
Compact Privacy Protocols from Post-Quantum
and Timed Classical Assumptions

Jonathan Bootle1, Anja Lehmann2?, Vadim Lyubashevsky1, and Gregor
Seiler1,3

1 IBM Research – Zurich, Switzerland
2 Hasso Plattner Institute, University of Potsdam, Germany

3 ETH Zurich, Switzerland

Abstract. While basic lattice-based primitives like encryption and dig-
ital signature schemes are already fairly short, more advanced privacy-
preserving protocols (e.g. group signatures) that are believed to be post-
quantum secure have outputs of at least several hundred kilobytes. In this
paper, we propose a framework for building privacy protocols with signif-
icantly smaller parameter sizes whose secrecy is based on post-quantum
assumptions, but soundness additionally assumes that some classical as-
sumption, e.g., the discrete logarithm problem (DLP), is hard to break
within a short amount of time.
The main ingredients of our constructions are statistical zero-knowledge
proofs of knowledge for certain relations, whose soundness rely on the
hardness of solving the discrete logarithm problem for a fresh DLP in-
stance per proof. This notion has recently been described by the term
quantum annoyance. Using such proofs, while also enforcing that they
be completed in a fixed amount of time, we then show how to construct
privacy-preserving primitives such as (dynamic) group signatures and
DAA schemes, where soundness is based on the hardness of the “timed”
discrete logarithm problem and SIS. The outputs of our schemes are
significantly shorter (≈ 30X) than purely lattice-based schemes.

1 Introduction

Lattice cryptography is a particularly attractive post-quantum alternative to
classical cryptographic schemes based on factoring and discrete log. Its main
appeal is that one can build basic primitives, such as encryption and digital
signature schemes, with relatively short outputs (1 - 3 KB) with the added
bonus of sometimes being faster than the classical analogues. When one looks at
more advanced privacy-preserving primitives such as group signatures, verifiable
encryption, etc., the situation is considerably less attractive. For example, while
group signatures based on elliptic curve pairings are only 160 Bytes [34], the
smallest lattice-based group signatures, in which keys don’t grow linearly with
the number of group members, are approximately 600 KB [16].

Despite a considerable amount of research, it’s looking very unlikely that
even basic privacy-preserving primitives will be reduced to sizes of less than a

? Work done while being at IBM Research - Zurich.

2

few hundred kilobytes. This is due to the general approach used in construct-
ing privacy-preserving schemes, such as group signatures, which lacks efficient
lattice-based building blocks. The authority gives out a secret key to a particular
user by signing the user’s identity. To authenticate himself, the user then pro-
duces a ZKPoK of the signature on his identity.4 Because creating an efficient
zero-knowledge proof generally requires algebraic structure in the underlying
statement, one generally uses standard-model (rather than one secure in the
random oracle model) digital signature schemes for the authority’s signature
rather than rely on schemes that use a hash function modeled as a random ora-
cle. And it is this requirement of a standard-model signature scheme that is the
main culprit in the large output sizes of privacy-preserving schemes constructed
in the above manner.

In this work we propose a framework for a middle-ground solution which
addresses some of the main security problems posed by the eventual coming of
quantum computers. One of the biggest concerns today is that communication
in the pre-quantum world can be harvested and then eventually decrypted when
quantum computers are eventually built. The main result of this paper is a
framework for constructing compact privacy schemes where secrecy is either
information-theoretic or based on post-quantum assumptions, while soundness
is based on classical ones. Because only the soundness is classical, our schemes
are not susceptible to the aforementioned harvesting attacks, and are therefore
safe to use in the pre-quantum era.

If full-fledged quantum computers arrive and there are still no acceptably
compact fully quantum-safe privacy schemes, then one can still continue using
our schemes in certain situations. Firstly, they are quantum annoying (c.f. [22]),
in the sense that breaking soundness requires solving a fresh discrete logarithm
instance for each new forgery. This may be good enough in instances where the
forgery payoff is less than the cost to use a quantum computer for the attack. In
addition, we show that our schemes can be made to satisfy a stronger security
notion by relying on “timed” versions of classical assumptions in which the
prover must produce a response in a limited amount of time. This implies that a
successful cheating prover can be used to solve the underlying problem in a fixed
time interval, which may remain a difficult problem well into the post-quantum
era (see the discussions in e.g. [25, 23, 29]).

1.1 Our Techniques

Since the main culprit for inefficient lattice-based privacy schemes are standard-
model signatures, we propose avoiding them altogether, and instead construct a
proof of knowledge of (possibly short) vectors x, y, s, when given public matrices

4 If the user wants to sign a message, then he transforms the interactive authentication
protocol into a non-interactive one via the Fiat-Shamir framework and uses the
message to create the challenge.

3

/ vectors A,B,C, z over some polynomial ring, satisfying

[A B] ·
[
x

F̃ (y)

]
= z ∧H(F (y)) = Cs. (1)

We then show that such proofs are enough for constructing privacy-preserving
primitives such as group signatures and DAA schemes. In some constructions,
F = F̃ will be (the same) one-way functions, while in others F will be a one-way
function while F̃ will just be the identity. The function H is a cryptographic
hash function.

The soundness of our proof is based on the assumed intractability of the dis-
crete logarithm problem. More precisely, the prover shows that he either knows
the (short) solution x, y, s satisfying the above relation (which means he knows a
solution to a lattice problem), or he is able to find ei ∈ Z satisfying

∏
geii = 1 for

random generators gi of some group.5 While the discrete logarithm problem is
not quantum secure, the only place in which it is used in our constructions is for
guaranteeing the soundness of the zero-knowledge proofs. The zero-knowledge
property itself is statistical and hence the privacy of the secrets is not affected
by the (quantum) power of the adversary.

By letting the generators gi be freshly chosen by the verifier (or some ran-
domness beacon) at the time the proof is started, the ZKP already becomes
“quantum annoying” as for each forgery the (quantum) adversary must solve a
new DLP instance. Moreover, if the running-time of the proof is restricted, i.e.
the verifier will not accept the proof if it takes more than ∆ time, then one can
base the soundness of the proof on the “timed” discrete logarithm assumption,
in which the relation

∏
geii = 1 must be solved in a fixed amount of time. If this

amount of time is short, then this problem may remain hard even for quantum
computers.

Proof Approach. Our zero-knowledge proof of (1) builds on the works in [12, 13,
17]. One of the contributions of [12, 13] was showing an efficient proof of the
pre-image y satisfying H(y) = z, where H is an arbitrary circuit, based on the
hardness of discrete log. These works also showed how to prove linear relations
(in the exponent) of Pederesen commitments and applications to range proofs.
The work of [17] utilized these techniques to give faster proofs of knowledge of
a short vector x satisfying Ax = z for a public matrix A and vector z over the
polynomial ring Rq = Zq[X]/(Xd + 1).

When F = F̃ , we can rewrite (1) as

[A B] ·
[
x
r

]
= z ∧ F (y) = r ∧H(r) = t ∧ Cs = t, (2)

and then proving (1) is equivalent to proving knowledge of x, y, s, r, t, with some
of these needing to have coefficients in a certain range, satisfying the above.

5 We will use multiplicative notation for discrete log.

4

Similarly, if F̃ is the identity, then one can rewrite (1) as

[A B] ·
[
x
y

]
= z ∧ F (y) = r ∧H(r) = t ∧ Cs = t, (3)

The first part of the conjunction in both (2) and (3) can be proven using
[17], while the last one is similar except the t is also secret. The other two parts
can be proven using the techniques from [12, 13] applied to general circuits.

While the proofs in [13] are very compact, their main drawback is that the
proof and verification time grows (more than) linearly in the number of gates
in the circuit and proving the knowledge of a pre-image of a SHA-256 function
(mapping 512 to 256 bits) takes approximately 20 seconds. In contrast, our
schemes will require hash functions that map onto the space of a polynomial ring,
which is around ten thousand bits. The proofs in [13] are based on the discrete
logarithm assumption, which naturally lend themselves to proving statements
over fields of large prime order. Therefore, we would like to use a hash-function
built around arithmetic over such fields. MiMC [3] is a family of hash functions
designed with precisely this in mind and we analyze the number of multiplication
gates required for their evaluation.

Applications. We then show that proving (1) is enough for constructing schemes
like group signatures and DAA schemes. While we only provide a few exam-
ples of what privacy-preserving schemes can be built from (1), there should be
numerous other related schemes that can be constructed using this approach.
Intuitively, constructing privacy-preserving primitives can be done by obtaining
a signature on an identity from an issuer and proving knowledge of this signa-
ture in conjunction with supplementary information connected to the identity
(c.f. [14]). One can then view the right part of (1) as a GPV-type signature
scheme where the signature of the message (identity) F (y) is s, and then the left
side of the conjunction is a relation involving the message/identity y and some
supplementary data x. The intuitive reason for why one may want to use F (y)
instead of y as the message is that one may wish to sometimes expose F (y) but
never expose her secret y. Using the image of the secret F (y) as her identity,
and then proving relations about the pre-image, allows the user to ascertain her
knowledge of the secret without ever having to reveal it.

Our construction of a group signature scheme results in signatures of approx-
imately 20 KB based on the hardness of standard lattice problems (i.e. NTRU
and LWE) and the timed DL assumption. We also give a construction of a DAA
scheme in in the full version of this paper, where the proofs are tweaked for the
setting where attestation are generated jointly by a resource-constrained TPM
and powerful host.

1.2 Related Work

In this paper, we demonstrate the feasibility of our framework by giving a con-
crete construction of a group signature scheme. Since the foundational work of

5

[5], there have been many constructions of such schemes with security based on
various problems. The schemes based on the hardness of the discrete logarithm
problem are compact, but not quantum-safe, while those based on the hardness
of lattice problems are quantum-safe, but have large signatures and/or public
keys. We give a comparison to our scheme in Table 1.

Size (Security) Properties
Scheme gpk sign. dynamic non-frameability quantum-safe

DS18 [18] 1.29 1.96 3 3 8

BBS04 [11] 1.05 0.43 8 3 8

dPLS [16] 120 580 8 8 3

ESSLL [21] 9000 48 3 8 3

This Work 5.5 20 3 3 (3)

Table 1: Output sizes (in KB) of discrete log, lattice-based, and our group signa-
tures. For pairing based schemes using CP5-663 pairing curve (128 bit security
level, 256 bit order curve). The public key size (and opening time) in [21] grows
linearly with the number of users. The size given in the table is for 1000 users.

1.3 Open Problems

The main result of our work is a framework for constructing privacy-preserving
primitives based on lattice assumptions and the timed discrete logarithm prob-
lem. The advantage of this approach is that our protocols enjoy significantly
shorter outputs than purely lattice-based (or any purely quantum-safe) schemes.
The main drawback of our concrete instantiation of this framework, which uses
Bulletproofs along with the MiMC hash function, is that the proofs require mil-
lions of group operations, which would take a substantial amount of time for an
honest prover.

The most interesting open question is thus to obtain faster solutions which
may involve constructing different hash functions along with compatible discrete-
log proof systems. There is currently related work, sponsored by the Ethereum
Foundation, to create a STARK-friendly hash function [7, 1], with several pro-
posals already offering significant improvements over MiMC (e.g. [26, 4, 2]).
Research into such hash functions is still in its infancy and there is reason to
believe that we could eventually have hash functions which are very amenable
to Bullet-proof style zero-knowledge proofs.

2 Preliminaries

In this section we introduce the building blocks needed for our privacy protocols.

Lattices. For x, c ∈ Rd and σ ∈ R+, we define the Gaussian function ρc,σ(x) =

exp
(
−‖x−c‖2

2σ2

)
, and for a lattice L, we define the distribution DL,c,σ(x) to be 0

whenever x /∈ L and DL,c,σ(x) =
ρc,σ(x)∑

v∈L
ρc,σ(v)

. when x ∈ L. When we omit the L

6

from the above equation, it is assumed that the lattice is Zd (where d is evident
from context). Omitting the c implies that c = 0.

We will denote by Rq the polynomial ring Zq[X]/(Xd + 1) and define the
norm of elements in Rq as the norm of its coefficients. As an additive group, the
polynomial ring R = Z[X]/(Xd + 1) has an obvious mapping to Zd and so we
can write v ← Dσ to signify sampling a random centered element from R.

For polynomials a, t ∈ R, we can define a 2d-dimensional shifted lattice6

L⊥a,t = {(s1, s2) ∈ R2 : as1 + s2 = t mod q}

and we define the distribution D⊥a,t,σ(x) to be 0 whenever x /∈ L⊥a,t and

D⊥a,t,σ(x) =
ρσ(x)∑

v∈L⊥a,t

ρσ(v)
(4)

In general, given a random a, t ∈ Rq, it is hard (as hard as the Ring-SIS problem
[33, 32]) to sample according to D⊥a,t,σ for small σ. One can do such sampling,

however, when given a special trapdoor basis for the lattice L⊥a,0. The smaller
the vectors in the trapdoor, the smaller the σ can be in the distribution. A
way to create a particularly small trapdoor can be done over NTRU lattices,
in particular when a = f/g for two polynomials f, g with small coefficients
[27, 19, 35]. In particular, one can create an a, together with a trapdoor matrix
Ta that allows one to sample (using a sampling algorithm from [24, 20]) from
D⊥a,t,σ, for any t ∈ Rq, for σ ≈ 1.5

√
q.

NTRU Signature. This trapdoor sampling algorithm almost directly leads to a
rather compact digital signature scheme, in the random oracle model, based on
the hardness of finding short vectors in NTRU lattices. The public key is a = f/g,
while the signing key is Ta. If we model the hash functionHRq as a random oracle,
then to sign a message m, the signer samples s1, s2 ← D⊥a,HRq (m),σ and outputs

s1, s2 (or just s1 since s2 can be computed from s1 and m) as the signature. The
signature is valid if ‖s1‖, ‖s2‖ ≤ 1.1σ

√
d = 1.65

√
qd. In this paper, we will use

MiMC as the cryptographic hash function.

NTRU Encryption. The key generation procedure of the NTRU encryption
scheme [28] consists of creating two polynomials with small (−1/0/1) coeffi-
cients f, g ∈ Rq and outputting the public key as h = f/g and secret key g.
Encryption of a message m with 0/1 coefficients involves generating an r, e ∈ Rq
with small coefficients and outputting the ciphertext v = 2(hr + e) + m. To
decrypt v, one would compute m = (vg mod q)/g mod 2.

Lattice-Based Zero-Knowledge Proofs. Our protocols will use a combination of
various lattice and discrete-log based zero-knowledge proofs from the literature.

In general, for a public ~A ∈ Rn×mq and ~t ∈ Rnq , the prover knows a secret ~s ∈
Rmq with small coefficients such that ~A~s = ~t. Ideally, he would like to give a proof

6 A shifted lattice is a lattice shifted by some vector v. Note that a shifted lattice does
not have the property that the sum of any two vectors is in the shifted lattice.

7

of this ~s, but such proofs are rather costly in their communication complexity. In
some scenarios, however, the high cost may be acceptable. For example, joining a
group (or registering a TPM) only needs to be done once and there are generally
no strict restrictions on the time of communication complexity. An example of
a proof in which a vector ~s is taken from a set with ‖~s‖∞ ≤ α and the prover
can produce a proof

π = ZKP{~s : ~A~s = ~t, ‖~s‖∞ ≤ α} (5)

is given in [30]. The proof is a variation of Stern’s proof of knowledge of a near
codeword [37] and each iteration of the scheme has soundness error 2/3. A more
efficient proof that has soundness error 1/2d was introduced by Benhamouda
et al. [8] where the prover uses his knowledge of ~s to prove the knowledge of a

vector ~̄s satisfying ~A~̄s = 2~t where ‖~̄s‖ > ‖~s‖. In particular, given an ~s =

 s1. . .
sm


such that ‖si‖ ≤ α, it produces a zero-knowledge proof

π = ZKP{~̄s : ~A~̄s = 2~t, ‖~̄s‖ ≤ 33αd1.5m
√
λ} (6)

In App. A we explicitly provide the prover and verifier algorithms for this
relation since they were only given for an interactive, asymptotic version in [8].

Hash Functions with Efficient Proofs. For our privacy protocols we need a hash
function that allows for efficient zero-knowledge proofs that a hash was correctly
computed and that the prover knows a pre-image of the hash value. We will
use zero-knowledge proofs based on the DL assumption, which naturally lend
themselves to proving statements over fields of large prime order. Thus, we would
like to use a hash function built around arithmetic over such fields.

MiMC [3] is a family of hash functions designed with precisely this in mind.
MiMC hash functions are based on the sponge construction [10]. The construc-
tion works by cubing the input over the field, adding randomly chosen constant
values, and repeating the process many times. We give a more detailed overview
of the MiMC hash function and our parameter choices in App. B

3 Timed Zero-Knowledge Proofs

In this section we describe our idea of quantum-annoying and timed zero-knowledge
proofs (ZKP), describe how they can be made non-interactive via a beacon ser-
vice, and realized using a combination of lattice/bulletproofs.

More precisely, we consider ZKPs for generalized statements that prove an
exact relation as in (5), but follow the proof system recently introduced in [17].
The proof system uses a CRS made up of random group elements g1, . . . , gn,
and assuming the DL problem is hard, it allows to prove knowledge of a witness
for various NP statements. For example, the protocol of [17] actually proves
is that the prover knows a SIS solution s or a non-trivial discrete logarithm
relation between g1, . . . , gn. The advantage of this technique is that the proofs

8

can be very short, but the disadvantage is that the running time of the prover
and verifier is long (e.g. for typical parameters in [17] it was 10 - 20 seconds).
Formally, the proof in [17] gives a proof of a disjunction

π = ZKP{~s, {ri} : DLR ({gi}, {ri}) = 1 ∨ ~A~s = ~t, ‖~s‖∞ ≤ α}. (7)

where gi are public elements of some group G and ~A,~t are as before.
Generalizing the proof system of [17], we obtain zero-knowledge proofs of

the following form in which the prover proves that they know a witness w for
relation Rq or for relation Rc: ZKP{(w) : (xc, w) ∈ Rc ∨ (xq, w) ∈ Rq}. In our
proof systems, a witness for Rc will always be a non-trivial DL relation, and Rq
will be the collection of statements and witnesses we are actually interested in.

Quantum Annoying & Timed Proofs. In this plain form, the soundness of the
above proof relies on the weaker of both relations, i.e., the DL assumption even
though it also proves a lattice relation. We can transform the proof into a quan-
tum annoying version [22] by simply letting the verifier freshly choose gi when
the proof starts. As gi are not longer long-term parameters, this forces the ad-
versary to solve a fresh DL instance for every proof it wants to forge.

By requiring the prover to produce a proof within a short amount of time, we
can further strengthen this approach such that the problem likely remains hard
even for quantum computers (or is at least prohibitively expensive to solve). That
is, the verifier only accepts a proof when the prover correctly responds within
some fixed short time ∆. The soundness of our ZKP then even holds against a
quantum adversary under the additional assumption that the DL problem is hard
to solve within a short amount of time. We will refer to such an assumption as
∆-hardness. In App. C we provide a more formal treatment of such timed ZKPs
and discuss their relation to quantum annoyance.

Non-interactive Timed Proofs. Finally, in our privacy protocols we want to use
signature proofs of knowledge, i.e., non-interactive ZKPs that follow the Fiat-
Shamir paradigm and “sign” a message m by including m in the challenge hash
of the NIZK. To maintain the short-term validity aspect in this non-interactive
form, we will rely on a beacon and time-stamp service T .

This trusted entity T has a signing key pair (ssk , spk) and serves a double
purpose: First, it regularly publishes signed tuples (t, b, σ) with σ ←$ Sign(ssk , (t, b))
for a time t and random beacon b. We will use b to deterministically generate
fresh DL instances (g1, . . . , gn) ← G(b,m) where G is simply a hash function
that outputs group elements of some group C.

The prover first obtains such a timed beacon (t, b, σ), derives fresh DL in-
stances and computes π = NIZK{w, {ri} : DLR ({gi}, {ri}) = 1 ∨ (xq, w) ∈
Rq}(m). It then sends h← H(π) to T which will return t′, σ′ ←$ Sign(ssk , (t′, h)),
i.e., T time-stamps the hash h for time t′. The non-interactive timed proof out-
put by the prover consists of (π, t, t′, b, σ, σ′).

For the sake of brevity we use the following shorthand to refer to non-
interactive timed proofs of such a form and with running time ∆:

9

ZKP∆DLR{wq : (xq, wq) ∈ Rq}.

Finally, we stress that while soundness is quantum-annoying or timed, we
require the zero-knowledge property of the proof to hold statistically.

Building Timed ZKPs. To build our timed ZKPs needed for our group signature
and DAA scheme, we use Bulletproofs [13] (instantiated with MiMC) and the
proof system from [17] in a mostly black-box manner. The algorithms in our pri-
vacy protocols rely on complex relations made up of combinations of the DL, SIS
and pre-image relations of the form Func(f) := {u ∈ {0, 1}m,v ∈ {0, 1}n : f(u) = v}.
We describe how to realize such proofs from the mentioned proofs systems, and
the tweaks that should be made, in App D.

4 Group Signature Scheme

A dynamic group signature allows users to sign messages on behalf of a group
without revealing their individual identity. Group membership is managed by
an issuer I that lets users U dynamically join the group. The anonymity of a
user can be lifted through a dedicated opening authority O that can reveal the
identity of the signer behind a particular signature in a verifiable manner. More
precisely, a group signature ΠGS consists of the following algorithms:

GKg(1λ)→ (gpk , isk , osk): On input the security parameter 1λ it outputs a
group public key gpk , and the secret keys isk , osk for the issuer and opener.

UKg(1λ)→ (upk , usk): Outputs the private and public key of a user.

〈Join(gpk , upk , usk), Issue(isk , reg)〉 → (gsk , reg ′): A user can join the group by
running an interactive join protocol with the issuer. The user’s output is his
signing key gsk , and the issuer outputs an updated registration table reg ′.

Sign(gpk , gsk , µ)→ Σ: On input a group public key gpk , a user’s secret signing
key gsk and a message µ outputs a signature Σ.

Verify(gpk , µ,Σ)→ 1/0: Verifies a signature Σ against the group public key gpk .

Open(gpk , osk , reg , Σ, µ)→ (upk , τ)/⊥: This algorithms uses the opener’s se-
cret key osk to recover the identity of the signer of Σ for message µ. It outputs
a claimed signer upk and proof τ , or ⊥ to indicate failure.

Judge(gpk , upk , Σ, µ, τ)→ 1/0: This deterministic judge algorithm verifies the
proof τ , i.e., whether the user with public key upk is the signer of Σ.

The user secret keys will be uniformly random 2λ-bit strings from the set N .
We define a one-way function F : N → R+ which maps a user’s secret key ρ to
his public key upk ∈ R+. We will assume that inverting this function (for random
input ρ ∈ N) is λ-hard. A part of the signature will be an encryption of the user
identity (and nonce), and we will use the Naor-Yung approach of encrypting the
same message under two different public NTRU keys (or where one of the public
keys is indistinguishable from random), and provide a zero-knowledge proof of
this fact.

10

Ring Rq Zq[X]/(Xd + 1)

Ring Modulus q 12289

Ring Dimension d 1024

Standard Deviation σ = 1.5
√
q

usk space N {0, 1}2λ

Encryption randomness R± {−1, 0, 1}d ⊂ Rq
upk space R+ {0, 1}d ⊂ Rq

Credential (gsk) space S s ∈ Zq[X]/(Xd + 1), s.t. ‖s‖ ≤ 1.5σ
√
d

Signature size |Σ| 19.86KB

Table 2: Proposed parameters for our group signature

Key Generation: The issuer’s key consists of a public a ∈ Rq together with a
secret trapdoor Ta that will allow him to sample s1, s2 ∼ D⊥a,t,σ with σ = 1.5

√
q.

The reference for this algorithm as well as the construction of the trapdoor Ta is
discussed in Section 2. The opener’s public key will be h = f/g where f, g ← R±
and his secret opening key will be (f, g).

A user’s key is as described above, i.e. it sets usk = ρ chosen uniformly at
random from N , and will define upk = FR+(ρ) as his public key where F is a
λ-hard one-way function.

Algorithm 1 GKg(1λ)

Output: gpk := (a, h, h′), isk := Ta, osk := (f, g).
1: (a, Ta)← NTRUTrapdoor.
2: f, g, f ′, g′ ← R±. If g, g′ is not invertible mod q or mod 2, re-sample it.
3: h := f/g, h′ := f ′/g′.

Join: When a user with keys usk = ρ, upk = FR+(ρ) wants to join the group,
it send upk to the issuer. This upk is the value to which all of his actions can
be traced to by the opener. The issuer then samples s1, s2 ← Da,t,σ, for t =
HRq (FR+

(ρ)) and sends s1, s2 to the group member. The member will use ρ and
the polynomials s1, s2 as his signing credentials. Observe that s1, s2 is the GPV
signature of the message FR+

(ρ) when the GPV signature is instantiated with
the concrete hash function HRq .

Sign: If a member with credentials (ρ, s1, s2), as above, wishes to sign µ, he
creates two NTRU encryptions of the message FR+

(ρ) with respect to the public
keys h and h′ and gives a zero-knowledge proof that he knows the randomness
and the message underlying the ciphertexts, as well as the knowledge of ρ, s1, s2
satisfying as1 + s2 = HRq (FR+(ρ)) and the fact that FR+(ρ) is the message in
the ciphertext. The µ is signed via its insertion in the random oracle during the
Fiat-Shamir transform.

The reason that we need two NTRU “encryptions” is to achieve CCA security
via the Naor-Yung transform. While the Naor-Yung approach is usually not the
most practical way of building CCA-secure schemes, it actually incurs little

11

Algorithm 2 〈Join(gpk , upk , usk), Issue(isk , reg)〉
Input: usk = ρ, upk = FR+(ρ), gpk = (a, h, h′), isk = Ta, reg
Output: User: gsk = (s1, s2, ρ), Issuer: updated registr. table reg ′.
1: User: Send upk to the Issuer
2: Issuer: Check that upk /∈ reg . Sample s1, s2 ← D⊥a,t,σ for t := HRq (upk). Send s1, s2

to the User, output reg ′ = reg ∪ {upk}.
3: User: If as1 + s2 = HRq (FR+(ρ)), output gsk = (s1, s2 ∈ S2, ρ).

Algorithm 3 Sign(gpk , gsk , µ):

Input: gsk = (s1, s2, ρ) s.t. as1 + s2 = HRq (ρ), gpk = (a, h, h′), µ
Output: Signature Σ := (u, u′, π)
1: e1, e2, e

′
1, e
′
2 ← R±

2: u := 2(he1 + e2) + FR+(ρ), u′ := 2(he′1 + e′2) + FR+(ρ)

3: π := ZKP∆DLR{(s1, s2, e1, e2, e′1, e′2, ρ) : as1 + s2 = HRq (FR+(ρ)) ∧ 2(he1 + e2) +
FR+(ρ) = u ∧ 2(h′e′1 +e′2)+FR+(ρ) = u′ ∧ s1, s2 ∈ S ∧ e1, e2, e

′
1, e
′
2 ∈ R± ∧ ρ ∈

N}(µ)
4: return Σ := (u, u′, π)

overhead in our case because providing proofs of ciphertext correctness would
be necessary even if we were only aiming for CPA security. For CCA security,
we just need to prove two equations instead of one.

Verify: For verification, the Verifier simply checks the validity of the proof.

Open: The opener checks the proof in the signature and performs NTRU de-
cryption of the ciphertext u using his secret key g. If the decrypted public key
is contained in the registration table, he gives a zero-knowledge proof that the
opening is correct. In particular, he proves that he knows the secret keys g, f that
form the public key h (i.e. f/g = h) and also that the multiplication gu = 2v+gm
where v is a polynomial with coefficients less than q/4− d/2. If this is satisfied,
then decryption is indeed valid because gu mod q = 2v+gm in R, which follows
from the smallness of v and the fact that all the coefficients of gm are at most
d. Therefore decryption, which requires reducing the above modulo 2 guarantees
that gu mod q mod 2 = gm. Hence the correct decryption of u is m.

Judge: The Judge checks that the opener’s proofs are valid. If it is, he concludes
that the opener revealed the correct identity.

4.1 Security of the Group Signature Scheme

We now show that our dynamic group signature scheme is secure according to
the established notions by Bellare et al. [6], i.e., it satisfies anonymity, traceabilty
and non-frameability. The detailed proof of the following theorem is given in the
full version.

12

Algorithm 4 Verify(gpk , Σ, µ):

Input: Σ = (u, u′, π), gpk = (a, h, h′), µ
Output: Output 1 iff the verification passes
1: return 1 iff π is valid wrt u, u′, gpk and µ.

Algorithm 5 Open(gpk , osk , reg , Σ, µ):

Input: Σ = (u, u′, π), message µ, gpk = (a, h, h′), osk = (f, g), registration table reg .
Output: Identity upk = m, and proof of valid decryption τ , or ⊥.
1: m := (gu mod q)/g mod 2.
2: return ⊥ if Verify(gpk , Σ, µ) 6= 1 or m 6∈ reg
3: τ := ZKP∆DLR{(f, g, v) : hg − f = 0 ∧ ug = 2v + gm ∧ f, g ∈ R± ∧ v ∈
R s.t. ‖v‖∞ < q/4− d/2}

4: return (m, τ)

Theorem 1. Our group signature is fully anonymous, traceable and non-frameable
when the underlying NTRU encryption scheme is CPA secure, the underlying
GPV signature scheme is unforgeable, F is one-way, the proof system ZKP∆DLR

is special sound and zero-knowledge, and DLR is ∆-hard.

Hardness We now briefly analyze the concrete security of the underlying lattice
schemes in our group signature scheme for the parameters given in Table 2. This
means we assess the complexity of some known lattice attacks on our instantia-
tions of the NTRU encryption scheme and the GPV signature scheme.

For NTRU we focus on the primal key recovery attack, see [9] for more details
and an overview of other attacks, in particular meet-in-the-middle and hybrid
attacks. Given h ∈ Rq, the problem is to find two short polynomials f, g ∈ Rq
such that gh = f in Rq. By lifting the equation to R, this gives a lattice of
dimension 2d and volume qd. Now one can hope that certain coefficients of g
are zero, say k many, 0 ≤ k < d, and search for a solution in the corresponding
sublattice of dimension 2d−k. This gives a speed-up despite the reduced success
probability. Furthermore, we can restrict the search to the sublatice correspond-
ing to only m ≤ d of the equations over Zd, leaving us with a lattice of dimension
d− k +m and volume qm. The general strategy then is to apply the BKZ basis
reduction algorithm to the basis of an optimally chosen sublatice with a large
enough block size β so that our target solution will be found. When using John
Schanck’s estimation scripts [36], we find that for m = 889 we would require a
block size β = 712. Costing only one call to an SVP algorithm in dimensions 712
in the so-called Core-SVP methodology gives a time complexity of about 2208

when using the best known classical sieving algorithms and a complexity of 2188

when also considering quantum speed-ups.
For the GPV signature scheme we focus on the forgery attack. Here the ad-

versary needs to find a short solution s1, s2 ∈ Rq such that ‖si‖ ≤ 1.5σ
√
d and

as1+s2 = t for a random t. This gives a lattice of dimension 2d+1 and volume qd.
But unlike in the case of NTRU we do not search for a particular very short solu-

13

Algorithm 6 Judge(gpk , upk , Σ, µ, τ):

Input: Σ = (u, u′, π), µ, gpk = (a, h, h′), upk = m, and the opener’s proof τ
Output: Output 1 iff the user with upk is the signer of Σ
1: return 1 iff Verify(gpk , Σ, µ) = 1 and τ is valid wrt gpk , upk , u.

tion. Any solution fulfilling the bound is fine and it is clearly sufficient to search
in a sublattice of dimension n ≤ 2d+1. The BKZ algorithm with blocksize β finds
a solution of length δnqd/n where heuristically δ = (β(πβ)1/β/(2πe))1/(2(β−1)).
We find that we need δ < 1.00226 and hence a block size of β ≥ 875. Finding a
shortest vector in dimension 875 costs 2255 classically and 2232 quantumly.

4.2 Costs and Sizes

We want to analyze the sizes of the signatures Σ in our group signature scheme
and the cost of computing and verifying them in terms of numbers of elliptic
curve scalar multiplications. By far the largest element of a signature Σ is the
proof π. This proof essentially consists of two parts. In the first part the linear
equations for u, u′ and H(upk) are proven. The second part is concerned with
the nonlinear equations ‖si‖ ≤ 1.5σ

√
d, upk = F (ρ) and t = H(upk). For

the first part we use the proof system from [17] but we further split the proof
into two parts involving secret polynomials with coefficients in {−1, 0, 1} and
{−(q− 1)/2, . . . , (q− 1)/2}, respectively. Note that the l2-norm bound on s1, s2
is proven separately and hence it is sufficient for the linear proof of as1 + s2 =
H(upk) to only include the bound ‖si‖∞ ≤ (q− 1)/2. From the formulas in [17]
we find that the two linear proofs have combined size 75 group elements plus
6 elements in Zp. The non-linear proof has size 48 group elements and 5 field
elements. Since we use a 521-bit curve, for example NIST P-521, the three proofs
have a combined size of about 16.36KB. The two NTRU encryptions consist of
two uniform elements in Rq with size 1.75KB each. So in total a signature Σ
has size 19.86 KB. See Section D for more explicit details on how the proofs are
conducted.

For the number of exponentiations we find from the formulas in [17] and [13]
that the prover has to compute 2.047.271 scalar multiplications for the linear
proofs and 11.620.232 scalar multiplications for the non-linear proof. So in total
the prover needs to compute 13.7 million scalar multiplications. The verifier has
to compute at total number of 4 million scalar multiplications.

Acknowledgements This work was supported by the SNSF ERC starting
transfer grant FELICITY and the EU Horizon 2020 project FutureTPM (No.779391).

References

1. STARK-friendly hash challenge, 2019. https://starkware.co/hash-challenge/.

14

2. M. R. Albrecht, L. Grassi, L. Perrin, S. Ramacher, C. Rechberger, D. Rotaru,
A. Roy, and M. Schofnegger. Feistel structures for mpc, and more. Cryptology
ePrint Archive, Report 2019/397, 2019. https://eprint.iacr.org/2019/397.

3. M. R. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen. Mimc: Efficient
encryption and cryptographic hashing with minimal multiplicative complexity. In
Advances in Cryptology - ASIACRYPT, pages 191–219, 2016.

4. A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe, and A. Szepieniec. Design of
symmetric-key primitives for advanced cryptographic protocols. Cryptology ePrint
Archive, Report 2019/426, 2019. https://eprint.iacr.org/2019/426.

5. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures:
Formal definitions, simplified requirements, and a construction based on general
assumptions. In EUROCRYPT, pages 614–629, 2003.

6. M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of
dynamic groups. In Topics in Cryptology - CT-RSA, pages 136–153, 2005.

7. E. Ben-Sasson. Stark-friendly hash, 2019. https://medium.com/starkware/stark-
friendly-hash-tire-kicking-8087e8d9a246.

8. F. Benhamouda, J. Camenisch, S. Krenn, V. Lyubashevsky, and G. Neven. Bet-
ter zero-knowledge proofs for lattice encryption and their application to group
signatures. In ASIACRYPT, pages 551–572, 2014.

9. D. J. Bernstein, C. Chuengsatiansup, T. Lange, and C. van Vredendaal. NTRU
prime: Reducing attack surface at low cost. In SAC, pages 235–260, 2017.

10. G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. On the indifferentiability
of the sponge construction. In Advances in Cryptology - EUROCRYPT, pages
181–197, 2008.

11. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Advances in
Cryptology - CRYPTO, pages 41–55, 2004.

12. J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In EUROCRYPT,
pages 327–357, 2016.

13. B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bullet-
proofs: Short proofs for confidential transactions and more. In IEEE Symposium
on Security and Privacy, SP, pages 315–334, 2018.

14. J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols. In
SCN, pages 268–289, 2002.

15. R. Chaabouni, H. Lipmaa, and A. Shelat. Additive combinatorics and discrete
logarithm based range protocols. In ACISP, pages 336–351, 2010.

16. R. del Pino, V. Lyubashevsky, and G. Seiler. Lattice-based group signatures and
zero-knowledge proofs of automorphism stability. In CCS, pages 574–591, 2018.

17. R. del Pino, V. Lyubashevsky, and G. Seiler. Short discrete log proofs for fhe and
ring-lwe ciphertexts. In PKC, 2019.

18. D. Derler and D. Slamanig. Highly-efficient fully-anonymous dynamic group sig-
natures. In AsiaCCS, pages 551–565, 2018.

19. L. Ducas, V. Lyubashevsky, and T. Prest. Efficient identity-based encryption over
NTRU lattices. In ASIACRYPT, pages 22–41, 2014.

20. L. Ducas and T. Prest. Fast fourier orthogonalization. In ISSAC, pages 191–198,
2016.

21. M. F. Esgin, R. K. Zhao, R. Steinfeld, J. K. Liu, and D. Liu. Matrict: Efficient,
scalable and post-quantum blockchain confidential transactions protocol. In CCS,
pages 567–584. ACM, 2019.

22. L. D. Feo, S. Masson, C. Petit, and A. Sanso. Verifiable delay functions from
supersingular isogenies and pairings. In Asiacrpt, 2019.

https://eprint.iacr.org/2019/397
https://eprint.iacr.org/2019/426

15

23. A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland. Surface codes:
Towards practical large-scale quantum computation. Phys. Rev. A, 86:032324, Sep
2012.

24. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and
new cryptographic constructions. In STOC, pages 197–206, 2008.

25. C. Gidney. Why will quantum computers be slow?
http://algassert.com/post/1800. Last accessed Monday 3rd February, 2020.,
2018.

26. L. Grassi, D. Kales, D. Khovratovich, A. Roy, C. Rechberger, and M. Schofneg-
ger. Starkad and poseidon: New hash functions for zero knowledge proof systems.
Cryptology ePrint Archive, Report 2019/458, 2019. https://eprint.iacr.org/

2019/458.
27. J. Hoffstein, N. Howgrave-Graham, J. Pipher, J. H. Silverman, and W. Whyte.

Ntrusign: Digital signatures using the ntru lattice. In CT-RSA, pages 122–140,
2003.

28. J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A ring-based public key
cryptosystem. In ANTS, pages 267–288, 1998.

29. B. Lekitsch, S. Weidt, A. G. Fowler, K. Mølmer, S. J. Devitt, C. Wunderlich,
and W. K. Hensinger. Blueprint for a microwave trapped ion quantum computer.
Science Advances, 3(2), 2017.

30. S. Ling, K. Nguyen, D. Stehlé, and H. Wang. Improved zero-knowledge proofs of
knowledge for the ISIS problem, and applications. In PKC, pages 107–124, 2013.

31. V. Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT, pages
738–755, 2012.

32. V. Lyubashevsky and D. Micciancio. Generalized compact knapsacks are collision
resistant. In ICALP (2), pages 144–155, 2006.

33. C. Peikert and A. Rosen. Efficient collision-resistant hashing from worst-case as-
sumptions on cyclic lattices. In TCC, pages 145–166, 2006.

34. D. Pointcheval and O. Sanders. Short randomizable signatures. In Topics in
Cryptology - CT-RSA, pages 111–126, 2016.

35. T. Prest, P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky,
T. Pornin, T. Ricosset, G. Seiler, W. Whyte, , and Z. Zhang. FAL-
CON. Technical report, National Institute of Standards and Technology, 2017.
https://csrc.nist.gov/projects/post-quantum-cryptography/ round-1-submissions.

36. J. M. Schanck. Security estimator for lattice based cryptosystems, 2019.
37. J. Stern. A new identification scheme based on syndrome decoding. In CRYPTO,

pages 13–21, 1993.

A Lattice-Based ZKP for Relation 6

Below we provide the prover and verifier algorithms for relation 6 adapted from
[8].

If Rq = Zq[X]/(Xd+1), then we define the setM = {0,±xi 0 ≤ i < d}. The
size of M is 2d+ 1. We also define a parameter λ which controls the soundness
error of the proof. The soundness error will be |M|−λ ≈ d−λ−1. For example, if
d = 2048, then to get the soundness error to be less than 2−128, we need to set
λ = 11.

The proof in Algorithm 7 uses Gaussian-based rejection sampling and can
be shown to be zero-knowledge, and requiring 3 iterations on average, using [31,

https://eprint.iacr.org/2019/458
https://eprint.iacr.org/2019/458

16

Algorithm 7 Prover

Input: Secret ~s =

 s1. . .
sm

 ∈ Rmq s.t. ‖si‖ ≤ α and public ~A ∈ Rn×mq ,~t = ~A~s ∈ Rnq .

Output: π = (~z ∈ Rλq , (c1, . . . , cλ) ∈Mλ)

1: σ := 11α
√
mλ; for i = 1 to λ, ~yi ← Dσ, ~wi := ~A~yi

2: (c1, . . . , cλ) := HMλ(~A,~t, ~w1, . . . , ~wλ); ~v :=

c1~s· · ·
cλ~s

 ∈ Rmλq
3: ~z =

~z1· · ·
~zλ

 :=

~y1· · ·
~yλ

 + ~v ∈ Rmλq

4: with probability 1− Dσ(~z)
3D~v,σ(~z)

, goto 1

5: return ~z, (c1, . . . , cλ)

Algorithm 8 Verifier

Input: ~A ∈ Rn×mq ,~t = ~A~s ∈ Rnq , π = (~z ∈ Rλq , (c1, . . . , cλ) ∈Mλ)

Output: Output 1 iff π = ZKP{~̄s : ~A~̄s = 2~t, ‖~̄s‖ ≤ 3σd1.5
√
m = 33αd1.5m

√
λ}

write

 ~w1

. . .
~wλ

 :=

 ~A~z1 − c1~t. . .
~A~zλ − cλ~t


Accept iff (c1, . . . , cλ) = HMλ(~A,~t, ~w1, . . . , ~wλ) and ‖~zi‖ ≤ 1.5σ

√
dm

Theorem 4.6]. If |M|λ > 2128, then a prover succeeding with probability greater

than ≈ 2−128 can be rewound to produce two solutions ~A~zi = ~wi + ci~t and
~A~z′i = ~wi + c′i~t for distinct ci ∈M. These can be combined to form the solution

~A(~zi − ~z′i)/(ci − c′i) = ~t.

By [8, Lemma 3.1], we know that for ci 6= c′i ∈ M, the quotient 2/(ci − c′i) is
a polynomial with coefficients in {−1, 0, 1} and therefore has `2-norm at most√
d. The parameters for the size of ~̄s in (6) then follow from the parameters in

Algorithms 7 and 8.

B Hash Functions with Efficient Proofs

In our group signature and DAA scheme, we need to use a hash function that
allows for efficient zero-knowledge proofs that a hash was correctly computed
and that the prover knows a pre-image of the hash value. We will use zero-
knowledge proofs based on the discrete logarithm assumption, which naturally
lend themselves to proving statements over fields of large prime order. Therefore,
we would like to use a hash-function built around arithmetic over such fields.

The MiMC Hash Function Family. MiMC [3] is a family of hash functions de-
signed with precisely this in mind. MiMC hash functions are based on the sponge

17

construction [10]. The construction works by cubing the input over the field,
adding randomly chosen constant values, and repeating the process many times.

For fixed input size, output size, and security level, the MiMC family includes
a range of hash functions with a trade-off between the size of the prime field
used and the number of multiplication gates in a circuit which verifies correct
computing of the hash function. Later, in our choices of zero-knowledge proof-
system, we will see that for every multiplication in the circuit, the prover must
perform some exponentiations over a cryptographic group. Therefore, in the
two cases below, we have carefully selected the parameters of the MiMC hash
functions in order to minimise the computational burden on the prover. To
specify an MiMC hash function, one must give the desired security level and the
’rate’ of the round function, which determines the prime field to be used.

As part of our schemes, we will use a pre-image resistant function (later
referred to as FR+

) to protect the user’s secret key. We instantiate this function
with an MiMC hash function with an input length of 256 bits and an output
length of 1,024 bits. The circuit used to prove knowledge of a hash pre-image
has 60,192 multiplication gates. We will also use a hash-function, modelled as
a random oracle, which maps the output of the previous function onto a ring
element from Zq[X]/(Xd + 1). In this case, we use an MiMC hash function with
an input length of 1,024 bits and an output length of 14,336 bits. For the new,
larger input and output sizes, the circuit used to prove knowledge of a hash
pre-image has 831,577 multiplication gates.

In both cases, we use MiMC hash functions with capacity 512, and a 521-
bit prime. This choice of parameters comes from our requirement that the hash
function has 256 bits of classical security and therefore 128 bits of quantum
security against collision-finding attacks. For 256 bits of classical security, the
internal workings of the hash function force us to use a prime of at least 512
bits. Hence, we use a 521-bit prime so that we can use a standardised NIST
elliptic curve, for which we expect highly optimised implementations of curve
operations compared with unstandardised curves.

C Quantum Annoying and Timed ZKPs

The core observation behind our timed ZKPs is that while certain hard problems,
such as the discrete logarithm problem, can be solved in polynomial-time by
(sufficiently sized) quantum computers, it is likely that solving them won’t be
instantaneous or at least prohibitively expensive. Thus, forcing the adversary to
solve a fresh DLP instance for each proof might render the attack infeasible.

This property has recently been described as quantum annoyance [22] and
formalized through a two stage adversary. Roughly, in an offline pre-computation
phase the adversary is granted full quantum power, but gets restricted to be
classical when turning to an online phase.

We now apply this concept to zero-knowledge proofs, more precisely, we
consider ZKPs for generalized statements following the form of equation (7) of
the proof system recently introduced in [17]. The proof system uses a CRS made

18

up of random group elements g1, . . . , gn, and assuming the DL problem is hard, it
allows to prove knowledge of a witness for various NP statements. For example,
the protocol of [17] actually proves is that the prover knows a SIS solution s or a
non-trivial discrete logarithm relation between g1, . . . , gn. Generalizing this idea
we consider proofs of the form: ZKP{(w) : (xq, w) ∈ Rq ∨ (xc, w) ∈ Rc}, where
R denotes a NP relation and w is a witness for a statement x if (x,w) ∈ R.

In this plain form, the soundness of the proof relies on the weaker of both
relations, i.e., the DL assumption in the case of [17] even though it also proves
a lattice relation. We can transform the proof into a quantum annoying (and
later timed) version by simply letting the verifier freshly choose xc (i.e., gi in
our concrete scheme) when the proof starts.

Let x ←$ Gen(1λ,L) be a generator that produces a random instance x ∈ L
for security parameter 1λ and language L = {x | ∃w : (x,w) ∈ R}. We can
then formulate quantum-annoying soundness for an interactive proof protocol
(P,V) for statements (xq, w) ∈ Rq ∨ (xc, w) ∈ Rc as follows: For any efficient
adversary (A1,A2) — where A1 is quantum, and A2 is classical — running the
following game

1. sample random xq ←$ Gen(1λ,Lq)
2. st←$ A1(xq)
3. sample random xc ←$ Gen(1λ,Lc)
4. where Pr [〈A2(st, xq, xc),V(xq, xc)〉 = 1] > ε

there exist an efficient extractor E with rewindable black-box access to A2 that
outputs w s.t. (xq, w) ∈ Rq ∨ (xc, w) ∈ Rc with probability ≥ ε/poly(1λ).

Generally, the online adversary A2 can be seen as a resource-restricted adver-
sary that cannot break the classical problem. While quantum-annoyance models
the resource restriction by simply limiting A2 to be classical, we can also be
more generous and give A2 quantum power, yet restrict its running time.

That is, the verifier only accepts a proof when the prover correctly responds
within some fixed short time ∆. The soundness of our ZKP then even holds
against a full quantum adversary under the additional assumption that the prob-
lem Rc is hard to solve within a short amount of time. We will refer to such an
assumption as ∆-hardness.

Note that there are subtle constraints on how to choose the time ∆ for a
concrete ZKP instantiation based on a ∆′-hard problem. For satisfying com-
pleteness, ∆ must be chosen large enough, such that honest provers can still
complete the proof (for Lq) in time. For soundness, ∆ depends on the loss in
the reduction, i.e., the running time of the extractor that will be used to break
the ∆′-hard problem needs to be taken into account. We leave a more formal
treatment of these relations as interesting future work.

D Zero-Knowledge Proofs for Group Signature
Algorithms

In this section, we explain how to give the zero-knowledge proofs for the group
signature algorithms of Section 4 in terms of the proof systems of [17] for SIS

19

relations and [13] for more complicated relations with less special structure avail-
able.

Both proof systems rely on the discrete logarithm assumption.

Definition 1 (Discrete Log Relation). For all PPT adversaries A and for
all n ≥ 2 there exists a negligible function µ(λ) such that

P

[
C = G(1λ), g1, . . . , gn ← C;
a1, . . . , an ∈ Z← A(G, g1, . . . , gn)

: ∃ai 6= 0 ∧
n∏
i=1

gaii = 1

]
≤ µ(λ)

For n ≥ 2, this is equivalent to the discrete logarithm assumption.

Sign: A zero-knowledge proof of the following statement is computed:

ZKP∆DLR


s1, s2,
e1, e2, e

′
1, e
′
2, ρ

:

as1 + s2 = HRq (FR+
(ρ))

∧ 2(he1 + e2) + FR+
(ρ) = u

∧ 2(h′e′1 + e′2) + FR+(ρ) = u′

∧ s1, s2 ∈ S ∧ ρ ∈ N
∧ e1, e2, e′1, e′2 ∈ R±

 (µ)

The conditions in this relation can be rewritten as follows, with appropriate
size bounds on different elements. Set k = FR±(ρ) and l = HRq (k).

[
2h 2 0 0 1
0 0 2h′ 2 1

]
·


e1
e2
e′1
e′2
k

 =

[
u
u′

]
∧
[
a 1 −1

]
·

s1s2
l

 = 0

∧ k = FR±(ρ) ∧ l = HRq (k)

We prove the necessary conditions as follows. We use the proof system of
[17] to give a zero knowledge proof for the first linear equation, which has an
infinity norm bound of 1 on e1, e2, e

′
1, e
′
2 and k. The size of this proof is roughly

76 group elements and 6 field elements for the parameters that we have chosen.
We also use the same proof system from [17] to give a zero-knowledge proof for
the second linear equation, with an infinity norm bound of q on s1, s2 and l.

The remaining conditions that we have to check are the conditions k =
FR±(ρ), l = HRq (k), and the fact that the `2-norms of s1 and s2 are bounded

by 1.5σ
√
d. We use the proof system of [13] to achieve this. This proof system

works with general arithmetic circuits. The number of multiplication gates in
the circuit required to prove these conditions is the sum of the sizes of the
circuits for FR± and HRq , plus roughly 2096 extra multiplications which are
used for checking that the norms of s1 and s2 are bounded correctly. The extra
multiplication gates compute the squares of the `2 norms of each of s1 and s2,
using 2048 multiplications, check that roughly 48 values are bits by checking that
when multiplying them with their complements, the result is zero, and then show
that the squares of the `2 norms are represented by the binary values, so that

20

the norms must be in the correct range. Since we have already used the proof
system [17] to check that the infinity norms of s1 and s2 are bounded, and we
work over a prime field with a much larger modulus than the base ring of s1
and s2, we need not worry about overflow when computing the squares of the
`2 norms. We give zero-knowledge proofs of arithmetic circuit satisfiability and
prove all of these things using one single proof from [13]. This proof contributes
48 group elements and 5 finite field elements.

In order to use these proof systems, and be sure that certain secret values are
consistent across the different proofs, we need to make some adjustments. The
first tweak is to split some of the long commitments made in the protocols into
several parts, to allow values to be shared between the two proof systems. This
is described in the full version. Separate commitments to k and s1, s2, l allow
these values to be shared between the first two proofs for linear relations and
the third proof for non-linear relations.

The second tweak is to modify the protocol of [17] so that it works even if we
are proving that the entries of the secret vector lie in an interval whose width
is not a power of 2. This is easily achieved using techniques from [15]. The idea
is that a binary expansion of the form

∑
i xi2

i uniquely expresses every integer
in a given interval whose width is a power of 2, but if we change the powers
of two in the expression to other values, we can obtain (possibly non-unique)
binary expansions for other intervals which suffice for the purpose of giving range
proofs. This change has no impact on proof size.

Open: The following zero-knowledge proof is needed:

ZKP∆DLR

{
(f, g, v) :

hg − f = 0 ∧ ug = 2v + gm
∧ f, g ∈ R± ∧ v ∈ R s.t. ‖v‖∞ < q/4− d/2

}
The conditions in this relation can be rewritten as follows, with appropriate size
bounds on different elements.[

h 1 0
u 0 2

]
·

 g
−f
−v

 =

[
0
m

]

This relation is proved by using the proof system from [17] twice. The first
proof proves the linear relation from the first row of the matrix, which does
not include v. Therefore, the proof system can be used with norm bound 1.
The second proof proves the linear relation from the second row of the matrix,
which does include v, and therefore works with norm bound q/4 − d2. As with
the signing algorithm, we use the adjustments described to make sure that the
preimage values are consistent across the two proofs.

	Compact Privacy Protocols from Post-Quantum and Timed Classical Assumptions

