni,nymi)}. However,
the authors did not detail how the TPM interfaces have to be changed to support this approach. In fact, their
protocol is not easily instantiable, as their proposed computations by the TPM for generating the proofs
πSRL,i would require the TPM to keep state, which in turn would require new TPM commands.

Our Approach. In this work we follow the idea of using hash-based generators but thoroughly describe the
necessary changes to the TPM 2.0 specification and, in addition, are very conscious to optimize our solutions.
Most importantly, our proposed modifications do not require any new TPM commands, but modify the
existing ones only slightly. To demonstrate the flexibility of our TPM interface we present a generic protocol
that allows to create a wide class of signature proofs of knowledge using these TPM commands. The existing
LRSW-based DAA and signature-based revocation protocols cannot be used with our interface due to the
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Session system parameters: G1 = 〈ḡ〉 of prime order q, nonce bit length ln, random oracles H : {0, 1}∗ → Zp
and HG1 : {0, 1}∗ → G1. Initialize Committed← ∅ and commitId ← 0.

Init. On input TPM.Create():
– If this is the first invocation of TPM.Create, choose a fresh secret key tsk ←$ Zp and compute public key

tpk ← ḡtsk .
– Store tsk and output tpk .

Hash. On input TPM.Hash(mt,mh):
– If mt 6= ⊥, the TPM checks whether it wants to attest to mt.
– Compute c← H(“TPM ”,mt,mh).
– Mark c as “safe to sign” and output c.

Commit. On input TPM.Commit(bsnE , bsnL):
– If bsnE 6= ⊥, set g̃ ← HG1(bsnE), otherwise set g̃ ← ḡ.
– Choose r ←$ Zp, nt ←$ {0, 1}ln and store (commitId , r,nt) in Committed.
– Set n̄t ← H(“nonce”,nt), E ← g̃r, and K,L← ⊥.
– If bsnL 6= ⊥, set j ← HG1(bsnL), K ← jtsk and L← jr.
– Output (commitId , n̄t, E,K,L) and increment commitId .

Sign. On input TPM.Sign(commitId , c,nh):
– Retrieve record (commitId , r,nt) and remove it from Committed, output an error if no record was found.
– If c is safe to sign, set c′ ← H(“FS”,nt ⊕ nh, c) and s← r + c′ · tsk .
– Output (nt, s).

Fig. 1. Our proposed modified TPM 2.0 interface (changes w.r.t. the current specification are highlighted in blue).

aforementioned issues. We therefore also propose new protocols for signature-based revocation and LRSW-
based DAA that are compatible with the proposed TPM interfaces and provably secure.

4 The Revised TPM 2.0 Interface

This section introduces new TPM 2.0 interfaces for creating signature proofs of knowledge. The TPM creates
keys with the TPM.Create command. Messages can be signed by first calling TPM.Commit, followed by a
TPM.Hash and a TPM.Sign command. We first discuss our proposed modifications to these commands and
how they address the problems mentioned in Section 3. Indeed, we are able to do that by making only minor
modifications to the commands. The description of our revised TPM interfaces is presented in Figure 1. We
again use a simplified notation and refer for the full specification of our TPM 2.0 interfaces to Appendix E
for details.

Avoiding a Subliminal Channel. To solve the unforgeability problem discussed in Section 3, a nonce to which
the TPM contributed needs to be included in the computation of the Fiat-Shamir challenge c′. Thereby,
a malicious TPM must not be able to alter the distribution of the signature proofs of knowledge, as this
would break the privacy, which is the key goal of anonymous attestation. For this reason, the nonce needs
to be computed jointly at random by the TPM and the host. In TPM.Commit, the TPM chooses a nonce nt
and commits to that nonce by computing n̄t ← H(“nonce”,nt). The host picks another nonce nh, and gives
that as input to TPM.Sign. The TPM must use nt ⊕ nh in the Fiat-Shamir hash. An honest host takes nh
uniformly at random, which guarantees that nt ⊕ nh is uniform random, preventing a malicious TPM from
hiding messages in the nonce.

Avoiding the DH Oracle. The TPM.Commit command is changed to prevent a static Diffie-Hellman oracle.
The oracle exists in the current TPM 2.0 interface because therein a host can pass any value g to the TPM
and obtain gtsk . Our revised TPM prevents this as it will only use a generator g̃ that is either g̃ ← HG1

(bsnE)
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for some bsnE it receives, or set to g̃ ← ḡ if bsnE = ⊥ where ḡ denotes the fixed generator used within the
TPMs.

Clearly, the host can no longer abuse this interface to learn information about the TPM secret key tsk . If
g̃ = ḡ, the host receives tpk which it already knows. If g̃ = HG1

(bsnE) and we model the hash function as a
random oracle, the host receives a random element raised to power tsk , which does not give the host useful
information. More precisely, the proof of Lemma 2 shows that we can simulate a TPM without knowing tsk ,
which proves that the TPM does not leak information on tsk . Although our changes limit the generators
that the host can choose, Section 5.2 shows that we can still build DAA schemes based on q-SDH and LRSW
on top of this interface, including support for signature-based revocation.

4.1 Zero-knowledge Proofs with the TPM

We now describe how our proposed TPM interfaces can be used to create a wide class of signature proofs
of knowledge. To demonstrate the flexibility of our interface we propose a generic proof protocol Prove that
orchestrates the underlying TPM commands. We then show that proofs generated by Prove are unforgeable,
device-bound and remain zero-knowledge even if the TPM is subverted. Thus, protocol designers can use
our Prove protocol as generic building block for more complex protocols instead of having to use the TPM
command and proving these security properties from scratch. Our DAA protocols presented in Section 5 use
exactly that approach.

A Generic Prove Protocol. Using the proposed TPM interfaces, a host can create signature proofs of knowl-
edge of the following structure:

SPK∗{(γ · (tsk + hsk), α1, . . . , αl) : y1 = (ĝδ)γ·(tsk+hsk) ·
∏
i

bi
αi ∧

y2 = HG1
(bsnL)γ·(tsk+hsk) ·

∏
i

b′i
αi ∧ y3 =

∏
i

b′′i
αi}(mh,mt) , (1)

for values δ, hsk , tsk , and γ in Zp, strings bsnL,mh,mt ∈ {0, 1}∗, group elements y1, y2, y3, ĝ, and set
{(αi, bi, b′i, b′′i )}i, with αi ∈ Zp. Either y1, ĝ, and all bi’s are in G1 or they are all in GT . All b′i values and y2

must be in G1. If bsnL = ⊥, the second equation proving a representation of y2 is omitted from the proof.
We could also lift this part of the proof to GT but as we do not require such proofs, we omit this to simplify
the presentation. The values y3 and b′′i must either all be in G1, in G2, or in GT .

In addition we require that the TPM works with a cleared generator, meaning either ĝ = g̃ or ĝ = e(g̃, ĝ2)
with g̃ denoting the cleared generator being either ḡ, i.e., the fixed generator or it is HG1

(bsnE) for some
bsnE .

The protocol allows the host to add a key hsk to the witness for tsk because, as we will see in the later
sections, this can improve the privacy of DAA schemes. Note that we could trivially generalize the proof
statement (4.1) to include additional terms that do not contain γ · (tsk + hsk) as witness, but for ease of
presentation we omit these additional terms.

The host can add any message mh to the proof. It also chooses mt, but this is a value the TPM attests
to and will be checked by the TPM.

The host can create such a proof using the Prove protocol described in Figure 3. We assume a per-
fectly secure channel between the host and TPM, i.e., the adversary does not notice the host calling TPM
commands. Note that before starting the proof, the host may not know y2, as it does not know tsk , but
learns this value during the proof because it is given as output of the Prove protocol. How to verify such
proofs using the VerSPK algorithm is shown in Figure 3 as well. Note that verification does not require any
participation of the TPM. Figure 2 gives a brief overview of the required parameters and their respective
types and conditions.

The completeness of these proofs can easily be verified. The proof is sound as we can extract a valid
witness using the standard rewinding technique.
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Variable Type Explanation

TPM Variables

tsk Zp secret key held inside the TPM (in DAA part of the platform secret key)

tpk G1 public key corresponding to tsk , i.e., tpk = ḡtsk

ḡ G1 fixed generator in all TPMs

g̃ G1 cleared generator created in TPM.Commit, with g̃ ← HG1(bsnE) if bsnE 6= ⊥ and g̃ ← ḡ else

Prove Variables

hsk Zp secret key held by the host (in DAA part of the platform secret key), set hsk = 0 if not needed

y1 G1 or GT see SPK (4.1), if y1 ∈ GT then ĝ2 is a mandatory input

bsnE {0, 1}∗ or ⊥ basename for generator g̃ ← HG1(bsnE), if bsnE = ⊥ then g̃ ← ḡ

δ Zp see SPK (4.1), set δ = 1 if not needed

ĝ2 G2 if y1 ∈ GT , or ⊥ if ĝ2 6= ⊥, it moves proof to GT by setting ĝ ← e(g̃, ĝ2); if ĝ2 = ⊥ then ĝ ← g̃

γ Zp see SPK (4.1), set γ = 1 if not needed

bsnL {0, 1}∗ or ⊥ basename for generator j ← HG1(bsnL) if bsnL 6= ⊥
y2 G1 or ⊥ see SPK (4.1), if bsnL 6= ⊥, then y2 6= ⊥ is mandatory input, else y2 = ⊥
y3 G1, G2, GT , or ⊥ see SPK (4.1), set y3 = ⊥ if not needed

αi Zp see SPK (4.1), input given as part of {(αi, bi, b′i, b′′i )}i
bi same group as y1 see SPK (4.1), set bi = 1G if αi is not needed in the first equation of (4.1)

b′i G1 see SPK (4.1), set b′i = 1G1 if αi is not needed in the second equation if (4.1)

b′′i same group as y3 see SPK (4.1), set b′′i = 1G if αi is not needed in the third equation of (4.1)

mh {0, 1}∗ or ⊥ message that the host adds to an attestation

mt {0, 1}∗ or ⊥ message the TPM attests to

Fig. 2. Overview of variables used within the TPM and in our Prove protocol.

Example for Using Prove. We now give a simple example to show how the Prove protocol must be invoked
and give some intuition on how the final proof is assembled by our protocol. Suppose we want to prove:

SPK∗{(tsk + hsk) : d′ = (HG1(bsnE)δ)(tsk+hsk) ∧ nym = HG1(bsnL)(tsk+hsk)}(mh,mt),

where the TPM holds tsk and the host knows hsk . The host will add hsk to the witness for tsk , which
is the first input to Prove. The second argument is the left hand side of the first equation, which is d′. The
generator for the witness tsk + hsk is (HG1(bsnE)δ), which is passed on to the Prove protocol by giving bsnE
and δ as the next arguments. The protocol has the option to move the proof to GT by passing a value ĝ2,
but as this proof takes place in G1, we enter ĝ2 = ⊥. We can prove knowledge of γ · (tsk + hsk), but as we
want to use witness tsk + hsk , we pass γ = 1. In the second equation, we use HG1

(bsnL) as generator, so
we give argument bsnL. Since our proof omits the third equation, we set y3 ← ⊥. The protocol supports an
additional list of witnesses with generators in the three equations, but since this equation only uses witness
tsk + hsk , we pass an empty list as next argument. Finally, we specify mt, the message the TPM attests to,
and mh, the additional data added by the host. Therefore, we call

Prove(hsk , d′, bsnE , δ,⊥, 1, bsnL,⊥, ∅,mh,mt).

The protocol calls TPM.Commit with basenames bsnE and bsnL to receive E = HG1(bsnE)rtsk and L =
HG1

(bsnL)rtsk for some rtsk , and K = HG1
(bsnL)tsk , along with n̄t = H(“nonce”, nt), that commits the TPM

to TPM nonce nt. The host must change the generator for the first proof equation to HG1
(bsnE)δ instead of

HG1
(bsnE), and add randomness to both values to prevent a malicious TPM from altering the distribution of

the resulting proof. It sets t1 ← Eδ · (HG1(bsnE)δ)rhsk = (HG1(bsnE)δ)rtsk+rhsk , and t2 ← L · HG1(bsnL)rhsk =
HG1(bsnL)rtsk+rhsk . Next, it hashes the t-values along with the proof parameters and messages mt and mh

using TPM.Hash. The TPM inspects mt and returns c, which can only be passed to TPM.Sign if the TPM
agrees to signing mt. The host now calls TPM.Sign with c and a fresh host nonce nh, upon which it receives
nt and s = rtsk + c′ · tsk . The host checks whether nt matches the committed TPM nonce, and computes
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Prove(hsk , y1, bsnE , δ, ĝ2, γ, bsnL, y3, {(αi, bi, b′i, b′′i )}i,mh,mt) :

– If bsnE 6= ⊥, set g̃ ← HG1(bsnE), otherwise set g̃ ← ḡ.
– If ĝ2 6= ⊥, set ĝ ← e(g̃, ĝ2), otherwise set ĝ ← g̃.
– If bsnL 6= ⊥, set j ← HG1(bsnL).
– Call TPM.Commit(bsnE , bsnL)→ (commitId , n̄t, E,K,L).

– Take rhsk ←$ Zp, set E′ ← (E · g̃rhsk )γ·δ. If bsnL 6= ⊥, set K′ ← (K · jhsk )γ and L′ ← (L · jrhsk )γ .
– If bsnL 6= ⊥, set y2 ← K′ ·

∏
i b
′
i
αi .

– Take {rαi}li=1 ←$ Zlp. Set t1 ← E′ ·
∏
i b
rαi
i if bi ∈ G1, or t1 ← e(E′, ĝ2) ·

∏
i b
rαi
i if bi ∈ GT .

– If bsnL 6= ⊥, set t2 ← L′
∏
i b
′
i
rαi and t2 ← ⊥ else.

– If y3 6= ⊥, set t3 ←
∏
i b
′′
i
rαi and t3 ← ⊥ else.

– Set m′h ← (mh, y1, ĝ
δ, {(bi, b′i, b′′i )}, t1, y2, bsnL, t2, y3, t3).

– Call TPM.Hash(mt,m
′
h)→ c.1

– Take nh ←$ {0, 1}ln .
– Call TPM.Sign(commitId , c,nh)→ (nt, s).

– Check that n̄t = H(“nonce”, nt) and set n ← nh ⊕ nt, c
′ ← H(“FS”, n, c).

– Set s′ ← γ · (s+ rhsk + c′ · hsk) and sαi ← rαi + c′ · αi for i = 1, . . . , l.

– Check (ĝδ)s
′

= E′ · (y1/(
∏
i b
αi
i )c

′
and if bsnL 6= ⊥, check js

′
= L′ ·K′c

′
.

– Set proof π ← (c′,n, s′, {sαi}) and output (y2, π).

VerSPK(π, y1, ĝ
δ, y2, bsnL, y3, {(αi, bi, b′i, b′′i )}i,mh,mt) :

– Parse π as (c′,n, s′, {sαi}).
– Set t1 ← y−c

′

1 · (ĝδ)s
′
·
∏
i bi

sαi .

– If bsnL 6= ⊥, set t2 ← y−c
′

2 · HG1(bsnL)s
′
·
∏
i b
′
i
sαi , and t2 ← ⊥ else.

– If y3 6= ⊥, set t3 ← y−c
′

3 ·
∏
i b
′′
i
sαi and t3 ← ⊥ else.

– Output 1 if c′ = H(“FS”,n,H(“TPM ”,mt, (mh, y1, ĝ
δ, {(bi, b′i, b′′i )}, t1, y2, bsnL, t2, y3, t3))), and 0 otherwise.

Fig. 3. Prove protocol and VerSPK algorithm to create and verify zero-knowledge proofs via the TPM interfaces from
Figure 1.

the joint nonce n ← nh ⊕ nt and Fiat-Shamir challenge c′ ← H(“FS”, n, c). The host must now add its
randomness and hsk to the s-value, which it does by setting s′ ← s+rhsk +c′ ·hsk . Finally, it checks whether
the resulting proof is valid, to make sure that the TPM contributions did not invalidate the proof. The
resulting proof consists of nonce n, Fiat-Shamir challenge c′, and s-value s′.

Security of Prove We now show that proofs generated by our generic Prove protocol specified in Figure 3
and using the TPM interfaces as described in Figure 1 are unforgeable, device-bound and remain zero-
knowledge even if the TPM is subverted.

Zero-knowledge of SPKs with a Corrupt TPM. An SPK created with the Prove protocol is zero knowledge
in the random oracle model, even when the TPM is corrupt. That is, we prove the absence of any subliminal
channel that a malicious TPM could use to break the privacy of the platform. In Section 5 we show that
this allows one to devise DAA schemes that guarantee privacy even when the TPM is malicious.

Lemma 1 (Privacy of SPKs with a TPM). The signature proofs of knowledge generated by Prove as
defined in Figure 4.1, are zero-knowledge, even when the TPM is corrupt.

1 Note that sending all these values to the TPM might be slow due to the low bandwidth. Instead, the host could
send a hash of m′h to improve performance without affecting the security. For ease of presentation, we omit this
optimization.

10



Proof (Sketch). A corrupt TPM may block the creation of the proof, but if it succeeds, it is zero knowledge.
The TPM is involved in proving knowledge of γ · (tsk + hsk). The host changes the r-value to γ · (rtsk + rhsk ),
with rhsk chosen by the host. It takes rhsk ←$ Zp, so rtsk + rhsk is uniform in Zp regardless of how the TPM
chooses rtsk . Since γ 6= 0, γ · (rtsk + rhsk ) is still uniform in Zp.

The TPM also chooses a nonce nt. It must first commit to this nonce with n̄t = H(“nonce”,nt). The host
then chooses a nonce nh uniformly at random in {0, 1}ln , and the TPM must work with n = nh ⊕ nt, and
show that it computed this correctly. Clearly, n is uniform if nh is uniform.

Since we know the distribution of every part of the zero-knowledge proof, even when the TPM is corrupt,
we can simulate proofs of an honest host with a corrupt TPM.

Unforgeability of SPKs with an Honest TPM. We now show that proofs generated by Prove are unforgeable
with respect to mt, i.e., if the TPM is honest, a corrupt host cannot create a SPK for message mt that the
TPM did not approve to sign.

We consider a corrupt host with oracle access to an honest TPM. The TPM executes TPM.Create,
outputting tpk ← ḡtsk . The corrupt host cannot create SPKs of structure (4.1) where tsk is protected by
the TPM and γ and hsk are known and the TPM never signed mt. We require the host to output γ and hsk
along with his forgery. In a protocol, this means that these values must be fixed (e.g., γ always equals 1) or
extractable from some proof of knowledge for this lemma to be applicable.

Lemma 2 (Unforgeability of SPKs with a TPM). The signature proofs of knowledge generated by
Prove as defined in Figure 4.1, are unforgeable w.r.t. mt. More precisely, the host cannot forge a signature
proof of knowledge with the structure of (4.1) with a witness γ · (tsk + hsk) for known γ, hsk if the TPM
never signed mt, under the DL assumption in the random oracle model.

Proof (Sketch). We show that if an adversary A that has access to the TPM interfaces can forge SPK’s, we
can derive an adversary B that can solve the discrete logarithm problem. Note that it is crucial that we allow
the adversary A to get full, unconstrained access to the TPM interfaces instead of giving him only indirect
access via the Prove protocol, as this correctly models the power a corrupt host will have.

Our reduction B receives a DL instance tpk = ḡtsk and is challenged to find tsk . To do so, we simulate
the TPM and the hash function towards A based on tpk , ḡ as follows:

Hash queries: For queries bsni to HG1
, take ri ←$ Zp and return HG1(bsni) = ḡri and store (hash,HG1(bsni),

ri). Queries to H and TPM.Hash are handled normally.

Commit query TPM.Commit(bsnE , bsnL): Take (si, c
′
i) ←$ Z2

p. If bsnE 6= ⊥, compute HG1
(bsnE), look up

the record (hash,HG1
(bsnE), rE), and set E ← ḡs · tpk−c

′
i·rE . If bsnE = ⊥, set E ← ḡs · tpk−c

′
i .

If bsnL 6= ⊥, compute HG1
(bsnL), look up the record (hash,HG1

(bsnL), rL), and set K ← tpkrL =

HG1(bsnL)tsk , and L← ḡs · tpk−c
′
i·rL . If bsnL = ⊥, set K ← ⊥ and L← ⊥.

Pick n̄t uniform in the range of H, store (commitId , n̄t, si, c
′
i), increment commitId , and output (commitId ,

n̄t, E,K,L).

Sign query TPM.Sign(commitId , c,nh): Look up and remove record (commitId , n̄t, si, c
′
i), and output an

error if no such record was found. Check that c was marked safe-to-sign in a TPM.Hash query. Pick
nt ←$ {0, 1}ln and program the random oracle such that H(“nonce”,nt) = n̄t. Program the random
oracle such that H(“FS”,nt ⊕ nh, c) = c′i. Since the nonce nt is fresh and gets only used once, the
probability that the random oracle is already defined on that input is negligible. Finally, we output
(nt, si).

When A, after having interacted with these oracles, outputs a SPK forgery, i.e., a valid proof with TPM
message mt that the TPM never agreed to sign in TPM.Hash, along with values γ, hsk such that the proof
uses γ · (tsk + hsk) as witness, we either have a collision in H which occurs with negligible probability, or
we can rewind to extract γ · (tsk + hsk), allowing us to compute tsk . B then outputs tsk , solving the DL
problem.
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Device Boundedness of SPKs with an Honest TPM. Finally, we show that proofs generated via Prove are
device bound, i.e., the host cannot create more SPKs than the amount of sign queries the TPM answered.
Again, the TPM holds tsk with tpk = ḡtsk created by TPM.Create.

Lemma 3 (Device Boundedness of SPKs with a TPM). The signature proofs of knowledge generated
by Prove as defined in Figure 4.1, are device bound. That is, the host cannot create more signature proofs of
knowledge with the structure of (4.1) with a witnesses γ · (tsk + hsk), where tsk is protected by the TPM and
the host knows γ and hsk, than the amount of sign queries the TPM answered, under the DL assumption in
the random oracle model.

Proof (Sketch). Our reduction receives a DL instance tpk = ḡtsk and must compute tsk . The simulation
works exactly as in the proof of Lemma 2. If the host made n sign queries and outputs n + 1 SPKs and
corresponding values γ and hsk , we look at every c′ value of the proofs. If there are two distinct SPKs with
the same c′ value, there must be a collision in H, which occurs with negligible probability. If all c′ values are
distinct, one of them must be different from the c′ values as created by the TPM. That means the random
oracle is not programmed here and we can rewind that proof to extract γ · (tsk + hsk). Since we also have
hsk and γ we can compute tsk , which solves the DL problem.

Proofs Without TPM Contribution To be able to prove security of our DAA schemes, we must distin-
guish proofs to which the TPM contributed and proofs that the host created by itself. One way to achieve
this is by using different prefixes in the Fiat-Shamir hash computation. Proofs with TPM contribution
have a Fiat-Shamir hash c′ ← H(“FS”,n,H(“TPM ”,mt,mh)). Proofs without TPM contribution will use
c′ ← H(“FS”,n,H(“NoTPM ”,mt,mh)). We denote TPM contributed proofs by SPK∗, and proofs without
TPM contribution SPK.

5 Provably Secure DAA Schemes

We now show how to use the proposed TPM interfaces to build provably secure direct anonymous attestation
protocols. We start by describing the desired functional and security properties (Section 5.1) and then present
two DAA protocols, based on the q-SDH assumption and the LRSW assumption (Section 5.2), and argue
their security (Section 5.3). We refer to Appendix B for the formal definition of DAA in the form of an ideal
functionality and to Appendix D for the detailed security proof.

5.1 Definition & Security Model

In a DAA scheme, we have four main entities: a number of TPMs, a number of hosts, an issuer, and a number
of verifiers. The scheme comprises a JOIN and SIGN protocol, and VERIFY and LINK algorithms.

JOIN: A TPM and a host together form a platform which performs the join protocol with the issuer who
decides if the platform is allowed to become a member. The membership credential of the platform then also
certifies a number of attributes attrs = (a1, . . . , aL) given by the issuer. These attributes might include more
information about the platform, such as the vendor or model, or other information, such as an expiration
date of the credential.

SIGN: Once being a member, the TPM and host together can sign messages m with respect to basename
bsn resulting in a signature σ. If a platform signs with a fresh basename, the signature must be anonymous
and unlinkable to previous signatures. When signing, the platform can also selectively disclose attributes
from its membership credential. For instance, reveal that the signature was created by a TPM of a certain
manufacturer, or the expiration date of the credential. We describe the disclosure using a tuple (D, I) where
D ⊆ {1, . . . , L} indicates which attributes are disclosed, and I = (a1, . . . , aL) specifies the desired attribute
values.

VERIFY: Any verifier can check that a signature σ on message m stems from a legitimate platform via a
deterministic verify algorithm. More precisely, verification gets as input a tuple (m, bsn, σ, (D, I), RL, SRL)
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and outputs 1 if σ is a valid signatures on message m w.r.t. basename bsn and stems from a platform that
has a membership credential satisfying the predicate defined via (D, I), and 0 otherwise.

The inputs RL and SRL are revocation lists and we support two types of revocation, private-key-based
revocation and signature-based revocation. The first is based on the exposure of a corrupt platform’s secret
key (or private key) and allows one to recognize and thus reject all signatures generated with this key. That
is, the revocation list RL contains the secret keys of the revoked TPMs. The second type, signature-based
revocation, has been proposed by Brickell and Li [BL07,BL11] in their Enhanced Privacy ID (EPID) protocol.
It allows one to revoke a platform based on a previous signature from that platform, i.e., here the revocation
list SRL contains the signatures of the revoked TPMs.

LINK: By default, signatures created by an DAA scheme do not leak any information about the identity of
the signer. Only when the platform signs repeatedly with the same basename bsn, it will be clear that the
resulting signatures were created by the same platform, which can be publicly tested via the deterministic
LINK algorithm. More precisely, on input two signatures (σ,m, (D, I), SRL), (σ′,m′, (D′, I ′), SRL′), and a
basename bsn, the algorithm outputs 1 if both signatures are valid and were created by the same platform,
and 0 otherwise.

We now describe the desired security properties of DAA schemes in an informal manner. The detailed
definition in form of an ideal functionality in the Universal Composability framework [Can00] is given in
Appendix B, and closely follows the recent formal models of Camenisch et al. [CDL16c,CDL17].

Unforgeability. The adversary can only sign in the name of corrupt TPMs. More precisely, if n corrupt and
unrevoked TPMs joined with attributes fulfilling attribute disclosure (D, I), the adversary can create at
most n unlinkable signatures for the same basename bsn and attribute disclosure (D, I). In particular, this
means that when the issuer and all unrevoked TPMs are honest, no adversary can create a valid signature
on a message m w.r.t. basename bsn and attribute disclosure (D, I) when no platform that joined with those
attributes signed m w.r.t. bsn and (D, I).

Non-Frameability. No adversary can create a signature on a message m w.r.t. basename bsn that links to a
signature created by an honest platform, when this honest platform never signed m w.r.t. bsn. We require
this property to hold even when the issuer is corrupt.

(Strong) Privacy. An adversary that is given two signatures σ1 and σ2 w.r.t. two different basenames
bsn1 6= bsn2, respectively, cannot distinguish whether both signatures were created by one honest platform,
or whether two different honest platforms created the signatures. This property must also hold when the
issuer is corrupt.

So far, privacy was conditioned on the honesty of the entire platform, i.e., both the TPM and the host
have to be honest. In fact, the previous DAA schemes crucially rely on the honesty of the TPM, and the
newly revised TPM interfaces even introduced a subliminal channel that allows a malicious TPM to always
encode some identifying information into his signature contribution (see Section 3.1). The latter forestalls
any privacy in the presence of a corrupt TPM, even if the DAA protocol built on top of the TPM interfaces
would allow for better privacy.

In this work we have proposed TPM interfaces that avoid such subliminal channels and we consequently
aim for stronger privacy guarantees for DAA as well. That is, the aforementioned indistinguishability of
two signatures σ1 and σ2 must hold whenever the host is honest, regardless of the corruption state of the
TPM. Our notion of strong privacy lies between the classical privacy notion (relying also on the honesty of
the TPM) and optimal privacy that was recently introduced by Camenisch et al. [CDL17]. We discuss the
differences between these notions, and to [CDL17] in particular, in Appendix B.

5.2 DAA Protocols

We start by presenting the high-level idea of both DAA protocols using our revised TPM 2.0 interfaces, and
then describe the concrete instantiations based on the q-SDH and the LRSW assumption.
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JOIN : TPM 
 Host(ipk) 
 Issuer(isk , attrs = (a1, . . . , aL))

-JOIN

n ←$ {0, 1}τ� nRequest TPM key�TPM.Createtsk ←$ Zp, tpk ← ḡtsk

Store tsk -tpk Orchestrate generation of proof πtpk by
the TPM using the Prove protocol

�TPM.Commit/TPM.Sign,n

tpk ′ ← g̃tsk (optional bridging to a different generator g̃)

πtpk ← SPK∗{tsk : tpk = ḡtsk ∧ tpk ′ = g̃tsk}(“join”,n)

-tpk ′, πtpk Choose host key and generate gpk :

hsk ←$ Zp, gpk ← tpk ′ · g̃hsk
πgpk ← SPK{hsk : gpk/tpk ′ = g̃hsk}(“join”,n)

-tpk , tpk ′, gpk , πtpk , πgpk

Verify πtpk , πgpk , and sign gpk and
attributes attrs = (a1, . . . , aL) as

cred ← PBSign(isk , (gpk , attrs))

�cred , attrs

Verify cred w.r.t. gpk , attrs, ipk
Store (hsk , cred , attrs)

SIGN : TPM(tsk) 
 Host((hsk , cred , attrs), (ipk ,m, bsn, (D, I), RL, SRL))

– The host verifies that its attributes attrs fulfill the predicate (D, I), i.e., it parses I as (a′1, . . . , a
′
L) and attrs as

(a1, . . . , aL) and checks that ai = a′i for every i ∈ D.
– The host and TPM jointly generate the pseudonym nym ← HG(1||bsn)gsk and proof πcred of a membership

credential on gsk = tsk + hsk and attrs:

πcred ← NIZK∗{(gsk , cred) : nym = HG1(1||bsn)gsk ∧ 1 = PBVf(ipk , cred , gsk , attrs)}(“sign”, (D, I),m, SRL)

– For each tuple (bsni,nymi) ∈ SRL, the host and TPM jointly create non-revocation proofs πSRL,i:

πSRL,i ← SPK∗{gsk : HG1(1||bsni)
gsk 6= nymi ∧ nym = HG1(1||bsn)gsk}(“sign”).

– The host outputs σ ← (nym, πcred , {πSRL,i}).

VERIFY(ipk , σ,m, bsn, (D, I), RL, SRL) :

– Parse σ = (nym, πcred , {πSRL,i}).
– Verify πcred , {πSRL,i} w.r.t. ipk ,m, bsn, (D, I), SRL,
– For every gsk i ∈ RL, check that HG1(1||bsn)gski 6= nym.
– Output 1 if all proofs are correct, and 0 otherwise.

LINK(ipk , bsn, (σ,m, (D, I), SRL), (σ′,m′, (D′, I ′), SRL′)) :

– Get f ← VERIFY(ipk , σ,m, bsn, (D, I), ∅, SRL), and f ′ ← VERIFY(ipk , σ′,m′, bsn, (D′, I ′), ∅, SRL′).
– Continue if f = f ′ = 1, else abort with output ⊥.
– Parse σ = (nym, πcred , {πSRL,i}), σ′ = (nym′, π′cred , {π′SRL,i}).
– If nym = nym′, output 1, and 0 otherwise.

Fig. 4. High-level overview of the DAA protocols.
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Both protocols roughly follow the common structure of previous DAA protocols: the platform, consisting
of a TPM and a host, generates a secret key gsk that gets blindly certified by a trusted issuer in a membership
credential cred . When attributes attrs = a1, . . . aL are used, the credential also certifies attrs. After that join
procedure, the platform can use the key gsk to sign attestations and basenames and prove that it has a valid
credential on the underlying key, which certifies the trusted origin of the attestation. The overview of the
DAA protocol is depicted in Figure 4.

Split-Keys for Strong Privacy. In contrast to existing schemes, we do not set gsk = tsk because solely relying
on the secret key tsk of the TPM would not allow for the strong privacy property we are aiming for. Instead,
we partially follow the approach of Camenisch et al. [CDL17] and let the host contribute to the platform’s
secret key. That is, we split the key as gsk = tsk + hsk , where hsk is the contribution of the host to the
platform secret key. As in previous work, the platform secret key gsk gets blindly signed by the issuer using a
partially blind signature PBSign that certifies the secret key by signing the platform’s public key gpk = g̃gsk .

Note that to allow for algorithmic agility, we derive the platform’s key from a generator g̃, which can
either be a cleared generator created with TPM.Commit as g̃ ← HG1

(0||str) for some string str, or g̃ ← ḡ,
i.e. being the standard generator fixed in all TPMs. When using a cleared generator, the input to the hash
function will be prepended with a 0-bit to ensure that the same generator will not be used in a signature
(where we will prepend a 1-bit when creating generators), as this would break the unlinkability between
joining and signing otherwise.

We now have to ensure that gsk is derived from a key tsk held inside a real TPM. To this end, the
TPM first has to prove in πtpk that its contribution tpk ′ = g̃tsk is based on the same secret key tsk as the
actual TPM public key tpk = ḡtsk . The host then forwards tpk , tpk ′ and πtpk along with a proof πgpk that
it correctly derived gpk from the TPM’s contribution tpk ′ to the issuer.

Each TPM is equipped by the manufacturer with an endorsement key. This key allows the issuer to verify
the authenticity of the TPM provided values in the JOIN protocol. As this is the standard procedure in all
DAA protocols, we omit the details how this authentication is done and implicitly assume that the value tpk
in the JOIN protocol is authenticated with the endorsement key.

After having obtained a membership credential on the joint secret key gsk (and possibly a set of attributes
attrs), the attestation signatures are then computed jointly by the host and TPM.

Signature-Based Revocation. We also want to support signature-based revocation introduced in the EPID
protocol by Brickell and Li [BL07, BL11] as it allows one to revoke TPMs without assuming that a secret
key held inside the TPM becomes publicly available upon corruption, which improves the standard private-
key-based revocation in DAA.

Roughly, for signature-based revocation, a platform would extend its signatures by additional values
(B,nym) where B is a random generator for G1 and nym← Bgsk . The signature revocation list SRL contains
tuples {(Bi,nymi)} from signatures of the platforms that are revoked. Thus, a platform must also show that

it is not among that list by proving πSRL,i ← SPK∗{(gsk) : nym = Bgsk ∧ nymi 6= Bgsk
i }. Any TPM interface

that supports such proofs would raise Bi to the secret key and inevitably provide a static DH oracle.
Camenisch et al. [CDL16a] recently addressed this issue and proposed a q-SDH-based DAA scheme with

signature-based revocation that avoids this issue. Instead of giving the generator as direct input, it uses
Bi ← HG1

(1||bsni) computed by the TPM, i.e., the TPM gets 1||bsni as input and the SRL has the form
{(1||bsni,nymi)}. For every (1||bsni,nymi) ∈ SRL, the platform shows that HG1

(1||bsni)
gsk 6= nymi by taking

a random γ, setting Ci = (HG1
(1||bsni)/nymi)

γ , and proving

π′SRL,i ← SPK∗{(γ · gsk , γ) : 1 = HG1(1||bsn)γ·gsk (
1

nym
)γ ∧ Ci = HG1(1||bsni)

γ·gsk (
1

nymi

)γ}(“sign”).

While the proposed scheme successfully removes the static DH oracle and is provably secure in the UC
model, their protocol makes different calls to the TPM to prove non-revocation, and requires the TPM to
maintain state (bsn,nym) that it used in the signing procedure to later create the non-revocation proofs.
Extra TPM commands would be required to implement this exact behavior in a TPM. In this work, we use the
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same core idea but slightly change the communication, such that we can leverage the flexible TPM.Commit and
TPM.Sign commands and avoid introducing new TPM commands. In addition, we give the TPM all the input
it requires to create the non-revocation proof, such that it does not need to keep any state between signing
and creating the non-revocation proof. More precisely, we can construct the non-revocation proof based on
our revised TPM interface using the Prove protocol. The host obtains Ci and constructs πSRL,i ← (Ci, π

′
SRL,i)

by running

(Ci, π
′
SRL,i)← Prove(hsk , 1G1

, 1||bsn, 1,⊥, γ, 1||bsni,⊥, {(γ, 1/nym, 1/nymi,⊥)}, “sign”,⊥),

To verify πSRL,i in the VERIFY algorithm, one parses πSRL,i = (Ci, π
′
SRL,i), checks that Ci 6= 1G1 , and

verifies π′SRL,i w.r.t. (Ci, 1||bsni,nymi,nym), where (1||bsni,nymi) ∈ SRL.

Note that since signature-based revocation is independent of the concrete PBSign scheme used for the
membership credential, the above proof instantiation and the revocation checks in VERIFY are the same for
the q-SDH-based and LRSW-based schemes.

Concrete Instantiations. The description of the JOIN and SIGN protocols and the VERIFY and LINK algo-
rithms are given in Figure 4, using an abstract NIZK proof statement for πcred , and a generic partially-blind
signature scheme PBSign for obtaining the membership credential. The concrete instantiation for this proof
depends on the instantiation used for the PBSign scheme. In the following two sections we describe how
PBSign and πcred can be instantiated with a q-SDH-based scheme (BBS+ signature [ASM06]) and a LRSW-
based scheme (CL-signature [CL04]) respectively. The latter uses a novel way to blindly issue CL signatures,
which is significantly more efficient than previous approaches and is of independent interest.

For both concrete instantiations we assume the availability of system parameters consisting of a security
parameter τ , a bilinear group G1,G2,GT of prime order p with generators g1 of G1 and g2 of G2 and bilinear
map e, generated w.r.t τ , and with ḡ denoting the fixed generator used by the TPMs. Note that we will
not repeat the parts of the DAA protocol that are independent of the PBSign instantiation, such as the
signature-based revocation, the revocation checks within VERIFY, and the LINK protocol.

q-SDH-based DAA Instantiation Our q-SDH-based scheme is most similar to the scheme by Camenisch
et al. [CDL16a], which in turn propose a provably secure version of the scheme by Brickell and Li [BL10],
which is standardized as mechanism 3 in ISO/IEC 20008-2 [Int13]. In addition, their and our scheme support
membership credentials with selective attribute disclosure, similar to DAA with Attributes as proposed by
Chen and Urian [CU15].

We now show how to instantiate PBSign and the affected proofs with q-SDH-based BBS+ signatures
yielding a provably secure q-SDH-based DAA scheme ΠqSDH−DAA using the revised TPM 2.0 interfaces
proposed in Section 4.

SETUP: The issuer generates its key pair (ipk , isk) as follows:

– Choose (h0, . . . , hL) ←$ GL+1
1 , x ←$ Zp, set X ← gx2 and X ′ ← gx1 , and prove πipk ←$ SPK{x : X =

gx2 ∧X ′ = gx1}(“setup”).

– Set ipk ← (h0, . . . , hL, X,X
′, πipk ), and isk ← x.

Protocol participants, when retrieving ipk , will verify πipk .

JOIN: Here we show how the host obtains the proof πtpk from the TPM and how the issuer computes the
membership credential using the BBS+ signature scheme. For this scheme, we set g̃ = ḡ, so tpk = tpk ′ and
we can simplify πtpk to πtpk ← SPK∗{tsk : tpk = ḡtsk}(“join”,n).

– The host obtains πtpk by calling

(∗, πtpk )← Prove(0, tpk ,⊥, 1,⊥, 1,⊥,⊥, ∅,⊥, (“join”,n)).
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– The issuer computes the membership credential cred ← PBSign(isk , gpk , attrs) on the joint public key gpk
and a set of attributes attrs = (a1, . . . , aL) with isk = x as follows: It chooses a random (e, s) ∈ Z2

p, and
derives

A← (g1 · hs0 · gpk ·
L∏
i=1

haii )
1
e+x .

That is, the issuer creates a standard BBS+ signature on the message (gsk , a1, . . . , aL), where gsk =
tsk + hsk is blindly signed in form of gpk = ḡgsk . It sets cred ← (A, e, s).

– The host upon receiving (cred , attrs) from the issuer, computes b ← g1 · hs0 · gpk ·
∏L
i=1 h

ai
i , and checks

that e(A,Xge2) = e(b, g2). Finally, it sets cred ′ ← ((A, e, s), b).

SIGN: A platform holding a membership credential cred ′ = ((A, e, s), b) on platform key gsk and attributes
attrs can sign message m w.r.t. basename bsn, attribute disclosure (D, I), and signature-based revocation
list SRL. As shown in Figure 4, each signature σ contains a proof of a membership credential πcred w.r.t. the
pseudonym nym = HG1

(1||bsn)gsk , which are computed as follows:

– The host first randomizes the BBS+ credential ((A, e, s), b): Choose r1 ←$ Z∗p, r2 ←$ Zp, r3 ← 1
r1

, set

A′ ← Ar1 , Ā ← A′−e · br1(= A′x), b′ ← br1 · h−r20 , and s′ ← s − r2 · r3. The host and TPM then jointly
compute the following proof π′cred . We denote by D̄ = {1, . . . , L}\D the indices of attributes that are not
disclosed.

π′cred ← SPK∗{(gsk , {ai}i∈D̄, e, r2, r3, s
′) : g−1

1

∏
i∈D

hi
−ai = b′−r3hs

′

0 ḡ
gsk
∏
i∈D̄

hi
ai ∧

nym = HG1
(1||bsn)gsk ∧ Ā/b′ = A′−e · hr20 }((“sign”, (D, I), SRL),m)

This proof and pseudonym are computed by running

(nym, π′cred)← Prove(hsk , d,⊥, 1,⊥, 1, 1||bsn, Ā/b′, S, (“sign”, (D, I), SRL),m),

with d← g−1
1

∏
i∈D h

−ai
i and the set of all witnesses for the proof: S ← {(−e, 1G1

, 1G1
, A′), (r2, 1G1

, 1G1
, h0),

(−r3, b
′, 1G1

, 1G1
), (s′, h0, 1G1

, 1G1
)} ∪ {(ai, hi, 1G1

, 1G1
)}i∈D̄. The host then sets πcred ← (Ā, A′, b′, π′cred).

VERIFY: To verify πcred = (Ā, A′, b′, π′cred) w.r.t. (ipk , σ,m, bsn, (D, I), RL, SRL) and nym, parse ipk =
(h0, . . . , hL, X,X

′, πipk ), check that A′ 6= 1G1
and e(A′, X) = e(Ā, g2), and verify π′cred with respect to

message m, basename bsn, attribute disclosure (D, I), signature revocation list SRL, randomized credential
(Ā, A′, b′), and pseudonym nym.

LRSW-based DAA Instantiation We now demonstrate that an LRSW-based DAA scheme can be built
on top of the new TPM interface. Our scheme is similar to the scheme by Chen, Page, and Smart [CPS10],
standardized as mechanism 4 of ISO/IEC 20008-2 [Int13], but includes the fixes to flaws pointed out by
Bernhard et al. [BFG+13] and Camenisch et al. [CDL16c].

Note, for the sake of efficiency we do not include attributes in this scheme. Selective attribute disclosure
can be supported using the extension by Chen and Urian [CU15], but it comes with a significant loss in
efficiency. When attributes are required, the q-SDH-based scheme should be used.

A New Approach to Issue CL-Signatures. The main difference to the schemes by Bernhard et al. [BFG+13]
and Camenisch et al. [CDL16c] is the way we prevent a static DH oracle when the membership credentials
are generated. In LRSW-based schemes, cred is a CL-signature (a, b, c, d) on gsk , where for blind signing the
issuer chooses α←$ Z∗p and sets

a← ḡα, b← ay, c← ax · gpkα·xy, d← gpkα·y,

with (x, y) denoting the issuer’s signing key and gpk = ḡgsk the platform public key. The DH oracle arises
as the TPM must later prove knowledge of d = bgsk , and b is a value chosen by the issuer.
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The schemes by Bernhard et al. [BFG+13] and Camenisch et al. [CDL16c] avoid such an oracle by letting
the issuer prove π ←$ SPK{(α · y) : b = ḡα·y ∧d = gpkα·y}. Thus, the issuer proves that it correctly computed
d = bgsk , which shows the TPM that it can use b as a generator without forming a static DH oracle (as the
issuer already knows d). The TPM must therefore verify π, store (b, d) along with its key, and only use these
values in the subsequent SPKs.

While allowing for a security proof under the standard DL assumption, realizing this approach would
require significant changes to the TPM interface to verify and store the additional key material. Further, the
TPM 2.0 specification aimed to provide a generic interface for a number of protocols, and adding LRSW-DAA
specific changes would thwart this effort.

Our goal is to keep the TPM protocol as generic and simple as possible, and we propose a novel and more
elegant solution that avoids the DH oracle without requiring the TPM to verify a zero-knowledge proof. For
the sake of simplicity we assume gsk = tsk for the exposition of our core idea, and only include the split-key
approach gsk = tsk + hsk in the full protocol specification.

The issuer chooses a random nonce n and we derive b ← HG1(0||n). The TPM receives n, derives b and
sends d = bgsk to the issuer. Note that d does not leak information about gsk when we model HG1

as a
random oracle. The issuer then completes the credential by computing

a← b1/y, c← (a · d)x.

It is easy to see that the values (a, b, c, d) derived in that way, form a standard CL signature on gsk as in
the existing schemes. Note that we now use HG1 in both the join protocol and to create pseudonyms while
signing. We prefix the hash computation with a bit to distinguish these cases, to prevent losing privacy when
signing with a basename bsn equal to nonce n.

This new blind issuance protocol is provably secure under the generalized LRSW assumption as introduced
in Section 2, which we prove as one step in our full security proof in Appendix D. We need the generalized
LRSW assumption, as the issuer already commits to values a and b before getting the d value and computing
c based on d. One can easily modify the issuance scheme to be secure under the standard LRSW assumption
though, one needs to prepend one extra round between the TPM and the issuer before running the issuance
as described above. Therein, the issuer sends a nonce n ′ to the TPM, and the TPM responds with a proof
π ← SPK∗{gsk : gpk = ḡgsk }(n ′). The issuer verifies π and then continues with the issuance as described
above. In the security proof this allows to extract gsk from π and we can obtain the full signature (a, b, c) on
gsk from the LRSW oracle. Note that this extra round can be implemented with our revised TPM interface
as well, but slightly reduces the efficiency of the overall JOIN protocol.

We now describe how this new issuance protocol is used in the LRSW-based instantiation of our DAA
protocol. We denote the DAA protocol given in Figure 4 instantiated with the LRSW-based membership
credential and the proofs described below as ΠLRSW−DAA.

SETUP: The issuer generates its key pair (ipk , isk) as follows:

– Choose x, y ←$ Z∗p, set X ← gx2 , Y ← gy2 , and compute πipk ←$ SPK{(x, y) : X = gx2 ∧ Y = gy2}(“setup”).

– Set ipk ← (X,Y, πipk ), and isk ← (x, y).

When first getting the issuer public key, protocol participants will check Y 6= 1G2
and verify πipk .

JOIN: Opposed to the q-SDH-based protocol, we make use of the flexibility for the generator of the platform’s
key. That is, instead of using ḡ we will use g̃ = HG1

(0||n) which will also serve as the b-value in the improved
issuance of CL credentials as described above.

– First, upon receiving n from the issuer, the host and TPM create gpk , tpk ′, πtpk , πgpk based on g̃ = b =
HG1(0||n). Recall that the TPM authenticates only the value tpk = ḡtsk , so the TPM must prove that
tpk ′ = g̃tsk uses the same tsk as in its authenticated public key tpk :

πtpk ← SPK∗{tsk : tpk = ḡtsk ∧ tpk ′ = g̃tsk}(“join”,n)
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The TPM’s key contribution tpk ′ and the proof πtpk are created via the Prove protocol for the following
input:

(tpk ′, πtpk )← Prove(0, tpk ,⊥, 1,⊥, 1, (0||n),⊥, ∅,⊥, (“join”,n))

The host then picks a key hsk , computes gpk = tpk ′ · g̃hsk and πgpk (as described in Figure 4) and finally
sends tpk , tpk ′, πtpk , πgpk , gpk to the issuer.

– Then, the issuer blindly completes the CL signature on gsk = tsk + hsk as described above: the issuer
computes a← g̃1/y, c← (a · gpk)x, and sets cred ← (a, c). Note that gpk = g̃gsk = bgsk , so we can use this
as the d-value of the credential.

– The host upon receiving cred = (a, c) from the issuer verifies that a 6= 1G1 , e(a, Y ) = e(g̃, g2), and
e(c, g2) = e(a · gpk , X). Finally, the host sets cred ′ = (a, g̃, c, gpk ,n).

SIGN: We now describe how to instantiate the membership proof πcred for such CL signatures with our TPM
methods.

– The host retrieves the join record (hsk , cred ′) and randomizes the CL credential cred ′ = (a, g̃, c, gpk ,n) by
r ←$ Z∗p and setting a′ ← ar, g̃′ ← g̃r, c′ ← cr, gpk ′ ← gpkr.

– The host and TPM then jointly compute nym← HG1(1||bsn)gsk for gsk = tsk + hsk and prove knowledge
of a CL credential on gsk by creating:

π′cred ← SPK∗{(gsk) : gpk ′ = g̃′gsk ∧ nym = HG1
(1||bsn)gsk}((“sign”, SRL),m).

This proof and pseudonym nym are computed by

(nym, π′cred)← Prove(hsk , gpk ′, (0||n), r,⊥, 1, (1||bsn),⊥, ∅, (“sign”, SRL),m).

Finally, the host sets πcred ← (a′, g̃′, c′, gpk ′, π′cred).

VERIFY: To verify πcred = (a′, g̃′, c′, gpk ′, π′cred) w.r.t. (ipk , σ,m, bsn, RL, SRL) and nym, parse ipk = (X,Y, πipk ),
check that a′ 6= 1G1 , e(a′, Y ) = e(g̃′, g2), and e(c′, g2) = e(a′ · gpk ′, X), and verify π′cred with respect to
(m, bsn, SRL, g̃′, gpk ′,nym).

5.3 Security Properties of our Schemes

In this section we informally discuss the security of our DAA schemes. The formal security proof is postponed
to Appendix D.

Theorem 1 (Informal). Protocol ΠLRSW−DAA is a secure anonymous attestation scheme under the Gener-
alized LRSW and Decisional Diffie-Hellman assumptions in the random oracle model.

Theorem 2 (Informal). Protocol ΠqSDH−DAA is a secure anonymous attestation scheme under the q-SDH
and Decisional Diffie-Hellman assumptions in the random oracle model.

The proofs of these two theorems are quite similar. In the following we give a proof sketch that treats
both schemes at the same time, pointing out the differences when they arise.

Proof (Sketch). For each of the properties stated in Section 5.1, we argue why our schemes satisfy them.
The actual security proof is structured quite differently as there we prove that an environment cannot
distinguish between the interactions with the real world parties and with the ideal specification with a
simulator. Nevertheless, the arguments presented here also appear in the full formal proof.
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Unforgeability. First, we argue that the adversary cannot use a credential from a platform with an honest
TPM. In both our schemes, signatures are signature proofs of knowledge of the platform secret key tsk +hsk ,
as defined in (4.1). This means that from Lemma 2 we can directly conclude that the adversary cannot use
the credential of a platform with an honest TPM. Second, the adversary cannot use a revoked credential
on the key gsk by a corrupt platform. For private-key based revocation, the platform proves that nym =
HG1(1||bsn)gsk is correctly constructed, and the revocation check will reject signatures with that pseudonym.
If signature-based revocation is used, a pair (bsni,nymi = HG1(1||bsn)gsk ) is included in SRL. In proof π′SRL,i,
the adversary must prove that his gsk is different than the one used in nymi, which contradicts the soundness
of the zero knowledge proof.

It remains to show that the adversary cannot create signatures using a forged credential. For ΠqSDH−DAA,
this clearly breaks the existential unforgeability of the BBS+ signature scheme, which is proven under the
q-SDH assumption. For ΠLRSW−DAA, we have to show that credentials are unforgeable under the generalized
LRSW assumption. For this, we simulate the issuer with a generalized LRSW instance. When the join
protocol starts, the issuer asks Oa,b

X for (a, b). It chooses a fresh nonce n and programs the random oracle
HG1

(0||n) = b. When it receives proofs πtpk , πgpk it extracts tsk and hsk and sets gsk = tsk + hsk . It
then calls Oc

X,Y on gsk to complete the credential. Now, when the adversary creates a signature with a
forged credential, we can extract a credential (a∗, b∗, c∗) on the fresh gsk∗ breaking the generalized LRSW
assumption.

Non-Frameability. An honest platform cannot be framed, under the Discrete Logarithm (DL) assumption
(which is implied by the assumptions we make). The host sets gpk and g̃ based on given the DL instance,
and must simulate πgpk as it does not know hsk such that gpk = tpk · g̃hsk . When signing, the host also
simulates the zero-knowledge proofs. Now, if an adversary creates a signature that links to a signature of the
honest platform, it must prove knowledge of the discrete logarithm of gsk . We rewind to extract and break
the DL assumption.

Strong Privacy. Our DAA schemes fulfill strong privacy, meaning that privacy is guaranteed as long as the
host is honest, i.e., even when the TPM involved in the generation of an attestation is malicious. By Lemma 1,
the proofs created together with a (malicious) TPM are zero knowledge. This means we can simulate these
proofs without the adversary noticing the difference. Further, note that a platform key gsk = tsk + hsk is
uniformly distributed over Zp as the host picks hsk uniformly at random from Zp. To prove that signatures
are unlinkable, we let honest hosts pick a fresh key gsk every time they sign with a new basename. This is
indistinguishable using a hybrid argument, where in the i-th hop, we use a fresh key for bsni. Every hop is
indistinguishable from the previous one under the Decisional Diffie-Hellman (DDH) assumption.

In a nutshell, the latter is proved as follows. Upon receiving a DDH instance (α, β, γ), program the
random oracle so that HG1

(1||bsni) ← β. The host sets α as the gpk value and simulates proof πgpk . When
signing, the host simulates the proof of knowledge and sets nym← γ. If the DDH instance is a DDH tuple,
the same key was used to sign, and if it is not a DDH tuple, a fresh key was used.

Signatures are now done using a fresh key for each basename and the proofs are simulated, therefore no
adversary can possibly break the anonymity of signatures.

6 DAA with Forward Anonymity

An important reason to remove the DH oracle in the TPM interfaces is that such an oracle prevents forward
anonymity. As Xi et al. [XYZF14] point out, a host that becomes corrupted can test whether signatures were
generated by the embedded TPM using the DH oracle.

Modeling the property of forward anonymity requires one to consider adaptive corruptions, i.e., a signature
made by a host should remain anonymous even when at some later point the host becomes corrupted. A
property-based notion for this was formally introduced by Xi et al. [XYZF14]. However, extending our ideal
specification to also provide this property is nontrivial. First, to enable forward anonymity, the DAA scheme
must allow one to create signatures w.r.t. no basename, i.e., bsn = ⊥ and forward anonymity only holds for
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such signatures. Otherwise, a host that becomes corrupt could trivially link previous signatures generated
for some basename bsn 6= ⊥, by simply requesting a new signature w.r.t. bsn and test for relation via the
link algorithm. This means we would have to remove signature-based revocation from our security model.
Second, our formal security proof considers static corruptions, whereas forward anonymity is inherently
about dynamic corruptions. Indeed, realizing a scheme secure w.r.t. dynamic corruptions would be much less
efficient than the scheme we present in this paper.

Despite this, the TPM interfaces we define allow one to build a DAA scheme with forward anonymity
(however, the other security properties hold only in presence of static corruptions). That is, if we remove
signature-based revocation from our DAA protocols, they fulfill the notion of forward security by Xi et al.
For LRSW-based DAA, signing with bsn = ⊥ means that nym is omitted from the signature and proof πcred .
For q-SDH-based DAA, if bsn = ⊥ then nym is replaced by jgsk , where j is taken uniformly at random from
G1 by the TPM, as in the q-SDH-based scheme by Brickell and Li [BL10].

Proving the resulting scheme to be forward anonymous would work as follows. The forward anonymity
game considers a corrupt issuer. This means A can instruct platforms to join, and A runs the issuer side of
the protocol. A can request complete signatures from joined platforms. Next, A submits the identities of two
platforms and a message. The challenger chooses one of the two platforms at random and returns a signature
on the given message with basename bsn = ⊥ on behalf of the chosen platform. The game now models the
fact that the host becomes corrupted by giving A access to the TPM commands of the platforms, and A’s
task is to find out which of the two platforms created the signature.

For both schemes, we can prove forward anonymity under the DDH assumption, using a similar proof
strategy as for strong privacy. First, the challenger answers all oracles correctly. Next, we modify the game
slightly. The challenge signature is now computed under a fresh key, instead of the key of one of the two
platforms that A submitted. In this modified game, no adversary can win with probability better than 1

2 , as
the bit that A has to guess is independent of A’s view. This means A can only have non-negligible advantage
by distinguishing the two games. As argued in the strong privacy proof in Sect. 5.3, the modification in
the games is unnoticeable under the DDH assumption. showing that our protocols without signature-based
revocation satisfy forward anonymity under the DDH assumption.

7 Other Uses of our TPM Interfaces

In many protocols, the user would like to store his keys in secure hardware rather than on a normal com-
puter. This way, the keys are secure and some security is preserved as long as the trusted hardware is not
compromised, even when the computer is compromised. This section shows that due to the generic design
of our TPM interface, it can be used to secure the keys of other cryptographic protocols. As an example, we
consider U-Prove and e-cash with keys stored in a TPM, such that an attacker cannot use a user’s U-Prove
credential or e-cash wallet without access to the TPM. We discuss these constructions here only informally,
i.e., without providing a security proof, as a formal treatment would require a new security model and a
detailed proof, which is beyond the scope of this paper. For ease of presentation, we place the full key in the
TPM, although we could split the key over the TPM and host as in our DAA schemes.

7.1 Device Bound U-Prove

U-Prove [PZ13] is an attribute-based credential system where credential issuance and credential presentation
are unlinkable. In the issuance protocol, the user receives a credential with public key h = (g0g

x1
1 . . . gxnn gxdd )α,

where x1, . . . , xn are the attribute values of the user, and xd is the device secret. The device secret makes
sure that a secure device must be present to use the credential. To show the credential, the user must prove
knowledge of x1, . . . , xn, xd, and α such that g0 = gx1

1 . . . gxnn gxdd · h−1/α, with the help of the secure device.
Our proposed changes for TPM 2.0 allow the TPM to be used as secure device for U-Prove. The value xd

will be the TPM secret key, and generator gd must be the generator ḡ known to the TPM. Then, the credential
presentation proof SPK∗{(x1, . . . , xn, xd, α) : g0 = gx1

1 . . . gxnn gxdd · h−1/α} can be constructed by computing
(nym, π)← Prove(0, g0,⊥, 1,⊥, 1,⊥,⊥, {(a1, g1,⊥,⊥), . . . , (an, gn,⊥,⊥), (1/α, h,⊥,⊥)},⊥,⊥). By Lemma 3,
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such proofs can only be made with a contribution from the TPM, so one’s credentials cannot be stolen, unless
the attacker can access the TPM.

7.2 Compact E-Cash

Compact E-Cash [CHL05] allows users to withdraw coins from a bank, and later anonymously spend the
coins. The protocol assumes that every user has a key pair (skU , pkU = gskU ) with which it can authenticate
towards the bank. To withdraw 2l coins, the user first authenticates towards the bank by proving knowledge
of skU . The user picks wallet secrets s, l, where the bank adds randomness to s, and the bank places signature
σ on committed values skU , s, and l, using a CL signature. The result of the withdraw protocol is a wallet
(skU , s, t, σ, J), where J is an l-bit counter.

To spend a coin at merchant M , the user computes R ← H(pkM , info), where the merchant provides

info. Next, the user computes a coin serial number S ← g
1

s+J+1 and value T ← pkU · g
R

t+J+1 which is used
to detect double spending of coins. Finally, it proves

SPK{(J, skU , s, t, σ) : 0 ≤ J < 2l ∧ S = g
1

s+J+1 ∧ T ← pkU · g
R

t+J+1 ∧ Ver(pkB , (skU , s, t), σ) = 1}

We can instantiate Compact E-Cash such that users can securely store their secret key skU inside a
TPM, using a trick similar as in our LRSW-based DAA scheme. To create its keys, the bank picks secret
key (x, y, z1, z2, z3) ←$ Z5

p and sets public key X ← gx2 , Y ← gy2 , Z1 ← gz12 , Z2 ← gz22 , and Z3 ← gz32 . The

withdrawal of coins start by the bank picking a fresh nonce n, and sending n, b← H(n), a← b1/y, Ai ← azi

and Bi ← bzi for i = 1, 2, 3 to the user. The user authenticates by proving pkU = gskU1 ∧ d = bskU , as in
our LRSW-based DAA scheme. In addition, it picks s′, t, and r, and commits to them using generators B1,
B2, and B3: C ← Bs

′

1 B
t
2B

r
3 . The user sends C with a proof of knowledge of (s′, t, r) to the bank. The bank

now adds randomness to s′′ to s′ by setting C ′ ← C · Bs′′1 and signs skU , s = s′ + s′′, t, and r, by setting
c← (a · d · C ′y)x = ax+xy(m+z1s+z2t+z3r). The user now has signature σ = (a,A1, A2, A3, b, B1, B2, B3, c, d).

To spend a coin, the user must compute R, S, and T , and prove that everything is correctly computed,
as described above. The TPM holding skU is only involved in proving that σ is a valid CL signature on
(skU , s, t, r). It randomizes the signature by taking ρ ← Z∗p and setting a′ ← aρ, A′i ← Aρi , b

′ ← bρ, B′i ←
Bρi , c

′ ← cρ. To prove this randomized signature signs (skU , s, t, r), the user creates the following proof:

SPK∗{(skU , s, t, r) : e(c′, g2)/e(a′, X) = e(b′, X)skUe(B′1, X)se(B′2, X)te(B′3, X)r}.

This proof can be created with the TPM using (∗, π) ← Prove(0, e(c′, g2)/e(a′, X),n, ρ,X, 1,⊥,⊥, {(s,
e(B′1, X),⊥,⊥), (t, e(B′2, X),⊥,⊥)},⊥,⊥). Now, by Lemma 3, a wallet can only be used if the attacker
has access to the TPM holding skU .

8 Conclusion

The TPM is a widely deployed security chip that can be embedded in platforms such that the platform can,
among other things, anonymously attest to a remote verifier that it is in a secure state. Unfortunately, the
current TPM 2.0 specification for DAA contains several flaws: it contains a static DH oracle towards the
host and attestations built on top of this interface cannot be proven to be unforgeable. Fixes proposed in
the literature are either impossible to implement within the constraints of the TPM, limit the functionality
of the TPM interface, or open a subliminal channel that allows a malicious TPM to embed information in
attestations, harming the privacy of the host.

We presented a revised TPM 2.0 interface and a Prove protocol for the host that allows the platform
to create provably secure signature proofs of knowledge. The interface does not contain a DH oracle, and a
corrupt TPM cannot break the zero-knowledge property of the resulting proofs.

Using the Prove protocol, we constructed two provably secure DAA schemes, one based on the LRSW
assumption and one on the q-SDH assumption, including DAA extensions featuring signature-based revo-
cation and attributes. Furthermore, we have shown that our TPM interface supports DAA schemes with
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forward anonymity and can be used to protect keys for other cryptographic schemes, such as e-cash and
U-Prove. These latter applications were only shown informally, it remains future work to formally treat
these applications.

The Trusted Computing Group has already adopted some of our proposed changes and is currently
reviewing the remaining ones. It is our aim to bring these improvements to all the existing attestation stan-
dards, such as EPID, ISO/IEC 20008-2, and FIDO attestation, such that all implementations are provably
secure and can make use of TPMs.

Acknowledgments. The first, third, and fourth author have been supported by the European Research
Council (ERC) under Grant #321310 (PERCY).
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A Generalized LRSW assumption in Generic Groups

We prove that this assumption holds in Shoup’s generic group model [Sho97].

Theorem 3. Assumption 3 is hard in the generic group model.

Proof. B maintains three lists of pairs L1 = {(F1,i, ξ1,i) : i = 0, . . . , τ1 − 1}, L2 = {(F2,i, ξ2,i) : i =
0, . . . , τ2 − 1}, LT = {(FT,i, ξT,i) : i = 0, . . . , τT − 1}.

It initializes the lists with F1,0 = 1, F2,0 = 1, F2,1 = x, F2,3 = y.

Group Operation: Given two elements ξG,i, ξG,j with G ∈ {1, 2, T} and i, j < τG, and a bit selecting
multiplication or division, B computes FG,τG ← FG,i ± FG,j ∈ Zp[x, y], where the operation depends on
the operation selection bit. If FG,τG = FG,l for some l < τG, set ξG,τG ← ξG,l, otherwise set ξG,τG to
a string in {0, 1}∗ distinct from all previous ξG,i. Add (FG,τG , ξG,τG) to LG and increment τG by one.
Return ξG,τG to A.

Pairing: Given ξ1,i and ξ2,j with i < τ1 and j < τ2, set FT,τT ← F1,i ·F2,j . If FT,τT = FT,l for some l < τT ,
set ξT,τT ← ξT,l, otherwise set ξT,τT to a string in {0, 1}∗ distinct from all previous ξT,i.

Oracle Queries Oa,b: In the u-th query to Oa,b, set F1,τ1 ← ru, F1,τ1+1 ← ruy. If F1,τ1 = F1,l for some
l < τ1, set ξ1,τ1 ← ξ1,l, otherwise set ξ1,τ1 to a string in {0, 1}∗ distinct from all previous ξ1,i. Set ξ1,τ1
in the same way. Add {(F1,τ , ξ1,τ ), (F1,τ+1, ξ1,τ+1)} to L1. Return (ξ1,τ1 , ξ1,τ1+1) to A and increment τ1
by two.

Oracle Queries Oc: On input (ξ1,i, ξ1,j ,mu), where (ξ1,i, ξ1,j) is the output of the u-th Oa,b query and this
query has not been input to Oc before, set F1,τ1 ← F1,ix+ F1,i ·m · x · y. If F1,τ1 = F1,l for some l < τ1,
set ξ1,τ1 ← ξ1,l, otherwise set ξ1,τ1 to a string in {0, 1}∗ distinct from all previous ξ1,i.

After making oracle queries, A outputs (m, ξ1,i, ξ1,j , ξ1,k), with i, j, k < τ1. Only now, we take (x, y, r1, . . . ,
rq) ←$ Zq+2

p . What remains to show is that B simulated the operations and oracles correctly. B returned
different values for values with different polynomials, but now we fixed (x, y, r1, . . . , rq), the polynomials
might evaluate to the same point, meaning the simulation was incorrect. We recall the Schwarz-Zippel
lemma.

Lemma 4 (Schwarz-Zippel). Let P ∈ F[x1, x2, . . . , xn] be a non-zero polynomial of total degree d ≥ 0 over
a field F . Let S be a finite subset of F and let r1, . . . , rn be selected at random independently and uniformly
from S. Then,

Pr [P (r1, r2, . . . , rn) = 0] ≤ d

|S|
.

Elements in G1 have degree at most 3 and elements in G2 have degree at most 1, so elements in GT have
degree at most 4. As we have qG1

+ 3qO + 1 elements in G1, the probability any two of them evaluate to
the same point is less than 3(qG1

+ 3qO + 1)2/2q. We have qG2
+ 2 elements in G2, so the probability of an

incorrect simulation is less than 3(qG2
+ 2)2/2q. In GT there are qGT elements, so B simulated incorrectly

with probability less than 4(qGT )2/2q. All these probabilities are negligible, meaning B simulated correctly
with overwhelming probability.

The adversary is successful if m was not queried to Oc, F1,i(x, y, r1, . . . , rq) 6= 0, F1,i(x, y, r1, . . . , rq) ·y =
F1,j(x, y, r1, . . . , rq), and F1,i(x, y, r1, . . . , rq) · (x + xym) = F1,k(x, y, r1, . . . , rq). The last two requirements
can hold because the polynomials are the same, yF1,i = F1,j and (x + xym)F1,k, or the polynomials can
differ but they coincidentally evaluate to the same point on the values (x, y, r1, . . . , rq). First, we show that
the polynomials cannot be the same. The adversary has only two options to create elements in G1: using the
group operation and using the oracle. This means that any element in G1 will be a linear combination of the
generator and the oracle results. Therefore, we can write every F1,i as a polynomial over x, y, r1, . . . , rq:

F1,i = χi +
∑
u

(
αi,uru + βi,uruy + γi,u(rux+muruxy)

)
= χi +

∑
u

(
αi,uru + γi,urux+ βi,uruy + γi,umuruxy

)

25



We can write yF1,i as

yF1,i = χiy +
∑
u

(
αi,uruy + γi,uruxy + βi,uruy

2 + γi,umuruxy
2
)
.

Two polynomials are equal if they contain the same monomials. Because F1,j does not contain monomials
y, ruy

2, or ruxy
2, the fact that F1,i = F1,j implies that these monomials do not occur in yF1,i, i.e., χi = 0

and for all u, βi,u = 0 and γi,umu = 0. With this information, we can write (x+ xym)F1,i as

(x+ xym)F1,i =
∑
u

(
αi,urux+ αi,umruxy + γi,urux

2 + γi,umrux
2y
)

For (x+ xym)F1,i to be equal to F1,k, we must have γi,u = 0, so

(x+ xym)F1,i =
∑
u

(
αi,urux+ αi,umruxy

)
For (x+ xym)F1,i to be equal to

F1,k = χk +
∑
u

(
αk,uru + γk,urux+ βk,uruy + γk,umuruxy

)
we must have χk = 0, and for all u, αk,u = 0, βk,u = 0, so we can write

F1,k =
∑
u

(
γk,urux+ γk,umuruxy

)
So F1,k = (x + xym)F1,i implies αi,u = γk,u and αi,um = γk,umu, i.e., m = mu for all u with αi,u 6= 0.

The adversary only wins when a 6= 1G1
, so for some u we must have αi,u 6= 0, but then m is equal to some

queried message.
What remains to show is that the probability that polynomials yF1,i and F1,j are unequal but (yF1,i)(x, y,

r1, . . . , rq) = F1,j(x, y, r1, . . . , rq) or that (x + xym)F1,i 6= F1,k but ((x + xym)F1,i)(x, y, r1, . . . , rq) =
F1,k(x, y, r1, . . . , rq) is negligible. Polynomial yF1,i has degree 4, so the probability it evaluates to the same
value as F1,j is at most 4/q by the Schwarz-Zippel lemma. Similarly, (x + xym)F1,i has degree 6, so the
probability it evaluates to 0 is at most 6/q. ut

B Formal Security Model

This section introduces our formal security model of DAA, which is based on the definition by Camenisch et
al. [CDL16c, CDL16a, CDL17]. At the end of this section we also compare the captured privacy guarantees
in the presence of subverted TPM with the existing privacy notions, and to optimal privacy [CDL17] in
particular.

B.1 Universal Composability

Our security definition has the form of an ideal functionality Fpdaa+ in the Universal Composability (UC)
framework [Can00]. In UC, an environment E gives inputs to the protocol parties and receives their outputs.
In the real world, honest parties execute the protocol, over a network controlled by an adversary A, who can
also communicate freely with the environment E . In the ideal world, honest parties forward their inputs to
the ideal functionality F. The ideal functionality internally performs the defined task and generates outputs
for the honest parties. As F performs the task at hand in an ideal fashion, i.e., F is secure by construction.

Informally, a protocol Π is said to securely realize an ideal functionality F if the real world is as secure
as the ideal world. To prove that statement one has to show that for every adversary A attacking the real
world, there exists an ideal world attacker or simulator S that performs an equivalent attack on the ideal
world. More precisely, Π securely realizes F if for every adversary A, there exists a simulator S such that
no environment E can distinguish the real world (with Π and A) from the ideal world (with F and S).
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B.2 Session Identifiers and Input/Output

In the UC model, different instances of the protocol are distinguished with session identifiers. Here we use
session identifiers of the form sid = (I, sid′) for some issuer I and a unique string sid ′. To allow several
sub-sessions for the join and sign related interfaces we use unique sub-session identifiers jsid and ssid .

Every party can give different inputs to the protocol. We distinguish these by adding different labels to
these inputs, e.g., the host can give an input labeled with JOIN to request to join, and an input labeled with
SIGN to start signing a message. Outputs are labeled in a similar way.

B.3 Ideal Functionality Fpdaa+

This section formally introduces our ideal DAA functionality Fpdaa+, which defines DAA with attributes,
signature-based revocation, and strong privacy. It is based on Fpdaa and F ldaa+ by Camenisch et al. [CDL17,
CDL16a]. We now give an informal overview of the interfaces of Fpdaa+, and present the full definition in
Figure 5.

Setup. The SETUP interface on input sid = (I, sid′) initiates a new session for the issuer I and expects the
adversary to provide algorithms (ukgen, sig, ver, link, identify) that will be used inside the functionality. ukgen
creates a new key gsk and a tracing trapdoor τ that allows Fpdaa+ to trace signatures generated with gsk .
sig, ver, and link are used by Fpdaa+ to create, verify, and link signatures, respectively. Finally, identify allows
to verify whether a signature belongs to a certain tracing trapdoor. This allows Fpdaa+ to perform multiple
consistency checks and enforce the desired non-frameability and unforgeability properties.

Note that the ver and link algorithms assist the functionality only for signatures that are not generated
by Fpdaa+ itself. For signatures generated by the functionality, Fpdaa+ will enforce correct verification and
linkage using its internal records. While ukgen and sig are probabilistic algorithms, the other ones are required
to be deterministic. The link algorithm also has to be symmetric, i.e., for all inputs it must hold that
link(σ,m, σ′,m′, bsn)↔ link(σ′,m′, σ,m, bsn).

Join. A host Hj can request to join with a TPMMi using the JOIN interface. The issuer is asked to approve
the join request, and choose the platform’s attributes. Fpdaa+ is parametrized by L and {Ai}0<i≤L, that offer
support for attributes. L is the amount of attributes every credential contains and Ai the set from which
the i-th attribute is taken. When the issuer approves with attributes attrs ∈ A1× . . .×AL, the functionality
stores an internal membership record forMi,Hj , attrs in Members indicating that from now on that platform
is allowed to create attestations.

If the host is corrupt, the adversary must provide Fpdaa+ with a tracing trapdoor τ . This value is stored
along in the membership record and allows the functionality to check via the identify function whether
signatures were created by this platform. Fpdaa+ uses these checks to ensure non-frameability and unforge-
ability whenever it creates or verifies signatures. To ensure that the adversary cannot provide bad trapdoors
that would break the completeness or non-frameability properties, Fpdaa+ checks the legitimacy of τ via
the “macro” function CheckTtdCorrupt. This function checks that for all previously generated or verified
signatures for which Fpdaa+ has already seen another matching tracing trapdoor τ ′ 6= τ , the new trapdoor τ
is not identified as a matching key as well. CheckTtdCorrupt is defined as follows:

CheckTtdCorrupt(τ) =6 ∃(σ,m, bsn) :((
〈σ,m, bsn, ∗, ∗〉 ∈ Signed ∨ 〈σ,m, bsn, ∗, 1〉 ∈ VerResults

)
∧

∃τ ′ :
(
τ 6= τ ′ ∧

(
〈∗, ∗, τ ′〉 ∈ Members ∨ 〈∗, ∗, ∗, ∗, τ ′〉 ∈ DomainKeys

)
∧

identify(σ,m, bsn, τ) = identify(σ,m, bsn, τ ′) = 1
))
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Sign. After joining, a host Hj can use the SIGN interface to request a signature on a message m with respect
to basename bsn while proving a certain predicate p holds for his attributes and proving that he is not
revoked by signature revocation list SRL. The signature will only be created when the TPM Mi explicitly
agrees to signing m, a join record for Mi,Hj , attrs in Members exists such that attrs satisfy p (if the issuer
is honest), and the platform is not revoked by SRL.

When a platform wants to sign message m w.r.t. a fresh basename bsn, Fpdaa+ generates a new key gsk
(and tracing trapdoor τ) via ukgen and then signs m with that key. The functionality also stores the fresh
key (gsk , τ) together with bsn in DomainKeys, and reuses the same key when the platform wishes to sign
repeatedly under the same basename. Using fresh keys for every signature naturally enforces the desired
privacy guarantees: the signature algorithm does not receive any identifying information as input, and thus
the created signatures are guaranteed to be anonymous (or pseudonymous in case bsn is reused).

To guarantee non-frameability and completeness, our functionality further checks that every freshly gen-
erated key, tracing trapdoor and signature does not falsely match with any existing signature or key. More
precisely, Fpdaa+ first uses the CheckTtdHonest macro to verify whether the new key does not match to any
existing signature. CheckTtdHonest is defined as follows:

CheckTtdHonest(τ) =

∀〈σ,m, bsn,M,H〉 ∈ Signed : identify(σ,m, bsn, τ) = 0 ∧
∀〈σ,m, bsn, ∗, 1〉 ∈ VerResults : identify(σ,m, bsn, τ) = 0

Likewise, before outputting σ, the functionality checks that no one else already has a key which would match
this newly generated signature.

Finally, for ensuring unforgeability, the signed message, basename, attribute predicate, signature revoca-
tion list, and platform identity are stored in Signed, which will be used when verifying signatures.

Verify. Signatures can be verified by any party using the VERIFY interface. Fpdaa+ uses its internal Signed,
Members, and DomainKeys records to enforce unforgeability and non-frameability. It uses the tracing trap-
doors τ stored in Members and DomainKeys to find out which platform created this signature. If no match
is found and the issuer is honest, the signature is a forgery and rejected by Fpdaa+. If the signature to be
verified matches the tracing trapdoor of some platform with an honest host, but the signing records do not
show that they signed this message w.r.t. the basename, attribute predicate, and signature revocation list,
Fpdaa+ again considers this to be a forgery and rejects. If the platform has an honest TPM, only checks on
the message and basename are made. If the records do not reveal any issues with the signature, Fpdaa+ uses
the ver algorithm to obtain the final result.

The verify interface also supports verifier-local revocation. The verifier can input a revocation list RL

containing tracing trapdoors, and signatures matching any of those trapdoors are no longer accepted.

Link. Using the LINK interface, any party can check whether two signatures (σ, σ′) on messages (m,m′)
respectively, generated with the same basename bsn originate from the same platform or not. Fpdaa+ again
uses the tracing trapdoors τ stored in Members and DomainKeys to check which platforms created the two
signatures. If they are the same, Fpdaa+ outputs that they are linked. If it finds a platform that signed one,
but not the other, it outputs that they are unlinked, which prevents framing of platforms with an honest
host.

Conventions. The full definition of Fpdaa+ is presented in Figure 5. We use a number of conventions to
simplify the definition of Fpdaa+. First, we require that identify(σ,m, bsn, τ) = 0 if σ or τ is ⊥. Second,
whenever we need approval from the adversary to proceed, Fpdaa+ sends an output to the adversary and
waits for a response. This means that in that join or sign session, no other inputs are accepted except
the expected response from the adversary. Third, if any check that Fpdaa+ makes fails, the sub-session is
invalidated and ⊥ is output to the caller.
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1. Issuer Setup. On input (SETUP, sid) from issuer I.
– Verify that sid = (I, sid′).
– Output (SETUP, sid) to A and wait for input (ALG, sid , sig, ver, link, identify, ukgen) from A.
– Check that ver, link, and identify are deterministic.
– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join

2. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .
– Output (JOINSTART, sid , jsid ,Mi,Hj) to A and wait for input (JOINSTART, sid , jsid) from A.
– Create a join session record 〈jsid ,Mi,Hj ,⊥, status〉 with status ← delivered .
– Abort if I is honest and a record 〈Mi, ∗, ∗〉 ∈ Members already exists.
– Output (JOINPROCEED, sid , jsid ,Mi) to I.

3. I Join Proceed. On input (JOINPROCEED, sid , jsid , attrs) from I, with attrs ∈ A1 × . . .× AL.
– Output (JOINCOMPLETE, sid , jsid) to A and wait for input (JOINCOMPLETE, sid , jsid , τ) from A.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = delivered to complete.
– If Hj is honest, set τ ← ⊥.
– Else, verify that the provided tracing trapdoor τ is eligible by checking CheckTtdCorrupt(τ) = 1.
– Insert 〈Mi,Hj , τ, attrs〉 into Members and output (JOINED, sid , jsid , attrs) to Hj .

Sign

4. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) from Hj with p ∈ P.
– If Hj is honest and no entry 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members, abort.
– If Hj is corrupt, set σ ← ⊥. If Hj is honest, generate the signature for a fresh or established key:
• Retrieve (gsk , τ) from 〈Mi,Hj , bsn, gsk , τ〉 ∈ DomainKeys. If no such entry exists, set (gsk , τ) ← ukgen(), check

CheckTtdHonest(τ) = 1, and store 〈Mi,Hj , bsn, gsk , τ〉 in DomainKeys.
• Compute signature σ ← sig(gsk ,m, bsn, p, SRL), check ver(σ,m, bsn, p, SRL) = 1.
• Check identify(σ,m, bsn, τ) = 1 and that there is no (M′,H′) 6= (Mi,Hj) with tracing trapdoor τ ′ registered in Members

or DomainKeys with identify(σ,m, bsn, τ ′) = 1.
– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p, SRL, σ, status〉 with status ← request .
– Output (SIGNPROCEED, sid , ssid ,m) to Mi when it is honest, and (SIGNPROCEED, sid , ssid ,m, bsn, SRL, σ) when Mi is

corrupt.
5. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, p, SRL, σ, status〉 with status = request and update it to status ← complete.
– If I is honest, check that 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members.
– For every (σ′,m′, bsn ′) ∈ SRL, find all (τi,M′i,H′j) from 〈M′i,H′j , τi, ∗〉 ∈ Members and 〈M′i,H′j , τi〉 ∈ DomainKeys where

identify(σ′,m′, bsn ′, ∗, τi) = 1.
• Check that there are no two distinct τ values matching σ′.
• Check that no pair (τi,Mi,Hj) was found.

– Store 〈σ,m, bsn,Mi,Hj , p, SRL〉 in Signed and output (SIGNATURE, sid , ssid , σ) to Hj .

Verify & Link

6. Verify. On input (VERIFY, sid ,m, bsn, σ, p, RL, SRL) from some party V.
– Retrieve all tuples (τi,Mi,Hj) from 〈Mi,Hj , τi, ∗〉 ∈ Members and 〈Mi,Hj , ∗, ∗, τi〉 ∈ DomainKeys where

identify(σ,m, bsn, τi) = 1. Set f ← 0 if at least one of the following conditions hold:
• More than one τi was found.
• I is honest and no pair (τi,Mi,Hj) was found for which an entry 〈Mi,Hj , ∗, attrs〉 ∈ Members exists with p(attrs) = 1.
• Mi is honest but no entry 〈∗,m, bsn,Mi,Hj , ∗, ∗〉 ∈ Signed exists.
• Hj is honest but no entry 〈∗,m, bsn,Mi,Hj , p, SRL〉 ∈ Signed exists.
• There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1 and no pair (τi,Mi,Hj) for an honest Hj was found.
• For some matching τi and (σ′,m′, bsn ′) ∈ SRL, identify(σ′,m′, bsn ′, τi) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn, p, SRL).
– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

7. Link. On input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn) from a party V.
– Output ⊥ to V if at least one signature (σ,m, bsn, p, SRL) or (σ′,m′, bsn, p′, SRL′) is not valid (verified via the VERIFY

interface with RL = ∅).
– For each τi in Members and DomainKeys compute bi ← identify(σ,m, bsn, τi) and b′i ← identify(σ′,m′, bsn, τi) and do the

following:
• Set f ← 0 if bi 6= b′i for some i.
• Set f ← 1 if bi = b′i = 1 for some i.

– If f is not defined yet, set f ← link(σ,m, σ′,m′, bsn).
– Output (LINK, sid , f) to V.

Fig. 5. Our ideal DAA functionality with strong privacy Fpdaa+

29



B.4 Comparison of Fpdaa+ with Previous Definitions

Our functionality Fpdaa+ is based on previous UC-based DAA functionalities F ldaa [CDL16c], F ldaa+ [CDL16a]

which extends F ldaa with attributes and signature-based revocation, and Fpdaa [CDL17], which strengthens the
privacy guarantees of F ldaa. We now show how our functionality compares to these other DAA functionalities.

Attributes and Signature-based Revocation. Our functionality Fpdaa+ supports adding attributes to the mem-
bership credentials, and selectively disclosing attributes when signing, as well as signature-based revocation.
Fpdaa+ can be seen as Fpdaa extended with attributes and signature based revocations, in the same way that
F ldaa+ adds these features to F ldaa.

Realistic TPM Interfaces. Contrary to the approach of F ldaa+, in our definition Fpdaa+ the TPM is agnostic
of attributes, predicates or the SRL. That is, when signing it neither explicitly sees or approves the attributes
or SRL. This reflects that the actual TPM interfaces do not provide any such outputs or approvals either,
and in fact, there is no practical reason to do so and would only make the TPM interfaces more complicated.
Thus, we opted for adapting the functionality accordingly.

Similarly, the previous UC-based definitions [CDL16c, CDL16a, CDL17] let the TPM approve both the
message and basename for which the hosts requests as signature. In this definition, the TPM is only respon-
sible for approving the message being signed, but does no longer receive (and approve) the basename. Again,
this is done to better capture the actual TPM interfaces that provide such checks only for the message.

The resulting unforgeability and non-frameability guarantees are as follows. No adversary can sign a
message m w.r.t. basename bsn, attribute predicate p, and signature revocation list SRL, if the host did not
sign exactly that. If the TPM is honest but the host is corrupt, the unforgeability is a bit weaker, as the
TPM only checks the message. Therefore, if the TPM signed message m, the adversary is allowed to create
signatures on m w.r.t. any p and SRL that hold for the platform (i.e., the platform has the attributes to fulfill
p and is not revoked by SRL). The TPM does not explicitly approve bsn, but we force the (possibly corrupt)
host to choose one bsn when signing, and signatures can only be valid if the message-basename combination
was signed. Because the TPM does not explicitly approve the basename, our unforgeability with an honest
TPM and corrupt host is slightly weaker than previous UC-based definitions [CDL16c, CDL16a, CDL17]
where the TPM must explicitly approve the basename.

When the host is honest but the TPM is corrupt, our definition also assures unforgeability and non-
frameability like Fpdaa, which provides stronger guarantees than [CDL16c] and [CDL16a], where both prop-
erties are not ensured when the TPM is corrupt.

Strong Privacy (vs. Optimal Privacy). Previous DAA schemes and definitions condition their privacy prop-
erty on the honesty of the entire platform, i.e., as soon as either the TPM or host is corrupt, no privacy is
guaranteed anymore. Whereas the honesty of the host is indeed necessary (a corrupt host can always break
privacy by outputting identifying information), relying on the honesty of the TPM as well is an unnecessar-
ily strong assumption. In fact, it even contradicts the original goal of DAA, namely to provide anonymous
attestations without having to trust the hardware. This mismatch was recently discussed by Camenisch et
al. [CDL17] who propose the notion of DAA with optimal privacy which must hold even in the presence of
corrupted or subverted TPMs. In contrast to F ldaa and F ldaa+ where the adversary provides the signature
whenever the host or TPM are corrupt, the functionality with optimal privacy Fpdaa outputs anonymous
signatures as long as the host is honest. As the signatures are given directly to the host, the adversary learns
nothing about them, even if the TPM is corrupt.

Unfortunately, the authors also show that optimal privacy cannot be achieved using constructions where
the TPM and host together create a Fiat-Shamir proof of knowledge, which rules out the most efficient DAA
schemes. The DAA protocol with optimal privacy proposed in [CDL17] comes with a significant re-design,
shifting most of the computations from the TPM to the host and would also require new operations to be
implemented on the TPM.

The goal of this work is to obtain the best privacy properties with as minimal changes to the existing
TPM and DAA specifications as possible. We therefore relax their notion of optimal privacy, and show how

30



corrupt TPM F ldaa, F ldaa+ Fpdaa+ (this work) Fpdaa

standard - - +
isolated - + ++

Fig. 6. Comparison of privacy guarantees for an honest host in the presence of a corrupt TPM (either corrupt in the
standard UC or isolated model of [CDL17]).

this can be achieved with modest modifications to the current DAA specifications and using our proposed
TPM interfaces. Roughly, our new privacy notion – which we term strong privacy – allows the TPM to
see the anonymous signature that is generated by the functionality and consequently also condition its
behavior on the signature value. Thus, while the actual signature shown to the TPM is still guaranteed to
be anonymous, the TPM can influence the final distribution of the signatures by blocking certain signature
values (a signature is only output to the host when the TPM explicitly approved it). A TPM performing
such a “blocking attack” to alter the signature distribution can clearly be noticed by the host though, and
thus, this attack has rather limited impact in practice.

The main reason why exposing the signature value to the TPM reduces the privacy guarantees stems
from the way UC models corruption: In the standard UC corruption model, the adversary is allowed to see
all inputs to the party he corrupts. That is, he will see the signatures given for approval to the TPM and
can later re-identify the platform from the signature. However, as Camenisch et al. [CDL17] argue, in case
of the TPM this standard UC corruption model gives the adversary much more power than in reality. In the
real world, the TPM is embedded inside a host who controls all communication with the outside world, i.e.,
the adversary cannot communicate directly with the TPM but only via the (honest) host. To model such
subversion more accurately, [CDL17] introduces isolated corruptions, where the adversary can specify the
code that the isolated, yet subverted TPM will run, but cannot directly interact with the isolated TPM.

Applying this concept of isolated corruptions to our notion of strong privacy then yields significantly
stronger privacy guarantees than with the standard corruption model: In signing the adversary no longer
sees the signature which is only given to the isolated corrupt TPM. That is, when considering isolated TPM
corruptions, the only difference to the optimal privacy notion of [CDL17] is the aforementioned “blocking
attack” which allows a corrupt TPM to influence the signature distribution, but with the risk of being
caught by the host. Thus, w.r.t. isolated corruption, our notion of strong privacy is almost equivalent to
optimal privacy, yet allows for significantly more efficient instantiation. An overview of the different privacy
guarantees of this and the previous works is given in Figure 6.

C Detailed Description of our DAA Protocols

We now formallly introduce our DAA protocols ΠqSDH−DAA and ΠLRSW−DAA that we will prove secure. A
couple of additions to our generic scheme as presented in Figure 4 are made. First, we explicitly define the
inputs and outputs of the protocol. In the TPM.Hash command, the TPM must decide whether it considers a
message “safe to sign”. This is now an explicit output to the environment. Second, we add session identifiers
to the TPM’s inputs. These session identifiers are required for universal composability and strengthen our
security result by guaranteeing that our security is preserved by protocol composition. However, if one is
only concerned with standalone security, the session identifiers can be ommitted. We let parties implicitly
query Fca [Can04] when they need the issuer public key. To model the authentication of the TPM towards
the issuer, we use Fauth∗ as defined by Camenisch et al. [CDL16c].

The modified TPM interface is depicted in Figure 7. The rest of the protocols are defined as follows,
where certain parts of the protocol differ between ΠqSDH−DAA and ΠLRSW−DAA.

C.1 Setup

1. On input (SETUP, sid), the issuer generates its keys as described in sections 5.2 and 5.2, and registers
the key with Fca. Output (SETUPDONE, sid).
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Session system parameters: G1 = 〈ḡ〉 of prime order q, nonce bit length ln, random oracles H : {0, 1}∗ → Zp and HG1 : {0, 1}∗ →
G1. Initialize Committed← ∅ and commitId ← 0. Let TPM Mi be embedded in host Hj .

Init. On input TPM.Create(sid , jsid):
– If this is the first invocation of TPM.Create, choose a fresh secret key tsk ←$ Zp and compute public key tpk ← ḡtsk .
– Parse sid as (I, sid ′), store tsk , and send tpk to issuer I over Fauth∗.

Hash. On input TPM.Hash(sid , ssid ,mt,mh):
– If mt 6= ⊥, output (SIGNPROCEED, sid , ssid ,mt).
– On input (SIGNPROCEED, sid , ssid), compute c← H(“TPM ”,mt,mh).
– Mark c as “safe to sign” and output c.

Commit. On input TPM.Commit(sid , ssid , bsnE , bsnL):
– If bsnE 6= ⊥, set g̃ ← HG1(bsnE), otherwise set g̃ ← ḡ.
– Choose r ←$ Zp, nt ←$ {0, 1}ln and store (sid , ssid , commitId , r,nt) in Committed.
– Set n̄t ← H(“nonce”,nt), E ← g̃r, and K,L← ⊥.
– If bsnL 6= ⊥, set j ← HG1(bsnL), K ← jtsk and L← jr.
– Output (commitId , n̄t, E,K,L) and increment commitId .

Sign. On input TPM.Sign(sid , ssid , commitId , c,nh):
– Retrieve record (sid , ssid , commitId , r,nt) and remove it from Committed, output an error if no such record was found.
– If c is safe to sign, set c′ ← H(“FS”,nt ⊕ nh, c) and s← r + c′ · tsk and output (nt, s).

Fig. 7. Our proposed modified TPM 2.0 interface with the required UC session identifiers and inputs/outputs.

C.2 Join

1. Hj on input (JOIN, sid , jsid ,Mi) performs the following tasks:
– It sends (sid , jsid , JOIN) to the issuer.
– When it receives (sid , jsid ,n) from I, it calls TPM.Create(sid) to receive tpk . It creates proof πtpk ←

SPK∗{tsk : tpk = ḡtsk ∧ tpk ′ = g̃tsk}(“join”,n) using the Prove protocol. The issuer must receive tpk
in an authenticated manner, which can be realized in multiple ways. We model this as the TPM using
Fauth∗ to send tpk to the issuer via the host.

– The host noticesMi sending tpk via Fauth∗ to I. It takes hsk ←$ Zp, sets gpk ← tpk ′ · g̃hsk , and proves
πgpk ← NIZK{hsk : gpk/tpk ′ = g̃hsk}(“join”,n).

– The host appends tpk ′, gpk , πtpk , πgpk to the message tpk being sent to the issuer over Fauth∗.
– The issuer upon receiving tpk , tpk ′, gpk , πtpk , πgpk from Fauth∗, where tpk is authenticated by TPM
Mi, verifies proofs πtpk and πgpk and outputs (JOINPROCEED, sid , jsid ,Mi).

2. I on input (JOINPROCEED, sid , jsid , attrs):
– I creates credential cred ← PBSign(isk , (gpk , attrs)), where the instantiation of PBSign differs between
ΠqSDH−DAA and ΠLRSW−DAA, and sends (sid , jsid , cred , attrs) to Hj .

– Hj , upon receiving cred and attrs, verifies cred w.r.t. gpk , attrs, and ipk .
– It stores that it joined with Mi, stores (hsk , cred , attrs), and outputs (JOINED, sid , jsid , attrs).

C.3 Sign

1. When a host Hj receives input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL):
– The host checks that it joined with Mi. If so, it looks up (hsk , cred , attrs) from the join protocol and

verifies that attrs fulfill predicate (D, I), i.e., it parses I as (a′1, . . . , a
′
L) and attrs as (a1, . . . , aL) and

checks that ai = a′i for every i ∈ D.
– The host and TPM jointly generate the pseudonym nym ← HG(1||bsn)gsk and proof πcred of a mem-

bership credential on gsk = tsk + hsk and attrs using the Prove protocol.
– For each tuple (bsni,nymi) ∈ SRL, the host and TPM jointly create non-revocation proofs πSRL,i:

πSRL,i ← SPK∗{gsk : HG1(1||bsni)
gsk 6= nymi ∧ nym = HG1(1||bsn)gsk}(“sign”).

If a non-revocation proof fails, the host aborts.
– The host sets σ ← (nym, πcred , {πSRL,i}) and outputs (SIGNATURE, sid , ssid , σ).
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C.4 Verify

1. A party V upon input (VERIFY, sid ,m, bsn, σ, p, RL, SRL):
– Parse σ = (nym, πcred , {πSRL,i}).
– Verify πcred , {πSRL,i} w.r.t. ipk ,m, bsn, (D, I), SRL.
– For every gsk i ∈ RL, check that HG1

(bsn)gski 6= nym.
– Set f = 1 if all proofs are correct, and f = 0 otherwise. Output (VERIFIED, sid , f).

C.5 Link

1. A party V upon input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn):
– Check VERIFY(ipk , σ,m, bsn, (D, I), RL, SRL) = 1 and VERIFY(ipk , σ′,m′, bsn, (D′, I ′), RL′, SRL′) = 1.

If either does not hold, output ⊥.
– If both signatures are valid, parse σ = (nym, πcred , {πSRL,i}) and σ′ = (nym′, π′cred , {π′SRL,i}). If nym =

nym′, set f = 1, otherwise, set f = 0.
– Output (LINK, sid , f).

D Security of our DAA Schemes

Theorem 1. Protocol ΠLRSW−DAA as defined in Section C securely realizes Fpdaa+ (without support for
attributes, i.e., L = 0) under the Generalized LRSW and Decisional Diffie-Hellman assumptions in the
random oracle model.

Theorem 2. Protocol ΠqSDH−DAA as defined in Section C securely realizes Fpdaa+ (for any amount of at-
tributes L, Ai = Zp, and selective disclosure as attribute predicates P) under the q-Strong Diffie-Hellman
and Decisional Diffie-Hellman assumptions in the random oracle model.

We have to prove that our scheme realizes Fpdaa+, which means proving that for every adversary A, there
exists a simulator S such that for every environment E we have EXECΠ,A,E ≈ IDEALF,S,E .

To show that no environment E can distinguish the real world, in which it is working with our DAA
protocols and adversary A, from the ideal world, in which it uses Fpdaa+ with simulator S, we use a sequence
of games. We start with the real world protocol execution. In the next game we construct one entity C that
runs the real world protocol for all honest parties. Then we split C into two pieces, a functionality F and
a simulator S, where F receives all inputs from honest parties and sends the outputs to honest parties. We
start with a dummy functionality, and gradually change F and update S accordingly, to end up with the full
Fpdaa+ and a satisfying simulator. First we define all intermediate functionalities and simulators, and then
we prove that they are all indistinguishable from each other.
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1. Issuer Setup. On input (SETUP, sid) from issuer I.
– Output (FORWARD, (SETUP, sid), I) to S.

Join

2. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .
– Output (FORWARD, (JOIN, sid , jsid ,Mi),Hj) to S.

3. I Join Proceed. On input (JOINPROCEED, sid , jsid , attrs) from I, with attrs ∈ A1 × . . .× AL.
– Output (FORWARD, (JOINPROCEED, sid , jsid , attrs), I) to S.

Sign

4. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) from Hj with p ∈ P.
– Output (FORWARD, (SIGN, sid , ssid ,Mi,m, bsn, p, SRL),Hj) to S.

5. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.
– Output (FORWARD, (SIGNPROCEED, sid , ssid),Mi) to S.

Verify & Link

6. Verify. On input (VERIFY, sid ,m, bsn, σ, p, RL, SRL) from some party V.
– Output (FORWARD, (VERIFY, sid ,m, bsn, σ, p, RL, SRL),V) to S.

7. Link. On input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn) from a party V.
– Output (FORWARD, (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn),V) to S.

Fig. 8. F for Game 3
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When a simulated party “P” outputs m and no specific action is defined, send (OUTPUT,P,m) to F.
Forwarded Input

– On input (FORWARD,m,P).
• Give “P” input m.

Fig. 9. Simulator for Game 3
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1. Issuer Setup. On input (SETUP, sid) from issuer I.
– Verify that sid = (I, sid′).
– Output (SETUP, sid) to A and wait for input (ALG, sid , sig, ver, link, identify, ukgen) from A.
– Check that ver, link, and identify are deterministic.
– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join

2. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .
– Output (FORWARD, (JOIN, sid , jsid ,Mi),Hj) to S.

3. I Join Proceed. On input (JOINPROCEED, sid , jsid , attrs) from I, with attrs ∈ A1 × . . .× AL.
– Output (FORWARD, (JOINPROCEED, sid , jsid , attrs), I) to S.

Sign

4. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) from Hj with p ∈ P.
– Output (FORWARD, (SIGN, sid , ssid ,Mi,m, bsn, p, SRL),Hj) to S.

5. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.
– Output (FORWARD, (SIGNPROCEED, sid , ssid),Mi) to S.

Verify & Link

6. Verify. On input (VERIFY, sid ,m, bsn, σ, p, RL, SRL) from some party V.
– Output (FORWARD, (VERIFY, sid ,m, bsn, σ, p, RL, SRL),V) to S.

7. Link. On input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn) from a party V.
– Output (FORWARD, (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn),V) to S.

Fig. 10. F for Game 4
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When a simulated party “P” outputs m and no specific action is defined, send (OUTPUT,P,m) to F.
Setup
Honest I

– On input (SETUP, sid) from F.
• Parse sid as I, sid ′.
• Give “I” input (SETUP, sid).
• When “I” outputs (SETUPDONE, sid), S takes the issuer key pair. Note that the simulator also knows the issuer secret

key, as it is simulating “I”.
• Define sig(gsk ,m, bsn, p, SRL) as follows: First, create a BBS+ or CL signature (depending on the instantiation) using the

issuer key on gsk and attribute values where the disclosed attributes are taken from p and the undisclosed attributes are
set to dummy values. Next, the algorithm performs the real world signing algorithm (performing both the tasks from the
host and the TPM).

• Define ver(σ,m, bsn, p, SRL) as the real world verification algorithm, except that the private-key revocation check is ommitted.
• Define link(σ,m, σ′,m′, bsn) as follows: Parse the signatures as (A′,nym, π, {πi})← σ, (A′′,nym′, π′, {π′i})← σ′, and output

1 iff nym = nym′.
• Define identify(σ,m, bsn, τ) as follows: parse σ as (nym, πcred , {πSRL,i}) and check τ ∈ Zp and nym = H1(bsn)τ . If so, output

1, otherwise 0.
• Define ukgen as follows: take gsk ←$ Zp and output (gsk , gsk).
• S sends (ALG, sid , sig, ver, link, identify, ukgen) to F.

Corrupt I

– S notices this setup as it notices I registering a public key with “Fca” with sid = (I, sid ′).
• If the registered key is of the expected form and πipk is valid, S extracts the issuer secret key from πipk .
• S defines the algorithms sig, ver, link, identify, ukgen as before, but now depending on the extracted key.
• S sends (SETUP, sid ′) to F on behalf of I.

– On input (SETUP, sid) from F.
• S sends (ALG, sid , sig, ver, link, identify, ukgen) to F.

– On input (SETUPDONE, sid) from F
• S continues simulating “I”.

Forwarded Input

– On input (FORWARD,m,P).
• Give “P” input m.

Fig. 11. Simulator for Game 4
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1. Issuer Setup. On input (SETUP, sid) from issuer I.
– Verify that sid = (I, sid′).
– Output (SETUP, sid) to A and wait for input (ALG, sid , sig, ver, link, identify, ukgen) from A.
– Check that ver, link, and identify are deterministic.
– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join

2. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .
– Output (FORWARD, (JOIN, sid , jsid ,Mi),Hj) to S.

3. I Join Proceed. On input (JOINPROCEED, sid , jsid , attrs) from I, with attrs ∈ A1 × . . .× AL.
– Output (FORWARD, (JOINPROCEED, sid , jsid , attrs), I) to S.

Sign

4. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) from Hj with p ∈ P.
– Output (FORWARD, (SIGN, sid , ssid ,Mi,m, bsn, p, SRL),Hj) to S.

5. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.
– Output (FORWARD, (SIGNPROCEED, sid , ssid),Mi) to S.

Verify & Link

6. Verify. On input (VERIFY, sid ,m, bsn, σ, p, RL, SRL) from some party V.
– Set f ← 0 if at least one of the following conditions hold:
• There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn, p, SRL).
– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

7. Link. On input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn) from a party V.
– Output ⊥ to V if at least one signature (σ,m, bsn, p, SRL) or (σ′,m′, bsn, p′, SRL′) is not valid (verified via the verify interface

with RL = ∅).
– Set f ← link(σ,m, σ′,m′, bsn).
– Output (LINK, sid , f) to V.

Fig. 12. F for Game 5
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When a simulated party “P” outputs m and no specific action is defined, send (OUTPUT,P,m) to F.
Setup
Honest I

– On input (SETUP, sid) from F.
• Parse sid as I, sid ′.
• Give “I” input (SETUP, sid).
• When “I” outputs (SETUPDONE, sid), S takes the issuer key pair. Note that the simulator also knows the issuer secret

key, as it is simulating “I”.
• Define sig(gsk ,m, bsn, p, SRL) as follows: First, create a BBS+ or CL signature (depending on the instantiation) using the

issuer key on gsk and attribute values where the disclosed attributes are taken from p and the undisclosed attributes are
set to dummy values. Next, the algorithm performs the real world signing algorithm (performing both the tasks from the
host and the TPM).

• Define ver(σ,m, bsn, p, SRL) as the real world verification algorithm, except that the private-key revocation check is ommitted.
• Define link(σ,m, σ′,m′, bsn) as follows: Parse the signatures as (A′,nym, π, {πi})← σ, (A′′,nym′, π′, {π′i})← σ′, and output

1 iff nym = nym′.
• Define identify(σ,m, bsn, τ) as follows: parse σ as (nym, πcred , {πSRL,i}) and check τ ∈ Zp and nym = H1(bsn)τ . If so, output

1, otherwise 0.
• Define ukgen as follows: take gsk ←$ Zp and output (gsk , gsk).
• S sends (ALG, sid , sig, ver, link, identify, ukgen) to F.

Corrupt I

– S notices this setup as it notices I registering a public key with “Fca” with sid = (I, sid ′).
• If the registered key is of the expected form and πipk is valid, S extracts the issuer secret key from πipk .
• S defines the algorithms sig, ver, link, identify, ukgen as before, but now depending on the extracted key.
• S sends (SETUP, sid ′) to F on behalf of I.

– On input (SETUP, sid) from F.
• S sends (ALG, sid , sig, ver, link, identify, ukgen) to F.

– On input (SETUPDONE, sid) from F
• S continues simulating “I”.

Verify & Link
Nothing to simulate.
Forwarded Input

– On input (FORWARD,m,P).
• Give “P” input m.

Fig. 13. Simulator for Game 5
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1. Issuer Setup. On input (SETUP, sid) from issuer I.
– Verify that sid = (I, sid′).
– Output (SETUP, sid) to A and wait for input (ALG, sid , sig, ver, link, identify, ukgen) from A.
– Check that ver, link, and identify are deterministic.
– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join

2. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .
– Output (JOINSTART, sid , jsid ,Mi,Hj) to A and wait for input (JOINSTART, sid , jsid) from A.
– Create a join session record 〈jsid ,Mi,Hj ,⊥, status〉 with status ← delivered .
– Abort if I is honest and a record 〈Mi, ∗, ∗〉 ∈ Members already exists.
– Output (JOINPROCEED, sid , jsid ,Mi) to I.

3. I Join Proceed. On input (JOINPROCEED, sid , jsid , attrs) from I, with attrs ∈ A1 × . . .× AL.
– Output (JOINCOMPLETE, sid , jsid) to A and wait for input (JOINCOMPLETE, sid , jsid , τ) from A.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = delivered to complete.
– If Hj is honest, set τ ← ⊥.
– Insert 〈Mi,Hj , τ, attrs〉 into Members and output (JOINED, sid , jsid , attrs) to Hj .

Sign

4. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) from Hj with p ∈ P.
– Output (FORWARD, (SIGN, sid , ssid ,Mi,m, bsn, p, SRL),Hj) to S.

5. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.
– Output (FORWARD, (SIGNPROCEED, sid , ssid),Mi) to S.

Verify & Link

6. Verify. On input (VERIFY, sid ,m, bsn, σ, p, RL, SRL) from some party V.
– Set f ← 0 if at least one of the following conditions hold:
• There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn, p, SRL).
– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

7. Link. On input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn) from a party V.
– Output ⊥ to V if at least one signature (σ,m, bsn, p, SRL) or (σ′,m′, bsn, p′, SRL′) is not valid (verified via the verify interface

with RL = ∅).
– Set f ← link(σ,m, σ′,m′, bsn).
– Output (LINK, sid , f) to V.

Fig. 14. F for Game 6
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When a simulated party “P” outputs m and no specific action is defined, send (OUTPUT,P,m) to F.
Setup
Unchanged.
Join
Honest H, I

– S receives (JOINSTART, sid , jsid ,Mi,Hj) from F.
• It simulates the real world protocol by giving “Hj” input (JOIN, sid , jsid ,Mi) and waits for output

(JOINPROCEED, sid , jsid ,Mi) from “I”.
• S sends (JOINSTART, sid , jsid) to F.

– On input (JOINCOMPLETE, sid , jsid) from F.
• S continues the simulation by giving “I” input (JOINPROCEED, sid , jsid , attrs), and waits for output

(JOINED, sid , jsid , attrs) from “Hj”.
• Output (JOINCOMPLETE, sid , jsid ,⊥) to F.

Honest H, Corrupt I

– S receives (JOINSTART, sid , jsid ,Mi,Hj) from F.
• Output (JOINSTART, sid , jsid) to F.

– S receives (JOINPROCEED, sid , jsid ,Mi) as I is corrupt.
• It simulates the real world protocol by giving “Hj” input (JOIN, sid , jsid ,Mi) and waits for output (JOINED, sid , jsid , attrs)

from “Hj”.
• S sends (JOINPROCEED, sid , jsid , attrs) on I’s behalf to F.

– S receives (JOINCOMPLETE, sid , jsid) from F.
• Output (JOINCOMPLETE, sid , jsid ,⊥) to F.

Honest M, I, Corrupt H

– S notices this join as “I” outputs (JOINPROCEED, sid , jsid ,Mi).
• S knows the identity of the host involved in this join session as it is simulating “Mi”, let this be Hj . For corrupt platforms,

the exact identity of the host does not matter.
• S extracts takes tsk from simulating “Mi” and extracts hsk from πgpk , and sets gsk = tsk + hsk .
• S sends (JOIN, sid , jsid ,Mi) on Hj ’s behalf to F.

– S receives (JOINSTART, sid , jsid ,Mi,Hj) from F.
• S sends (JOINSTART, sid , jsid) to F.

– On input (JOINCOMPLETE, sid , jsid) from F.
• Output (JOINCOMPLETE, sid , jsid , gsk) to F.

– S receives (JOINED, sid , jsid , attrs) as Hj is corrupt.
• S continues the simulation by giving “I” input (JOINPROCEED, sid , jsid , attrs).

Honest I, Corrupt M, H

– S notices this join as “I” outputs (JOINPROCEED, sid , jsid ,Mi).
• S does not know the identity of the host involved in this join session. It sets Hj as an aribitrary corrupt host. For corrupt

platforms, the exact identity of the host does not matter.
• S extracts tsk from πtpk hsk from πgpk , and sets gsk = tsk + hsk .
• S sends (JOIN, sid , jsid ,Mi) on Hj ’s behalf to F.

– S receives (JOINSTART, sid , jsid ,Mi,Hj) from F.
• S sends (JOINSTART, sid , jsid) to F.

– On input (JOINCOMPLETE, sid , jsid) from F.
• Output (JOINCOMPLETE, sid , jsid , gsk) to F.

– S receives (JOINED, sid , jsid , attrs) as Hj is corrupt.
• S continues the simulation by giving “I” input (JOINPROCEED, sid , jsid , attrs).

Honest M, Corrupt H, I

– S notices this join as “Mi” receives messages from a host Hj running the join protocol with sid and jsid .
• As F guarantees no security properties for platforms with a corrupt host when the issuer is corrupt, andM does not receive

any output in the join protocol, S does not need to involve F and can simply continue simulating Mi.

Verify & Link
Nothing to simulate.
Forwarded Input

– On input (FORWARD,m,P).
• Give “P” input m.

Fig. 15. Simulator for Game 6
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1. Issuer Setup. On input (SETUP, sid) from issuer I.
– Verify that sid = (I, sid′).
– Output (SETUP, sid) to A and wait for input (ALG, sid , sig, ver, link, identify, ukgen) from A.
– Check that ver, link, and identify are deterministic.
– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join

2. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .
– Output (JOINSTART, sid , jsid ,Mi,Hj) to A and wait for input (JOINSTART, sid , jsid) from A.
– Create a join session record 〈jsid ,Mi,Hj ,⊥, status〉 with status ← delivered .
– Abort if I is honest and a record 〈Mi, ∗, ∗〉 ∈ Members already exists.
– Output (JOINPROCEED, sid , jsid ,Mi) to I.

3. I Join Proceed. On input (JOINPROCEED, sid , jsid , attrs) from I, with attrs ∈ A1 × . . .× AL.
– Output (JOINCOMPLETE, sid , jsid) to A and wait for input (JOINCOMPLETE, sid , jsid , τ) from A.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = delivered to complete.
– If Hj is honest, set τ ← ⊥.
– Insert 〈Mi,Hj , τ, attrs〉 into Members and output (JOINED, sid , jsid , attrs) to Hj .

Sign

4. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) from Hj with p ∈ P.
– If Hj is honest and no entry 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members, abort.
– If Hj is corrupt, set σ ← ⊥. If Hj is honest, generate the signature for a fresh or established key:
• Retrieve (gsk , τ) from 〈Mi,Hj , bsn, gsk , τ〉 ∈ DomainKeys. If no such entry exists, set (gsk , τ) ← ukgen(), and store
〈Mi,Hj , bsn, gsk , τ〉 in DomainKeys.

• Compute signature σ ← sig(gsk ,m, bsn, p, SRL), check ver(σ,m, bsn, p, SRL) = 1.
– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p, SRL, σ, status〉 with status ← request .
– Output (SIGNPROCEED, sid , ssid ,m) to Mi when it is honest, and (SIGNPROCEED, sid , ssid ,m, bsn, SRL, σ) when Mi is

corrupt.
5. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, p, SRL, σ, status〉 with status = request and update it to status ← complete.
– If I is honest, check that 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members.
– For every (σ′,m′, bsn ′) ∈ SRL, find all (τi,M′i,H′j) from 〈M′i,H′j , τi, ∗〉 ∈ Members and 〈M′i,H′j , τi〉 ∈ DomainKeys where

identify(σ′,m′, bsn ′, ∗, τi) = 1.
• Check that there are no two distinct τ values matching σ′.
• Check that no pair (τi,Mi,Hj) was found.

– Store 〈σ,m, bsn,Mi,Hj , p, SRL〉 in Signed and output (SIGNATURE, sid , ssid , σ) to Hj .

Verify & Link

6. Verify. On input (VERIFY, sid ,m, bsn, σ, p, RL, SRL) from some party V.
– Set f ← 0 if at least one of the following conditions hold:
• There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn, p, SRL).
– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

7. Link. On input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn) from a party V.
– Output ⊥ to V if at least one signature (σ,m, bsn, p, SRL) or (σ′,m′, bsn, p′, SRL′) is not valid (verified via the verify interface

with RL = ∅).
– Set f ← link(σ,m, σ′,m′, bsn).
– Output (LINK, sid , f) to V.

Fig. 16. F for Game 7
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Setup
Unchanged.
Join
Unchanged.
Sign
Honest H, M
S not notice this signing taking place.
Honest H, Corrupt M

– S receives (SIGNPROCEED, sid , ssid ,m, bsn, SRL, σ) from F as Mi is corrupt.
• Give “Hj” input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL). After calling TPM.Commit, “Hj” will receive n̄t ← H(“nonce”,nt), where

the simulator knows nt as it simulates the random oracle. It sets nh such that nt⊕nh equals the nonce n from σ. It performs
the same procedure for every nonce in πSRL,i. Wait for output (SIGNATURE, sid , ssid , σ) from “Hj”.

• S sends (SIGNPROCEED, sid , ssid) on Mi’s behalf to F.

Honest M, Corrupt H

– S notices this signing session as “Mi” outputs (SIGNPROCEED, sid , ssid ,m).
• Note that S must make a signing query on Hj ’s behalf but does not know the bsn, p, and SRL of this signing session. If I is

corrupt, F does not make any checks on those values, so we can use arbitrary values. If I is honest, F does perform checks
on bsn, so we must find the correct value. The host has made a TPM.Hash query, and for this signing session to produce a
valid signature, the message to be hashed has structure m, (mh, y1, ĝ

δ, {(bi, b′i, b′′i )}, t1, y2, bsnL, t2, y3, t3)). For all basenames
that “Mi” performed TPM.Commit with, it checks y2 = HG1(1||bsn)gsk , where it knows gsk from the join protocol. If such a
bsn is found, we have the correct basename, and if no such bsn is found, this session will not yield a valid signature and we
can continue to use a dummy bsn.

• S sends (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) on Hj ’s behalf to F.
– S receives (SIGNATURE, sid , ssid , σ) from F as “Hj” is corrupt.
• S gives “Mi” input (SIGNPROCEED, sid , ssid).

Verify & Link
Nothing to simulate.

Fig. 17. Simulator for Game 7
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1. Issuer Setup. On input (SETUP, sid) from issuer I.
– Verify that sid = (I, sid′).
– Output (SETUP, sid) to A and wait for input (ALG, sid , sig, ver, link, identify, ukgen) from A.
– Check that ver, link, and identify are deterministic.
– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join

2. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .
– Output (JOINSTART, sid , jsid ,Mi,Hj) to A and wait for input (JOINSTART, sid , jsid) from A.
– Create a join session record 〈jsid ,Mi,Hj ,⊥, status〉 with status ← delivered .
– Abort if I is honest and a record 〈Mi, ∗, ∗〉 ∈ Members already exists.
– Output (JOINPROCEED, sid , jsid ,Mi) to I.

3. I Join Proceed. On input (JOINPROCEED, sid , jsid , attrs) from I, with attrs ∈ A1 × . . .× AL.
– Output (JOINCOMPLETE, sid , jsid) to A and wait for input (JOINCOMPLETE, sid , jsid , τ) from A.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = delivered to complete.
– If Hj is honest, set τ ← ⊥.
– Else, verify that the provided tracing trapdoor τ is eligible by checking CheckTtdCorrupt(τ) = 1.
– Insert 〈Mi,Hj , τ, attrs〉 into Members and output (JOINED, sid , jsid , attrs) to Hj .

Sign

4. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) from Hj with p ∈ P.
– If Hj is honest and no entry 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members, abort.
– If Hj is corrupt, set σ ← ⊥. If Hj is honest, generate the signature for a fresh or established key:
• Retrieve (gsk , τ) from 〈Mi,Hj , bsn, gsk , τ〉 ∈ DomainKeys. If no such entry exists, set (gsk , τ) ← ukgen(), and store
〈Mi,Hj , bsn, gsk , τ〉 in DomainKeys.

• Compute signature σ ← sig(gsk ,m, bsn, p, SRL), check ver(σ,m, bsn, p, SRL) = 1.
– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p, SRL, σ, status〉 with status ← request .
– Output (SIGNPROCEED, sid , ssid ,m) to Mi when it is honest, and (SIGNPROCEED, sid , ssid ,m, bsn, SRL, σ) when Mi is

corrupt.
5. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, p, SRL, σ, status〉 with status = request and update it to status ← complete.
– If I is honest, check that 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members.
– For every (σ′,m′, bsn ′) ∈ SRL, find all (τi,M′i,H′j) from 〈M′i,H′j , τi, ∗〉 ∈ Members and 〈M′i,H′j , τi〉 ∈ DomainKeys where

identify(σ′,m′, bsn ′, ∗, τi) = 1.
• Check that there are no two distinct τ values matching σ′.
• Check that no pair (τi,Mi,Hj) was found.

– Store 〈σ,m, bsn,Mi,Hj , p, SRL〉 in Signed and output (SIGNATURE, sid , ssid , σ) to Hj .

Verify & Link

6. Verify. On input (VERIFY, sid ,m, bsn, σ, p, RL, SRL) from some party V.
– Set f ← 0 if at least one of the following conditions hold:
• There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn, p, SRL).
– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

7. Link. On input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn) from a party V.
– Output ⊥ to V if at least one signature (σ,m, bsn, p, SRL) or (σ′,m′, bsn, p′, SRL′) is not valid (verified via the verify interface

with RL = ∅).
– Set f ← link(σ,m, σ′,m′, bsn).
– Output (LINK, sid , f) to V.

Fig. 18. F for Game 8
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Setup
Unchanged.
Join
Unchanged.
Sign
Honest H, M
S not notice this signing taking place.
Honest H, Corrupt M

– S receives (SIGNPROCEED, sid , ssid ,m, bsn, SRL, σ) from F as Mi is corrupt.
• Give “Hj” input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL). After calling TPM.Commit, “Hj” will receive n̄t ← H(“nonce”,nt), where

the simulator knows nt as it simulates the random oracle. It sets nh such that nt⊕nh equals the nonce n from σ. It performs
the same procedure for every nonce in πSRL,i. Wait for output (SIGNATURE, sid , ssid , σ) from “Hj”.

• S sends (SIGNPROCEED, sid , ssid) on Mi’s behalf to F.

Honest M, Corrupt H

– S notices this signing session as “Mi” outputs (SIGNPROCEED, sid , ssid ,m).
• Note that S must make a signing query on Hj ’s behalf but does not know the bsn, p, and SRL of this signing session. If I is

corrupt, F does not make any checks on those values, so we can use arbitrary values. If I is honest, F does perform checks
on bsn, so we must find the correct value. The host has made a TPM.Hash query, and for this signing session to produce a
valid signature, the message to be hashed has structure m, (mh, y1, ĝ

δ, {(bi, b′i, b′′i )}, t1, y2, bsnL, t2, y3, t3)). For all basenames
that “Mi” performed TPM.Commit with, it checks y2 = HG1(1||bsn)gsk , where it knows gsk from the join protocol. If such a
bsn is found, we have the correct basename, and if no such bsn is found, this session will not yield a valid signature and we
can continue to use a dummy bsn.

• S sends (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) on Hj ’s behalf to F.
– S receives (SIGNATURE, sid , ssid , σ) from F as “Hj” is corrupt.
• S gives “Mi” input (SIGNPROCEED, sid , ssid).

Verify & Link
Nothing to simulate.

Fig. 19. Simulator for Game 8
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1. Issuer Setup. On input (SETUP, sid) from issuer I.
– Verify that sid = (I, sid′).
– Output (SETUP, sid) to A and wait for input (ALG, sid , sig, ver, link, identify, ukgen) from A.
– Check that ver, link, and identify are deterministic.
– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join

2. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .
– Output (JOINSTART, sid , jsid ,Mi,Hj) to A and wait for input (JOINSTART, sid , jsid) from A.
– Create a join session record 〈jsid ,Mi,Hj ,⊥, status〉 with status ← delivered .
– Abort if I is honest and a record 〈Mi, ∗, ∗〉 ∈ Members already exists.
– Output (JOINPROCEED, sid , jsid ,Mi) to I.

3. I Join Proceed. On input (JOINPROCEED, sid , jsid , attrs) from I, with attrs ∈ A1 × . . .× AL.
– Output (JOINCOMPLETE, sid , jsid) to A and wait for input (JOINCOMPLETE, sid , jsid , τ) from A.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = delivered to complete.
– If Hj is honest, set τ ← ⊥.
– Else, verify that the provided tracing trapdoor τ is eligible by checking CheckTtdCorrupt(τ) = 1.
– Insert 〈Mi,Hj , τ, attrs〉 into Members and output (JOINED, sid , jsid , attrs) to Hj .

Sign

4. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) from Hj with p ∈ P.
– If Hj is honest and no entry 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members, abort.
– If Hj is corrupt, set σ ← ⊥. If Hj is honest, generate the signature for a fresh or established key:
• Retrieve (gsk , τ) from 〈Mi,Hj , bsn, gsk , τ〉 ∈ DomainKeys. If no such entry exists, set (gsk , τ) ← ukgen(), check

CheckTtdHonest(τ) = 1, and store 〈Mi,Hj , bsn, gsk , τ〉 in DomainKeys.
• Compute signature σ ← sig(gsk ,m, bsn, p, SRL), check ver(σ,m, bsn, p, SRL) = 1.

– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p, SRL, σ, status〉 with status ← request .
– Output (SIGNPROCEED, sid , ssid ,m) to Mi when it is honest, and (SIGNPROCEED, sid , ssid ,m, bsn, SRL, σ) when Mi is

corrupt.
5. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, p, SRL, σ, status〉 with status = request and update it to status ← complete.
– If I is honest, check that 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members.
– For every (σ′,m′, bsn ′) ∈ SRL, find all (τi,M′i,H′j) from 〈M′i,H′j , τi, ∗〉 ∈ Members and 〈M′i,H′j , τi〉 ∈ DomainKeys where

identify(σ′,m′, bsn ′, ∗, τi) = 1.
• Check that there are no two distinct τ values matching σ′.
• Check that no pair (τi,Mi,Hj) was found.

– Store 〈σ,m, bsn,Mi,Hj , p, SRL〉 in Signed and output (SIGNATURE, sid , ssid , σ) to Hj .

Verify & Link

6. Verify. On input (VERIFY, sid ,m, bsn, σ, p, RL, SRL) from some party V.
– Set f ← 0 if at least one of the following conditions hold:
• There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn, p, SRL).
– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

7. Link. On input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn) from a party V.
– Output ⊥ to V if at least one signature (σ,m, bsn, p, SRL) or (σ′,m′, bsn, p′, SRL′) is not valid (verified via the verify interface

with RL = ∅).
– Set f ← link(σ,m, σ′,m′, bsn).
– Output (LINK, sid , f) to V.

Fig. 20. F for Game 9
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Setup
Unchanged.
Join
Unchanged.
Sign
Honest H, M
S not notice this signing taking place.
Honest H, Corrupt M

– S receives (SIGNPROCEED, sid , ssid ,m, bsn, SRL, σ) from F as Mi is corrupt.
• Give “Hj” input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL). After calling TPM.Commit, “Hj” will receive n̄t ← H(“nonce”,nt), where

the simulator knows nt as it simulates the random oracle. It sets nh such that nt⊕nh equals the nonce n from σ. It performs
the same procedure for every nonce in πSRL,i. Wait for output (SIGNATURE, sid , ssid , σ) from “Hj”.

• S sends (SIGNPROCEED, sid , ssid) on Mi’s behalf to F.

Honest M, Corrupt H

– S notices this signing session as “Mi” outputs (SIGNPROCEED, sid , ssid ,m).
• Note that S must make a signing query on Hj ’s behalf but does not know the bsn, p, and SRL of this signing session. If I is

corrupt, F does not make any checks on those values, so we can use arbitrary values. If I is honest, F does perform checks
on bsn, so we must find the correct value. The host has made a TPM.Hash query, and for this signing session to produce a
valid signature, the message to be hashed has structure m, (mh, y1, ĝ

δ, {(bi, b′i, b′′i )}, t1, y2, bsnL, t2, y3, t3)). For all basenames
that “Mi” performed TPM.Commit with, it checks y2 = HG1(1||bsn)gsk , where it knows gsk from the join protocol. If such a
bsn is found, we have the correct basename, and if no such bsn is found, this session will not yield a valid signature and we
can continue to use a dummy bsn.

• S sends (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) on Hj ’s behalf to F.
– S receives (SIGNATURE, sid , ssid , σ) from F as “Hj” is corrupt.
• S gives “Mi” input (SIGNPROCEED, sid , ssid).

Verify & Link
Nothing to simulate.

Fig. 21. Simulator for Game 9
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1. Issuer Setup. On input (SETUP, sid) from issuer I.
– Verify that sid = (I, sid′).
– Output (SETUP, sid) to A and wait for input (ALG, sid , sig, ver, link, identify, ukgen) from A.
– Check that ver, link, and identify are deterministic.
– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join

2. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .
– Output (JOINSTART, sid , jsid ,Mi,Hj) to A and wait for input (JOINSTART, sid , jsid) from A.
– Create a join session record 〈jsid ,Mi,Hj ,⊥, status〉 with status ← delivered .
– Abort if I is honest and a record 〈Mi, ∗, ∗〉 ∈ Members already exists.
– Output (JOINPROCEED, sid , jsid ,Mi) to I.

3. I Join Proceed. On input (JOINPROCEED, sid , jsid , attrs) from I, with attrs ∈ A1 × . . .× AL.
– Output (JOINCOMPLETE, sid , jsid) to A and wait for input (JOINCOMPLETE, sid , jsid , τ) from A.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = delivered to complete.
– If Hj is honest, set τ ← ⊥.
– Else, verify that the provided tracing trapdoor τ is eligible by checking CheckTtdCorrupt(τ) = 1.
– Insert 〈Mi,Hj , τ, attrs〉 into Members and output (JOINED, sid , jsid , attrs) to Hj .

Sign

4. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) from Hj with p ∈ P.
– If Hj is honest and no entry 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members, abort.
– If Hj is corrupt, set σ ← ⊥. If Hj is honest, generate the signature for a fresh or established key:
• Retrieve (gsk , τ) from 〈Mi,Hj , bsn, gsk , τ〉 ∈ DomainKeys. If no such entry exists, set (gsk , τ) ← ukgen(), check

CheckTtdHonest(τ) = 1, and store 〈Mi,Hj , bsn, gsk , τ〉 in DomainKeys.
• Compute signature σ ← sig(gsk ,m, bsn, p, SRL), check ver(σ,m, bsn, p, SRL) = 1.
• Check identify(σ,m, bsn, τ) = 1 and that there is no (M′,H′) 6= (Mi,Hj) with tracing trapdoor τ ′ registered in Members

or DomainKeys with identify(σ,m, bsn, τ ′) = 1.
– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p, SRL, σ, status〉 with status ← request .
– Output (SIGNPROCEED, sid , ssid ,m) to Mi when it is honest, and (SIGNPROCEED, sid , ssid ,m, bsn, SRL, σ) when Mi is

corrupt.
5. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, p, SRL, σ, status〉 with status = request and update it to status ← complete.
– If I is honest, check that 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members.
– For every (σ′,m′, bsn ′) ∈ SRL, find all (τi,M′i,H′j) from 〈M′i,H′j , τi, ∗〉 ∈ Members and 〈M′i,H′j , τi〉 ∈ DomainKeys where

identify(σ′,m′, bsn ′, ∗, τi) = 1.
• Check that there are no two distinct τ values matching σ′.
• Check that no pair (τi,Mi,Hj) was found.

– Store 〈σ,m, bsn,Mi,Hj , p, SRL〉 in Signed and output (SIGNATURE, sid , ssid , σ) to Hj .

Verify & Link

6. Verify. On input (VERIFY, sid ,m, bsn, σ, p, RL, SRL) from some party V.
– Set f ← 0 if at least one of the following conditions hold:
• There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn, p, SRL).
– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

7. Link. On input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn) from a party V.
– Output ⊥ to V if at least one signature (σ,m, bsn, p, SRL) or (σ′,m′, bsn, p′, SRL′) is not valid (verified via the verify interface

with RL = ∅).
– Set f ← link(σ,m, σ′,m′, bsn).
– Output (LINK, sid , f) to V.

Fig. 22. F for Game 10
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Setup
Unchanged.
Join
Unchanged.
Sign
Honest H, M
S not notice this signing taking place.
Honest H, Corrupt M

– S receives (SIGNPROCEED, sid , ssid ,m, bsn, SRL, σ) from F as Mi is corrupt.
• Give “Hj” input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL). After calling TPM.Commit, “Hj” will receive n̄t ← H(“nonce”,nt), where

the simulator knows nt as it simulates the random oracle. It sets nh such that nt⊕nh equals the nonce n from σ. It performs
the same procedure for every nonce in πSRL,i. Wait for output (SIGNATURE, sid , ssid , σ) from “Hj”.

• S sends (SIGNPROCEED, sid , ssid) on Mi’s behalf to F.

Honest M, Corrupt H

– S notices this signing session as “Mi” outputs (SIGNPROCEED, sid , ssid ,m).
• Note that S must make a signing query on Hj ’s behalf but does not know the bsn, p, and SRL of this signing session. If I is

corrupt, F does not make any checks on those values, so we can use arbitrary values. If I is honest, F does perform checks
on bsn, so we must find the correct value. The host has made a TPM.Hash query, and for this signing session to produce a
valid signature, the message to be hashed has structure m, (mh, y1, ĝ

δ, {(bi, b′i, b′′i )}, t1, y2, bsnL, t2, y3, t3)). For all basenames
that “Mi” performed TPM.Commit with, it checks y2 = HG1(1||bsn)gsk , where it knows gsk from the join protocol. If such a
bsn is found, we have the correct basename, and if no such bsn is found, this session will not yield a valid signature and we
can continue to use a dummy bsn.

• S sends (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) on Hj ’s behalf to F.
– S receives (SIGNATURE, sid , ssid , σ) from F as “Hj” is corrupt.
• S gives “Mi” input (SIGNPROCEED, sid , ssid).

Verify & Link
Nothing to simulate.

Fig. 23. Simulator for Game 10
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1. Issuer Setup. On input (SETUP, sid) from issuer I.
– Verify that sid = (I, sid′).
– Output (SETUP, sid) to A and wait for input (ALG, sid , sig, ver, link, identify, ukgen) from A.
– Check that ver, link, and identify are deterministic.
– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join

2. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .
– Output (JOINSTART, sid , jsid ,Mi,Hj) to A and wait for input (JOINSTART, sid , jsid) from A.
– Create a join session record 〈jsid ,Mi,Hj ,⊥, status〉 with status ← delivered .
– Abort if I is honest and a record 〈Mi, ∗, ∗〉 ∈ Members already exists.
– Output (JOINPROCEED, sid , jsid ,Mi) to I.

3. I Join Proceed. On input (JOINPROCEED, sid , jsid , attrs) from I, with attrs ∈ A1 × . . .× AL.
– Output (JOINCOMPLETE, sid , jsid) to A and wait for input (JOINCOMPLETE, sid , jsid , τ) from A.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = delivered to complete.
– If Hj is honest, set τ ← ⊥.
– Else, verify that the provided tracing trapdoor τ is eligible by checking CheckTtdCorrupt(τ) = 1.
– Insert 〈Mi,Hj , τ, attrs〉 into Members and output (JOINED, sid , jsid , attrs) to Hj .

Sign

4. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) from Hj with p ∈ P.
– If Hj is honest and no entry 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members, abort.
– If Hj is corrupt, set σ ← ⊥. If Hj is honest, generate the signature for a fresh or established key:
• Retrieve (gsk , τ) from 〈Mi,Hj , bsn, gsk , τ〉 ∈ DomainKeys. If no such entry exists, set (gsk , τ) ← ukgen(), check

CheckTtdHonest(τ) = 1, and store 〈Mi,Hj , bsn, gsk , τ〉 in DomainKeys.
• Compute signature σ ← sig(gsk ,m, bsn, p, SRL), check ver(σ,m, bsn, p, SRL) = 1.
• Check identify(σ,m, bsn, τ) = 1 and that there is no (M′,H′) 6= (Mi,Hj) with tracing trapdoor τ ′ registered in Members

or DomainKeys with identify(σ,m, bsn, τ ′) = 1.
– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p, SRL, σ, status〉 with status ← request .
– Output (SIGNPROCEED, sid , ssid ,m) to Mi when it is honest, and (SIGNPROCEED, sid , ssid ,m, bsn, SRL, σ) when Mi is

corrupt.
5. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, p, SRL, σ, status〉 with status = request and update it to status ← complete.
– If I is honest, check that 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members.
– For every (σ′,m′, bsn ′) ∈ SRL, find all (τi,M′i,H′j) from 〈M′i,H′j , τi, ∗〉 ∈ Members and 〈M′i,H′j , τi〉 ∈ DomainKeys where

identify(σ′,m′, bsn ′, ∗, τi) = 1.
• Check that there are no two distinct τ values matching σ′.
• Check that no pair (τi,Mi,Hj) was found.

– Store 〈σ,m, bsn,Mi,Hj , p, SRL〉 in Signed and output (SIGNATURE, sid , ssid , σ) to Hj .

Verify & Link

6. Verify. On input (VERIFY, sid ,m, bsn, σ, p, RL, SRL) from some party V.
– Retrieve all tuples (τi,Mi,Hj) from 〈Mi,Hj , τi, ∗〉 ∈ Members and 〈Mi,Hj , ∗, ∗, τi〉 ∈ DomainKeys where

identify(σ,m, bsn, τi) = 1. Set f ← 0 if at least one of the following conditions hold:
• More than one τi was found.
• There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn, p, SRL).
– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

7. Link. On input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn) from a party V.
– Output ⊥ to V if at least one signature (σ,m, bsn, p, SRL) or (σ′,m′, bsn, p′, SRL′) is not valid (verified via the verify interface

with RL = ∅).
– Set f ← link(σ,m, σ′,m′, bsn).
– Output (LINK, sid , f) to V.

Fig. 24. F for Game 11
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Setup
Unchanged.
Join
Unchanged.
Sign
Honest H, M
S not notice this signing taking place.
Honest H, Corrupt M

– S receives (SIGNPROCEED, sid , ssid ,m, bsn, SRL, σ) from F as Mi is corrupt.
• Give “Hj” input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL). After calling TPM.Commit, “Hj” will receive n̄t ← H(“nonce”,nt), where

the simulator knows nt as it simulates the random oracle. It sets nh such that nt⊕nh equals the nonce n from σ. It performs
the same procedure for every nonce in πSRL,i. Wait for output (SIGNATURE, sid , ssid , σ) from “Hj”.

• S sends (SIGNPROCEED, sid , ssid) on Mi’s behalf to F.

Honest M, Corrupt H

– S notices this signing session as “Mi” outputs (SIGNPROCEED, sid , ssid ,m).
• Note that S must make a signing query on Hj ’s behalf but does not know the bsn, p, and SRL of this signing session. If I is

corrupt, F does not make any checks on those values, so we can use arbitrary values. If I is honest, F does perform checks
on bsn, so we must find the correct value. The host has made a TPM.Hash query, and for this signing session to produce a
valid signature, the message to be hashed has structure m, (mh, y1, ĝ

δ, {(bi, b′i, b′′i )}, t1, y2, bsnL, t2, y3, t3)). For all basenames
that “Mi” performed TPM.Commit with, it checks y2 = HG1(1||bsn)gsk , where it knows gsk from the join protocol. If such a
bsn is found, we have the correct basename, and if no such bsn is found, this session will not yield a valid signature and we
can continue to use a dummy bsn.

• S sends (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) on Hj ’s behalf to F.
– S receives (SIGNATURE, sid , ssid , σ) from F as “Hj” is corrupt.
• S gives “Mi” input (SIGNPROCEED, sid , ssid).

Verify & Link
Nothing to simulate.

Fig. 25. Simulator for Game 11
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1. Issuer Setup. On input (SETUP, sid) from issuer I.
– Verify that sid = (I, sid′).
– Output (SETUP, sid) to A and wait for input (ALG, sid , sig, ver, link, identify, ukgen) from A.
– Check that ver, link, and identify are deterministic.
– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join

2. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .
– Output (JOINSTART, sid , jsid ,Mi,Hj) to A and wait for input (JOINSTART, sid , jsid) from A.
– Create a join session record 〈jsid ,Mi,Hj ,⊥, status〉 with status ← delivered .
– Abort if I is honest and a record 〈Mi, ∗, ∗〉 ∈ Members already exists.
– Output (JOINPROCEED, sid , jsid ,Mi) to I.

3. I Join Proceed. On input (JOINPROCEED, sid , jsid , attrs) from I, with attrs ∈ A1 × . . .× AL.
– Output (JOINCOMPLETE, sid , jsid) to A and wait for input (JOINCOMPLETE, sid , jsid , τ) from A.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = delivered to complete.
– If Hj is honest, set τ ← ⊥.
– Else, verify that the provided tracing trapdoor τ is eligible by checking CheckTtdCorrupt(τ) = 1.
– Insert 〈Mi,Hj , τ, attrs〉 into Members and output (JOINED, sid , jsid , attrs) to Hj .

Sign

4. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) from Hj with p ∈ P.
– If Hj is honest and no entry 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members, abort.
– If Hj is corrupt, set σ ← ⊥. If Hj is honest, generate the signature for a fresh or established key:
• Retrieve (gsk , τ) from 〈Mi,Hj , bsn, gsk , τ〉 ∈ DomainKeys. If no such entry exists, set (gsk , τ) ← ukgen(), check

CheckTtdHonest(τ) = 1, and store 〈Mi,Hj , bsn, gsk , τ〉 in DomainKeys.
• Compute signature σ ← sig(gsk ,m, bsn, p, SRL), check ver(σ,m, bsn, p, SRL) = 1.
• Check identify(σ,m, bsn, τ) = 1 and that there is no (M′,H′) 6= (Mi,Hj) with tracing trapdoor τ ′ registered in Members

or DomainKeys with identify(σ,m, bsn, τ ′) = 1.
– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p, SRL, σ, status〉 with status ← request .
– Output (SIGNPROCEED, sid , ssid ,m) to Mi when it is honest, and (SIGNPROCEED, sid , ssid ,m, bsn, SRL, σ) when Mi is

corrupt.
5. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, p, SRL, σ, status〉 with status = request and update it to status ← complete.
– If I is honest, check that 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members.
– For every (σ′,m′, bsn ′) ∈ SRL, find all (τi,M′i,H′j) from 〈M′i,H′j , τi, ∗〉 ∈ Members and 〈M′i,H′j , τi〉 ∈ DomainKeys where

identify(σ′,m′, bsn ′, ∗, τi) = 1.
• Check that there are no two distinct τ values matching σ′.
• Check that no pair (τi,Mi,Hj) was found.

– Store 〈σ,m, bsn,Mi,Hj , p, SRL〉 in Signed and output (SIGNATURE, sid , ssid , σ) to Hj .

Verify & Link

6. Verify. On input (VERIFY, sid ,m, bsn, σ, p, RL, SRL) from some party V.
– Retrieve all tuples (τi,Mi,Hj) from 〈Mi,Hj , τi, ∗〉 ∈ Members and 〈Mi,Hj , ∗, ∗, τi〉 ∈ DomainKeys where

identify(σ,m, bsn, τi) = 1. Set f ← 0 if at least one of the following conditions hold:
• More than one τi was found.
• I is honest and no pair (τi,Mi,Hj) was found for which an entry 〈Mi,Hj , ∗, attrs〉 ∈ Members exists with p(attrs) = 1.
• There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn, p, SRL).
– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

7. Link. On input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn) from a party V.
– Output ⊥ to V if at least one signature (σ,m, bsn, p, SRL) or (σ′,m′, bsn, p′, SRL′) is not valid (verified via the verify interface

with RL = ∅).
– Set f ← link(σ,m, σ′,m′, bsn).
– Output (LINK, sid , f) to V.

Fig. 26. F for Game 12
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Setup
Unchanged.
Join
Unchanged.
Sign
Honest H, M
S not notice this signing taking place.
Honest H, Corrupt M

– S receives (SIGNPROCEED, sid , ssid ,m, bsn, SRL, σ) from F as Mi is corrupt.
• Give “Hj” input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL). After calling TPM.Commit, “Hj” will receive n̄t ← H(“nonce”,nt), where

the simulator knows nt as it simulates the random oracle. It sets nh such that nt⊕nh equals the nonce n from σ. It performs
the same procedure for every nonce in πSRL,i. Wait for output (SIGNATURE, sid , ssid , σ) from “Hj”.

• S sends (SIGNPROCEED, sid , ssid) on Mi’s behalf to F.

Honest M, Corrupt H

– S notices this signing session as “Mi” outputs (SIGNPROCEED, sid , ssid ,m).
• Note that S must make a signing query on Hj ’s behalf but does not know the bsn, p, and SRL of this signing session. If I is

corrupt, F does not make any checks on those values, so we can use arbitrary values. If I is honest, F does perform checks
on bsn, so we must find the correct value. The host has made a TPM.Hash query, and for this signing session to produce a
valid signature, the message to be hashed has structure m, (mh, y1, ĝ

δ, {(bi, b′i, b′′i )}, t1, y2, bsnL, t2, y3, t3)). For all basenames
that “Mi” performed TPM.Commit with, it checks y2 = HG1(1||bsn)gsk , where it knows gsk from the join protocol. If such a
bsn is found, we have the correct basename, and if no such bsn is found, this session will not yield a valid signature and we
can continue to use a dummy bsn.

• S sends (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) on Hj ’s behalf to F.
– S receives (SIGNATURE, sid , ssid , σ) from F as “Hj” is corrupt.
• S gives “Mi” input (SIGNPROCEED, sid , ssid).

Verify & Link
Nothing to simulate.

Fig. 27. Simulator for Game 12
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1. Issuer Setup. On input (SETUP, sid) from issuer I.
– Verify that sid = (I, sid′).
– Output (SETUP, sid) to A and wait for input (ALG, sid , sig, ver, link, identify, ukgen) from A.
– Check that ver, link, and identify are deterministic.
– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join

2. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .
– Output (JOINSTART, sid , jsid ,Mi,Hj) to A and wait for input (JOINSTART, sid , jsid) from A.
– Create a join session record 〈jsid ,Mi,Hj ,⊥, status〉 with status ← delivered .
– Abort if I is honest and a record 〈Mi, ∗, ∗〉 ∈ Members already exists.
– Output (JOINPROCEED, sid , jsid ,Mi) to I.

3. I Join Proceed. On input (JOINPROCEED, sid , jsid , attrs) from I, with attrs ∈ A1 × . . .× AL.
– Output (JOINCOMPLETE, sid , jsid) to A and wait for input (JOINCOMPLETE, sid , jsid , τ) from A.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = delivered to complete.
– If Hj is honest, set τ ← ⊥.
– Else, verify that the provided tracing trapdoor τ is eligible by checking CheckTtdCorrupt(τ) = 1.
– Insert 〈Mi,Hj , τ, attrs〉 into Members and output (JOINED, sid , jsid , attrs) to Hj .

Sign

4. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) from Hj with p ∈ P.
– If Hj is honest and no entry 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members, abort.
– If Hj is corrupt, set σ ← ⊥. If Hj is honest, generate the signature for a fresh or established key:
• Retrieve (gsk , τ) from 〈Mi,Hj , bsn, gsk , τ〉 ∈ DomainKeys. If no such entry exists, set (gsk , τ) ← ukgen(), check

CheckTtdHonest(τ) = 1, and store 〈Mi,Hj , bsn, gsk , τ〉 in DomainKeys.
• Compute signature σ ← sig(gsk ,m, bsn, p, SRL), check ver(σ,m, bsn, p, SRL) = 1.
• Check identify(σ,m, bsn, τ) = 1 and that there is no (M′,H′) 6= (Mi,Hj) with tracing trapdoor τ ′ registered in Members

or DomainKeys with identify(σ,m, bsn, τ ′) = 1.
– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p, SRL, σ, status〉 with status ← request .
– Output (SIGNPROCEED, sid , ssid ,m) to Mi when it is honest, and (SIGNPROCEED, sid , ssid ,m, bsn, SRL, σ) when Mi is

corrupt.
5. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, p, SRL, σ, status〉 with status = request and update it to status ← complete.
– If I is honest, check that 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members.
– For every (σ′,m′, bsn ′) ∈ SRL, find all (τi,M′i,H′j) from 〈M′i,H′j , τi, ∗〉 ∈ Members and 〈M′i,H′j , τi〉 ∈ DomainKeys where

identify(σ′,m′, bsn ′, ∗, τi) = 1.
• Check that there are no two distinct τ values matching σ′.
• Check that no pair (τi,Mi,Hj) was found.

– Store 〈σ,m, bsn,Mi,Hj , p, SRL〉 in Signed and output (SIGNATURE, sid , ssid , σ) to Hj .

Verify & Link

6. Verify. On input (VERIFY, sid ,m, bsn, σ, p, RL, SRL) from some party V.
– Retrieve all tuples (τi,Mi,Hj) from 〈Mi,Hj , τi, ∗〉 ∈ Members and 〈Mi,Hj , ∗, ∗, τi〉 ∈ DomainKeys where

identify(σ,m, bsn, τi) = 1. Set f ← 0 if at least one of the following conditions hold:
• More than one τi was found.
• I is honest and no pair (τi,Mi,Hj) was found for which an entry 〈Mi,Hj , ∗, attrs〉 ∈ Members exists with p(attrs) = 1.
• Mi is honest but no entry 〈∗,m, bsn,Mi,Hj , ∗, ∗〉 ∈ Signed exists.
• There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn, p, SRL).
– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

7. Link. On input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn) from a party V.
– Output ⊥ to V if at least one signature (σ,m, bsn, p, SRL) or (σ′,m′, bsn, p′, SRL′) is not valid (verified via the verify interface

with RL = ∅).
– Set f ← link(σ,m, σ′,m′, bsn).
– Output (LINK, sid , f) to V.

Fig. 28. F for Game 13
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Setup
Unchanged.
Join
Unchanged.
Sign
Honest H, M
S not notice this signing taking place.
Honest H, Corrupt M

– S receives (SIGNPROCEED, sid , ssid ,m, bsn, SRL, σ) from F as Mi is corrupt.
• Give “Hj” input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL). After calling TPM.Commit, “Hj” will receive n̄t ← H(“nonce”,nt), where

the simulator knows nt as it simulates the random oracle. It sets nh such that nt⊕nh equals the nonce n from σ. It performs
the same procedure for every nonce in πSRL,i. Wait for output (SIGNATURE, sid , ssid , σ) from “Hj”.

• S sends (SIGNPROCEED, sid , ssid) on Mi’s behalf to F.

Honest M, Corrupt H

– S notices this signing session as “Mi” outputs (SIGNPROCEED, sid , ssid ,m).
• Note that S must make a signing query on Hj ’s behalf but does not know the bsn, p, and SRL of this signing session. If I is

corrupt, F does not make any checks on those values, so we can use arbitrary values. If I is honest, F does perform checks
on bsn, so we must find the correct value. The host has made a TPM.Hash query, and for this signing session to produce a
valid signature, the message to be hashed has structure m, (mh, y1, ĝ

δ, {(bi, b′i, b′′i )}, t1, y2, bsnL, t2, y3, t3)). For all basenames
that “Mi” performed TPM.Commit with, it checks y2 = HG1(1||bsn)gsk , where it knows gsk from the join protocol. If such a
bsn is found, we have the correct basename, and if no such bsn is found, this session will not yield a valid signature and we
can continue to use a dummy bsn.

• S sends (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) on Hj ’s behalf to F.
– S receives (SIGNATURE, sid , ssid , σ) from F as “Hj” is corrupt.
• S gives “Mi” input (SIGNPROCEED, sid , ssid).

Verify & Link
Nothing to simulate.

Fig. 29. Simulator for Game 13
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1. Issuer Setup. On input (SETUP, sid) from issuer I.
– Verify that sid = (I, sid′).
– Output (SETUP, sid) to A and wait for input (ALG, sid , sig, ver, link, identify, ukgen) from A.
– Check that ver, link, and identify are deterministic.
– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join

2. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .
– Output (JOINSTART, sid , jsid ,Mi,Hj) to A and wait for input (JOINSTART, sid , jsid) from A.
– Create a join session record 〈jsid ,Mi,Hj ,⊥, status〉 with status ← delivered .
– Abort if I is honest and a record 〈Mi, ∗, ∗〉 ∈ Members already exists.
– Output (JOINPROCEED, sid , jsid ,Mi) to I.

3. I Join Proceed. On input (JOINPROCEED, sid , jsid , attrs) from I, with attrs ∈ A1 × . . .× AL.
– Output (JOINCOMPLETE, sid , jsid) to A and wait for input (JOINCOMPLETE, sid , jsid , τ) from A.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = delivered to complete.
– If Hj is honest, set τ ← ⊥.
– Else, verify that the provided tracing trapdoor τ is eligible by checking CheckTtdCorrupt(τ) = 1.
– Insert 〈Mi,Hj , τ, attrs〉 into Members and output (JOINED, sid , jsid , attrs) to Hj .

Sign

4. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) from Hj with p ∈ P.
– If Hj is honest and no entry 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members, abort.
– If Hj is corrupt, set σ ← ⊥. If Hj is honest, generate the signature for a fresh or established key:
• Retrieve (gsk , τ) from 〈Mi,Hj , bsn, gsk , τ〉 ∈ DomainKeys. If no such entry exists, set (gsk , τ) ← ukgen(), check

CheckTtdHonest(τ) = 1, and store 〈Mi,Hj , bsn, gsk , τ〉 in DomainKeys.
• Compute signature σ ← sig(gsk ,m, bsn, p, SRL), check ver(σ,m, bsn, p, SRL) = 1.
• Check identify(σ,m, bsn, τ) = 1 and that there is no (M′,H′) 6= (Mi,Hj) with tracing trapdoor τ ′ registered in Members

or DomainKeys with identify(σ,m, bsn, τ ′) = 1.
– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p, SRL, σ, status〉 with status ← request .
– Output (SIGNPROCEED, sid , ssid ,m) to Mi when it is honest, and (SIGNPROCEED, sid , ssid ,m, bsn, SRL, σ) when Mi is

corrupt.
5. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, p, SRL, σ, status〉 with status = request and update it to status ← complete.
– If I is honest, check that 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members.
– For every (σ′,m′, bsn ′) ∈ SRL, find all (τi,M′i,H′j) from 〈M′i,H′j , τi, ∗〉 ∈ Members and 〈M′i,H′j , τi〉 ∈ DomainKeys where

identify(σ′,m′, bsn ′, ∗, τi) = 1.
• Check that there are no two distinct τ values matching σ′.
• Check that no pair (τi,Mi,Hj) was found.

– Store 〈σ,m, bsn,Mi,Hj , p, SRL〉 in Signed and output (SIGNATURE, sid , ssid , σ) to Hj .

Verify & Link

6. Verify. On input (VERIFY, sid ,m, bsn, σ, p, RL, SRL) from some party V.
– Retrieve all tuples (τi,Mi,Hj) from 〈Mi,Hj , τi, ∗〉 ∈ Members and 〈Mi,Hj , ∗, ∗, τi〉 ∈ DomainKeys where

identify(σ,m, bsn, τi) = 1. Set f ← 0 if at least one of the following conditions hold:
• More than one τi was found.
• I is honest and no pair (τi,Mi,Hj) was found for which an entry 〈Mi,Hj , ∗, attrs〉 ∈ Members exists with p(attrs) = 1.
• Mi is honest but no entry 〈∗,m, bsn,Mi,Hj , ∗, ∗〉 ∈ Signed exists.
• Hj is honest but no entry 〈∗,m, bsn,Mi,Hj , p, SRL〉 ∈ Signed exists.
• There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn, p, SRL).
– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

7. Link. On input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn) from a party V.
– Output ⊥ to V if at least one signature (σ,m, bsn, p, SRL) or (σ′,m′, bsn, p′, SRL′) is not valid (verified via the verify interface

with RL = ∅).
– Set f ← link(σ,m, σ′,m′, bsn).
– Output (LINK, sid , f) to V.

Fig. 30. F for Game 14
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Setup
Unchanged.
Join
Unchanged.
Sign
Honest H, M
S not notice this signing taking place.
Honest H, Corrupt M

– S receives (SIGNPROCEED, sid , ssid ,m, bsn, SRL, σ) from F as Mi is corrupt.
• Give “Hj” input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL). After calling TPM.Commit, “Hj” will receive n̄t ← H(“nonce”,nt), where

the simulator knows nt as it simulates the random oracle. It sets nh such that nt⊕nh equals the nonce n from σ. It performs
the same procedure for every nonce in πSRL,i. Wait for output (SIGNATURE, sid , ssid , σ) from “Hj”.

• S sends (SIGNPROCEED, sid , ssid) on Mi’s behalf to F.

Honest M, Corrupt H

– S notices this signing session as “Mi” outputs (SIGNPROCEED, sid , ssid ,m).
• Note that S must make a signing query on Hj ’s behalf but does not know the bsn, p, and SRL of this signing session. If I is

corrupt, F does not make any checks on those values, so we can use arbitrary values. If I is honest, F does perform checks
on bsn, so we must find the correct value. The host has made a TPM.Hash query, and for this signing session to produce a
valid signature, the message to be hashed has structure m, (mh, y1, ĝ

δ, {(bi, b′i, b′′i )}, t1, y2, bsnL, t2, y3, t3)). For all basenames
that “Mi” performed TPM.Commit with, it checks y2 = HG1(1||bsn)gsk , where it knows gsk from the join protocol. If such a
bsn is found, we have the correct basename, and if no such bsn is found, this session will not yield a valid signature and we
can continue to use a dummy bsn.

• S sends (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) on Hj ’s behalf to F.
– S receives (SIGNATURE, sid , ssid , σ) from F as “Hj” is corrupt.
• S gives “Mi” input (SIGNPROCEED, sid , ssid).

Verify & Link
Nothing to simulate.

Fig. 31. Simulator for Game 14
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1. Issuer Setup. On input (SETUP, sid) from issuer I.
– Verify that sid = (I, sid′).
– Output (SETUP, sid) to A and wait for input (ALG, sid , sig, ver, link, identify, ukgen) from A.
– Check that ver, link, and identify are deterministic.
– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join

2. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .
– Output (JOINSTART, sid , jsid ,Mi,Hj) to A and wait for input (JOINSTART, sid , jsid) from A.
– Create a join session record 〈jsid ,Mi,Hj ,⊥, status〉 with status ← delivered .
– Abort if I is honest and a record 〈Mi, ∗, ∗〉 ∈ Members already exists.
– Output (JOINPROCEED, sid , jsid ,Mi) to I.

3. I Join Proceed. On input (JOINPROCEED, sid , jsid , attrs) from I, with attrs ∈ A1 × . . .× AL.
– Output (JOINCOMPLETE, sid , jsid) to A and wait for input (JOINCOMPLETE, sid , jsid , τ) from A.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = delivered to complete.
– If Hj is honest, set τ ← ⊥.
– Else, verify that the provided tracing trapdoor τ is eligible by checking CheckTtdCorrupt(τ) = 1.
– Insert 〈Mi,Hj , τ, attrs〉 into Members and output (JOINED, sid , jsid , attrs) to Hj .

Sign

4. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) from Hj with p ∈ P.
– If Hj is honest and no entry 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members, abort.
– If Hj is corrupt, set σ ← ⊥. If Hj is honest, generate the signature for a fresh or established key:
• Retrieve (gsk , τ) from 〈Mi,Hj , bsn, gsk , τ〉 ∈ DomainKeys. If no such entry exists, set (gsk , τ) ← ukgen(), check

CheckTtdHonest(τ) = 1, and store 〈Mi,Hj , bsn, gsk , τ〉 in DomainKeys.
• Compute signature σ ← sig(gsk ,m, bsn, p, SRL), check ver(σ,m, bsn, p, SRL) = 1.
• Check identify(σ,m, bsn, τ) = 1 and that there is no (M′,H′) 6= (Mi,Hj) with tracing trapdoor τ ′ registered in Members

or DomainKeys with identify(σ,m, bsn, τ ′) = 1.
– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p, SRL, σ, status〉 with status ← request .
– Output (SIGNPROCEED, sid , ssid ,m, bsn) to Mi when it is honest, and (SIGNPROCEED, sid , ssid ,m, bsn, SRL, σ) when Mi

is corrupt.
– Output (FORWARD, (SIGN, sid , ssid ,Mi,m, bsn, p, SRL),Hj) to S.

5. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, p, SRL, σ, status〉 with status = request and update it to status ← complete.
– If I is honest, check that 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members.
– For every (σ′,m′, bsn ′) ∈ SRL, find all (τi,M′i,H′j) from 〈M′i,H′j , τi, ∗〉 ∈ Members and 〈M′i,H′j , τi〉 ∈ DomainKeys where

identify(σ′,m′, bsn ′, ∗, τi) = 1.
• Check that there are no two distinct τ values matching σ′.
• Check that no pair (τi,Mi,Hj) was found.

– Store 〈σ,m, bsn,Mi,Hj , p, SRL〉 in Signed and output (SIGNATURE, sid , ssid , σ) to Hj .

Verify & Link

6. Verify. On input (VERIFY, sid ,m, bsn, σ, p, RL, SRL) from some party V.
– Retrieve all tuples (τi,Mi,Hj) from 〈Mi,Hj , τi, ∗〉 ∈ Members and 〈Mi,Hj , ∗, ∗, τi〉 ∈ DomainKeys where

identify(σ,m, bsn, τi) = 1. Set f ← 0 if at least one of the following conditions hold:
• More than one τi was found.
• I is honest and no pair (τi,Mi,Hj) was found for which an entry 〈Mi,Hj , ∗, attrs〉 ∈ Members exists with p(attrs) = 1.
• Mi is honest but no entry 〈∗,m, bsn,Mi,Hj , ∗, ∗〉 ∈ Signed exists.
• Hj is honest but no entry 〈∗,m, bsn,Mi,Hj , p, SRL〉 ∈ Signed exists.
• There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1 and no pair (τi,Mi,Hj) for an honest Hj was found.

– If f 6= 0, set f ← ver(σ,m, bsn, p, SRL).
– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

7. Link. On input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn) from a party V.
– Output ⊥ to V if at least one signature (σ,m, bsn, p, SRL) or (σ′,m′, bsn, p′, SRL′) is not valid (verified via the verify interface

with RL = ∅).
– Set f ← link(σ,m, σ′,m′, bsn).
– Output (LINK, sid , f) to V.

Fig. 32. F for Game 15
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Setup
Unchanged.
Join
Unchanged.
Sign
Honest H, M
S not notice this signing taking place.
Honest H, Corrupt M

– S receives (SIGNPROCEED, sid , ssid ,m, bsn, SRL, σ) from F as Mi is corrupt.
• Give “Hj” input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL). After calling TPM.Commit, “Hj” will receive n̄t ← H(“nonce”,nt), where

the simulator knows nt as it simulates the random oracle. It sets nh such that nt⊕nh equals the nonce n from σ. It performs
the same procedure for every nonce in πSRL,i. Wait for output (SIGNATURE, sid , ssid , σ) from “Hj”.

• S sends (SIGNPROCEED, sid , ssid) on Mi’s behalf to F.

Honest M, Corrupt H

– S notices this signing session as “Mi” outputs (SIGNPROCEED, sid , ssid ,m).
• Note that S must make a signing query on Hj ’s behalf but does not know the bsn, p, and SRL of this signing session. If I is

corrupt, F does not make any checks on those values, so we can use arbitrary values. If I is honest, F does perform checks
on bsn, so we must find the correct value. The host has made a TPM.Hash query, and for this signing session to produce a
valid signature, the message to be hashed has structure m, (mh, y1, ĝ

δ, {(bi, b′i, b′′i )}, t1, y2, bsnL, t2, y3, t3)). For all basenames
that “Mi” performed TPM.Commit with, it checks y2 = HG1(1||bsn)gsk , where it knows gsk from the join protocol. If such a
bsn is found, we have the correct basename, and if no such bsn is found, this session will not yield a valid signature and we
can continue to use a dummy bsn.

• S sends (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) on Hj ’s behalf to F.
– S receives (SIGNATURE, sid , ssid , σ) from F as “Hj” is corrupt.
• S gives “Mi” input (SIGNPROCEED, sid , ssid).

Verify & Link
Nothing to simulate.

Fig. 33. Simulator for Game 15
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1. Issuer Setup. On input (SETUP, sid) from issuer I.
– Verify that sid = (I, sid′).
– Output (SETUP, sid) to A and wait for input (ALG, sid , sig, ver, link, identify, ukgen) from A.
– Check that ver, link, and identify are deterministic.
– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join

2. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .
– Output (JOINSTART, sid , jsid ,Mi,Hj) to A and wait for input (JOINSTART, sid , jsid) from A.
– Create a join session record 〈jsid ,Mi,Hj ,⊥, status〉 with status ← delivered .
– Abort if I is honest and a record 〈Mi, ∗, ∗〉 ∈ Members already exists.
– Output (JOINPROCEED, sid , jsid ,Mi) to I.

3. I Join Proceed. On input (JOINPROCEED, sid , jsid , attrs) from I, with attrs ∈ A1 × . . .× AL.
– Output (JOINCOMPLETE, sid , jsid) to A and wait for input (JOINCOMPLETE, sid , jsid , τ) from A.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = delivered to complete.
– If Hj is honest, set τ ← ⊥.
– Else, verify that the provided tracing trapdoor τ is eligible by checking CheckTtdCorrupt(τ) = 1.
– Insert 〈Mi,Hj , τ, attrs〉 into Members and output (JOINED, sid , jsid , attrs) to Hj .

Sign

4. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) from Hj with p ∈ P.
– If Hj is honest and no entry 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members, abort.
– If Hj is corrupt, set σ ← ⊥. If Hj is honest, generate the signature for a fresh or established key:
• Retrieve (gsk , τ) from 〈Mi,Hj , bsn, gsk , τ〉 ∈ DomainKeys. If no such entry exists, set (gsk , τ) ← ukgen(), check

CheckTtdHonest(τ) = 1, and store 〈Mi,Hj , bsn, gsk , τ〉 in DomainKeys.
• Compute signature σ ← sig(gsk ,m, bsn, p, SRL), check ver(σ,m, bsn, p, SRL) = 1.
• Check identify(σ,m, bsn, τ) = 1 and that there is no (M′,H′) 6= (Mi,Hj) with tracing trapdoor τ ′ registered in Members

or DomainKeys with identify(σ,m, bsn, τ ′) = 1.
– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p, SRL, σ, status〉 with status ← request .
– Output (SIGNPROCEED, sid , ssid ,m, bsn) to Mi when it is honest, and (SIGNPROCEED, sid , ssid ,m, bsn, SRL, σ) when Mi

is corrupt.
– Output (FORWARD, (SIGN, sid , ssid ,Mi,m, bsn, p, SRL),Hj) to S.

5. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, p, SRL, σ, status〉 with status = request and update it to status ← complete.
– If I is honest, check that 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members.
– For every (σ′,m′, bsn ′) ∈ SRL, find all (τi,M′i,H′j) from 〈M′i,H′j , τi, ∗〉 ∈ Members and 〈M′i,H′j , τi〉 ∈ DomainKeys where

identify(σ′,m′, bsn ′, ∗, τi) = 1.
• Check that there are no two distinct τ values matching σ′.
• Check that no pair (τi,Mi,Hj) was found.

– Store 〈σ,m, bsn,Mi,Hj , p, SRL〉 in Signed and output (SIGNATURE, sid , ssid , σ) to Hj .

Verify & Link

6. Verify. On input (VERIFY, sid ,m, bsn, σ, p, RL, SRL) from some party V.
– Retrieve all tuples (τi,Mi,Hj) from 〈Mi,Hj , τi, ∗〉 ∈ Members and 〈Mi,Hj , ∗, ∗, τi〉 ∈ DomainKeys where

identify(σ,m, bsn, τi) = 1. Set f ← 0 if at least one of the following conditions hold:
• More than one τi was found.
• I is honest and no pair (τi,Mi,Hj) was found for which an entry 〈Mi,Hj , ∗, attrs〉 ∈ Members exists with p(attrs) = 1.
• Mi is honest but no entry 〈∗,m, bsn,Mi,Hj , ∗, ∗〉 ∈ Signed exists.
• Hj is honest but no entry 〈∗,m, bsn,Mi,Hj , p, SRL〉 ∈ Signed exists.
• There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1 and no pair (τi,Mi,Hj) for an honest Hj was found.
• For some matching τi and (σ′,m′, bsn ′) ∈ SRL, identify(σ′,m′, bsn ′, τi) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn, p, SRL).
– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

7. Link. On input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn) from a party V.
– Output ⊥ to V if at least one signature (σ,m, bsn, p, SRL) or (σ′,m′, bsn, p′, SRL′) is not valid (verified via the verify interface

with RL = ∅).
– Set f ← link(σ,m, σ′,m′, bsn).
– Output (LINK, sid , f) to V.

Fig. 34. F for Game 16
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Setup
Unchanged.
Join
Unchanged.
Sign
Honest H, M
S not notice this signing taking place.
Honest H, Corrupt M

– S receives (SIGNPROCEED, sid , ssid ,m, bsn, SRL, σ) from F as Mi is corrupt.
• Give “Hj” input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL). After calling TPM.Commit, “Hj” will receive n̄t ← H(“nonce”,nt), where

the simulator knows nt as it simulates the random oracle. It sets nh such that nt⊕nh equals the nonce n from σ. It performs
the same procedure for every nonce in πSRL,i. Wait for output (SIGNATURE, sid , ssid , σ) from “Hj”.

• S sends (SIGNPROCEED, sid , ssid) on Mi’s behalf to F.

Honest M, Corrupt H

– S notices this signing session as “Mi” outputs (SIGNPROCEED, sid , ssid ,m).
• Note that S must make a signing query on Hj ’s behalf but does not know the bsn, p, and SRL of this signing session. If I is

corrupt, F does not make any checks on those values, so we can use arbitrary values. If I is honest, F does perform checks
on bsn, so we must find the correct value. The host has made a TPM.Hash query, and for this signing session to produce a
valid signature, the message to be hashed has structure m, (mh, y1, ĝ

δ, {(bi, b′i, b′′i )}, t1, y2, bsnL, t2, y3, t3)). For all basenames
that “Mi” performed TPM.Commit with, it checks y2 = HG1(1||bsn)gsk , where it knows gsk from the join protocol. If such a
bsn is found, we have the correct basename, and if no such bsn is found, this session will not yield a valid signature and we
can continue to use a dummy bsn.

• S sends (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) on Hj ’s behalf to F.
– S receives (SIGNATURE, sid , ssid , σ) from F as “Hj” is corrupt.
• S gives “Mi” input (SIGNPROCEED, sid , ssid).

Verify & Link
Nothing to simulate.

Fig. 35. Simulator for Game 16
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1. Issuer Setup. On input (SETUP, sid) from issuer I.
– Verify that sid = (I, sid′).
– Output (SETUP, sid) to A and wait for input (ALG, sid , sig, ver, link, identify, ukgen) from A.
– Check that ver, link, and identify are deterministic.
– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join

2. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .
– Output (JOINSTART, sid , jsid ,Mi,Hj) to A and wait for input (JOINSTART, sid , jsid) from A.
– Create a join session record 〈jsid ,Mi,Hj ,⊥, status〉 with status ← delivered .
– Abort if I is honest and a record 〈Mi, ∗, ∗〉 ∈ Members already exists.
– Output (JOINPROCEED, sid , jsid ,Mi) to I.

3. I Join Proceed. On input (JOINPROCEED, sid , jsid , attrs) from I, with attrs ∈ A1 × . . .× AL.
– Output (JOINCOMPLETE, sid , jsid) to A and wait for input (JOINCOMPLETE, sid , jsid , τ) from A.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = delivered to complete.
– If Hj is honest, set τ ← ⊥.
– Else, verify that the provided tracing trapdoor τ is eligible by checking CheckTtdCorrupt(τ) = 1.
– Insert 〈Mi,Hj , τ, attrs〉 into Members and output (JOINED, sid , jsid , attrs) to Hj .

Sign

4. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) from Hj with p ∈ P.
– If Hj is honest and no entry 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members, abort.
– If Hj is corrupt, set σ ← ⊥. If Hj is honest, generate the signature for a fresh or established key:
• Retrieve (gsk , τ) from 〈Mi,Hj , bsn, gsk , τ〉 ∈ DomainKeys. If no such entry exists, set (gsk , τ) ← ukgen(), check

CheckTtdHonest(τ) = 1, and store 〈Mi,Hj , bsn, gsk , τ〉 in DomainKeys.
• Compute signature σ ← sig(gsk ,m, bsn, p, SRL), check ver(σ,m, bsn, p, SRL) = 1.
• Check identify(σ,m, bsn, τ) = 1 and that there is no (M′,H′) 6= (Mi,Hj) with tracing trapdoor τ ′ registered in Members

or DomainKeys with identify(σ,m, bsn, τ ′) = 1.
– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p, SRL, σ, status〉 with status ← request .
– Output (SIGNPROCEED, sid , ssid ,m, bsn) to Mi when it is honest, and (SIGNPROCEED, sid , ssid ,m, bsn, SRL, σ) when Mi

is corrupt.
– Output (FORWARD, (SIGN, sid , ssid ,Mi,m, bsn, p, SRL),Hj) to S.

5. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, p, SRL, σ, status〉 with status = request and update it to status ← complete.
– If I is honest, check that 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members.
– For every (σ′,m′, bsn ′) ∈ SRL, find all (τi,M′i,H′j) from 〈M′i,H′j , τi, ∗〉 ∈ Members and 〈M′i,H′j , τi〉 ∈ DomainKeys where

identify(σ′,m′, bsn ′, ∗, τi) = 1.
• Check that there are no two distinct τ values matching σ′.
• Check that no pair (τi,Mi,Hj) was found.

– Store 〈σ,m, bsn,Mi,Hj , p, SRL〉 in Signed and output (SIGNATURE, sid , ssid , σ) to Hj .

Verify & Link

6. Verify. On input (VERIFY, sid ,m, bsn, σ, p, RL, SRL) from some party V.
– Retrieve all tuples (τi,Mi,Hj) from 〈Mi,Hj , τi, ∗〉 ∈ Members and 〈Mi,Hj , ∗, ∗, τi〉 ∈ DomainKeys where

identify(σ,m, bsn, τi) = 1. Set f ← 0 if at least one of the following conditions hold:
• More than one τi was found.
• I is honest and no pair (τi,Mi,Hj) was found for which an entry 〈Mi,Hj , ∗, attrs〉 ∈ Members exists with p(attrs) = 1.
• Mi is honest but no entry 〈∗,m, bsn,Mi,Hj , ∗, ∗〉 ∈ Signed exists.
• Hj is honest but no entry 〈∗,m, bsn,Mi,Hj , p, SRL〉 ∈ Signed exists.
• There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1 and no pair (τi,Mi,Hj) for an honest Hj was found.
• For some matching τi and (σ′,m′, bsn ′) ∈ SRL, identify(σ′,m′, bsn ′, τi) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn, p, SRL).
– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

7. Link. On input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn) from a party V.
– Output ⊥ to V if at least one signature (σ,m, bsn, p, SRL) or (σ′,m′, bsn, p′, SRL′) is not valid (verified via the verify interface

with RL = ∅).
– For each τi in Members and DomainKeys compute bi ← identify(σ,m, bsn, τi) and b′i ← identify(σ′,m′, bsn, τi) and do the

following:
• Set f ← 0 if bi 6= b′i for some i.
• Set f ← 1 if bi = b′i = 1 for some i.

– If f is not defined yet, set f ← link(σ,m, σ′,m′, bsn).
– Output (LINK, sid , f) to V.

Fig. 36. F for Game 17
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Setup
Unchanged.
Join
Unchanged.
Sign
Honest H, M
S not notice this signing taking place.
Honest H, Corrupt M

– S receives (SIGNPROCEED, sid , ssid ,m, bsn, SRL, σ) from F as Mi is corrupt.
• Give “Hj” input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL). After calling TPM.Commit, “Hj” will receive n̄t ← H(“nonce”,nt), where

the simulator knows nt as it simulates the random oracle. It sets nh such that nt⊕nh equals the nonce n from σ. It performs
the same procedure for every nonce in πSRL,i. Wait for output (SIGNATURE, sid , ssid , σ) from “Hj”.

• S sends (SIGNPROCEED, sid , ssid) on Mi’s behalf to F.

Honest M, Corrupt H

– S notices this signing session as “Mi” outputs (SIGNPROCEED, sid , ssid ,m).
• Note that S must make a signing query on Hj ’s behalf but does not know the bsn, p, and SRL of this signing session. If I is

corrupt, F does not make any checks on those values, so we can use arbitrary values. If I is honest, F does perform checks
on bsn, so we must find the correct value. The host has made a TPM.Hash query, and for this signing session to produce a
valid signature, the message to be hashed has structure m, (mh, y1, ĝ

δ, {(bi, b′i, b′′i )}, t1, y2, bsnL, t2, y3, t3)). For all basenames
that “Mi” performed TPM.Commit with, it checks y2 = HG1(1||bsn)gsk , where it knows gsk from the join protocol. If such a
bsn is found, we have the correct basename, and if no such bsn is found, this session will not yield a valid signature and we
can continue to use a dummy bsn.

• S sends (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) on Hj ’s behalf to F.
– S receives (SIGNATURE, sid , ssid , σ) from F as “Hj” is corrupt.
• S gives “Mi” input (SIGNPROCEED, sid , ssid).

Verify & Link
Nothing to simulate.

Fig. 37. Simulator for Game 17
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We now show that every game hop is indistinguishable from the previous. Note that although we separate
F and S, in reductions we can consider them to be one entity, as this does not affect A and E .

Game 1: This is the real world.

Game 2: We let the simulator S receive all inputs and generate all outputs. It does so by simulating all
honest parties honestly. It simulates the oracles honestly, except that it chooses encryption keys in the crs
of which it knows corresponding secret keys, allowing it to decrypt messages encrypted to the crs. Clearly,
this is equal to the real world.

Game 3: We now start creating a functionality F that receives inputs from honest parties and generates
the outputs for honest parties. It works together with a simulator S. In this game, we simply let F forward
all inputs to S, who acts as before. When S would generate an output, it first forwards it to F, who then
outputs it. This game hop simply restructures Game 2, we have Game 3 = Game 2.

Game 4: F now handles the setup queries, and lets S enter algorithms that F will store. F checks the
structure of sid , and aborts if it does not have the expected structure. This does not change the view of E ,
as I in the protocol performs the same check, giving Game 4 = Game 3.

Game 5: F now handles the verify and link queries using the algorithsm that S defined in Game 4. In
Game 4, S defined the ver algorithm as the real world with the private key revocation check ommitted. As
F performs this check separately. The link algorithm is equal to the real world algorithm, showing that using
these algorithms does not change the verification or linking outcome, so Game 5 = Game 4.

Game 6: We now let F handle the join queries. S receives enough information from F to correctly simulate
the real world protocol. Only when a join query with honest issuer and corrupt TPM and host takes place,
S misses some information. It must make a join query with F on the host’s behalf, but it does not know the
identity of the host. However, it is sufficient to choose an arbitrary corrupt host. This results in a different
host registered in Members, but Fpdaa+ will not use this information when the registered host is corrupt.
Since S can always simulate the real world protocol, we have Game 6 = Game 5.

Game 7: F now handles the sign queries. There is no network traffic in the signing protocol (as we assume
a perfectly secure channel between the TPM and host), so the simulation only has to worry about inputs
and outputs. If both the host and TPM are honest, the adversary would not be activated in the real world,
and therefore S does not have to simulate anything. If the TPM is corrupt but the host is honest, the
adversary runs the TPM part of the signing protocol. The simulator simulates an honest host towards the
adversary and can prevent F from outputting a signature if the simulated real world would not yield a
signature. However, if the simulated real world outputs a signature, Lemma 1 shows that the signature will
be anonymous, as the host rerandomizes the contributions from the adversary. We now argued that F will
not output a signature if the simulated real world would not output a signature. However, F may prevent
a signature from being output, when the TPM and host did not yet join, or when the signature generated
by F does not pass verification. If the TPM and host did not join, and the host is honest, the simulated
real world would also not output a signature, as the host performs this check. The signatures F generate
will always pass verification, as the algorithms that S set in Game 4 will only create valid signatures. This
shows that F outputs a signature if and only if the real world would outputs a signature.

S can simulate the real world protocol and block any signatures that would not be successfully generated
in the real world. F may prevent a signature from being output, when the TPM and host did not yet join, or
when the signature generated by F does not pass verification. If the TPM and host did not join, and the host
is honest, the real world would also not output a signature, as the host performs this check. The signatures
F generate will always pass verification, as the algorithms that S set in Game 4 will only create valid
signatures. This shows that F outputs a signature if and only if the real world would outputs a signature.

What remains to show is that the signatures that F outputs are indistinguishable from the real world
signatures. First, notice that the simulator takes care that the nonces in signatures in the real world match
the nonces in the ideal world signatures. In addition, Lemma 1 shows that the zero knowledge proof of the
signature is always distributed equally, like in the ideal world. The only difference is the exact statement
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thats being proved. When one party creates two signatures with different basenames, the real world protocol
would use the same gsk , whereas F signs with different keys to show that the signatures are unlinkable. We
make this change gradually. First, all signatures come from the real world, and then we let F gradually create
more signatures, until all signatures come from F. Let Game 7.i.j denote the game in which F creates all
signatures for platforms with TPMsMi′ with i′ < i, lets S create the signatures if i′ > i, and for the platform
with TPMMi, the first j distinct basenames are signed. We show that Game 7.i.j is indistinguishable from
Game 7.i.(j + 1), and by repeating this argument, we have Game 7 ≈ Game 6.

Proof of Game 7.i.j ≈ Game 7.i.(j+1): We show that distinguishing Game 7.i.j and Game 7.i.(j+1)
can be reduced to the DDH problem. The real world and the ideal world output signatures in the same
cases: if and only if the platform joined and is not revoked by the signature revocation list SRL, a signature
is generated.

The difference between the two is that in the first game, when the platform withMi signs w.r.t. bsnj+1,
the signature is made like in the real world protocol, using the key gsk that it joined with. In the latter
game, a credential is created on a fresh key gsk and the signature uses that to construct signature σ =
(nym, πcred , {πSRL,i}). We can reduce noticing this difference to the DDH problem.

The reduction takes as input a DDH instance ḡ, α, β, γ ∈ G1 and must answer whether logḡ(α) · logḡ(β) =
logḡ(γ). We will simulate the platform withMi using the unknown discrete log logḡ(α) as gsk when joining
and signing, except for signatures with bsnj+1: there we use the unknown logβ(γ) as gsk . Note that if the
DDH instance is a DDH tuple, this is equivalent to game Game 7.i.j, whereas if it’s not, this is equivalent
to Game 7.i.(j + 1), showing that the two games are indistinguishable under the DDH assumption.

The simulation works as follows. Random oracle HG1 is simulated by returning ḡr for r ←$ Zp while
maintaining consistency, except for bsnj+1, then it returns β. It simulates the host corresponding to TPM
Mi as follows. Instead of choosing a value hsk and computing gpk using the TPM’s tsk , we let gsk be the
(unknown) discrete log of α: gsk = logḡ(α). We need to compute the platform public key gpk = g̃gsk . For
ΠqSDH−DAA, g̃ = ḡ so we can set gpk ← α (= g̃gsk ). For ΠLRSW−DAA, g̃ = HG1

(0||n) = ḡr for some r known
by simulating the random oracle, so we set gpk ← αr (= HG1

(0||n)gsk = g̃gsk .
The host does not know the correspoding hsk , but it can still create πgpk as this proof is simulated.

This means that F can no longer run identify as the simulator cannot extract hsk to find the complete
gsk = tsk + hsk . However, as we know r such that HG1(1||bsn) = ḡr for every bsn, we can identify signatures
matching gsk by checking whether nym = αr.

To sign with bsn l, the reduction proceeds as follows:

– If l ≤ j, F handles the signing.
– If l = j + 1, the reduction must sign using logβ(γ) as secret key. For ΠqSDH−DAA, the proof of knowledge

of the credential πcred can be simulated perfectly and we only need to worry about the pseudonym nym,
which we set as γ (= βlogβ(γ) = HG1

(1||bsnj+1)logβ(γ). For ΠLRSW−DAA, we must in addition pay attention
to the simulation of πcred . As we know the issuer secret key, we can create a credential on logβ(γ) by using
β, γ as b, d values respectively. Then, we continue with the standard proof of knowledge, while simulating
π′cred as we do not know logβ(γ).

– If l > j + 1, the reduction signs using the credential obtained in the join process, but it does not know
gsk = logḡ(α). We can still sign, by simulating π′cred and setting nym ← αr (= HG1(1||bsn l)

gsk ) where r
is taken from simulating the random oracle.

Game 8: F now runs the CheckTtdCorrupt algorithm when S gives the extracted τ from platforms with
a corrupt host. This checks that F has not seen valid signatures yet that match both this key and existing

key. The identify algorithm checks whether a τ matches a pseudonym by checking nym
?
= HG1

(1||bsn)τ . Note
identify only accepts values in Zp, and that with overwhelming probability, HG1(1||bsn) 6= 1G1 , so there exists
only one τ ∈ Zp. Therefore we have Game 8 ≈ Game 7.

Game 9: When F creates fresh domain keys when signing for platforms with an honest host, it checks that
there are no signatures that match this key. As argued in the previous game, with overwhelming probability
there is one unique key matching a signature, which means that there already is a signature valid under
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the freshly created key. As ukgen takes the values from Zp which is exponentially large, the probability that
there already is a signature with this key is negligible, so Game 9 ≈ Game 8.

Game 10: F now performs additional tests on the signatures it creates, and if any fails, it aborts. First,
it checks whether the generated signature matches the key it was generated with. With the algorithms S
defined in Game 4, this always holds. Second, F checks that there is no other platform with a key that
matches this signature. If this check would happen with nonnegligible probability, we can break the DL
assumption. Note that the DL assumption does not appear in the theorem statements, as for Theorem 1 it
is implied by the generalized LRSW assumption, and for Theorem 2, it is implied by the q-SDH assumption.

We make this check for one platform and one basename at a time. The reduction receives a DL instance
α = ḡgsk for some unknown gsk , and the functionality now uses this unknown gsk as the domain key for
the platform and basename under consideration. It simulates the signatures by programming random oracle
HG1 to compute nym = HG1(1||bsn)gsk without knowing gsk and simulating the zero-knowledge proofs πcred ,
as in Game 7. If the functionality now finds a value τ such that nym = HG1

(1||bsn)τ , with overwhelming
probability we have HG1

(1||bsn) 6= 1G1
, and therefore τ = gsk , solving the DL problem.

Game 11: In verification, F now checks whether it knows multiple tracing keys that match one signature.
With overwhelming probability, there will be no bsn such that HG1(1||bsn) = 1G1 , meaning that there is a
unique key tracing every signature, and showing that this check will never change the verification outcome.

Game 12: When I is honest, F verifying a signature now checks whether the signature matches some
key of a platform that joined, and if not, rejects the signature. We prove that this check will trigger with
negligible probability for ΠLRSW−DAA and ΠqSDH−DAA individually.

ΠLRSW−DAA. For ΠLRSW−DAA, we reduce this hop to the generalized LRSW assumption. As we described this
protocol without using attributes, we are only concerned with membership, there are no attribute predicates
possible. The reduction receives the issuer public key from the generalized LRSW problem, and registers this
as its public key, along with a simulated proof. When running the join protocol, the issuer first queries Oa,b

X (·)
to get a and b. Then, it picks a fresh nonce n and programs HG1

(0||n) = b. When the join protocol proceeds
and reaches the point where the issuer would compute a, c, it extracts gsk from πtpk and πgpk and queries
Oc
X,Y (a, b, gsk) to receive c, forming a valid credential. The algorithm sig that is used by the functionality

can no longer depend on the issuer secret key, as this key is unknown. The algorithm now uses the oracles
to create a credential and simulates the proof.

Note that we only call Oc
X,Y (a, b, gsk) on gsk -values that are put in Members and DomainKeys, and that for

each of those gsk -values, the corresponding identities of the TPM and host are stored in Members. Therefore,
from a signature that does not match any of the signed gsk values, we can extract a new LRSW credential,
breaking the generalized LRSW assumption.

ΠqSDH−DAA. For ΠqSDH−DAA, we reduce this hop to the q-SDH assumption, where q − 1 is the amount of
platforms that the issuer allows to join. Camenisch et al. [CDL16b] show that with the q-SDH assumption q−1
BBS+ signatures can be simulated, and a forgery allows one to break the q-SDH assumption. Simultaneously,
the q-SDH can be used to create a pair g1, g

x
1 , where x is the BBS+ signing key. For readability we will

phrase the reduction as playing the unforgeability game of the BBS+ signature, while we also use the pair
g1, g

x
1 , so technically we reduce directly to the q-SDH assumption using the Camenisch et al. proof.

The reduction now receives a BBS+ public key. We use the pair (g1, g
x
1 ) by setting X ′ ← gx1 , and simulate

the proof πipk . When the issuer wants to issue a credential in the join protocol, it extracts gsk from πtpk and
πgpk and uses BBS+ signing oracle to sign gsk and the attribute values. The algorithm sig that is used by
the functionality now does not issue a credential, but simulates πcred . Proof πcred consists of (Ā, A′, b′, π′cred).
Note that for every honest proof, A′ is uniformly at random in G∗1 and Ā = A′x, where x is the issuer secret
key. We can simulate this by setting ρ←$ Z∗p, A′ ← gρ1 , Ā← (gx1 )ρ. As b′ is uniform in G1 in honest proofs,
we can simply take a random element to simulate this. Finally, we simulate π′cred to perfectly simulate the
proof of knowledge of the credential. When the functionality notices a valid signature that does not match
any signed gsk value of a platform that joined with satisfying attributes, we can extract a BBS+ forgery
from πcred , and break the q-SDH assumption.
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Game 13: F now rejects signatures on a message m w.r.t basename bsn that match the key of a platform
with an honest TPM but record in F’s Signed that this TPM signed m w.r.t. bsn. If this check triggers with
nonnegligible probability, we can break the DL assumption.

First, we rule out forgeries with a message m that the TPM did not sign, This follows directly from
Lemma 2. In this reduction we simulate the TPM without knowing tsk , meaning we cannot extract gsk to
run identify. However, we can replace identify with checking nym = gpkr where r is taken from the random
oracle: HG1

(1, bsn) = ḡr. This means F can still identify the forgery from which we need to extract. Next, we
rule out forgeries where message m and basename bsn, where the TPM signed m but not w.r.t. bsn. When
signing m, the simulator simulating the TPM does not directly see the basename, but it can find out the
only basename that could yield a valid signature: It sees nym when performing TPM.Hash. When performing
TPM.Commit commands, it computed values K = HG1

(1, bsn)tsk for a number of basenames. For each of those
basenames, it now computes Khsk and sees if this equals nym. The simulator then registers this basename
in list Signed of F. Note that when verifying the proof, a verifier will check that nym is correctly hashed
in the Fiat-Shamir hash, so a signature using this Fiat-Shamir hash cannot yield a valid signature with a
different basename. This means that if F identifies a signature on m, bsn where the TPM never signed these
values, the proof is not simulated and we can extract hsk by rewinding, breaking the DL assumption.

Game 14: F now rejects signatures on message m w.r.t. a basename bsn, attribute predicate p, and
signature revocation list SRL, that match the key of a platform with an honest host, but that host never
signed this. We reduce this check triggering with nonnegligible probability to breaking the DL assumption.

The reduction receives DL instance α and must find logḡ(α). We simulate the host using this unknown
discrete logarithm as gsk . For ΠqSDH−DAA, we have ḡ = g̃, so we can set α as gpk in the join protocol, and
simulate πgpk . For ΠLRSW−DAA, we have g̃ = HG1

(0||n) = ḡr for some r known by simulating the random
oracle, so we set gpk ← αr (= HG1

(0||n)gsk = g̃gsk .

When signing, the host now simulates πcred using its power over the random oracles. The pseudonym
nym for a basename bsn is computed by looking up r such that HG1

(1||bsn) = ḡr from simulating HG1
and

setting nym← αr. Proof πcred can be simulated.

Note that F can no longer run identify as it does not know gsk . However, as we know r such that
HG1

(1||bsn) = ḡr for every bsn, we can identify signatures matching gsk by checking whether nym = αr.

When F now receives a signature on m w.r.t. bsn, p, SRL that matches gsk while it never signed, it
means the proof is not simulated and it proves knowledge of gsk . We can then extract gsk to break the DL
assumption.

Game 15: F now prevents private key revocation of platforms with an honest host. We show that if this
happens with nonnegligible probability, we can break the DL assumption.

We simulate the platform with a discrete logarithm instance in the same way as Game 14. Clearly, if a
value τ that matches one of this platform’s signatures is found on the private key revocation list RL, we have
found the desired discrete logarithm.

Game 16: F now enforces signature based revocation when verifying a signature. Let nym be the pseudonym
in this signature, and bsn the basename. It checks that there is no τ with nym = HG1

(1||bsn)τ such that for
some (nym′, bsn ′) ∈ SRL, HG1

(1||bsn ′)gsk 6= nym. The platform proves this using Camenisch-Shoup inequality
proofs [CS03], so by soundness of the proofs, this check will only trigger with negligible probability.

Game 17: F now puts requirements on the link algorithm. These requirements do not change the output.

With overwhelming probability, we have HG1
(·) 6= 1G1

, so there is one unique gsk ∈ Zp that matches the
signature. If one gsk matches one of the signatures but not the other, then nym 6= nym′ and link would also
output 0. If both signatures match some gsk , then by soundness of the proof, we have nym = nym′ and link
would also output 1. Therefore we have Game 17 = Game 16.

The functionality in Game 17 is equal to Fpdaa+, completing our security proof. ut
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This document TPM Spec

tsk ds TPM secret key
ḡ G Fixed generator of G1

g̃ P1 Generator used in TPM.Commit
bsn s2, y2 The basename controlling linkability
j (x2, y2) Base of pseudonym computation
q n Order of G1

c P Digest entered in TPM.Sign
c′ T Fiat-Shamir hash
mt TPM State The data the TPM attests to

Table 1. The meaning of variables and their name in the TPM specification.

E Specification of our TPM 2.0 Commands

In this section we describe our revised TPM 2.0 commands used in Section 3 and Section 4 in the TPM
specification notation [Tru14]. We again highlight our proposed changes in blue.

Note that the notation used in Section 3 and Section 4 differs from the notation used in the TPM specifi-
cation. Table 1 shows how the variables used in the body of the paper correspond to the TPM specification.

The TPM.Hash is already part of the TPM 2.0 specification. Due to the limited storage, the TPM cannot
store a list of c values that are safe to sign. Instead, this behavior is implemented by outputting a MAC on
c when it is safe to sign. Whenever it receives a c value with a MAC on it, it is treated as safe to sign. As
we propose no changes to TPM.Hash, we do not show the command in full detail here.

E.1 Generate a DAA key: TPM2 Create()

An ECDAA key can be generated by using an existing TPM 2.0 command, TPM2 Create(). The command
refers to a parent key that is a storage key and is created by the TPM in advance. The command creates a
fresh ECDAA key pair tk = (tpk , tsk), and outputs a wrapped key blob. The key blob includes the following
information: the private part of the key tsk encrypted under the parent key, the public part of the key tpk ,
and the corresponding tag which allows the TPM to verify integrity and authenticity of the key.

E.2 Make a Commitment: TPM2 Commit()

This is a modification of the existing TPM2 Commit() command in the current TPM 2.0 specification. This
command performs the first part of a split operation of the ECDAA signature operation. We use a different
way to define the value P1. In the current specification, the host may enter any point, which is why a
malicious host can use the TPM as a static DH oracle. In this modification, we replace the point P1 with a
base point (x1, y1) where x1 := HnameAlg(s1) mod p in the LRSW-DAA scheme and let the TPM verify
this point is generated from a hash function. If no s1 is given, the TPM uses standard generator G, which
is what will be used in q-SDH-based DAA.

The signHandle parameter refers to the ECDAA key. TPM2 Commit() has the following parameters, all
of which are optional.

– s1: octet array used to derive x-coordinate of a base point.
– y1: y-coordinate of the point associated with s1.
– s2: octet array used to derive x-coordinate of a base point.
– y2: y-coordinate of the point associated with s2.

In the algorithm below, the following additional values are used in addition to the command parameters:

– HnameAlg: hash function using the nameAlg of the key associated with signHandle.
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– p: field modulus of the curve associated with signHandle.
– n: order of the curve associated with signHandle.
– ds: private key associated with signHandle.
– G: generator of the curve associated with signHandle.
– Q: public key associated with signHandle and corresponding to ds, i.e., Q = [ds]G.
– c: counter that increments each time TPM2 Commit() is executed.

The Commit algorithm performs as follows:

1. Validate that s1 and y1 are either both Empty Buffers or both not Empty Buffers. If this does not hold,
return an error message and abort.

2. If s1 is an Empty Buffer, skip to step 5.
3. Compute x1 := HnameAlg(s1) mod p.
4. If (x1, y1) is not a point on the curve of signHandle, return an error message and abort.
5. Validate that s2 and y2 are either both Empty Buffers or both not Empty Buffers. If this does not hold,

return an error message and abort.
6. If s2 is an Empty Buffer, skip to step 9.
7. Compute x2 := HnameAlg(“nonce”, s2) (mod p).
8. If (x2, y2) is not a point on the curve of signHandle, return an error message and abort.
9. Set K, L, and E to be Empty Buffers.

10. Generate r or derive r from an existing secret, dependent on the algorithm, which is specified in the
existing TPM 2.0 specification.

11. Set r := r mod n.
12. If s1 is an Empty Buffer, set E := [r]G.
13. If s1 is not an Empty Buffer, set E := [r](x1, y1).
14. If s2 is not an Empty Buffer, set K := [ds](x2, y2) and L := [r](x2, y2).
15. If K, L, or E is the point at infinity, return an error message and abort (negligible probability).
16. Follow the same mechanism of giving the value r, obtain nonceT .
17. Compute nT = HverifyAlg(nonceT ).
18. Set counter := commitCount.
19. Set commitCount := commitCount+1. NOTE 1: Depending on the method of generating r and nonceT ,

it may be necessary to update the tracking array here.
20. Output K, L, E, nT , and counter.

NOTE 2: Depending on the input parameters, K, L or E may be Empty Points. There are the following
different cases:
(a) E := [r](x1, y1) and both K and L are Empty Points - the Sign process without linkability and

without signature-based revocation in the LRSW-based DAA scheme.
(b) E := [r](x1, y1), K := [ds](x2, y2) and L := [r](x2, y2) - either the Sign process with linkability in

the LRSW-based DAA scheme or a proof of signature-based revocation.
(c) E := [r]G and both K and L are Empty Points - the Schnorr signature.
(d) E := [r]G, K := [ds](x2, y2) and L := [r](x2, y2) - the sDH-based DAA scheme.

E.3 Complete a Signature: TPM2 Sign()

This is a modification of the existing TPM2 Sign() command in the current TPM 2.0 specification. To
complete the ECDAA sign operation, the TPM uses the same random or pseudo-random values r and nonceT
as used in TPM2 Commit(). These values are determined by the counter field in the scheme parameter of the
signing command. We add an input nonceH, which is a nonce chosen by the host. This prevents the TPM
from embedding information in nonce, which would harm the privacy of the host.

TPM2 Sign() has the following parameters.

– c: counter associated with the corresponding TPM2 Commit() execution.
– P : hash value associated with the corresponding to TPM2 Commit() execution.

69



– nonceH: nonce from the host.
– HschemeAlg: hash function used to compute a signature.

The signature is created using a modified Schnorr signature and the operation is as follows:

1. Retrieve the values r and nonceT based on c. The mechanism has been specified in the existing TPM
2.0 specification.

2. Set T := HschemeAlg(“TPM ” || nonceT⊕nonceH || P ). NOTE: The symbol || denotes the concatenation
operation.

3. Compute integer s := (r + T · ds) (mod n).
4. If s = 0, output failure (negligible probability).

The signature is the tuple (nonceT , s).
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