
Zone Encryption with Anonymous Authentication
for V2V Communication ⋆

Jan Camenisch1, Manu Drijvers1, Anja Lehmann2, Gregory Neven1 and
Patrick Towa3,4

1 DFINITY
2 Hasso-Plattner-Institute – University of Potsdam

3 IBM Research – Zurich
4 ENS and PSL Research University

Abstract. Vehicle-to-vehicle (V2V) communication systems are cur-
rently being prepared for real-world deployment, but they face strong
opposition over privacy concerns. Position beacon messages are the main
culprit, being broadcast in cleartext and pseudonymously signed up to 10
times per second. So far, no practical solutions have been proposed to en-
crypt or anonymously authenticate V2V messages. We propose two cryp-
tographic innovations that enhance the privacy of V2V communication.
As a core contribution, we introduce zone-encryption schemes, where
vehicles generate and authentically distribute encryption keys associ-
ated to static geographic zones close to their location. Zone encryption
provides security against eavesdropping, and, combined with a suitable
anonymous authentication scheme, ensures that messages can only be
sent by genuine vehicles, while adding only 224 Bytes of cryptographic
overhead to each message. Our second contribution is an authentica-
tion mechanism fine-tuned to the needs of V2V which allows vehicles
to authentically distribute keys, and is called dynamic group signatures
with attributes. Our instantiation features unlimited locally generated
pseudonyms, negligible credential download-and-storage costs, identity
recovery by a trusted authority, and compact signatures of 216 Bytes at
a 128-bit security level.

1 Introduction

The automotive industry and several governments around the world have made
substantial progress towards deploying Cooperative Intelligent Transport Sys-
tems (C-ITSs), with the first deployment planned to start in 2019 [52]. In C-ITSs,
vehicles communicate with other vehicles (V2V) and with road-side infrastruc-
ture (V2I) to improve traffic safety and efficiency.

V2V and V2I communication, together often referred to as V2X, mainly
consists of two types of messages: occasional event-triggered safety messages
(e.g., emergency braking maneuver) and regular position beacon messages that
⋆ Most of the work of the first four authors was done while being at IBM Research –

Zurich.

each vehicle typically broadcasts 1–10 times per second. The latter category,
known in the European C-ITS as Cooperative Awareness Messages (CAMs) [25]
and in the US as Basic Safety Messages (BSMs) [42], carry dynamic information
about the vehicle such as its position, speed, and heading, as well as (semi-)static
information about the vehicle such as its length, width, and sensor accuracy.

Unencrypted Broadcast Messages. The CAMs are primarily broadcast in
plaintext over an unprotected short-range radio channel (ETSI ITS-G5), and
these messages are therefore easy to intercept and potentially leak sensitive in-
formation about people’s whereabouts, travel itineraries, and driving habits.
The current C-ITS proposals [25, 42] have therefore raised serious privacy con-
cerns among civil right unions, scientists [46], and data protection authorities [1].
Concrete threats include burglars tracking which houses are left unoccupied in
a neighborhood, stalkers following their victims from an out-of-sight location,
and mass surveillance of entire cities (e.g., through connected road infrastruc-
ture) at an estimated amortized cost of dollar-cents per vehicle per year [46].
Privacy regulations prohibiting misuse of CAM data are hard to enforce because
rogue eavesdropping devices are easy to build and nearly impossible to detect or
localize.

Due to the open nature of C-ITSs and the problems of managing encryp-
tion keys among constantly changing groups of vehicles, encryption in V2X has
mostly been considered impractical and of little use (see Section 1.2 for a more
detailed discussion).

Privacy-Preserving Authentication.Most research in V2X security and pri-
vacy has focused on the authentication aspect, ensuring that messages originate
from genuine vehicles without making individual vehicles traceable throughout
the system. The work of Petit et al. [43] provides an excellent survey of this field.

The practical C-ITS systems which are currently considered for deployment
in Europe [26] and the US [42] take a similar approach to authentication by
letting vehicles sign outgoing V2X messages with short-lived pseudonym certifi-
cates. Some degree of privacy is obtained by letting vehicles frequently change
or rotate their certificates from a small pool of pseudonyms. In the European
approach, vehicles periodically reload unrevocable pseudonyms from an online
authorization authority. In the American approach, vehicles come preloaded with
three years’ worth of revocable pseudonym certificates [56].

However, both approaches are forced into an uncomfortable trade-off between
security, privacy, and efficiency. A larger pseudonym pool size gives more privacy,
but is expensive to store or download, and provides less protection against Sybil
attacks in which the keys of a single compromised vehicle are used to simultane-
ously impersonate several vehicles. Indeed, the compromises of 100 pseudonyms
per vehicle per week (EU) or 20 (US) essentially combine poor privacy guaran-
tees (especially for frequent drivers) with high bandwidth-and-storage costs, and
no meaningful Sybil resistance.

Solutions that realize anonymous authentication via group signatures [10,57],
or privacy-preserving credentials [20,41,51] provide stronger security and privacy

2

guarantees. However, none of them fits the stringent bandwidth constraint of
300 Bytes per CAM, and they are therefore not suitable for practical deployment.

No Privacy without Encryption. Finally, even though so much effort has
been spent on privacy-preserving authentication in V2X, the main privacy prob-
lem in CAMs is actually the transmitted data itself. Indeed, when vehicles broad-
cast their position, speed, heading, and acceleration up to 10 times per second,
then linking messages sent by the same vehicle is trivial simply by physical lim-
itations, regardless of how often vehicles switch pseudonyms. The largely static
information included in the CAMs such as the dimensions of a vehicle and its
sensor accuracy further facilitates fingerprinting vehicles and tracking them over
longer periods of time.

1.1 Our Contributions

We tackle the problem of privacy in V2X communication by addressing, for the
first time, the problem of authenticity and confidentiality in combination. As a
result we present a protocol to encrypt and authenticate CAMs that is suitable
for the stringent 300 Bytes bandwidth requirement of C-ITSs, and arguably offers
better privacy than the existing proposal. Namely, we propose an authentication
scheme based on compact group signatures that combines unlimited privacy
with negligible bandwidth-and-storage costs, and based on this authentication
mechanism, we give a practical way to encrypt CAMs to hide their content from
eavesdroppers. Interestingly, this combination not only improves the security and
privacy of C-ITSs, but the careful composition of symmetric and asymmetric
building blocks even leads to better efficiency.

Zone Encryption. We introduce the novel concept of zone encryption as a
practical means to transmit V2X data authentically and confidentially. The core
idea of zone encryption is to rely on symmetric authenticated encryption for pro-
tecting V2X communication, using temporary keys that are exchanged among
vehicles in the same vicinity. Only the key-exchange messages are signed with
short-lived certificates, which results in an important efficiency gain compared
to the existing solutions which sign every outgoing CAM. For short-lived cer-
tificates, we use a new type of group signatures tailored to the need of V2X
communication. Relying on group signatures instead of a pre-fetched batch of
pseudonym certificates overcomes the trade-off between privacy and security of
the existing approaches: vehicles only need to store a single credential, but have
full privacy that is equivalent to an unlimited pseudonym pool size. We formally
define the desired security and privacy properties and propose an efficient, prov-
ably secure protocol that achieves them. Each CAM is 240 Bytes long in our
instantiation, which is compliant with the stringent bandwidth requirements of
C-ITSs.

Zone encryption certainly does not solve all privacy issues concerning V2X
communication, but it does raise the bar of eavesdropping on CAM data to a
level that is unaffordable for occasional criminals and notably more expensive for

3

mass surveillance. Private criminals will rely on a black market to obtain eaves-
dropping devices; and to offset the costs of compromising hardware-protected
vehicle keys, the market will most likely share the same long-term credentials
across many rogue devices. Once the police confiscates rogue devices, it can run
in a controlled setting to trace and revoke their underlying long-term creden-
tials, thereby disabling all devices in the field that use the same credentials. This
will in turn increase the costs of producing such devices until they become too
expensive for private criminals.

In the current plaintext-broadcasting C-ITS proposals, mass surveillance
through sensitive antennas or traffic infrastructure is fairly cheap to deploy and
hard to detect. Being inherently a semi-open system that enables all vehicles to
communicate, mass surveillance of C-ITS data through a network of hidden or
moving transmitters will always remain possible. Zone encryption cannot prevent
this, but increases the cost of operating such a network.

Namely, central surveillance antennas have to send strong signals to engage
in key exchanges in the observed zones, making it harder for them to covertly
operate. A distributed network of less powerful relay stations, e.g., in driving
vehicles or road infrastructure, is considerably more expensive to set up. Besides,
most road infrastructure (e.g., traffic signs) has no need for privacy, nor to receive
CAM data. Such infrastructure can thus be given a different type of credentials
that enables it to broadcast unencrypted authenticated information, but not
obtain zone keys. Any piece of infrastructure that is nevertheless caught engaging
in zone-key exchanges would be considered suspect, and requires explanation
from road operators.

Compact Group Signatures.An important building block of our zone encryp-
tion construction is a compact dynamic group signature scheme with attributes.
It enables an authority to issue attribute-carrying membership credentials to
users. In our application, users are vehicles and the certified attribute is a short
time epoch during which the credential is valid. These credentials allow to create
any number of unlinkable signatures to authenticate zone-key exchanges. More-
over, the authority can recover the identity of a sending user if needed. We also
describe a variant of the scheme that distributes the power to trace users over
multiple authorities.

We formally define the security properties of group signatures with attributes
and propose a provably secure instantiation based on modified Pointcheval–Sanders
(PS) signatures [45]. Our scheme has signatures of 216 Bytes on a Cocks–Pinch
curve with a 131-bit security level.

1.2 Related Work

As previously mentioned, the bulk of the literature in security and privacy of
V2X communication focuses on anonymous authentication. Verheul, Hicks and
Garcia [55] proposed a variant of the solution with pseudonym certificates where
vehicles come pre-loaded with encrypted batches of short-lived certificates for
a long period of time (i.e., years). Each batch corresponds to an epoch and

4

can only be decrypted with a key that the vehicle receives from an authority
before the beginning of the epoch; malicious vehicles can be banned simply
by not providing the key. Their approach effectively reduces bandwidth to a
bare minimum at the cost of local storage, which makes sense because vehicles
are often poorly connected while storage is cheap, but does not try to hide
the content of CAMs. As we argued above, no real privacy can be expected
without encrypting CAMs. In principle, our concept of Zone Encryption could
be combined with their authentication scheme, but the resulting system would
be less anonymous than our group-signature-based approach because the limited
pseudonym pool size causes some linkability of vehicles across zones.

Other solutions have been proposed based on different concepts including
MACs [18], digital signatures [9, 32, 36, 56], identity-based cryptography [37],
group signatures [10,57], and privacy-preserving attribute-based credentials [20,
41,51]. The latter two come closest to our concept of dynamic group signatures
with attributes, but all have signatures at least twice as long (for up-to-date
security parameters) as our solution. A detailed overview is given by Petit et
al. [43].

Some work has also been concerned with encryption for V2X communication.
Encrypting CAMs seems an obvious choice, but doing so in a practical and useful
way is not straightforward. The necessarily open nature of C-ITSs requires that
all nearby vehicles can decrypt. Embedding the same symmetric key in all units is
not feasible as no revocation is possible when the key gets compromised. Possibly
better solutions such as multi-sender broadcast encryption [29] or public-key
traitor tracing [12, 19] do not scale to a setting with hundreds of millions of
vehicles. Another drawback of symmetric encryption, broadcast encryption, or
traitor tracing used alone is that it is almost impossible to detect, let alone
localize, a rogue wiretapping device which eavesdrops on the communication.
Public-key encryption is better in this respect since the receiving device has to
make itself known to the senders so that these latter know which public key
to encrypt to. However, bandwidth restrictions prohibit one-to-one connections,
and the CAM length of around 300 Bytes is too short to include a separate
ciphertext for each receiving vehicle.

A number of previous proposals let vehicles organize dynamically into groups
according to their speed and driving direction, and establish a common key to
encrypt communication [47,53]. These schemes are not practical, however, since
key management in highly dynamic groups of vehicles is intricate. For instance,
it is not clear whether the protocol to join a new group is fast enough to give a
timely warning in case of a head-on collision with a group member.

Freudiger et al. [30] proposed to use cryptographic “mix zones” where V2X-
enabled vehicles briefly encrypt all communication under a key provided by a
traffic-infrastructure beacon to switch pseudonyms in an unlinkable way. Zone
encryption scheme could be seen as an extreme extension of that concept where
the entire surface is covered in mix zones, but without relying on infrastructure
support.

5

2 Preliminaries

This section introduces the cryptographic building blocks needed in our con-
structions.

2.1 Pairing Groups

Given a group G with neutral element 1G, G* denotes G∖{1G}. An asymmetric
pairing group consists of a tuple

(︁
𝑝,G, G̃,G𝑇 , 𝑒

)︁
such that 𝑝 is a prime number,

G, G̃ and G𝑇 are 𝑝-order groups, and such that 𝑒 : G× G̃→ G𝑇 is a pairing, i.e.,
an efficiently computable non-degenerate (𝑒 ̸= 1G𝑇

) bilinear map. Type-3 pairing
group are pairing groups for which there is no known efficiently computable
homomorphism from G̃ to G.

2.2 Hardness Assumptions

This section introduces the hardness assumptions on which our constructions
rely.

Definition 1 (SDL Assumption [8]). Let G be a type-3 pairing-group gener-
ator. The Symmetric Discrete-Logarithm (SDL) assumption over G is that for
all 𝜆 ∈ N, for all 𝛤 =

(︁
𝑝,G, G̃,G𝑇 , 𝑒

)︁
← G

(︀
1𝜆
)︀
, 𝑔 ∈𝑅 𝐺*, 𝑔 ∈𝑅 G̃*, 𝑥 ∈𝑅 Z𝑝,

given (𝛤, 𝑔, 𝑔, 𝑔𝑥, 𝑔𝑥) as an input, no efficient adversary can return 𝑥 with a
non-negligible probability.

Pointcheval and Sanders introduced a new non-interactive 𝑞-type of assump-
tion that they call the Modified q-Strong Diffie–Hellman assumption, and proved
that it holds in the generic bilinear group model [45]. Note that it implies the
SDL assumption.

Definition 2 (𝑞-MSDH-1 Assumption [45]). Let G be a type-3 pairing-group
generator. The 𝑞-MSDH-1 assumption over G is that for all 𝜆 ∈ N, for all
𝛤 =

(︁
𝑝,G, G̃,G𝑇 , 𝑒

)︁
← G(1𝜆), given 𝛤 , 𝑔 ∈𝑅 G*, 𝑔 ∈𝑅 G̃*, and two tuples(︁

𝑔𝑥
𝑙

, 𝑔𝑥
𝑙
)︁𝑞
𝑙=0
∈
(︁
G× G̃

)︁𝑞+1

and (𝑔𝑎, 𝑔𝑎, 𝑔𝑎𝑥) ∈ G × G̃2 for 𝑥, 𝑎 ∈𝑅 Z*
𝑝, no

efficient adversary can return a tuple
(︀
𝑤,𝑃, ℎ1/𝑥+𝑤, ℎ𝑎/𝑃 (𝑥)

)︀
with ℎ ∈ G*, 𝑃 a

polynomial in Z𝑝[𝑋] of degree at most 𝑞 and 𝑤 ∈ Z𝑝 such that the polynomials
𝑋 + 𝑤 and 𝑃 are coprime.

2.3 Deterministic Authenticated Encryption

A Deterministic Authenticated Encryption (DAE) scheme [48] is a symmetric
encryption scheme which supports auxiliary information or header. It guaran-
tees two properties: privacy and authenticity. Privacy simply means that for
uniformly random keys, the encryption of a new message is computationally

6

indistinguishable from a uniformly random bit string. As for authenticity, it en-
sures that no efficient adversary can compute, with non-negligible probability, a
valid ciphertext (i.e., for which decryption does not fail) without knowledge of
the key. See Appendix A for formal definitions of these properties.

Formally, a DAE scheme is a tuple of algorithms (Setup,KG,Enc,Dec): a setup
algorithm Setup(1𝜆)→ pp which generates public parameters; a key-generation
algorithm KG(pp) → 𝐾 which returns a key 𝐾 chosen uniformly at random
from a key space; an encryption algorithm Enc(𝐾,𝐻,M) → C which takes as
input a key 𝐾, a header 𝐻 and a message M , and returns a ciphertext C ; and
a decryption algorithm Dec(𝐾,𝐻,C)→ {M /⊥}.

2.4 Signatures

Given public parameters pp, a signature scheme consists of a key-generation
algorithm KG(pp) → (𝑣𝑘, sk), a signing algorithm Sign(sk ,m) → 𝜎, and a veri-
fication algorithm Vf(vk ,m, 𝜎)→ {0, 1}.

Pointcheval–Sanders Signatures. Pointcheval and Sanders [45] introduced
an efficient signature scheme that allows to sign message blocks (𝑚1, . . . ,𝑚𝑘) at
once. As their signatures are randomizable and as the verification equation of
their scheme does not involve any hash-function evaluation, one can efficiently
prove in zero-knowledge knowledge of signatures.

Given a type-3 pairing-group generator G and a security parameter 𝜆 ∈ N, the
PS signature scheme in a pairing-group 𝛤 =

(︁
𝑝,G, G̃,G𝑇 , 𝑒

)︁
← G

(︀
1𝜆
)︀
consists

of the following algorithms.

PS.KG(𝛤, 𝑘)→ (vk , sk) : Generate 𝑔 ∈𝑅 G̃*, 𝑥, 𝑦1, . . ., 𝑦𝑘+1 ∈𝑅 Z𝑝, compute
�̃� ← 𝑔𝑥, 𝑌𝑗 ← 𝑔𝑦𝑗 for 𝑗 ∈ [𝑘+ 1]. Set and return vk ←

(︁
𝑔, �̃�, 𝑌1, . . . , 𝑌𝑘+1

)︁
and sk ← (𝑥, 𝑦1, . . . , 𝑦𝑘+1).

PS.Sign (sk , (m1, . . . ,m𝑘))→ 𝜎 : Generate ℎ ∈𝑅 G*, m ′ ∈𝑅 Z𝑝, and return 𝜎 ←(︁
m ′, ℎ, ℎ𝑥+

∑︀𝑘
𝑗=1 𝑦𝑗m𝑗+𝑦𝑘+1m

′
)︁
.

PS.Vf (vk , (m1, . . . ,m𝑘), 𝜎)→ 𝑏 : Parse 𝜎 as (m ′, 𝜎1, 𝜎2), verify that 𝜎1 ̸= 1G and
that 𝑒

(︁
𝜎1, �̃�

∏︀𝑘
𝑗=1 𝑌

𝑚𝑗

𝑗 𝑌 m′

𝑘+1

)︁
= 𝑒(𝜎2, 𝑔). If so, return 1, otherwise return 0.

Pointcheval and Sanders showed [45] that this signature scheme is existen-
tially unforgeable under the q-MDSH-1 assumption (see Definition 2).

3 Group Signatures with Attributes

In this section, we introduce an important building block for our Zone-Encryption
protocol, namely dynamic group signatures with attributes (DGS+A). We for-
mally define DGS+A as an extension of conventional dynamic group signatures,
and propose a secure and highly efficient instantiation from PS signatures.

7

3.1 Definition of DGS+A

Dynamic group signatures (DGS) [6] allow users to join a group of signers at any
time, and then sign anonymously on behalf of the group. That is, a verifier is
assured that a signature stems from a group member but learns nothing about
the identity of the signer. Only the group manager (also called issuer) or a
dedicated opening authority can recover the identity behind a valid signature.

In our DGS+A extension, users obtain membership credentials which are
associated to a set of attributes by interacting with an issuer. Signatures, further
referred to as authentication tokens, are verified w.r.t. those attributes, i.e., a
message 𝑚 can only be signed for a set of attributes 𝐴 if the signer has a valid
membership credential for 𝐴. A similar generalization of group signatures with
attributes was already introduced by Camenisch, Neven and Rückert [17], but
without interactive credential issuance.

3.1.1 Syntax. Formally, a DGS+A scheme consists of

Setup(1𝜆, aux)→ pp : Generates public parameters on the input of a security
parameter and of auxiliary inputs. These public parameters are assumed to
be an implicit input to all the other algorithms.

KG(pp)→ (pk , (sk , st)) : A key-generation algorithm for the issuer. It is assumed
that pk can be recovered from sk . Variable st represents a state.

⟨Issue.U(id ,A, pk)
 Issue.I(sk , st , id ,A)⟩ → ⟨cred , st ′⟩ : A credential-issuance pro-
tocol for an attribute set A and user identity id . At the end of the protocol,
the user outputs a membership credential cred (or ⊥ if the protocol fails)
and the issuer updates its state to st ′. Credential cred is assumed to contain
the attributes 𝐴.

Auth(pk , cred ,m)→ tok : A probabilistic authentication algorithm which signs
a message 𝑚 w.r.t. 𝐴 and returns tok .

Vf(pk ,m, 𝐴, tok)→ 𝑏 ∈ {0, 1} : Returns 𝑏 = 1 if tok is a valid token for message
𝑚 and attributes 𝐴 w.r.t. pk .

Open(sk , st ,m, 𝐴, tok)→ id/⊥ : An opening algorithm which allows the issuer
to identify the user who generated a valid authentication token. The algo-
rithm returns an identity id or ⊥.

3.1.2 Security Properties. A DGS+A scheme should satisfy correctness,
anonymity and traceability. Our definitions follow the security notions of con-
ventional dynamic group signatures, which we adapt to a setting with attributes.
The formal definitions are given in Appendix B.1 and we sketch their intuitions
below.

Correctness.Correctness captures the idea that a truthfully generated authen-
tication token should be accepted by the verification algorithm. Moreover, if all
the algorithms are honestly executed and the opening protocol is run on a to-
ken, then all the opening algorithm should output the identity of the user who
computed the token. These properties should hold independently of the order
in which credentials are issued for user–attribute pairs and with overwhelming
probability.

8

Anonymity.Anonymity ensures that an authentication token reveals no infor-
mation about the identity of the user who computed it if the issuer is honest and
the token has not been opened. Note that user identities are not hidden during
the credential issuance protocol, and in fact need to be revealed for the issuer to
be able to open group signatures. That is, anonymity is only considered w.r.t.
tokens.

Traceability. Traceability captures the expected unforgeability guarantees of
our group signatures. It guarantees that as long as the issuer is honest, for any
valid token tok*, message m* and attribute set A*, opening can neither fail nor
reveal an incorrect honest identity id . The latter means that the user id either
never joined the group w.r.t. A*, or has joined but never signed m*.

3.2 Our DGS+A Scheme

The high-level idea of our DGS+A scheme is to compute a user membership
credential as a PS signature on her identity and her (public) attributes. To com-
pute an anonymous authentication token for a message, the user re-randomizes
the group elements of her signature and computes a signature of knowledge, on
the message, of her signed identity.

To allow for compact authentication tokens yet enable traceability, we fol-
low the approach by Bichsel et al. [8] where the issuer maintains a list of the
credentials that it generated and traces a token by testing the re-randomized
PS signature in the token against each entry. This approach makes tracing more
expensive for the benefit of having short tokens, which perfectly fits our ap-
plication to V2V communication in which bandwidth is limited and tracing an
uncommon practice.

Pointcheval and Sanders described a similar group signature scheme [44,
Appendix A.1] based on the CT-RSA’16 version of their signature scheme. The
security of their group-signature scheme thus relies on an interactive assumption.
Our scheme is based on the modified PS signature scheme [45] which allows
to prove traceability from a 𝑞-type assumption instead of an interactive one.
Moreover, we add attributes to the membership credentials, as they are needed
in our V2X scenario in which credentials are short-lived and periodically issued.

Scheme Description. Let G be a type-3 pairing-group generator, ℋ a random
oracle and PS the modified Pointcheval–Sanders signature scheme (Section 2.4).
Denoting by 𝑘 the number of attributes of each user, our DGS+A scheme DGSA
is the following:

Setup(1𝜆, 𝑘)→ pp : Generate 𝛤 =
(︁
𝑝,G, G̃,G𝑇 , 𝑒

)︁
← G

(︀
1𝜆
)︀
. Return pp ←

(𝛤, 𝑘 + 1).
KG.I(pp)→ (pk , (sk , st)) : Generate 𝑔 ∈𝑅 G̃*, (𝑥, 𝑦id , 𝑦1, . . . , 𝑦𝑘+1) ∈𝑅 Z𝑘+3

𝑝 ,
compute �̃� ← 𝑔𝑥, 𝑌id ← 𝑔𝑦id , and 𝑌𝑗 ← 𝑔𝑦𝑗 for 𝑗 = 1, . . . , 𝑘 + 1, and
return pk ←

(︁
𝑔, �̃�, 𝑌id , 𝑌1, . . . , 𝑌𝑘+1

)︁
, sk ← (pk , 𝑥, 𝑦id , . . . , 𝑦𝑘+1) and an

intially empty state st ← ∅.

9

Issue : For issuance between a user 𝒰 and an issuer ℐ, we assume a secure chan-
nel. If a party aborts the protocol, it returns ⊥. We further assume that the
identity space ID is a polynomial-size (in 𝜆) subset of Z𝑝.

1. Issue.I
(︀
sk , st , id ,A = (𝑎𝑖)

𝑘
𝑖=1

)︀
,

– abort if a record (id ,A, *) exists in st
– compute 𝜎 = (𝑎′, 𝜎1, 𝜎2)← PS.Sign(sk , (id , 𝑎1, . . . , 𝑎𝑘))
– send 𝜎 to 𝒰 and return st ′ ← st ∪ (id ,A, 𝑎′)

2. Issue.U(id ,A, pk) upon receiving 𝜎 from ℐ:
– verify that PS.Vf(pk , (id ,A), 𝜎) = 1 and abort if not
– return cred ←

(︁
id ,A, 𝜎, 𝑒

(︁
𝜎1, 𝑌id

)︁
, 𝑒
(︁
𝜎1, 𝑌𝑘+1

)︁)︁
. It is actually not nec-

essary to store 𝑒(𝜎1, 𝑌id) and 𝑒(𝜎1, 𝑌𝑘+1), but it helps avoiding pairing
computations when tokens are generated.

Auth(pk , cred ,m)→ tok : Parse cred = (id , A, 𝜎, 𝑒
(︁
𝜎1, 𝑌id

)︁
, 𝑒
(︁
𝜎1, 𝑌𝑘+1

)︁)︁
with A = (𝑎𝑖)

𝑘
𝑖=1, generate 𝑟 ∈𝑅 Z*

𝑝, compute (𝜎′
1, 𝜎

′
2) ← (𝜎𝑟

1, 𝜎
𝑟
2) and a

non-interactive proof of knowledge 𝜋 of (id , 𝑎′) such that

𝑒

(︃
𝜎′
1, �̃�𝑌 id

id

𝑘∏︁
𝑖=1

𝑌 𝑎𝑖
𝑖 𝑌 𝑎′

𝑘+1

)︃
= 𝑒(𝜎′

2, 𝑔).

That is, compute 𝑢 ← 𝑒
(︁
𝜎𝑟𝑠id
1 , 𝑌id

)︁
𝑒
(︁
𝜎
𝑟𝑠𝑎′
1 , 𝑌𝑘+1

)︁
for 𝑠id , 𝑠𝑎′ ∈𝑅 Z𝑝, com-

pute a challenge 𝑐 ← ℋ (𝑢,A,m, 𝜎′
1, 𝜎

′
2, pk) ∈ Z𝑝 and a response v ←

(𝑠id − 𝑐id , 𝑠𝑎′ − 𝑐𝑎′). Set 𝜋 ← (𝑐,v), and return tok ← (𝜎′
1, 𝜎

′
2, 𝜋).

Vf(pk ,m,A, tok)→ 𝑏 : Parse tok = (𝜎1, 𝜎2, 𝜋) with 𝜋 = (𝑐, 𝑣id , 𝑣𝑎′),A = (𝑎𝑖)
𝑘
𝑖=1,

and return 1 if 𝜎1 ̸= 1G and 𝑐 = ℋ0 (𝑢,A,m, 𝜎1, 𝜎2, pk) for

𝑢← 𝑒
(︁
𝜎𝑣id
1 , 𝑌id

)︁
𝑒
(︁
𝜎
𝑣𝑎′
1 , 𝑌𝑘+1

)︁
𝑒 (𝜎𝑐

2, 𝑔) 𝑒
(︁
𝜎𝑐
1, �̃�

−1
∏︀𝑘

𝑗=1 𝑌
−𝑎𝑗

𝑗

)︁
.

Open(sk , st ,m,A, tok)→ id/⊥ : Recovers the identity id of the user who gener-
ated an authentication token tok = (𝜎1, 𝜎2, 𝜋) for a message m and attribute
set A. It first verifies that tok is valid for m and A. If so, it goes through (in
lexicographic order of the identities) the tuples (id ,A, 𝑎′) in st until it finds
one such that (𝑎′, 𝜎1, 𝜎2) is a valid PS signature on (id ,A), and then returns
id . If no such tuple is found, it returns ⊥.

To open a signature on a given message, the opening algorithm loops over
all id such that a credential was issued for a tuple (𝑖𝑑,A). The complexity of
the opening algorithm is then of order 𝑂(|𝐼𝐷|). This approach allows to have
much shorter group signatures than those obtained with the traditional sign-
and-encrypt paradigm. An expensive opening procedure seems appropriate to
the case of V2X communication, the target application of this paper, as the
issuer should revoke the anonymity of vehicles only on solid grounds.

10

Algorithm 1 Open.
Require: (sk , st ,m,A, tok)
Ensure: An identity id or ⊥.
1: if Vf(pk ,m,A, tok) = 0 then
2: return ⊥
3: end if
4: for all id such that (id ,A, 𝑎′) ∈ st do
5: if 𝑒

(︁
𝜎1, �̃�𝑌 id

id

∏︀𝑘
𝑖=1 𝑌

𝑎𝑖
𝑖 𝑌 𝑎′

𝑘+1

)︁
= 𝑒(𝜎2, 𝑔) then

6: return id
7: end if
8: end for
9: return ⊥

Correctness & Security. The proofs that scheme DGSA satisfies correctness
and the security properties stated in Section 3.1 are deferred to Appendix B.2.1.
We here simply state the theorems.

Theorem 1 (Correctness). DGSA is correct.

Theorem 2 (Anonymity). In the random oracle model, DGSA satisfies anonymity
if both the first-group DDH and the SDL assumptions holds over the group gen-
erator G.

Theorem 3 (Traceability). Denoting by 𝑞 the amount of queries to oracles
Issue and Issue.I, scheme DGSA satisfies traceability under the 𝑞-MSDH-1 as-
sumption (which implies the SDL assumption) over the group generator G in the
random oracle model.

3.2.1 Efficiency. With a Cocks–Pinch pairing curve [34] defined over a field
of order 2544 and with embedding degree 8, group elements in G take 68 Bytes for
a group of 256-bit order. Note that this curve provides 131 bits of security [34].

An authentication token consists of two G elements and three Z𝑝 elements,
totalling 232 Bytes. The hash value in the proof of knowledge of a multi-signature
can actually be shortened to second-preimage resistant length, further shortening
a group signature to 216 Bytes.

Application to Zone Encryption.With a token size of 216 Bytes, our pairing-
based instantiation is sufficiently compact to be used in combination with our
zone-encryption scheme. Therein, tokens are only computed and sent during
key requests and responses. Compared to the 160-Byte overhead of ECDSA
signatures with certificates, our scheme could even be considered to sign each
individual CAM.

3.2.2 DGS+A with Threshold Opening. In the above definition and
scheme, the issuer can alone open all tokens, which makes him a single point

11

of failure in terms of privacy. In some applications, including zone encryption,
one may want to distribute the authority to open tokens over a group of 𝑛 au-
thorities, so that at least a threshold 𝜏 + 1 of them must collaborate to open a
token. In Appendix C, using threshold cryptography [21,50], we show how to do
so with a slight modification of the above scheme.

4 Zone Encryption

This section introduces zone encryption, a novel mechanism to authentically and
confidentially send CAMs between vehicles. It lets a vehicle securely communi-
cate with the other vehicles in its vicinity, encrypting all CAMs. A vehicle can
do so only after anonymously authenticating itself to the other vehicles.

To authenticate itself, a vehicle uses a short-term credential that it requests
at regular intervals from an issuer to whom it authenticates with a long-term
credential. If necessary, the issuer can revoke the anonymity of a vehicle and
potentially ban it from the system by revoking its long-term credential.

Overall, the goal is that the V2X communication is authenticated, confiden-
tial, i.e., only authorized vehicles can decrypt messages, and that the privacy
of vehicles in this communication is preserved. We start by describing the high-
level concept of zone encryption for V2X communication, then formally define
the desired properties and finally propose a provably secure instantiation.

Geo-Local Shared Keys. The core idea behind zone encryption is to lever-
age the fact that only vehicles in close proximity need to communicate. More
precisely, zone encryption assumes that the surface of the earth is divided into
disjoint zones, and lets the vehicles that are present in a particular zone agree
on the shared encryption key for that zone. For example, the zone boundaries
could be derived statically from the GPS coordinates and are chosen so that the
longest straight-line distance within a zone is less than the transmission radius
of a radio signal (typically 300–500m), so that any two vehicles in the same zone
should be able to communicate.

Of course, it should be avoided that two vehicles that are physically close
but at opposite sides of a zone boundary cannot communicate because they
broadcast to different zones. On this account, vehicles broadcast to multiple
zones simultaneously.

Short-Lived Zone Keys. We also impose that zone keys are periodically re-
freshed, e.g., every 15 minutes. This ensures that a rogue eavesdropping device
cannot simply stay silent and listen to ongoing traffic, but has to send key re-
quests or responses to other vehicles, exposing itself to detection and localization
through triangulation.

Authenticated encryption.Zone encryption takes a significantly different ap-
proach for authentication than the existing C-ITS proposals. Instead of sign-
ing every CAM with an anonymous authentication scheme, we simply use au-
thenticated symmetric encryption with the short-lived zone keys. Anonymous

12

credential-based authentication is only necessary when a vehicle enters a zone
and keys are exchanged in an authenticated manner. Given that each vehicle has
to process up to 3000 incoming CAMs per second, relying (mostly) on symmetric
primitives instead of asymmetric authentication leads to a significant computa-
tional speed-up.

Besides, smart traffic infrastructure that has no need to receive CAMs can be
equipped with certificates only for broadcasting authenticated but unencrypted
messages (as their content is not privacy sensitive), so that it cannot be abused
for mass surveillance.

Identity Resolution & Revocation. In case of dispute or malicious activity
in a certain zone at a given time, the messages that each vehicle had to send to
receive the zone key can be opened by a dedicated entity. The opening algorithm
run by this entity reveals the identity of the vehicle that computed a message,
which in turn allows to revoke its long-term credential. Recovering the long-term
identity of rogue vehicles is commonly known as identity resolution. It has been
established as an essential requirement to balance the privacy and accountability
needs in vehicular communication systems [43,49,56]. In the current C-ITS pro-
posal, identity resolution is realized by keeping mappings between pseudonyms
and long-term identities [56, Section IV.D].

For revocation, we follow the passive revocation approach advocated by the
European standard [27, Section 6.1.4], meaning that vehicles must regularly
request new short-term credentials. These requests will be rejected once the
corresponding long-term credential has been revoked. Revocation of the long-
term credential does not only disable the decryption capabilities of the detected
device, but also of any other rogue devices based on the same compromised
credential, making mass production of rogue devices less lucrative.

Privacy & Efficiency vs. Sybil Resistance & Non-Repudiation. Zone
encryption does pay a price in some other security aspects, though. By relying on
symmetric authenticated encryption to authenticate CAMs, we achieve neither
Sybil resistance nor non-repudiation. The former is not a major change since
with a pseudonym pool size of up to 100 simultaneously valid certificates, the
current proposals essentially gave up on Sybil resistance as well. The loss of
non-repudiation should only have minor effects: V2X logs will still be a useful
tool to analyze accidents in court, and transmitters of false information can
still be uncovered, albeit with slightly more effort, by tracing key requests and
responses at the time of the accident. The loss of non-repudiation(which is not
a requirement of the standards) is, on this account, a small price to pay for the
privacy gains that zone encryption achieves.

4.1 Syntax of Zone Encryption Schemes

A Zone-Encryption (ZE) scheme allows vehicles in a geographic zone at a given
time to securely and anonymously communicate which each other. A ZE scheme
features an enrollment authority ℰ , an issuer ℐ, and vehicles with unique iden-
tities 𝒱 ∈ {0, 1}*. The enrollment authority provides vehicles with revocable

13

Fig. 1. Illustration of Zone Encryption with its Anonymous-Authentication Approach.

long-term credentials and may in practice be a state authority. A vehicle that
has obtained a long-term credential is considered enrolled, and a vehicle identity
can be enrolled (only once) in the system at any time.

The long-term credential is used to obtain short-term credentials from the
issuer (which may in practice be another legal authority or a representative of
a car-manufacturer consortium). That is, we assume that time is divided into
(revocation) epochs, and all parties are assumed to be roughly synchronized, i.e.,
they share a common clock (e.g., a network clock). The duration of an epoch (e.g.,
a week) is the validity period of short-term credentials, and before the beginning
of each epoch, a vehicle must interact with the issuer to obtain the short-term
credential. These short-term credentials are irrevocable as they have limited
validity anyway. However, the issuer learns the identity 𝒱 of the vehicle and can
check if its long-term credential has been revoked by the enrollment authority.
For the sake of simplicity, we do not explicitly model revocation. As revocation
would only be needed for standard, i.e., non-anonymous authentication, this can
be added in a straightforward way.

A vehicle being equipped with a short-term credential can, during the epoch
for which the credential was issued, communicate with other vehicles in an au-
thenticated yet anonymous manner. More precisely, it uses the short-term cre-
dential to exchange so-called zone keys with other (anonymously) authenticated
vehicles. These keys are valid for a particular zone and short time period, e.g.,
15 minutes and enable vehicles to securely send and receive payloads that are
encrypted under these keys.

A ZE scheme allows vehicles to communicate anonymously, but if need be, the
issuer can recover the identity of the vehicle which computed a certain message.
It can then revoke (i.e., blacklist) the vehicle identity and reject its authorization
requests in the future.

To formally define a ZE scheme, let 𝑍 be a set of zones that cover the road
network and let 𝒫 be the payload space. Consider also a set of epochs Epoch
and a set of time periods 𝑇 , both non-empty finite integer sets such that for all
𝑡 ∈ 𝑇 , there exists a unique e ∈ Epoch for which e ≤ 𝑡 < e + 1. Denote it by
e(𝑡). These are parameters for the scheme. A ZE scheme then consists of the
following algorithms:

Setup & Key Generation.A ZE scheme features an algorithm generating pub-
lic parameters Setup

(︀
1𝜆, 𝑍,Epoch, 𝑇

)︀
→ pp, as well as key-generation algorithms

14

KG.E(pp) → (pkℰ , (skℰ , stℰ)) and KG.I(pp) → (pkℐ , (skℐ , stℐ)) respectively for
the enrollment authority and the issuer. The private outputs also contain state
stℰ and stℐ that are used to keep track of enrolled vehicles and open messages
sent during key requests. Moreover, we assume that the public keys can be re-
covered from the secret keys.

Receiving Long-term and Short-term Credentials.A ZE scheme has two
interactive protocols for 𝒱 to obtain authentication credentials.

⟨Enroll.V(pkℰ ,𝒱)
 Enroll.E(skℰ , stℰ ,𝒱)⟩ → ⟨cert𝒱 , st ′ℰ⟩ : The Enroll protocol is
run between a vehicle 𝒱 and enrollment authority ℰ . If successful, 𝒱 obtains
a long-term certificate cert𝒱 .

⟨Authorize.V(cert𝒱 , e, pkℐ)
 Authorize.I(skℐ , stℐ ,𝒱, e, pkℰ)⟩ → ⟨cred𝒱 , st
′
ℐ⟩ : A

vehicle 𝒱 can use its long-term certificate to obtain from issuer ℐ a short-term
credential cred𝒱 for an epoch e by running protocol Authorize.

Entering and Exiting Zones.Protocol Enter is run when a vehicle 𝒱 enters a
zone 𝑧 at time 𝑡. It is run with other responding vehicles 𝒲𝑖, all authenticated
via their short-term credentials cred𝒲𝑖

. If successful, the protocol allows the
entering vehicle 𝒱 to obtain the zone key 𝐾𝑧,𝑡 for the zone–time pair (𝑧, 𝑡).
Algorithm Exit is used to remove key material from the zone-key list 𝐿𝐾 of a
vehicle when it exits a zone or when the time period has expired. The latter is
crucial for our security model in which a vehicle, after leaving a zone, should no
longer be able to decrypt messages or compute valid ciphertexts for it.

⟨Enter.V(cred𝒱 , 𝐿𝐾 , pkℐ , 𝑧, 𝑡, requester)

 Enter.W(cred𝒲𝑖

, 𝐿𝐾𝑖
, pkℐ , 𝑧, 𝑡, responder 𝑖)𝑖≥0⟩ → ⟨𝐿𝐾 ,⊥⟩ : Protocol Enter

is run between a requesting vehicle 𝒱 and other responding vehicles𝒲𝑖. List
𝐿𝐾 consists of tuples (𝑧′, 𝑡′,𝐾𝑧′,𝑡′) to which, if the protocol is successful, a
new key 𝐾𝑧,𝑡 for the requested zone–time pair is added.

Exit(𝐿𝐾 , 𝑧, 𝑡)→ 𝐿′
𝐾 : Removes (𝑧, 𝑡,𝐾𝑧,𝑡) from 𝐿𝐾 .

Sending and Receiving Payloads.Algorithms Send and Receive are used by a
vehicle to exchange encrypted payloads. Note that these algorithms only need to
access the zone keys stored in 𝐿𝐾 , but not the short-and-long-term credentials,
which is a security benefit compared with existing C-ITS solutions.

Send(𝐿𝐾 ,P , 𝑌 ⊆ 𝑍, 𝑡)→ 𝛾/⊥ : Computes a ciphertext 𝛾 for a payload P for
all zones 𝑌 in time period 𝑡 (if 𝐿𝐾 contains the corresponding keys). The
ciphertext 𝛾 is assumed to carry public information about 𝑡 and 𝑌 , i.e., it
can be parsed as (𝑡, 𝑌, 𝛾′).

Receive(𝐿𝐾 , 𝛾)→ P/⊥ : Recovers the payload P from ciphertext 𝛾 if 𝐿𝐾 con-
tains a zone key under which 𝛾 is encrypted.

Identity Escrow.When suspicious behaviour is detected or when an accident
occurs, the issuer ℐ of the short-term credentials can reveal the identity of a
vehicle that sent a given message during an execution of protocol Enter.

15

Open(skℐ , stℐ ,m)→ 𝒱/⊥: returns the identity of a vehicle that it identifies as
the sender of a message m during an execution of protocol Enter, or ⊥.

Note that Open runs on a single anonymous message sent during an execution
of protocol Enter, not on a full record of all messages ever sent by vehicles. It
means that in practice, in case of a dispute or a suspicious event in a certain
zone the issuer only needs to de-anonymize the messages sent during executions
of protocol Enter for that zone at the time (period) of the event.

Correctness of Zone Encryption. A ZE scheme should satisfy correctness,
i.e., if a vehicle is authorized during a given epoch and has entered a zone in a
certain time period, then every message sent by that vehicle to this zone should
be successfully received by any other vehicle in the zone in that time period.
Moreover, the identity of a vehicle that sent a given message during an Enter
protocol execution should be recoverable by the issuer. These properties should
hold independently of the order in which certificates and credentials are issued
for vehicles, and with overwhelming probability.

4.2 Security of Zone Encryption Schemes

We now describe the security and privacy properties a ZE scheme must satisfy.
The payloads sent by the vehicles should be confidential. This property is for-

malized as Payload-Hiding security against Chosen-Ciphertext Attacks
(PH-CCA). Intuitively, PH-CCA security ensures that no efficient adversary can
infer any information about the payload underlying a ciphertext, unless it has
entered the zone in the time period of the ciphertext.

The privacy of vehicles should also be preserved, and this requirement is
defined through an anonymity game. Essentially, anonymity guarantees that
ciphertexts and enter-protocol messages do not reveal any information about the
identity of the sending vehicle.

Note that there is no anonymity requirement for the authorization process,
i.e., for receiving short-term credentials, as it is performed once per epoch (e.g.,
a week) and leaks very little information about the whereabouts of the vehicles.
It is not an issue assuming that users have control on when it occurs.

Further, despite strong privacy properties, zone-encryption should ensure
that only legitimate vehicles can send valid ciphertexts. This is captured via two
related security definitions.

First, the traceability notion guarantees that if a vehicle knows a key 𝐾𝑧,𝑡

for zone 𝑧 at time 𝑡, then it must have explicitly entered the zone 𝑧 at time 𝑡,
meaning that it must have sent an enter message that can be traced back by the
issuer to its long-term identity.

Secondly, the related notion of ciphertext integrity guarantees that an
adversary cannot compute a valid ciphertext 𝛾 for a particular zone–time pair
without knowing the zone key.

16

4.2.1 Common Oracles. We first introduce the oracles we give the adversary
in all our security games. In the formal definitions, 𝒪(skℰ , stℰ , skℐ , stℐ) denotes
that the adversary is given access to oracles

{︀
Enroll.E,Enroll.V&E,Authorize.I,

Authorize.V&I,Enter,Exit,Send,Receive,Open,Corrupt} as defined hereunder and
initialized with secret keys skℰ , stℰ , skℐ , stℐ . The public keys pkℰ , pk 𝐼 are not
made explicit, but are assumed to be recoverable from the corresponding secret
keys.

Throughout the security experiments, the challenger maintains several lists
which reflect the information 𝒜 learns through his interaction with the oracles.
These are summarized on Figure 2.

ℒhonest list of all enrolled honest vehicles {(𝒱)}
ℒcorrupt enrolled vehicles {(𝒱)} that where corrupt either from the beginning or later

on
ℒauth authorized vehicles {(𝒱, e)} per epoch e
ℒenter contains all messages {({𝒱,𝒜}, 𝑧, 𝑡,m)} that honest vehicles or the adversary

𝒜 exchanged during executions of protocol Enter
ℒsent ciphertexts {𝛾} generated by honest vehicles
ℒreceived decrypted ciphertexts {𝛾 = (𝑡, 𝑌, 𝛾′)}
ℒopened opened transcripts m
ℒkeys zone-keys {(𝑧, 𝑡,𝐾𝑡,𝑧)} that the adversary 𝒜 learned by corrupting honest

vehicles

Fig. 2. Lists maintained by the Challenger in the ZE Security Experiments.

Notation. “𝒪.algorithm.P” denotes the oracle which lets the adversary interact
with honest party 𝒫 running algorithm.P. Similarly, an oracle “𝒪.algorithm.P&R”
lets the adversary trigger the interactive protocol ⟨algorithm.P
 algorithm.R⟩
between two honest parties 𝒫 and ℛ. In the latter case, the adversary does
not learn the outputs of honest parties, but their internal states are updated
accordingly. Moreover, when an oracle is said to be running an algorithm on
behalf of an honest vehicle 𝒱, it is implicitly assumed that the oracle checks
that 𝒱 ∈ ℒhonest. Finally, The state of an honest vehicle 𝒱 is referred to as
𝒱[st𝒱], e.g., 𝒱[𝐿𝐾] denotes the zone keys 𝐿𝐾 maintained by 𝒱.

Oracles for Obtaining Credentials.There are a number of oracles to model
enrollment and issuance of short-term credentials, depending on whether the
requesting vehicle is honest or corrupt.

𝒪.Enroll.V&E(skℰ , stℰ , ·) on input 𝒱, lets the adversary trigger the enrollment
protocol between an honest vehicle with identity 𝒱 and the honest enrollment
authority ℰ . If Enroll.V ends with a private output 𝒱[cert], it adds 𝒱 to
ℒhonest.

𝒪.Enroll.E(skℰ , stℰ , ·) on input 𝒱, lets the adversary run an enrollment protocol
(in the role of the corrupt vehicle 𝒱) with the honest enrollment authority.
If Enroll.E ends with a private output st ′ℰ , it adds 𝒱 to ℒcorrupt.

17

𝒪.Authorize.V&I(skℐ , stℐ , ·) on input (𝒱, e), triggers an Authorize protocol be-
tween the honest vehicle 𝒱 and honest issuer ℐ. If Authorize.V ends with
private output 𝒱[e, cred𝒱], it adds (𝒱, e) to ℒauth.

𝒪.Authorize.I(skℐ , stℐ , ·) on input (𝒱, e), allows a corrupt vehicle 𝒱, played by
the adversary, to run the Authorize protocol with the honest issuer ℐ. If
Authorize.I ends with private output st ′ℐ , it adds (𝒱, e) to ℒauth.

Oracles for Entering and Exiting Zones. The adversary is further given
access to an oracle which lets it actively participate in the Enter protocol as
well as eavesdrop on enter-protocol executions between honest vehicles. Another
oracle lets the adversary make an honest vehicle exit a zone.

𝒪.Enter(·) on input (𝒱, 𝑧, 𝑡, role), triggers a zone-key request or response proto-
col (according to role) for a honest vehicle 𝒱 in zone 𝑧 and time period 𝑡.

– For role = requester , the oracle starts Enter.V for 𝒱 in the requester role
and also internally invokes all other honest vehicles 𝒲𝑖 which have zone
keys for (𝑧, 𝑡) to run Enter.W with role = responder . The adversary can
intercept and inject messages sent by these honest vehicles, and also par-
ticipate in the responder role with a corrupt vehicle. Eventually, the key
state 𝒱[𝐿𝐾] of the honest requester is updated to include 𝐾𝑧,𝑡.

– For role = responder the oracle lets an honest vehicle 𝒱 respond to a
zone-key request that the adversary runs for a corrupt vehicle.

All messages (𝒱, 𝑧, 𝑡,m) sent by honest vehicles 𝒱 are tracked with list ℒenter.
Similarly, when an honest vehicle receives a message m that no other honest
vehicle has sent, the message is recorded as adversarial by adding (𝒜, 𝑧, 𝑡,m)
to ℒenter.
Note that this oracle captures both active and passive attacks. The latter
can be done if the adversary queries 𝒪.Enter for role = requester and does
not participate as corrupt responder or manipulates messages, but merely
observes the traffic between the honest vehicles in a certain zone and time
period (𝑧, 𝑡). There is then no message (𝒜, 𝑧, 𝑡,m) ∈ ℒenter; and 𝒜 is con-
sidered successful if it infers information for (𝑧, 𝑡) that is supposed to only
be known to vehicles which entered the zone, e.g., if it manages to distin-
guish ciphertexts encrypted for (𝑧, 𝑡) (PH-CCA) or if it can produce a valid
ciphertext (ciphertext integrity).

𝒪.Exit(·) on input (𝒱, 𝑧, 𝑡), deletes key 𝐾𝑧,𝑡 from the key state of the honest
vehicle 𝒱.

Oracles for Sending and Receiving Payloads, Opening and Corruption.
Finally, the adversary is given access to oracles that can trigger honest vehicles
to encrypt or decrypt messages, recover the identity of sending vehicles, and
adaptively corrupt vehicles.

𝒪.Send(·) on input (𝒱,P , 𝑌, 𝑡) for an honest vehicle 𝒱, returns 𝛾/⊥ ← Send(𝒱[𝐿𝐾],
P , 𝑌, 𝑡) and adds 𝛾 to ℒsent.

𝒪.Receive(·) on input (𝒱, 𝛾) for an honest vehicle 𝒱, returns𝑚/⊥ ← Receive(𝒱[𝐿𝐾],
𝛾) and adds 𝛾 to ℒreceived.

18

𝒪.Open(skℐ , stℐ , ·) on input m, returns 𝒱/⊥ ← Open(skℐ , stℐ ,m) and adds m
to ℒopened.

𝒪.Corrupt(·) on input 𝒱, returns the current state of the honest vehicle 𝒱, i.e.,
it returns 𝒱[cert𝒱], all 𝒱[{(e𝑗 , cred𝒱,𝑗)}], and 𝒱[𝐿𝐾] to the adversary. It also
adds 𝒱 to ℒcorrupt and all keys (𝑧, 𝑡,𝐾𝑧,𝑡) in 𝒱[𝐿𝐾] to ℒkeys.

4.2.2 Payload Hiding. Payload-hiding security against chosen-ciphertext at-
tacks (see Figure 3) guarantees that an adversary cannot infer any information
about messages encrypted for a zone it is not supposed to be in. Our definition
follows the classical CCA definition and requires the adversary to output two
payloads 𝑃0, 𝑃1 together with a time 𝑡* and zones 𝑌 *, upon which it receives
the zone encryption of 𝑃𝑏 for a random 𝑏 ∈ {0, 1}. The adversary must then
determine 𝑏 better than by guessing. We give the adversary access to honest
participants in the system, e.g., by allowing it to enroll and authorize vehicles,
enter zones, encrypt and decrypt messages of its choice, and to corrupt vehicles.

The adversary wins as long as its interactions with these oracles do not lead
to a trivial win. Clearly, the adversary is not allowed to query the decryption
oracle 𝒪.Receive on (parts of) the challenge ciphertext (condition 1), or corrupt
an honest vehicle that has a zone-key for one of the challenge zones in 𝑌 * at
time 𝑡* (condition 2). Furthermore, the adversary must not have entered any
challenge zone at time 𝑡* with a corrupt vehicle, or if it did, it must not have a
valid authorization credential for epoch e(𝑡*) (condition 3). The latter condition
is crucial as our PH-CCA notion should guarantee message confidentiality for
all zones the adversary was not supposed to be in.

Definition 3 (PH-CCA Security). A ZE scheme 𝒵 is PH-CCA secure if
there exists a negligible function negl such that for all efficient adversary 𝒜, for
all 𝜆 ∈ N, zone-set 𝑍, epoch set Epoch and time-period set 𝑇 ,⃒⃒⃒

Pr
[︁
Expph−cca−0

𝒵,𝜆,𝑍,Epoch,𝑇 (𝒜) = 1
]︁
− pr

[︁
Expph−cca−1

𝒵,𝜆,𝑍,Epoch,𝑇 (𝒜) = 1
]︁⃒⃒⃒
≤ negl (𝜆) .

4.2.3 Anonymity. Anonymity (see Figure 4) captures the idea that ZE ci-
phertexts and the messages sent during executions of protocol Enter do not
reveal any information about the identity of the sending vehicle. This includes
unlinkability, i.e., the adversary cannot tell whether two ciphertexts or two enter-
protocol messages stem from the same vehicle.

Our definition follows the indistinguishability style, and it grants the adver-
sary oracle access to honest participants. In particular, the adversary can enter
and exit zones with honest vehicles, as well as send payloads and receive cipher-
texts with them. The adversary must eventually output two challenge vehicle
identities 𝒱0 and 𝒱1, after which it gets access to vehicles 𝒱𝑏 and 𝒱1−𝑏 and has
to determine 𝑏. In the experiment, it is captured by turning all oracles that
should not leak information about the vehicles identity into challenge oracles.
That is, the oracles to enter and exit zones, or to send payloads and receive ci-
phertexts are restricted to no longer respond to queries for identities 𝒱0 or 𝒱1. If

19

Experiment Expph−cca−𝑏
𝒵,𝜆,𝑍,Epoch,𝑇 (𝒜) :

pp ← Setup(1𝜆, 𝑍,Epoch, 𝑇)
(pkℰ , (skℰ , stℰ))← KG.E(pp), (pkℐ , (skℐ , stℐ))← KG.I(pp)

initialize all oracles as 𝒪(skℰ , stℰ , skℐ , stℐ)
(𝒱*, 𝑃0, 𝑃1, 𝑌

, 𝑡, state𝒜)← 𝒜𝒪(choose, pp, pkℰ , pkℐ)
abort if 𝒱* ∈ ℒcorrupt

𝛾* ← Send(𝒱*[𝐿𝐾], 𝑃𝑏, 𝑌
, 𝑡) with 𝛾* = (𝑡*, 𝑌 *, 𝛾*′)

𝑏′ ← 𝒜𝒪(guess, 𝛾*, state𝒜)
return 𝑏′ if 𝒜 did not trivially win, i.e.:
1) ∀(𝑡*, 𝑌, 𝛾) ∈ ℒreceived : 𝛾 ∩ 𝛾*′ = ∅ and

2) ∀𝑦* ∈ 𝑌 * : (𝑦*, 𝑡*, ·) /∈ ℒkeys, i.e., 𝒜 has not corrupted a vehicle in a challenge zone, and

3a) ∀𝑦* ∈ 𝑌 * : ((𝒜, 𝑦*, 𝑡*, ·) /∈ ℒenter) or

3b) ∃(𝒜, 𝑦*, 𝑡*, ·) ∈ ℒenter and ∀𝒱𝑗 ∈ ℒcorrupt, @(𝒱𝑗 , 𝑒(𝑡*)) ∈ ℒauth

i.e., 𝒜 has not entered a challenge zone in time 𝑡* or entered but was not authorized

Fig. 3. PH-CCA Experiment for ZE Schemes.

the adversary wants to make such a query for either of them, it has to provide a
bit 𝑑 and the query is answered with vehicle 𝒱𝑑⊕𝑏, i.e., either the chosen vehicle
𝒱𝑏 (for 𝑑 = 0) or its counterpart 𝒱1−𝑏 (for 𝑑 = 1).

To avoid trivial wins, the oracles to enter and exit zones cannot be queried
at a time 𝑡 for a challenge vehicle if 𝒱0 and 𝒱1 have not both been authorized in
epoch e(𝑡). Besides, the adversary can never open a message sent by one of the
challenge vehicles during an execution of protocol Enter.

Note that this definition does not require the authorization protocol to be
anonymous, but only ZE ciphertexts and messages exchanged during executions
of protocol Enter. As authorization is performed only once per epoch, it is not
critical for the privacy guarantees we aim for in V2X communication.

Definition 4 (Anonymity). A ZE scheme 𝒵 satisfies anonymity if there exists
a negligible function negl such that for all efficient adversary 𝒜, for all 𝜆 ∈ N,
zone-set 𝑍, epoch set Epoch and time-period set 𝑇 ,⃒⃒⃒

Pr
[︁
Expano−0

𝒵,𝜆,𝑍,Epoch,𝑇 (𝒜) = 1
]︁
− Pr

[︁
Expano−1

𝒵,𝜆,𝑍,Epoch,𝑇 (𝒜) = 1
]︁⃒⃒⃒
≤ negl (𝜆) .

4.2.4 Traceability. The notion of traceability ensures that if a vehicle knows
a secret key 𝐾𝑧,𝑡 for a zone–time pair, then it must have entered the zone–time
pair by sending a message that can be traced back to the sending vehicle. This
is captured via a game (on Figure 5) where the adversary must output a key
𝐾𝑧*,𝑡* for a zone 𝑧* and time 𝑡* of its choice. The adversary wins if at least one
honest vehicle 𝒱 has accepted the key, but none of the messages in executions of

20

Experiment Expano−b
𝒵,𝜆,𝑍,Epoch,𝑇 (𝒜) :

pp ← Setup(1𝜆, 𝑍,Epoch, 𝑇)
(pkℰ , (skℰ , stℰ))← KG.E(pp), (pkℐ , (skℐ , stℐ))← KG.I(pp)

initialize all oracles as 𝒪(skℰ , stℰ , skℐ , stℐ)
(𝒱0,𝒱1, state𝒜)← 𝒜𝒪(choose, pp, pkℰ , pkℐ)
abort if the vehicles have different cred/key states, i.e., check that:

for 𝑑 ∈ {0, 1}: @e𝑖 s.t. (𝒱𝑑, e𝑖) ∈ ℒauth and (𝒱1−𝑑, e𝑖) /∈ ℒauth and 𝒱0[𝐿𝐾] = 𝒱1[𝐿𝐾]

use challenge oracles 𝒪*(𝑏) for
{︀
Enter*,Exit*, Send*,Receive*

}︀
𝑏′ ← 𝒜𝒪*

(guess, state𝒜)
return 𝑏′ if 𝒜 did not trivially win, i.e.,

for 𝑑 ∈ {0, 1} : 𝒱𝑑 ∈ ℒhonest and ∀m ∈ ℒ*
enter : m /∈ ℒopened

Fig. 4. Anonymity Experiment for ZE Schemes.

protocol Enter for (𝑧*, 𝑡*) can be traced with algorithm Open to a corrupt vehicle
(that was authorized to enter). To avoid trivial wins we further request that the
adversary has not corrupted an honest vehicle that held the key 𝐾𝑧*,𝑡* output
by the adversary (condition 1). Moreover, no corrupt vehicle can be authorized
in epoch 𝑒(𝑡*) (conditions 2) as otherwise the adversary would be able to impose
a zone key.

In particular, for a ZE scheme that satisfies traceability, if an efficient ad-
versary knows the zone key of an honest vehicle, then it has either corrupted
another honest vehicle in the zone, or it must have sent at least one message
that traces back to a corrupt vehicle that was authorized in epoch e(𝑡*).

Experiment Exptrace
𝒵,𝜆,𝑍,Epoch,𝑇 (𝒜) :

pp ← Setup(1𝜆, 𝑍,Epoch, 𝑇)
(pkℰ , (skℰ , stℰ))← KG.E(pp), (pkℐ , (skℐ , stℐ))← KG.I(pp)

initialize all oracles as 𝒪(skℰ , stℰ , skℐ , stℐ)
(𝑧*, 𝑡*,𝐾𝑧*,𝑡*)← 𝒜𝒪(forge, pp, pkℰ , pkℐ)
look up 𝒱 ∈ ℒhonest with 𝐾𝑧*,𝑡* ∈ 𝒱[𝐿𝐾], abort if no such 𝒱 exists

return 1 if knowledge of 𝐾𝑧*,𝑡* cannot be traced to a corrupt vehicle:
1) 𝐾𝑧*,𝑡* /∈ ℒkeys and 2) ∀(·, 𝑧*, 𝑡*,m𝑗) ∈ ℒenter with 𝒱𝑗 ← Open(sk𝐼 , st𝐼 ,m𝑗) :

𝒱𝑗 /∈ ℒcorrupt or ((𝒱𝑗 ∈ ℒcorrupt) and (@(𝒱𝑗 , 𝑒(𝑡*)) ∈ ℒauth))

Fig. 5. Traceability Experiment for ZE Schemes.

21

Definition 5 (Traceability). A ZE scheme 𝒵 satisfies traceability if there ex-
ists a negligible function negl such that for all efficient adversary 𝒜, for all
𝜆 ∈ N, zone-set 𝑍, epoch set Epoch and time-period set 𝑇 ,

Pr
[︁
Exptrace

𝒵,𝜆,𝑍,Epoch,𝑇 (𝒜) = 1
]︁
≤ negl (𝜆) .

4.2.5 Ciphertext Integrity. The notion of ciphertext integrity (see Figure 6)
complements the traceability property as it guarantees that without knowing
a secret zone key 𝐾𝑧,𝑡 an adversary should not be able to compute a valid
ciphertext for that zone and time. This is modeled by asking the adversary to
produce a fresh and valid ciphertext 𝛾* for zones for which it is not supposed
to know the keys. The adversary also outputs an honest vehicle 𝒱 that must
decrypt 𝛾* to 𝑃 ̸= ⊥.

Freshness means that 𝛾* should not contain any honestly generated cipher-
texts (or parts thereof) the adversary has received via oracle 𝒪.Send (condition
1). Moreover, the same conditions as in the PH-CCA game are used to check
that the adversary is not supposed to know the key. That is, the adversary must
not have corrupted an honest vehicle that knows a valid key for the forged ci-
phertext (condition 2). Besides, it must not have entered any challenge zone at
time 𝑡* with a corrupt vehicle, or if it entered, it must not have a valid autho-
rization credential for epoch e(𝑡*) (condition 3). The last condition means that
the adversary does win the game if it knows the key of a zone–time pair it was
not allowed to enter.

Experiment Expintegrity
𝒵,𝜆,𝑍,Epoch,𝑇 (𝒜) :

pp ← Setup(1𝜆, 𝑍,Epoch, 𝑇)
(pkℰ , (skℰ , stℰ))← KG.E(pp), (pkℐ , (skℐ , stℐ))← KG.I(pp)

initialize all oracles as 𝒪(skℰ , stℰ , skℐ , stℐ)
(𝒱, 𝛾*)← 𝒜𝒪(forge, pp, pkℰ , pk𝐼)

parse 𝛾* = (𝑡*, 𝑌 *, 𝛾*′), abort if 𝒱 ∈ ℒcorrupt

return 1 if Receive(𝒱[𝐿𝐾], 𝛾*) ̸= ⊥ and 𝒜 did not trivially win, i.e.,
1) ∀(𝑡*, 𝑌, 𝛾) ∈ ℒsent : 𝛾 ∩ 𝛾*′ = ∅ and

2) ∀𝑦* ∈ 𝑌 * : (𝑦*, 𝑡*, ·) /∈ ℒkeys and
i.e., 𝒜 has not corrupted a vehicle in a challenge zone

3a) ∀𝑦* ∈ 𝑌 * : ((𝒜, 𝑦*, 𝑡*, ·) /∈ ℒenter) or

3b) ∃(𝒜, 𝑦*, 𝑡*, ·) ∈ ℒenter and ∀𝒱𝑗 ∈ ℒcorrupt : @(𝒱𝑗 , 𝑒(𝑡*)) ∈ ℒauth

i.e., 𝒜 has not entered a challenge zone in time 𝑡* or entered but was not authorized

Fig. 6. Ciphertext-Integrity Experiment for ZE Schemes.

22

Definition 6 (Ciphertext Integrity). A ZE scheme 𝒵 satisfies ciphertext-
integrity if there exists a negligible function negl such that for every efficient
adversary 𝒜, for all 𝜆 ∈ N, zone-set 𝑍, epoch set Epoch and time-period set 𝑇 ,

Pr
[︁
Expintegrity

𝒵,𝜆,𝑍,Epoch,𝑇 (𝒜) = 1
]︁
≤ negl (𝜆) .

4.2.6 Comparison to Existing Models. We compare our security model
to that of Verheul et al. [55], who distilled a list of requirements for ETSI-
compatible V2X security architectures [26] and formalized two security games
for reductionist security proofs, namely an authentication game and a privacy
game.

Verheul et al.’s authentication game requires that, after observing valid mes-
sages sent by several honest vehicles, an adversary cannot produce a valid sig-
nature for a message that was not previously sent by an honest vehicle. The
combination of our traceability and ciphertext integrity games yields stronger
security properties than Verheul et al.’s authentication game because their game
does not model traceability of vehicles (while our model can trace vehicles that
successfully entered the zone), does not give the adversary access to valid vehicle
keys (while our model continues to guarantee authenticity as long as no corrupt
vehicles enter the zone, and when they do, guarantees that those vehicles can be
traced), and does not cover replay attacks (while our model prevents messages
from being replayed in a different zone or time period).

Verheul et al.’s’ privacy game is somewhat underspecified (the oracle outputs
are not clearly defined, and the adversary’s challenge to choose (𝑐*0, 𝑐

*
1) and to

guess 𝑏 when given 𝑐*𝑏 seems trivial) but, judging by the gist of the game, is
weaker than our anonymity game because it does not guarantee unlinkability of
pseudonyms (because the adversary cannot induce pseudonym changes on honest
vehicles), only considers messages sampled from a fixed distribution (rather than
sampled adaptively by the adversary), and does not give the adversary access
to vehicles’ keys. Obviously, since their scheme doesn’t try to hide CAM data,
they don’t have a notion that corresponds to our payload hiding game.

4.3 Our Zone Encryption Scheme

We here describe a generic zone-encryption scheme constructed from authenti-
cated encryption, public-key encryption, digital signatures and a dynamic group
signature scheme with attributes. For the latter, see the practical, pairing-based
instantiation in Section 3.2. Our ZE scheme involves the following building
blocks:

– SIG a signature scheme to generate long-term credentials and thereby certify
vehicle identities

– DGSA a group-signature scheme (Section 3.1) used to compute short-term
authentication credentials. Group-membership credentials are issued w.r.t.
the current time epoch e(𝑡)

23

– PKE a public-key encryption scheme to encrypt zone keys during key requests
and responses

– SE a symmetric-key encryption scheme to encrypt payloads
– DAE a deterministic authenticated encryption scheme to wrap payload keys

with each zone key, and thereby bind payload ciphertexts to their zones.

The reason we use symmetric encryption to encrypt payloads and only au-
thenticate key wraps is that payloads may a priori be long. Authenticating the
payload part of the ciphertext would increase its length. Only authenticating the
key wraps and bind the payload part to them results in shorter ciphertext.

4.3.1 Formal Description. Recall that each short-term credential is only
valid in a certain epoch (e.g., a week), and that zone keys must be refreshed at
the beginning of every time period (e.g., every 15 minutes). It is assumed that,
during protocol executions, whenever an algorithm receives an abort or invalid
message, or a verification step fails, it aborts by returning ⊥. Likewise, when an
algorithm must retrieve a key from its internal state, it aborts if no such key can
be found.

Our ZE scheme 𝒵, parametrized by a zone set 𝑍, an epoch set Epoch and a
time-period set 𝑇 , is defined as follows.

Setup & Key Generation. The setup and key generation algorithms simply
run the respective algorithms of the building blocks and generate the keys and
parameters accordingly.

Setup
(︀
1𝜆, 𝑍,Epoch, 𝑇

)︀
: Generate public parameters for SIG, DGSA (with one

attribute), PKE, SE and DAE and return pp ← (ppSIG, ppDGSA, ppPKE, ppSE,
ppDAE, 𝑍,Epoch, 𝑇).

KG.E(pp) : Run (vk , sk) ← SIG.KG(ppSIG), set keys as (pkℰ , skℰ) ← (vk , sk),
stℰ ← ∅, and return the tuple (pkℰ , (skℰ , stℰ)).

KG.I(pp) : Run and return (pkℐ , (skℐ , stℐ))← DGSA.KG(ppDGSA).

Issuance of Long-Term and of Short-Term Credentials.To enroll in the
communication system, a vehicle with identity 𝒱 must request a long-term cer-
tificate, which is simply a signature on 𝒱 by the enrollment authority. From
then on, it can request short-term credentials at the beginning of each epoch
from issuer ℐ. Credentials are DGS+A membership credentials for an epoch e
as attribute, and are used to authenticate vehicles during protocol Enter.

Enroll.V
 Enroll.E : The vehicle and the EA proceed as follows.
1. Enroll.V(pkℰ ,𝒱):
– (vk𝒱 , sk𝒱)← SIG.KG(ppSIG), send (𝒱, vk𝒱) to ℰ
2. Enroll.E(skℰ , stℰ ,𝒱) upon receiving (𝒱, vk𝒱):
– check that 𝒱 /∈ stℰ (to ensure that a vehicle identity can be enrolled only

once), send a signature 𝜎ℰ ← SIG.Sign(skℰ , (𝒱, vk𝒱)) to 𝒱 and return
st ′ℰ ← stℰ ∪ 𝒱

3. Enroll.V upon receiving 𝜎ℰ from ℰ :

24

– if SIG.Vf(pkℰ , (𝒱, vk𝒱), 𝜎ℰ) = 1, return cert𝒱 ← (sk𝒱 , vk𝒱 , 𝜎ℰ).
Authorize.V
 Authorize.I : 1. Authorize.V(cert𝒱 , e, pkℐ) with cert𝒱 parsed as

(sk𝒱 , vk𝒱 , 𝜎ℰ):
– compute 𝜎𝒱 ← SIG.Sign(sk𝒱 , e)
– send (vk𝒱 , 𝜎ℰ , 𝜎𝒱) to ℐ
2. Authorize.I(sk 𝐼 , stℐ ,𝒱, e, pkℰ) upon receiving (vk𝒱 , 𝜎ℰ , 𝜎𝒱):
– abort if 𝒱 is revoked (this is handled outside the scheme)
– test whether SIG.Vf(pkℰ , (𝒱, vk𝒱), 𝜎ℰ) = 1 and SIG.Vf(vk𝒱 , e, 𝜎𝒱) = 1
3. ℐ and 𝒱 run the issuance protocol of DGSA with 𝑖𝑑 = 𝒱 and attribute

𝐴 = e, i.e., ⟨DGSA.Issue.U(𝒱, e, pkℐ)
 DGSA.Issue.I(skℐ , stℐ ,𝒱, e)⟩ and
return their respective outputs cred and st ′ℐ .

Entering and Exiting Zones. A vehicle which approaches a zone 𝑧 in time
period 𝑡 obtains the key for (𝑧, 𝑡) by sending an anonymously authenticated key
request wich includes a fresh public-key encryption key ek . Any vehicle which
receives the request and knows the zone key 𝐾𝑧,𝑡 can send an anonymously au-
thenticated response which contains an encryption of 𝐾𝑧,𝑡 under ek . The tokens
authenticate messages consisting of 𝑧, 𝑡, and the fresh key ek for requests or
encryptions ct under ek of the zone key 𝐾𝑧,𝑡.

If the requesting vehicle receives no response, it generates a random key 𝐾𝑧,𝑡

and waits for requests from new vehicles that join the zone.
A vehicle determines whether it should reply according to a predetermined

strategy, e.g., the vehicle closest to the requesting vehicle should reply to the
key request. The optimal strategy depends on the zone structure, the traffic and
other practical factors, and it is an engineering problem on its own. We here
assume the existence of such a pre-established key-response strategy among all
vehicles. Finally, once the time period 𝑡 has elapsed, 𝒱 simply deletes 𝐾𝑧,𝑡 from
its internal key state.

Enter.V
 [Enter.W𝑖] : The inputs are assumed to be well-formed, i.e., creden-
tials cred𝒱 and cred𝒲𝑖

are valid for epoch e(𝑡).
1. 𝒱 running Enter.V(cred𝒱 , 𝐿𝐾 , pkℐ , 𝑧, 𝑡, requester) :
– return 𝐿𝐾 if ∃ (𝑧, 𝑡,𝐾𝑧,𝑡) ∈ 𝐿𝐾

– (ek , dk)← PKE.KG(ppPKE)
– tok𝒱 ← DGSA.Auth(pkℐ , cred𝒱 , (𝑧, 𝑡, ek))
– broadcast (𝑧, 𝑡, ek , tok𝒱)
2. 𝒲𝑖 running Enter.W(cred𝒲𝑖 , 𝐿𝐾𝑖 , pkℐ , 𝑧, 𝑡, responder 𝑖) upon receiving (𝑧,

𝑡, ek , tok𝒱) from a vehicle 𝒱:
– verify that DGSA.Vf(pkℐ , (𝑧, 𝑡, ek), e(𝑡), tok𝒱) = 1
– retrieve (𝑧, 𝑡,𝐾𝑧,𝑡) ∈ 𝐿𝐾𝑖

– ct ← PKE.Enc(ek ,𝐾𝑧,𝑡)
– tok𝒲 ← DGSA.Auth(pkℐ , cred𝒲𝑖

, (𝑧, 𝑡, ct))
– send (𝑧, 𝑡, ct , tok𝒲) to vehicle 𝒱

(3a) Vehicle 𝒱 upon receiving (𝑧, 𝑡, ct , tok𝒲) from a vehicle 𝒲𝑖:
– verify that DGSA.Vf(pkℐ , (𝑧, 𝑡, ct), e(𝑡), tok𝒲) = 1
– decrypt 𝐾𝑧,𝑡 ← PKE.Dec(dk , ct), return 𝐿𝐾 ← 𝐿𝐾 ∪ (𝑧, 𝑡,𝐾𝑧,𝑡)

(3b) If 𝒱 does not receive a response after a predetermined waiting time:
– 𝐾𝑧,𝑡 ← DAE.KG(1𝜆), return 𝐿𝐾 ← 𝐿𝐾 ∪ (𝑧, 𝑡,𝐾𝑧,𝑡)

Exit(𝐿𝐾 , 𝑧, 𝑡) : If (𝑧, 𝑡,𝐾𝑧,𝑡) ∈ 𝐿𝐾 return 𝐿′
𝐾 ← 𝐿𝐾∖(𝑧, 𝑡,𝐾𝑧,𝑡).

25

Sending and Receiving Payloads. To encrypt CAMs, referred to as pay-
loads in the construction, a vehicle generates a fresh symmetric key 𝐾P and
encrypts the payload with it. It then wraps the payload key with the key 𝐾𝑧,𝑡

of each of the zones to which it intends to send the CAM. By using a deter-
ministic5authenticated encryption scheme [48] to wrap fresh payload keys, it is
guaranteed that the message originates from a genuine vehicle, as it had to au-
thenticate itself to obtain the zone key. We therefore eliminate the need for a
separate signature on each CAM message, yielding considerable savings in terms
of computation. In addition to that, the authentication provided by scheme DAE
is extented to the payload ciphertext ct by including ct as the header when 𝐾P

is encrypted under the zone keys.

Send(𝐿𝐾 ,P , 𝑌 ⊆ 𝑍, 𝑡) : to send a payload P ,
1. retrieve keys {𝐾𝑦,𝑡} for all zones 𝑦 ∈ 𝑌 and time 𝑡 from 𝐿𝐾

2. ct ← SE.Enc(𝐾𝑃 , 𝑃) with 𝐾𝑃 ← SE.KG(ppSE)
3. for all 𝑦 ∈ 𝑌 : 𝛾𝑦,𝑡 ← DAE.Enc(𝐾𝑦,𝑡, ct ,𝐾𝑃)
4. return 𝛾 ← (𝑡, 𝑌, ((𝑦, 𝛾𝑦,𝑡)𝑦∈𝑌 , ct))

1. retrieve keys {𝐾𝑦,𝑡} for all zones 𝑦 ∈ 𝑌 and time 𝑡 from 𝐿𝐾

2. ct ← SE.Enc(𝐾𝑃 , 𝑃) with 𝐾𝑃 ← SE.KG(ppSE)
3. for all 𝑦 ∈ 𝑌 : 𝛾𝑦,𝑡 ← DAE.Enc(𝐾𝑦,𝑡, ct ,𝐾𝑃)
4. return 𝛾 ← (𝑡, 𝑌, ((𝑦, 𝛾𝑦,𝑡)𝑦∈𝑌 , ct))

𝐾P P

SE

DAE𝐾𝑖0

𝛾𝑖0

DAE𝐾𝑖1

𝛾𝑖1

· · · DAE𝐾𝑖𝑛

𝛾𝑖𝑛 ct

. . .

. . .

Fig. 7. Encryption Procedure with 𝑌 := {𝑦1, . . . , 𝑦𝑛} and 𝑖𝑗 := (𝑦𝑗 , 𝑡).

Receive(𝐿𝐾 , 𝛾) : To recover the payload of a ciphertext 𝛾,
1. parse 𝛾 = (𝑡, 𝑌, ((𝑦, 𝛾𝑦,𝑡)𝑦∈𝑌 , ct))
2. retrieve from 𝐿𝐾 a key 𝐾𝑦,𝑡 for a zone 𝑦 ∈ 𝑌
3. 𝐾𝑃 ← DAE.Dec(𝐾𝑦,𝑡, ct , 𝛾𝑦,𝑡)
4. return P ← SE.Dec(𝐾𝑃 , ct).

5 We use a deterministic authenticated encryption scheme as a key-wrapping algorithm
should in practice not rely on nonces [22].

26

Identity Escrow. If needed, the issuer can recover the identity of a vehicle that
sent an authenticated key request or response during an execution of protocol
Enter. He does so by executing the opening protocol of DGSA.

Open(skℐ , stℐ ,m) : parse message m as (𝑧, 𝑡,m ′, tok) with m ′ ∈ {ek , ct} and
return identity 𝒱/⊥ ← DGSA.Open(skℐ , stℐ , (𝑧, 𝑡,m

′), e(𝑡), tok).

Distributed Identity Resolution. In our scheme, the issuer can alone de-
anonymize messages sent during executions of protocol Enter, making it a sin-
gle point of failure. To distribute the opening capabilities over several authori-
ties, one can instead use our DGS+A scheme with threshold opening (see Sec-
tion 3.2.2) so that at least a threshold number of authorities must collaborate
to link a message to a vehicle long-term credential.

4.3.2 Correctness & Security. 𝒵 is correct and satisfies the security re-
quirements introduced in Section 4.2. The full proofs of the following theorems
are given in Appendix D.

Theorem 4 (Correctness). 𝒵 is correct if the signature scheme SIG, the DGS+A
scheme DGSA, the public-key encryption scheme PKE, the symmetric encryption
scheme SE and the authenticated encryption scheme DAE are correct.

Proof. If the signature scheme SIG is correct, vehicles that honestly execute the
vehicle enrollment algorithm obtain a certificate that is accepted in the autho-
rization protocol with probability 1. If scheme DGSA is also correct, the creden-
tials obtained during the authorization protocol in an epoch allows the vehicles
to generate authentication tokens that are later accepted when they enter new
zones in the same epoch with overwhelming probability. If the encryption scheme
PKE is correct, during the Enter protocol for a zone in a given time period, the
same vehicles can successfully unwrap the authenticated-encryption key for the
zone in that time period. The correctness of the symmetric encryption scheme
SE and that of the authenticated encryption scheme DAE then suffice to conclude
that scheme 𝒵 is correct.

Theorem 5 (PH-CCA Security). 𝒵 is PH-CCA secure if SIG is EUF-CMA
secure, if DGSA satisfies traceability, if SE is IND-CPA secure, if PKE is IND-
CPA secure, and if DAE satisfies privacy and authenticity.

Proof (Sketch). Under the assumptions of the theorem, the PH-CCA security of
𝒵 can be proved via the following hybrid argument. Let𝒜 be an adversary for the
PH-CCA security distinction experiment (i.e., 𝒜 tries to tell apart the PH-CCA
challenger 𝒞ph−cca

0 that encrypts P0 and the challenger 𝒞ph−cca
1 that encrypts

P1). Denote by 𝑌 * its challenge zone set. Number the zones in 𝑌 * from 1 to
𝑛𝑌 * := |𝑌 *|, i.e., 𝑌 * = {𝑦1, . . . , 𝑦𝑛𝑌 *}. For 𝑖 = 0, . . . , 𝑛𝑌 * , consider the hybrid
algorithm 𝛥𝑖 that proceeds exactly like the PH-CCA challenger 𝒞ph−cca

0 , except
that to compute the challenge ciphertext, it encrypts the first 𝑖 zones with a
payload key 𝐾 ′ and the remaining 𝑧− 𝑖 zones with another key 𝐾, and encrypts

27

P0 with 𝐾. Consider also, for 𝑖 = 0, . . . , 𝑛𝑌 * , the hybrid algorithm 𝛥′
𝑖 that

proceeds exactly like the PH-CCA challenger 𝒞ph−cca
1 , except that to compute

the challenge ciphertext, it encrypts the first 𝑖 zones with a payload key 𝐾 and
the remaining 𝑧 − 𝑖 zones with another key 𝐾 ′, and encrypts P1 with 𝐾. By
definition, 𝛥0 = 𝒞ph−cca

0 , the challenger that encrypts P0 and 𝛥′
𝑛𝑌 * = 𝒞ph−cca

1 ,
the challenger that encrypts P1. To show that 𝒜 has a negligible advantage in
the PH-CCA distinction experiment, it suffices to show that the advantage of 𝒜
in distinguishing two consecutive hybrids is negligible.

If adversary 𝒜 can distinguish 𝛥𝑖 from 𝛥𝑖+1, then it can be used to win the
privacy game for DAE by having the reduction algorithm choose a time period 𝑡
uniformly at random and set the challenger key as the key for zone 𝑦𝑖+1 in time
𝑡.

For an Enter query on (𝒱, 𝑦𝑖+1, 𝑡, role) for an honest vehicle 𝒱 and role the role
of a responding vehicle, upon receiving (𝑦𝑖+1, 𝑡, ek , tok) from 𝒜, the reduction
algorithm first determines whether it comes from a non-corrupt vehicle identity
in the same protocol execution, i.e., whether 𝒜 is simply performing a passive
attack by relaying a message from a non-corrupt vehicle identity.

If so, then the reduction algorithm, upon receiving (𝑦𝑖+1, 𝑡, ek , tok) from 𝒜,
encrypts a random message instead of 𝐾 with PKE. The IND-CPA security of
PKE is important here to argue for indistinguishability between the two consec-
utive hybrids.

If (𝑦𝑖+1, 𝑡, ek , tok) does not come from a non-corrupt vehicle in the same
protocol execution, it is an active attack. The reduction algorithm then aborts
the protocol execution.

In the event in which 𝒜 wins the PH-CCA game, if 𝑡* = 𝑡 (the reduction
algorithm will abort if it is not the case), with 𝑡* the challenge time period, the
winning conditions imply that no vehicle 𝒱𝑗 ∈ ℒcorrupt can be authorized in e(𝑡),
so that

– either there exists a vehicle identity 𝒲 such that (𝒲, e(𝑡)) ∈ ℒauth but
𝒲 /∈ ℒhonest (and also not in ℒcorrupt), i.e., it has obtain a credential for e(𝑡)
but has never been enrolled neither as an honest vehicle nor a corrupt one;
and it happens with negligible probability if SIG is EUF-CMA secure

– or no such vehicle exists and the token sent by the adversary can be valid
w.r.t. pkℐ and e(𝑡) with only negligible probability if DGSA satisfies trace-
ability.

Therefore, by aborting the protocol once a token is received from 𝒜 during the
Enter protocol execution, The reduction algorithm is computationally indistin-
guishable from both 𝛥𝑖 and 𝛥𝑖+1.

Furthermore, the privacy of DAE can be reduced to the computational indis-
tinguishability of 𝛥′

𝑖 and 𝛥′
𝑖+1 in the very same manner.

Note also that the IND-CPA security of SE can be reduced to the computa-
tional indistinguishability of 𝛥𝑛𝑌 * and 𝛥′

0. The reduction algorithm can set 𝐾
as the challenger key, and forward the challenge tuple (P0,P1) at the challenge
phase.

28

The advantage of 𝒜 in the PH-CCA game is therefore at most, up to a
negligible factor, 2𝑛𝑌 * |𝑇 | times the advantage of a reduction algorithm (running
𝒜 as a subroutine) in the privacy game for DAE plus its advantage in the IND-
CPA game for SE.

Therefore, if SE is IND-CPA secure and DAE satisfies privacy and authentic-
ity, then 𝒵 must be PH-CCA secure. See Appendix D for a full proof.

Theorem 6 (Anonymity). The ZE scheme 𝒵 satisfies anonymity if the DGS+A
scheme DGSA satisfies anonymity and if SIG is EUF-CMA secure.

Proof (Sketch). Under the assumptions of the theorem, the anonymity of 𝒵 can
be proved via the following hybrid argument. Let 𝒜 be an adversary for the ZE
anonymity game that makes 𝑞 Enter* queries. One can assume that 𝑞 > 0. Indeed,
an adversary which wins the game with 𝑞 = 0 can always be run as a sub-routine
by an adversary which makes one arbitrary Enter* query. For 𝑖 = 0, . . . , 𝑞, let 𝛥𝑖

be an algorithm that proceeds exactly that the ZE anonymity game challenger,
except that to answer the (*) queries with a bit 𝑑 up to the 𝑖th Enter*, it uses
𝒱1−𝑑. For the remaining (*) queries (including the remaining 𝑞 − 𝑖 Enter*), it
uses 𝒱𝑑.

By definition, if 𝒞𝑏 denotes the ZE anonymity challenger that uses 𝒱𝑏, then
𝛥0 = 𝒞0 and 𝛥𝑞 = 𝒞1. The advantage of 𝒜 in the ZE anonymity game is
therefore at most 𝑞 times its advantage in distinguishing 𝛥𝑖 from 𝛥𝑖+1 for any
0 ≤ 𝑖 ≤ 𝑞 − 1. However, if 𝒜 can distinguish 𝛥𝑖 from 𝛥𝑖+1, then it can be used
to win the DGS+A anonymity game.

At the challenge phase, after the adversary outputs two challenge vehicle
identities 𝒱0 and 𝒱1, the simulator, further denoted 𝒮, randomly chooses a
zone–time pair (𝑧, 𝑡) such that both vehicles are authorized in e(𝑡). To answer
the first 𝑖 Enter* queries for a bit 𝑑, the simulator asks for a fresh token on 𝒱1−𝑑.
To answer Exit*, Send* and Receive* queries for a bit 𝑑, the simulator uses the
state of 𝒱𝑑 that it locally maintains. For the 𝑖+1th Enter* query, if the vehicle is
not in (𝑧, 𝑡), the simulator aborts. If it is in (𝑧, 𝑡), the simulator generates a key
ek for PKE, sends (𝒱0,𝒱1, e, (𝑧, 𝑡, ek)) to the DGS+A anonymity challenger and
uses the challenge token tok* to answer the query. For the remaining 𝑞 − 𝑖 − 1
(*) queries, the simulator uses 𝒱𝑑. Note that the winning conditions enforce that
neither 𝒱0 nor 𝒱1 can be corrupt throughout the game, and that 𝒜 cannot make
any opening query on any message exchanged during executions of protocol Enter
with a challenge oracle.

At the end of the game,𝒜 outputs a decision bit 𝑏′ to 𝒮. If𝒜 has never queried
the oracle to enter (𝑧, 𝑡) with one of the challenge vehicles, then 𝒮 returns ⊥ to
𝒞, otherwise 𝒮 forwards 𝑏′ to 𝒞𝒵,𝑏. The advantage of 𝒜 in distinguishing 𝛥𝑖 from
𝛥𝑖+1 is then at most |𝑍||𝑇 | times the advantage of 𝒮 in the anonymity game,
running 𝒜 as a subroutine. As 1/𝑞 is non-negligible (since 𝒜 is efficient), the
theorem follows. See Appendix D for a full proof.

Theorem 7 (Traceability). The ZE scheme 𝒵 satisfies traceability if the DGS+A
scheme DGSA satisfies traceability, if PKE is IND-CPA secure and if SIG is EUF-
CMA secure.

29

Proof (Sketch). The unforgeability of SIG ensures that only enrolled vehicles
can be authorized in epochs. If the key 𝐾𝑧*,𝑡* output by the adversary is in the
list of keys of an honest vehicle 𝒱, though the adversary has never obtained it
by corrupting an honest vehicle, then either there exists a message exchanged
during an execution of protocol Enter for (𝑧*, 𝑡*) that can be traced back to the
adversary or no such message exists.

If no such message exists, then the traceability of the scheme can be reduced
to the IND-CPA security of PKE since the adversary only ever sees encryption
of 𝐾𝑧*,𝑡* .

If such a message exists, then the winning conditions imply that the vehicle
identity to which it traces back to was never corrupt (whether from the beginning
or later) or is corrupt but was never authorized in epoch e(𝑡*).

Since such a message exists and that an honest vehicle 𝒱 knows 𝐾𝑧*,𝑡* , then
the adversary must have computed an authentication token that was accepted
by an honest vehicle (not necessarily 𝒱, but at least one which shares 𝐾𝑧*,𝑡*

with 𝒱).
If the token traces back to a vehicle that was never corrupt, then either it

was enrolled or it was not.

(1a) If the vehicle was enrolled and authorized in e(𝑡*), then either the adver-
sary simply replayed a message between honest vehicles, in which case the
traceability of 𝒵 can be reduced to the IND-CPA security of PKE, or the ad-
versary forged a token that opens to an honest vehicle that never computed
it, in which case the traceability of 𝒵 can be reduced to the traceability of
DGSA.

(1b) If the vehicle was enrolled but not authorized in e(𝑡*), then the traceability
of 𝒵 can be reduced to the traceability of DGSA.

(1c) If the vehicle was not enrolled but was authorized in e(𝑡*), then the adver-
sary forged a certificate for it and traceability of 𝒵 can be reduced to the
unforgeability of SIG.

(1d) If the vehicle was not enrolled and not authorized in e(𝑡*), then the trace-
ability of 𝒵 can be reduced to the traceability of DGSA.

If the message traces back to a vehicle that was corrupt but not authorized
in e(𝑡*), then the traceability of 𝒵 can once again be reduced to the traceability
of DGSA. See Appendix D for a full proof.

Theorem 8 (Ciphertext Integrity). The ZE scheme 𝒵 satisfies ciphertext
integrity if DAE satisfies authenticity, if SIG is EUF-CMA secure, if DGSA sat-
isfies traceability, and if PKE is IND-CPA secure.

Proof (Sketch). Assuming that SIG is EUF-CMA secure and that DGSA is trace-
able, the ciphertext integrity of 𝒵 can be reduced to the authenticity of DAE as
follows. The simulator guesses a zone–time pair that will be active for the hon-
est receiving vehicle 𝒱 with which the adversary wins the game, and implicitly
sets the key of the privacy challenger as the key for that zone–time pair. The
simulator generates keys for the other zones itself.

30

As in the proof of the PH-CCA security of 𝒵, executions of protocol Enter
can be perfectly simulated for receiving vehicles under the assumptions that SIG
is EUF-CMA secure and that DGSA is traceable.

Whenever the adversary queries the oracle to send a payload to the guessed
zone–time pair, the simulator generates a payload key and queries the challenger
to wrap with its key, and can thereby answer the query.

Ultimately, if the adversary can produce a new ciphertext for the guessed
zone–time pair and that is accepted by 𝒱, then the simulator wins the ciphertext-
integrity game for DAE by outputting the part of the ciphertext that encrypts
the payload key under the key of the guessed pair. See Appendix D for a full
proof.

4.4 Efficiency & Comparison

We now describe how the building blocks of our ZE scheme can be instantiated
such that the bandwidth constraint of 300 Bytes per message can be satisfied.
We then discuss some design choices for the C-ITS deployment and compare it
to the current C-ITS proposal.

4.4.1 Efficiency. To instantiate our ZE scheme at a 128-bit security level, we
propose

– SIG as the BLS signature scheme [11] since no zero-knowledge proof must be
computed during enrollment and authorization. On a Cocks–Pinch pairing
curve [34] defined over a field of order 2544 and with embedding degree 8,
group elements in G and G̃ respectively take 68 Bytes and 136 Bytes (using
their quadratic twists which have degree 4 [34]) for a group of 256-bit order.
Therefore, vehicle certificates, each of which consist of a pair of keys and a
signature, are 236 Bytes long.

– DGSA as the DGS+A scheme of Section 3.2. Authentication tokens sent
during protocol Enter are then 246 Bytes.

– PKE as the Hash-ElGamal encryption scheme on the 256-bit first group of
the previous Cocks–Pinch curve. A public key is a group element in G, and
a ciphertext consist of a group element and a bit string of same length as
the plaintext (a 128-bit DAE zone key).

– SE as AES-CTR (Counter Mode) with 128-bit keys.
– DAE as AES-128-GCM-SIV [48, Section 5].

The complexity of the opening algorithm is the same as for DGSA, i.e., it
grows linearly in the number of enrolled vehicles. This makes tracing expensive
but allows for short authentication tokens, which is the appropriate trade-off for
V2V communication in which CAMs should be short and tracing only be done
in case of exceptional events, e.g., an accident or to revoke the key of a rogue
device.

31

𝑝 (bits) Sec. Lvl. (bits) Req. (B) Resp. (B)
CP8-544 [34] 256 131 [34] 284 300

BLS12-446 299 132 [35] 263 279
FM12-446 [28] 296 136 [33] 261 277

Table 1. Sizes of Key Requests and Responses with various Curves and their associated
field sizes and security levels.

4.4.2 C-ITS Deployment and Comparison. Suppose that the road net-
work is divided into hexagonal zones, and that a vehicle broadcasts messages
to the zone it currently is and its 6 neighboring zones, i.e., to 7 zones in total.
With the parameters of Section 4.4.1, the ciphertexts of our ZE scheme (ignoring
the time-period and zone indicators) consist of 7 AES-128-GCM-SIV ciphertexts
(256 bits each) and an AES ciphertext (128 bits), amounting to 240 Bytes; well
within the 300 Bytes bandwidth requirements for C-ITSs. With payloads of 128
bits, it corresponds to a cryptographic overhead of 224 Bytes.

For messages during protocol Enter, the cryptographic overhead of our scheme
is a PKE public key (83 Bytes) and an authentication token in a key request,
and a PKE encryption of the DAE key (16 Bytes) and an authentication token
in a key response. With tokens of size 216 Bytes, this yields a total of 284 Bytes
for request and 300 Bytes for response messages.

Table 1 gives, for various curve choices, the security level, the size of certifi-
cates and the cryptographic overhead for key requests and key responses. Note
that Cocks–Pinch curves are not vulnerable to TNFS attacks [2,3,33,35,38–40]
which affects the security of some curves constructed from different methods,
and these attacks may be improved in the future. The CP8-544 curve therefore
seems to be the safest choice in terms of security at a 128-bit level or higher.
On the other hand, although operations on CP8-544 are very efficient [33], the
BLS12-446 and FM12-446 curves are the most efficient pairing curves [33] at
that security level.

With our ZE scheme used in combination with our DGS+A scheme, a vehicle
can create an unlimited number of unlinkable (even by other vehicles thanks to
the anonymity of group signatures) signatures by downloading a single creden-
tial in every epoch. Compared to the current C-ITS proposals [25, 42], DGS+A
combines the equivalent of an infinite pseudonym pool size with the negligible
costs of downloading and storing a single constant-size credential per epoch. The
latter aspect is a significant improvement not only in terms of storage, but also
communication: in the current C-ITS proposals, vehicles have to spread out re-
quests for individual pseudonyms over time, rather than downloading them in
batches, to avoid that issuers are able to link the pseudonyms belonging to the
same vehicle.

Moreover, with our scheme, each CAM carries only 64 Bytes more of cryp-
tographic overhead than the current proposals with ECDSA signatures (160
Bytes), for all the additional security and privacy benefits. Besides, symmet-
ric cryptography is typically significantly faster than elliptic-curve operations.

32

Zone Encryption C-ITS Proposal
Encrypted CAM 3 8

Anonymity 3 8

Pseudonyms per
week

unlimited 100 (EU) / 20
(US)

CAM
Authentication

DAE ECDSA

Overhead per CAM 224 Bytes 160 Bytes
+ per entered Zones 284/300 Bytes ––

Table 2. Comparison of zone encryption to current C-ITS proposals at a 128-bit
security level. “Pseudonyms” refers to the number of unlinkable authentication tokens
a vehicle can generate per epoch.

Therefore, the verification of the authenticity of incoming CAMs is also faster
with our scheme thanks to the use of a deterministic authenticated (symmetric)
encryption scheme to encrypt payload keys.

Table 2 provides a brief overview of the core differences between zone en-
cryption and the current C-ITS proposal.

4.5 Threat Model and Design Choices
By nature, V2X communication is an open system that enables all participating
vehicles to communicate with each other; the security that one can hope to
achieve is therefore also inherently limited. We discuss our threat model here in
more detail and provide some insights into our design choices.

Passive vs. Active Eavesdropping.Because all vehicles must be able to de-
crypt messages from other close vehicles, no system can protect against eaves-
dropping attacks by insiders that have access to legitimate vehicle credentials
and roam around to actively listen into nearby zones. However, our zone en-
cryption scheme does force such an attacker to actively participate in zone key
exchange protocols, thereby exposing its credentials to being traced and revoked
by authorities. Doing so may not be straightforward in practice, but it is a con-
siderable step up from the passive and covert eavesdropping attacks that are
trivial to deploy in the current C-ITS proposals where all vehicles broadcast
plaintext messages.

As discussed in the introduction, zone encryption enables authorities to con-
siderably increase the manufacturing cost of black-market decryption devices,
hopefully beyond the point of economical feasibility for ordinary criminals. Also
as discussed, the threat of abusing traffic infrastructure for mass surveillance can
be limited by giving infrastructure that has no need for privacy, nor to decrypt
CAM traffic, a different type of credentials that cannot be used to obtain zone
keys. Nevertheless, mass surveillance by a powerful adversary remains possible,
e.g., through a network of (parked or moving) vehicles, or by road infrastructure
that does have a legitimate need to read CAM traffic. Therefore, even when us-
ing zone encryption, the information in CAMs must still be minimized as much

33

as possible. Maintaining a pool of vehicles or infrastructure for performing such
eavesdropping attacks becomes more expensive with our solution though, be-
cause by forcing the adversary to actively participate in zone key exchanges,
suspicious behavior can be traced and the corresponding credentials revoked.

Cloning & Insider Attacks. An adversary that compromises and clones the
keys of a vehicle, short-term credentials, or even its long-term certificate ob-
viously allows the adversary to “impersonate” that vehicle. For zone keys and
short-term (DGSA) credentials, the impact is limited by the timed aspect of zone
encryption to, e.g., 15 minutes and a week, respectively. Corruption of long-term
credentials is more damaging, but the certificate is also likely to enjoy stronger
protection, e.g., from trusted hardware. Furthermore, the issuer of short-term
credentials could monitor and detect suspicious use of long-term credentials, such
as too frequent requests or requests from very distant locations, and block or
revoke the long-term credential accordingly.

Apart from decrypting CAM traffic from other vehicles, the adversary can
also use the compromised credentials to broadcast fake information. Indeed, the
ciphertext integrity property of zone encryption protects against malicious infor-
mation being inserted by outsiders, but not by inside attackers. Moreover, since
zone keys are shared among vehicles, it is nearly impossible to exactly identify
the culprit vehicle. This is indeed a drawback with respect to the current pro-
posal for C-ITSs where each CAM message is signed. However, if an abnormal
event occurs in a zone, the issuer, can with our scheme, reduce the list of sus-
pects to just the devices that have entered the zone at the time of the event.
Besides, with the current proposal, the issuer can only fully trace back malicious
information, not prevent it, and information from CAMs will always be double-
checked by other sensors such as cameras and LiDARs. All in all, we therefore
argue that the privacy advantages of zone encryption outweigh not being able
to directly identify malicious senders.

Alternative Authentication Mechanisms.Our zone-encryption design uses
group signatures to authenticate messages of protocol Enter, which guarantees
privacy for vehicles while enabling the issuer to trace and revoke compromised
credentials. As previously discussed, the capability to trace vehicles can be dis-
tributed over multiple authorities by using a group signature scheme with thresh-
old opening (see Appendix C).

One could consider resorting to different authentication mechanisms, such as
anonymous credentials [16]. Generic anonymous credential schemes have been
proposed for use in V2X applications [20, 41, 51] but typically have much larger
signature sizes.

In theory, limited-spending techniques [15] for such schemes might seem suit-
able to avoid the credential cloning and allow to trace compromised keys, instead
of requiring a trusted opening authority as in our solution. However, doing so
would require some authority to collect and cross-check all pseudonyms across
all zones to identify overused credentials. Apart from being detrimental to pri-
vacy, such data collection is infeasible in a continent-scale V2X communication
system with tens of millions of zones and billions of messages exchanged.

34

In comparison, our opening algorithm runs on a single authenticated message
sent during a key request or a key response. There is no need for a synchronization
between all zones. The anonymous messages exchanged in a zone can easily be
recoverable if e.g., road infrastructures are required to maintain a record of
messages exchanged in the zone they are in for a certain duration (e.g., a day),
or if vehicles maintain a record of the messages they exchange when requesting
or communicating zone keys for a short amount of time (e.g., an hour).

Some anonymous attestation mechanisms such as EPID [13] support signature-
based revocation, meaning that the key behind a signature can be revoked by
adding the signature to a blacklist. However, the size and/or the verification time
of such non-revocation proofs grow linearly with the number of revoked users,
which is impractical in a V2X system with hundreds of millions of vehicles.

Finally, note that our authentication mechanism could be replaced with a
quantum-safe one if large-scale quantum computers were to be built in the future.
However, no quantum-safe scheme known today is even close to fitting the 300-
Byte limit at a 128-bit security level.

4.6 Deployment Challenges

The cryptographic concept of zone encryption significantly improves the security
and privacy of V2X communication. To be ready for real-world usage there are
a number of interesting deployment challenges that need to be solved, which we
sketch below.

Key Agreement Strategy.Our Enter protocol assumes the availability of an
appropriate key agreement strategy. In order to avoid that all vehicles respond to
a key request, a predetermined strategy should be used to decide which should
reply, e.g., the vehicle closest to the requesting vehicle. The optimal strategy
depends on the zone structure, the traffic and other practical factors, and is an
engineering problem on its own.

Another important aspect are mechanisms to avoid and resolve different key
clusters within a zone. These might occur when different groups of vehicles are
unable to communicate with each other, e.g., due to physical constraints or
jamming attacks, and hence establish independent keys within their clusters.
Consequently, vehicles in different clusters would not be able to communicate
with each other. A deployed system would need a mechanism to detect such
clustering and to resolve the duplication issue by agreeing on a common zone
key.

Further, a clear strategy to refresh zone keys needs to be established. These
keys are supposed to be valid for a short amount of time only. Thus, the ex-
piration time needs to be communicated with the key and a mechanism must
determine which vehicle will choose the new key, similarly to the strategy when
entering a new zone.

Robustness. It is of crucial importance that the increase of cryptographic secu-
rity does not come for the price of reduced reliability of inter vehicle communi-
cation. Thus, to ensure that vehicles can communicate in a timely manner, they

35

do not only encrypt to the zone they are in, but also to the neighboring ones.
Note that this approach also limits the impact of key clustering events described
above. This robustness strategy is captured by our cryptographic protocol which
encrypts the payload under several zone keys. The actual deployment solution
still needs to decide which zone keys are used and requested in time by the ve-
hicle, based e.g,. on the direction of driving, as well as available traffic flow and
route information.

Besides, to smoothly transition between time periods, periods should be re-
quired to slightly overlap. The concrete layout of such zones or the chosen time
periods will depend on practical factors such as density of traffic and the range
of the communication signal.

Finally, the communication medium of the deployed system should be robust
to prevent package loss. In practice, both key-exchange messages and payloads
would be repeated over a strong signal as done in other real-world protocols.

5 Conclusion

We presented two cryptographic constructions that are tailored to the needs of
C-ITSs and can enhance their privacy properties. First, our compact DGS+A
scheme has fully anonymous 216-Byte authentication tokens, while needing only
a single constant-size credential per epoch. This is an important improvement
over the limited pseudonym pool sizes and their expensive reloading proto-
cols that are currently proposed for deployment. Secondly, our zone encryption
scheme enables efficient encryption of position beacon messages, protecting their
content from eavesdroppers. Our two techniques are best used in combination,
but can be used independently as well: one can combine zone encryption with any
other anonymous authentication scheme, and one can use our DGS+A scheme
without using zone encryption.

Despite these improvements, our schemes should still be used with some
care. Actively participating eavesdroppers can still receive all communication,
so minimizing the information contained in CAMs for the particular envisaged
applications remains crucial. Besides, authentication tokens leak the identity
of the issuers, i.e., vehicles are only anonymous among other vehicles with the
same issuers. This is easily circumvented at an organizational level by letting all
vehicles use the same (e.g., country-wide) issuers. If that is not possible, technical
solutions would involve delegatable credentials [4], but their tokens are too long
to be used in C-ITS.

We stress that there are further privacy limitations inherent to V2X commu-
nication, as vehicles can be tracked by other means than CAMs. One could, e.g.,
fingerprint radio transmitters and antennas, use side-channel analysis, or even
cameras and image processing to track vehicles [54]. However, the possibility of
such attacks does not mean that privacy for vehicular communication should be
entirely forgone. In fact, similar arguments can be made for most applications,
e.g., users’ online activities which can be fingerprinted through the hardware

36

they use. Still, efficient privacy-preserving protocols are still sought after instead
abandoning the idea of online privacy altogether.

Lastly, solving the deployment challenges laid out in Sec. 4.6, are interesting
open engineering problems. We leave these issues to future work as the focus of
this paper is on the cryptographic concerns of secure and privacy-friendly V2X
communication.

Acknowledgements. This work was supported by the CHIST-ERA project
USEIT and the H2020 project ICT4CART (Grant Agreement No. 76895).

References

1. Article 29 Data Protection Working Party. Opinion 03/2017 on processing per-
sonal data in the context of cooperative intelligent transport systems (C-ITS) -
wp252. http://ec.europa.eu/newsroom/article29/item-detail.cfm?item_id=
610171, 2017.

2. R. Barbulescu and S. Duquesne. Updating key size estimations for pairings. Journal
of Cryptology, 32(4):1298–1336, Oct 2019.

3. R. Barbulescu, P. Gaudry, and T. Kleinjung. The tower number field sieve. In
T. Iwata and J. H. Cheon, editors, ASIACRYPT 2015, Part II, volume 9453 of
LNCS, pages 31–55. Springer, Heidelberg, Nov. / Dec. 2015.

4. M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya, and
H. Shacham. Randomizable proofs and delegatable anonymous credentials. In
S. Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 108–125. Springer,
Heidelberg, Aug. 2009.

5. M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a
general forking lemma. In A. Juels, R. N. Wright, and S. Vimercati, editors, ACM
CCS 06, pages 390–399. ACM Press, Oct. / Nov. 2006.

6. M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of
dynamic groups. In A. Menezes, editor, CT-RSA 2005, volume 3376 of LNCS,
pages 136–153. Springer, Heidelberg, Feb. 2005.

7. F. Benhamouda, J. Camenisch, S. Krenn, V. Lyubashevsky, and G. Neven. Better
zero-knowledge proofs for lattice encryption and their application to group signa-
tures. In P. Sarkar and T. Iwata, editors, ASIACRYPT 2014, Part I, volume 8873
of LNCS, pages 551–572. Springer, Heidelberg, Dec. 2014.

8. P. Bichsel, J. Camenisch, G. Neven, N. P. Smart, and B. Warinschi. Get shorty
via group signatures without encryption. In J. A. Garay and R. D. Prisco, editors,
SCN 10, volume 6280 of LNCS, pages 381–398. Springer, Heidelberg, Sept. 2010.

9. N. Bißmeyer, S. Mauthofer, J. Petit, M. Lange, M. Moser, D. Estor, M. Sall,
M. Feiri, R. Moalla, M. Lagana, and F. Kargl. V2X security architecture v2.
PRESERVE Project, Deliverable D1.3, 2014.

10. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin,
editor, CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer, Heidelberg,
Aug. 2004.

11. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing.
In C. Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 514–532.
Springer, Heidelberg, Dec. 2001.

37

http://ec.europa.eu/newsroom/article29/item-detail.cfm?item_id=610171
http://ec.europa.eu/newsroom/article29/item-detail.cfm?item_id=610171

12. D. Boneh and M. Naor. Traitor tracing with constant size ciphertext. In P. Ning,
P. F. Syverson, and S. Jha, editors, ACM CCS 08, pages 501–510. ACM Press,
Oct. 2008.

13. E. Brickell and J. Li. Enhanced privacy ID from bilinear pairing. Cryptology
ePrint Archive, Report 2009/095, 2009. http://eprint.iacr.org/2009/095.

14. J. Camenisch, M. Drijvers, A. Lehmann, G. Neven, and P. Towa. Short threshold
dynamic group signatures. Cryptology ePrint Archive, Report 2020/016, 2020.
https://eprint.iacr.org/2020/016.

15. J. Camenisch, S. Hohenberger, M. Kohlweiss, A. Lysyanskaya, and M. Meyerovich.
How to win the clonewars: Efficient periodic n-times anonymous authentication.
In A. Juels, R. N. Wright, and S. Vimercati, editors, ACM CCS 06, pages 201–210.
ACM Press, Oct. / Nov. 2006.

16. J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols.
In S. Cimato, C. Galdi, and G. Persiano, editors, SCN 02, volume 2576 of LNCS,
pages 268–289. Springer, Heidelberg, Sept. 2003.

17. J. Camenisch, G. Neven, and M. Rückert. Fully anonymous attribute tokens from
lattices. In I. Visconti and R. D. Prisco, editors, SCN 12, volume 7485 of LNCS,
pages 57–75. Springer, Heidelberg, Sept. 2012.

18. J. Y. Choi, M. Jakobsson, and S. Wetzel. Balancing auditability and privacy in
vehicular networks. In Q2SWinet’05, pages 79–87, 2005.

19. B. Chor, A. Fiat, and M. Naor. Tracing traitors. In Y. Desmedt, editor,
CRYPTO’94, volume 839 of LNCS, pages 257–270. Springer, Heidelberg, Aug.
1994.

20. J. M. de Fuentes, L. González-Manzano, J. Serna-Olvera, and F. Veseli. Assessment
of attribute-based credentials for privacy-preserving road traffic services in smart
cities. Personal and Ubiquitous Computing, 21(5):869–891, 2017.

21. Y. Desmedt and Y. Frankel. Threshold cryptosystems. In G. Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 307–315. Springer, Heidelberg, Aug.
1990.

22. M. Dworkin. Request for review of key wrap algorithms. Cryptology ePrint
Archive, Report 2004/340, 2004. http://eprint.iacr.org/2004/340.

23. M. J. Dworkin. Recommendation for block cipher modes of operation: Ga-
lois/counter mode (gcm) and gmac. https://www.nist.gov/, 2007.

24. M. J. Dworkin. Recommendation for block cipher modes of operation: The cmac
mode for authentication. https://www.nist.gov/, 2016.

25. Intelligent transport systems (ITS); vehicular communications; basic set of appli-
cations; part 2: Specification of cooperative awareness basic service. Technical
Report ETSI EN 302 637-2 V1.3.1, ETSI, 2014.

26. Intelligent transport systems (ITS); security; ITS communications security archi-
tecture and security management. Technical Report ETSI TS 102 940 v1.3.1, ETSI,
2018.

27. Intelligent transport systems (ITS); security; trust and privacy management. Tech-
nical Report ETSI TS 102 941 V1.3.1, ETSI, 2019.

28. G. Fotiadis and C. Martindale. Optimal tnfs-secure pairings on elliptic curves with
composite embedding degree. Cryptology ePrint Archive, Report 2019/555, 2019.
https://eprint.iacr.org/2019/555.

29. C. Freitag, J. Katz, and N. Klein. Symmetric-key broadcast encryption: The multi-
sender case. In S. Dolev and S. Lodha, editors, Cyber Security Cryptography and
Machine Learning - First International Conference, CSCML 2017, volume 10332
of Lecture Notes in Computer Science, pages 200–214. Springer, 2017.

38

http://eprint.iacr.org/2009/095
https://eprint.iacr.org/2020/016
http://eprint.iacr.org/2004/340
https://www.nist.gov/
https://www.nist.gov/
https://eprint.iacr.org/2019/555

30. J. Freudiger, M. Raya, M. Félegyházi, P. Papadimitratos, and J.-P. Hubaux. Mix-
zones for location privacy in vehicular networks. ACM Workshop on Wireless
Networking for Intelligent Transportation Systems (WiN-ITS), 2007.

31. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key gener-
ation for discrete-log based cryptosystems. In J. Stern, editor, EUROCRYPT’99,
volume 1592 of LNCS, pages 295–310. Springer, Heidelberg, May 1999.

32. L. Gollan and C. Meinel. Digital signatures for automobiles. In Systemics, Cyber-
netics and Informatics (SCI) 2002, pages 1–5, 2002.

33. A. Guillevic. A short-list of stnfs-secure pairing-friendly curves at the 128-bit
security level. Cryptology ePrint Archive, Report 2019/1371, 2019. https://
eprint.iacr.org/2019/1371.

34. A. Guillevic, S. Masson, and E. Thomé. Cocks–pinch curves of embedding degrees
five to eight and optimal ate pairing computation. 2019.

35. A. Guillevic and S. Singh. On the alpha value of polynomials in the tower number
field sieve algorithm. Cryptology ePrint Archive, Report 2019/885, 2019. https:
//eprint.iacr.org/2019/885.

36. J. Hubaux, S. Capkun, and J. Luo. The security and privacy of smart vehicles.
IEEE Security & Privacy, 2(3):49–55, 2004.

37. P. Kamat, A. Baliga, and W. Trappe. An identity-based security framework for
VANETs. In Proceedings of the 3rd International Workshop on Vehicular Ad Hoc
Networks, VANET ’06, pages 94–95, New York, NY, USA, 2006. ACM.

38. T. Kim and R. Barbulescu. Extended tower number field sieve: A new complexity
for the medium prime case. In M. Robshaw and J. Katz, editors, CRYPTO 2016,
Part I, volume 9814 of LNCS, pages 543–571. Springer, Heidelberg, Aug. 2016.

39. T. Kim and J. Jeong. Extended tower number field sieve with application to finite
fields of arbitrary composite extension degree. In S. Fehr, editor, PKC 2017, Part I,
volume 10174 of LNCS, pages 388–408. Springer, Heidelberg, Mar. 2017.

40. A. Menezes, P. Sarkar, and S. Singh. Challenges with assessing the impact of
nfs advances on the security of pairing-based cryptography. Cryptology ePrint
Archive, Report 2016/1102, 2016. https://eprint.iacr.org/2016/1102.

41. G. Neven, G. Baldini, J. Camenisch, and R. Neisse. Privacy-preserving attribute-
based credentials in cooperative intelligent transport systems. In 2017 IEEE Ve-
hicular Networking Conference, VNC 2017, pages 131–138. IEEE, 2017.

42. U. D. of Transportation; National Highway Traffic Safety Administration. Notice
of proposed rulemaking for federal motor vehicle safety standards; V2V communi-
cations. Federal Register, 82(8), 2017.

43. J. Petit, F. Schaub, M. Feiri, and F. Kargl. Pseudonym schemes in vehicular
networks: A survey. IEEE Communications Surveys and Tutorials, 17(1):228–255,
2015.

44. D. Pointcheval and O. Sanders. Short randomizable signatures. In K. Sako, ed-
itor, CT-RSA 2016, volume 9610 of LNCS, pages 111–126. Springer, Heidelberg,
Feb. / Mar. 2016.

45. D. Pointcheval and O. Sanders. Reassessing security of randomizable signatures.
In N. P. Smart, editor, CT-RSA 2018, volume 10808 of LNCS, pages 319–338.
Springer, Heidelberg, Apr. 2018.

46. L. Reyzin, A. Lysyanskaya, V. Shmatikov, A. D. Smith, and Center for
Democracy & Technology. Comments on NHTSA notice of proposed rule
for FMVSS no. 150, V2V communications. https://cdt.org/files/2017/04/
FMVSS150CommentsOnPrivacy-as-submitted.pdf, 2017.

39

https://eprint.iacr.org/2019/1371
https://eprint.iacr.org/2019/1371
https://eprint.iacr.org/2019/885
https://eprint.iacr.org/2019/885
https://eprint.iacr.org/2016/1102
https://cdt.org/files/2017/04/FMVSS150CommentsOnPrivacy-as-submitted.pdf
https://cdt.org/files/2017/04/FMVSS150CommentsOnPrivacy-as-submitted.pdf

47. M. Riley, K. Akkaya, and K. Fong. Group-based hybrid authentication scheme for
cooperative collision warnings in VANETs. Security and Communication Networks,
4(12):1469–1482, 2011.

48. P. Rogaway and T. Shrimpton. A provable-security treatment of the key-wrap
problem. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS,
pages 373–390. Springer, Heidelberg, May / June 2006.

49. F. Schaub, Z. Ma, and F. Kargl. Privacy requirements in vehicular communica-
tion systems. In 2009 International Conference on Computational Science and
Engineering, volume 3, pages 139–145, Aug 2009.

50. A. Shamir. How to share a secret. Communications of the Association for Com-
puting Machinery, 22(11):612–613, Nov. 1979.

51. A. Singh and H. S. Fhom. Restricted usage of anonymous credentials in vehicular
ad hoc networks for misbehavior detection. Int. J. Inf. Sec., 16(2):195–211, 2017.

52. K. Sjöberg, P. Andres, T. Buburuzan, and A. Brakemeier. C-ITS deployment in
europe - current status and outlook. CoRR, abs/1609.03876, 2016.

53. H. Toulni, M. Boudhane, B. Nsiri, and M. Miyara. An adaptive key exchange
procedure for VANET. International Journal of Advanced Computer Science and
Applications, 7(4), 2016.

54. C. Troncoso, E. Costa-Montenegro, C. Diaz, and S. Schiffner. On the difficulty of
achieving anonymity for vehicle-2-x communication. Computer Networks, 55(14),
2011.

55. E. Verheul, C. Hicks, and F. D. Garcia. Ifal: Issue first activate later certificates
for v2x. In 2019 IEEE European Symposium on Security and Privacy (EuroS P),
2019.

56. W. Whyte, A. Weimerskirch, V. Kumar, and T. Hehn. A security credential man-
agement system for V2V communications. In 2013 IEEE Vehicular Networking
Conference, pages 1–8. IEEE, 2013.

57. K. Zeng. Pseudonymous PKI for ubiquitous computing. In EuroPKI 2006, volume
4043 of Lecture Notes in Computer Science, pages 207–222. Springer, 2006.

A Deterministic Authenticated Encryption

Deterministic Authenticated Encryption (DAE) [48] is mainly used in the con-
text of key wrapping, i.e., transmitting a secret key from one party to another.
It is suitable for our ZE scheme as fresh keys are usually encrypted only once.

A.1 Security Properties.

(Deterministic) Privacy [48, Appendix B] is modeled via a distinction experi-
ment. In the real game, a key is chosen uniformly at random and the adversary
can make (, without loss of generality, non-repeated) encryption queries. In the
ideal game, encryption queries are answered with uniformly random bit strings.
A DAE scheme satisfies privacy if no efficient adversary has a non-negligible
advantage in distinguishing the real game from the ideal game. (Deterministic)
Authenticity is formalized via a key at the beginning of which a key is chosen uni-
formly at random. The adversary can make (non-repeated) encryption queries,
and can submit ciphertexts none of which is the output of a previous encryption

40

query; that is to say, it can make forgery attempts. The adversary wins the game
as soon as one of those forgery attempts does not fail. A DAE scheme satisfies
authenticity if no efficient adversary has non-negligible advantage in winning
this game.

A.2 SIV Construction.

Rogaway and Shrimpton constructed a DAE scheme from IV-based encryption
schemes and Pseudo-Random Functions (PRFs). They called it the Synthetic-IV
(SIV) construction. Their construction requires the ciphertexts of the encryption
scheme to be unpredictable if the initialization vector is a uniformly random 𝑛-
bit string, with 𝑛 the IV length of the encryption scheme. (The latter property
is referred to as privacy of IV-based encryption schemes.) They therefore use
a PRF in the SIV construction to compute the initialization vector from the
message and the header, so as to make the IV unpredictable.

Note that the PRF must thereby support vectors of bit strings even though
most PRFs in the literature are designed to be computed on a single bit string.
Of course, in case a PRF must be computed on a vector of bit strings, the string
could be concatenated, but it would incur an important efficiency loss [48, Section
5]. Rogaway and Shrimpton consequently proposed a String-to-Vector (S2V)
transformation [48, Section 5] of string PRFs to PRFs that directly support
string vectors without the efficiency loss of trivial solutions.

Formally, the SIV construction is the following. Let PRF : 𝒦1 × {0, 1}** →
{0, 1}𝑛 be a pseudo-random function with key space 𝒦1 and the set of vectors
of bit strings {0, 1}** as message space. Consider also (Enc,Dec) (the setup
algorithm is omitted) an IV-based encryption scheme with key space 𝒦2. To
generate keys for the DAE scheme, generate independently and uniformly at
random two keys 𝐾1 and 𝐾2 from 𝒦1 and 𝒦2 respectively. To encrypt, on the
input of 𝐾1, 𝐾2, a header 𝐻 and a message M , compute IV ← PRF(𝐾1, (𝐻,M))
then C ← Enc(𝐾2, IV ,M), and output IV ‖C . To decrypt a ciphertext C , if it
is less than 𝑛-bit long, abort. Otherwise parse it as IV ‖C ′ with IV the first 𝑛
bits, and compute Dec(𝐾2, IV ,C ′) then IV ′ ← PRF(𝐾1, 𝐻,M). If IV = IV ′,
then output M , otherwise output ⊥.

Rogaway and Shrimpton proved [48, Theorem 2] that if the IV-based scheme
(Enc,Dec) satisfies privacy and if PRF is a pseudo-random function (i.e., such
that its outputs are computationally indistinguishable from uniformly random
𝑛-bit strings), then the SIV construction satisfies privacy and authenticity.

To instantiate their construction, one can use the S2V transform of a block
cipher such as AES in CMAC mode [24] as PRF and a block cipher in counter
(CTR) mode [23] as IV-based encryption scheme.

B Dynamic Group Signatures with Attributes

In this section, we first give formal definitions for the properties that a DGS+A
scheme should satisfy. We then prove that our scheme from Section 3.1 satisfies
these properties.

41

B.1 Definition of DGS+A

A DGS+A scheme should satisfy correctness, anonymity and traceability, which
we define following the security notions for conventional dynamic group signa-
tures adapted to our setting with attributes.

Correctness.Correctness captures the idea that a truthfully generated authen-
tication token should be accepted by the verification algorithm. Furthermore, if
all the algorithms are honestly executed and the opening algorithm is run on
a token, then the opening algorithm should return the identity of the user who
computed the token. These properties should hold independently of the order
in which credentials are issued for user–attribute pairs and with overwhelming
probability.

Anonymity.Anonymity ensures that an authentication token tok does not re-
veal any information about the identity of the user that generated if the issuer
is honest and tok has not been opened. In the game (Figure 8), the adversary is
given oracle access to the honest issuer and to the honest users which it can trig-
ger to obtain membership credentials for identities and attributes of its choice,
let honest users sign messages, corrupt users and open authentication tokens. At
the end of the game, the adversary outputs two honest-user identities id*

0, id
*
1

together with a message m and attributes A*. The challenge computes a token
tok for either of the identities and sends it to the adversary. The task of the
adversary is to determine the origin of the token.

Definition 7 (Anonymity). A DGS+A scheme DGSA satisfies anonymity if
for all efficient adversary 𝒜, for all 𝜆 ∈ N, the advantage of the adversary⃒⃒⃒

Pr
[︁
Expano−0

DGSA,𝜆 (𝒜) = 1
]︁
− Pr

[︁
Expano−1

DGSA,𝜆 (𝒜) = 1
]︁ ⃒⃒⃒

is negligible in 𝜆.

Experiment Expano−𝑏
DGSA,𝜆 (𝒜):

pp ← Setup(1𝜆), (pk , (sk , st))← KG(pp)

(id*
0, id

*
1,A

,m, state𝒜)← 𝒜𝒪(sk,st,·)(choose, pp, 𝑝𝑘)
abort if ∃𝑑 ∈ {0, 1} : (id*

𝑑, cred𝑑,A
*) /∈ ℒjoined

𝑏 ∈𝑅 {0, 1}, tok* ← Auth(pk , cred𝑏,m
*)

𝑏′ ← 𝒜𝒪(st,sk,·)(guess, tok*, state𝒜)
return 𝑏′ if

(m*,A*, tok*) /∈ ℒopened and (id*
0/1,A

*) /∈ ℒcorrupt

else abort

Fig. 8. Anonymity Security Experiment for DGS+A schemes. 𝒪 =
{︀
Issue, Issue.I,Auth,

Corrupt,Open
}︀

as defined in Section B.1.

42

Traceability. Traceability captures the expected unforgeability guarantees of
our group signatures. It guarantees that as long as the issuer is honest, for any
valid token tok*, message m* and attribute set A*, opening can neither fail nor
reveal an incorrect honest identity id . The latter means that the user id either
never joined the group w.r.t. A*, or has joined but never signed the message m*.
The traceability game is defined in Figure 9.

Definition 8 (Traceability). A DGS+A scheme DGSA satisfies traceability
if for every efficient adversary 𝒜, for all 𝜆 ∈ N, Pr

[︀
Exptrace

DGSA,𝜆 (𝒜) = 1
]︀
≤

negl (𝜆) .

Experiment Exptrace
DGSA,𝜆 (𝒜) :

pp ← Setup(1𝜆), (pk , (sk , st))← KG(pp)

(A*,m*, tok*)← 𝒜𝒪(sk,st,·)(forge, pp, pk)
id* ← Open(sk , st ,m*,A*, tok*)
return 1 if Vf(pk ,m*,A*, tok*) = 1 and
1) opening failed, i.e., id* = ⊥ or 2) opening is “incorrect”, i.e.,

(id*,A*, ·) /∈ ℒjoined or
((id*,A*, ·) ∈ ℒjoined and (id*,A*) /∈ ℒcorrupt and (id*,A*,m*) /∈ ℒsigned)

else return 0

Fig. 9. Traceability Security Experiment for DGS+A schemes. 𝒪 =
{︀
Issue, Issue.I,

Auth,Corrupt,Open
}︀

as defined in Section B.1.

Oracles for DGS+A Security Experiments.To define anonymity and trace-
ability for DGS+A schemes, consider the experiments on Figures 8 and 9 re-
spectively. In those experiments, the adversary has access to the oracles defined
below.

– Issue(sk , st , ·), on input (id ,A), generates a credential for an honest (id ,A) with
the issuer key sk , i.e., it executes ⟨Issue.U(pk , id ,A)
 Issue.I(sk , st , id ,A)⟩ →
⟨cred , st ′⟩ and adds (id , 𝐴, cred) to the list ℒjoined. If there already is a credential
cred for (id ,A) in ℒjoined, oracle Issue simply retrieves it. It eventually returns
cred

– Issue.I(sk , st , ·), on input (id ,A), lets the adversary, in the role of a corrupt user,
run an issuance protocol with an honest issuer. That is, it starts an execution
of protocol for Issue.I(sk , st , id ,A), and adds (id ,A,⊥) to ℒjoined and (id ,A) to
ℒcorrupt

– Corrupt(·), on input id , returns all (id ,A, cred) ∈ ℒjoined, i.e., all the credentials
that have been generated for id (with potentially different attribute sets) by the
challenger at the time of the query. It also adds all revealed (id ,A) to ℒcorrupt.
Notice that this allows an identity that was corrupted to later join the system
with a new attribute set, and the pair identity–attribute-set will be considered
honest

43

– Auth(pk , ·), on input (id ,A,m), fetches (id ,A, cred) ∈ ℒjoined and computes
𝑎𝑡 ← Auth(pk , cred ,m). It adds (id ,A,𝑚) to ℒsigned and returns 𝑎𝑡. If no such
credential exists, the oracle replies with ⊥

– Open(sk , st , ·), on input (m,A, tok), returns to the adversary the opened iden-
tity of an attribute token of his choice. That is, it runs the opening algorithm
on the inputs, returns the opened identity and adds the tuple (m,A, tok) to
the list ℒopened.

B.2 Our DGS+A scheme

We here provide a more detailed discussion about the efficiency of our scheme
and how it compares to previous dynamic group signature schemes. We also give
proofs that it satisfies the correctness and security requirements of Section 3.1.

B.2.1 Correctness and Security of our DGS+A Scheme.

Proof (of Theorem 1). First, a truthfully generated token tok for a message m
with a publid key pk and a credential cred = (id ,A, 𝜎, 𝑒(𝜎1, 𝑌id), 𝑒(𝜎1, 𝑌𝑘+1))
is always accepted by the verification algorithm on input (pk ,m,A, tok) since
(𝜎′

1 = 𝜎𝑟
1, 𝜎

′
2 = 𝜎𝑟

2, 𝑎
′) (for 𝑟 ∈𝑅 Z*

𝑝) is a valid PS signature on (id ,A) and
the Schnorr signature of knowledge on m of a PS signature on (id ,A) is correct.
Secondly, since the pair (id ,A) is added to the issuer state st during the issuance
protocol, id is returned by the opening algorithm which simply tests the validity
of (𝜎′

1, 𝜎
′
2, 𝑎

′) as a PS signature agains each entry in its state; unless there exists
a different pair (id ′,A′) in st , with id ′ < id , such that if 𝑏′ = ℋ0(id

′,A′), then
(𝜎′

1, 𝜎
′
2, 𝑏

′) is a valid PS signature on (id ′,A′). This event occurs if and only if
𝑒
(︀
𝜎′
1, �̃�𝑌 id′

id

∏︀𝑘
𝑖=1 𝑌

𝑎′
𝑖

𝑖 𝑌 𝑏′

𝑘+1

)︀
= 𝑒(𝜎′

2, 𝑔) =
(︀
𝜎′
1, �̃�𝑌 id

id

∏︀𝑘
𝑖=1 𝑌

𝑎𝑖
𝑖 𝑌 𝑎′

𝑘+1

)︀
. That is, if

and only if 𝑦id(id ′ − id) +
∑︀𝑘

𝑖=1 𝑦𝑖(𝑎
′
𝑖 − 𝑎𝑖) = 𝑦𝑘+1(𝑎

′ − 𝑏′). However, the issuer
chooses 𝑦𝑘+1, 𝑎′ and 𝑏′ uniformly at random, and independently of the user
identities, the attributes and the other secret keys. The equalitiy therefore holds
with probability at most 1/𝑝, which is negligible.

Proof (of Theorem 2). The anonymity of DGSA is proved via a hybrid argument.
Denote by 𝒞𝑏 the challenger that uses the credential associated to id*

𝑏 and A*

for 𝑏 ∈ {0, 1}. Let 𝛥 be an algorithm that proceeds exactly like 𝒞0 except for
the challenge phase. At the challenge phase, 𝛥 sends two random G elements
as re-randomized group elements of the PS signature on (id*

0, 𝐴
*) and programs

the random oracle accordingly.
More precisely, consider an efficient adversary 𝒜 for the anonymity exper-

iment. 𝛥 interacts with 𝒜 and Whenever 𝒜 issues its challenge query, 𝛥 first
checks whether it has generated a credential cred𝑏 for both 𝑏 ∈ {0, 1}. If not, it
aborts, otherwise it generates 𝜎1, 𝜎2 ∈𝑅 G* and 𝑠id , 𝑠𝑎′ , 𝑐 ∈𝑅 Z𝑝, computes

𝑢← 𝑒
(︁
𝜎1, 𝑌id

)︁𝑠id
𝑒
(︁
𝜎1, 𝑌𝑘+1

)︁𝑠𝑎′

⎛⎝𝑒
(︀
𝜎2, 𝑔

)︀
𝑒

⎛⎝𝜎1, �̃�
−1

𝑘∏︁
𝑗=1

𝑌
−𝑎*

𝑗

𝑗

⎞⎠⎞⎠𝑐

,

44

and programs ℋ(𝑢,A*,m*, 𝜎1, 𝜎2, pk)← 𝑐. Hybrid 𝛥 then sets 𝜋 ← (𝑐, 𝑠id , 𝑠𝑎′)
and returns (𝜎1, 𝜎2, 𝜋) to 𝒜.

The answer of 𝛥 to the challenge query is computationally indistinguishable
from that of 𝒞0 as the distribution of 𝜎1 and 𝜎2 in the challenge authentication
token computed by 𝒞 and 𝛥 are indistinguishable under the DDH assumption
in G. However, it remains to argue that the joint distribution of the answers of
𝛥 to the oracle queries are indistinguishable from those of 𝒞0.

In more detail, the indistinguishability of 𝒞0 from 𝛥 can be argued as fol-
lows. Consider an algorithm which runs 𝒜 as a subroutine and interacts with a
challenger that either outputs a Diffie–Hellman tuple or a random tuple. Upon re-
ceiving a tuple (𝑔0, 𝑔1, 𝑔2, 𝑔3), the reduction algorithm generates the other scheme
parameters itself and chooses two random challenges identities (id*

0, id
*
1). To gen-

erate a credential for (id*
0,A) for any attribute set A, the reduction algorithm

generates 𝑎′, 𝑟 ∈𝑅 Z*
𝑝, sets 𝜎1 ← 𝑔𝑟0 and 𝜎2 ← 𝜎

𝑥+
∑︀𝑘

𝑗=1 𝑦𝑗𝑎𝑗+𝑦𝑘+1𝑎
′

1 𝑔
𝑟id*

0𝑦id

1 , and
stores (𝑎′, 𝜎1, 𝜎2), i.e., it is a signature on (dlog𝑔0(𝑔1)id

*
0,A). Note that it has

the same distribution as in the real scheme.
To answer an Auth query on (id*

0,A,m), the reduction algorithm programs
the random oracle to generate the proofs of knowledge.

To answer an Open query (m,A, tok), the reduction algorithm first verifies
its validity. If the token is valid, it checks whether it was the answer to a prior
Auth query on (id*

0,A,m). If so, it returns id*
0. If it was not the answer to

such a query, under the SDL assumption, tok cannot have been forged for an
identity id such that (id , 𝐴) is honest. Indeed, to use an adversary that would
make such a forgery to win the SDL challenge, upon receiving an SDL tuple
(𝛤, 𝑔0, 𝑔1, 𝑔0, 𝑔1) with dlog𝑔0 𝑔1 = dlog𝑔0 𝑔1 (instead of a challenge DDH tuple),
the reduction algorithm chooses uniformly at random an identity id* for which
it sets the credential as before for id*

0. After that, it proceeds exactly like before,
and to test whether a token tok = (𝜎1, 𝜎2, 𝜋) should open to (id*,A), it can

verify the equality 𝑒
(︁
𝜎1, 𝑔

𝑥
0𝑔

id*𝑦id+
∑︀

𝑗 𝑎𝑗𝑦𝑗+𝑦𝑘+1𝑎
′

1

)︁
= 𝑒(𝜎2, 𝑔0). If it holds, it can

run 𝒜 anew and reprogram oracle ℋ to extract dlog𝑔0 𝑔1 with probability at
least 𝜀2/𝑞ℋ − 1/𝑝 (𝑞ℋ the maximum number of ℋ queries that 𝒜 makes) by
the forking lemma [5]. At the challenge phase, if (id*

0, 𝐴
*
0) = (id*, 𝐴*), then the

reduction algorithm first generates 𝜈 ∈ Z*
𝑝, computes 𝑔2 ← 𝑔𝜈0 , 𝑔3 ← 𝑔𝜈1 , 𝜎1 ← 𝑔3

and 𝜎2 ← 𝑔
𝑥+

∑︀𝑘
𝑗=1 𝑦𝑗𝑎

*
𝑗+𝑦𝑘+1𝑎

′*

2 𝑔
𝑦id id

*
0

3 , and programs ℋ to simulate a proof of
knowledge of dlog𝑔0(𝑔1)id

*. After the challenge phase, it answers the queries as
before. In the event in which 𝒜 forges a token tok on m and A for an identity
id such that (id ,A) is honest, that identity is id* with probability 1/|ID |. The
reduction algorithm can therefore win the SDL game with probability at least
1/|ID |(𝜀2/𝑞ℋ − 1/𝑝). Under the SDL assumption, tok can therefore not be a
forgery for an identity id such that (id , 𝐴) is honest. The reduction algorithm
(to the DDH game) can then runs the Open algorithm and returns its output.

The reduction algorithm answers the other queries as specified in the security
experiment.

45

At the challenge phase, the reduction algorithm aborts if its guess is not

correct, otherwise computes
(︂
𝑔2, 𝑔

𝑥+
∑︀𝑘

𝑗=1 𝑦𝑗𝑎𝑗+𝑦𝑘+1𝑎
′

2 𝑔
𝑟id*

0𝑦id

3

)︂
, simulates a proof

of knowledge that involves m* in the hash by programming the random or-
acle accordingly, and replies the couple and the proof as challenge token. If
(𝑔0, 𝑔1, 𝑔2, 𝑔3) is a DDH tuple, it is distributed as the response of 𝒞0, otherwise
as that of 𝛥.

The reduction algorithm answer the other queries as before the challenge.
Recall that conditioned on the event in which the adversary wins the game,

1. (id*
0, 𝐴

) /∈ ℒcorrupt and (id
1, 𝐴

*) /∈ ℒcorrupt, and
2. (m*, 𝐴*, tok*) /∈ ℒopened.

Consequently, the joint distribution of the answers of the reduction algorithm to
Issue, Issue.I, Auth, Corrupt, Open queries and the challenge queries are identically
distributed to those of either 𝒞0 or 𝛥 depending on whether (𝑔0, 𝑔1, 𝑔2, 𝑔3) is a
DDH tuple or not.
𝒞0 and𝛥 are thus computationally indistinguishable under the DDH assump-

tion. (The distinguishing advantage of any adversary is at most |ID |2 times the
DDH advantage of the prior reduction algorithm.)

Likewise, 𝛥 and 𝒞1 are computationally indistinguishable. 𝒞0 and 𝒞1 are
thereby computationally indistinguishable, and DGSA satisfies anonymity under
the DDH assumption. Denote by DDH the DDH advantage of the reduction
algorithm and SDL its SDL advantage, The anonymity advantage of 𝒜 is at
most

2
(︁
|ID |2DDH +

√︀
𝑞ℋ(|ID |SDL+ 1/𝑝)

)︁
,

and the theorem follows.

Proof (of Theorem 3). The proof consists in reducing the traceability of the
DGS+A scheme to the existential unforgeability of the modified PS 𝑘+1-message
signature scheme. As its unforgeability relies on the 𝑞-MSDH-1 assumption, the
theorem follows.

Let 𝒜 be an efficient adversary that wins the traceability game with prob-
ability at least 𝜀. Consider a simulator 𝒮 which runs 𝒜 as a subroutine and
interacts with a forgery-game challenger 𝒞 for the modified PS 𝑘 + 1-message
multi-signature scheme. Upon receiving public parameters pp and of a verifica-
tion vk from 𝒞, simulator 𝒮 sets pk ← vk and forwards pp and pk to 𝒜.

Simulator 𝒮 answers ℋ queries on new inputs by choosing a uniformly ran-
dom Z𝑝 element, and later replies with the same answer when queried on the
same inputs. To answer Issue queries on (id ,A), simulator 𝒮 queries 𝒞 on (id ,A)
and follows the rest of the protocol (, and stores the generated credential).
Whenever 𝒜 makes an Issue.I query on (id ,A), simulator 𝒮 queries 𝒞 on (id ,A)
and obtains a PS signature 𝜎 = (𝑎′, 𝜎1, 𝜎2). It then records and sends cred ←
(id ,A, 𝜎, 𝑒(𝜎1, 𝑌id), 𝑒(𝜎1, 𝑌𝑘+1)) to 𝒜, and adds (id ,A, 𝑎′) to a list 𝐿ℐ .
𝒮 answers Auth by calling on 𝒞 to compute the challenge of the proofs and

can complete the answer on its own.

46

To answer Corrupt a corrupt query on (id ,A), simulator 𝒮 simply returns the
corresponding credential that it has recorded if it exists, otherwise returns ⊥.

Ultimately, adversary 𝒜 outputs an attribute set A*, a message 𝑚*, an
authentication token tok* = (𝜎*

1 , 𝜎
*
2 , 𝜋

*). Conditioned on the event in which
𝒜 wins the game, DGSA.Vf(pk ,m*,A*, tok*) = 1 Simulator 𝒮 runs id* ←
Open(⊥, 𝐿ℐ ,m

,A, tok*). (Note that algorithm Open only needs 𝐿ℐ .) The win-
ning condition ensures that 1) id = ⊥ or 2.1) adversary 𝒜 has never made a Issue
or Issue.I query on (id*,A*) (due to the condition (id*,A*) /∈ ℒjoined), so that
simulator 𝒮 has never made a signing query to 𝒞 on the message (id ,A*), or that
2.2) if the adversary has generated a credential for the pair

(︀
id*,A*)︀ and never

corrupted it, it has never obtained a token for the message m* with the creden-
tial associated to

(︀
id*,A*)︀ (due to the condition

(︀
id*,A*)︀ ∈ ℒjoined∧ (id*,A*) /∈

ℒcorrupt ∧
(︀
id*,A*,m*)︀ /∈ ℒsigned).

Since DGSA.Vf(pk ,m*,A*, tok*) = 1, the proof 𝜋* is valid with respect to
the random oracle ℋ run by 𝒮. Simulator 𝒮 runs 𝒜 anew on the same inputs and
the same randomness. By the forking lemma [5], with probability at least 𝜀(𝜀/𝑞−
1/𝑝), during its second run, 𝒜 outputs a second challenge tuple (A

′*,m
′*, tok

′*)
and also queries ℋ on (𝑢′,A

′*,m
′*, 𝜎

′*
1 , 𝜎

′*
2 , pk) at the same computation step at

which it queried ℋ on (𝑢,A*,m*, 𝜎*
1 , 𝜎

*
2 , pk) for

𝑢 := 𝑒
(︁
𝜎
𝑣*
id

1 , 𝑌id

)︁
𝑒
(︁
𝜎
𝑣*
𝑎′

1 , 𝑌𝑘+1

)︁
𝑒 (𝜎*𝑐

2 , 𝑔) 𝑒

⎛⎝𝜎*𝑐
1 , �̃�−1

𝑘∏︁
𝑗=1

𝑌
−𝑎𝑗

𝑗

⎞⎠ ,

and 𝑢′ defined similarly. Moreover, the answers 𝑐* and 𝑐
′* to these queries are

distinct modulo 𝑝 (as the output space of ℋ is Z𝑝). Simulator 𝒮 can then extract
𝑎

′* such that

𝑒

(︃
𝜎*
1 , �̃�𝑌 id

id

𝑘∏︁
𝑖=1

𝑌 𝑎𝑖
𝑖 𝑌 𝑎

′*

𝑘+1

)︃
= 𝑒(𝜎*

2 , 𝑔).

In case 1), simulator 𝒮 sends (id*,A*) and (𝑎
′*, 𝜎*

1 , 𝜎
*
2) to 𝒞 and wins the

forgery game win probability at least 𝜀. Case 2.1) cannot occur as the opening
algorithm would only return id* such that (id*,A*, *) is in the state of the issuer
and therefore also in ℒjoined. In case 2.2), simulator 𝒮 returns ⊥ to 𝒞. Case 2.2)
can only occurs if 𝒜 has forged a token for an honest identity–attribute pair. As
in the proof of anonymity, 𝒜 can forge a token for an honest identity–attribute
pair only if it can win the SDL game. It follows that 𝒮 wins the forgery game
with probability at least 𝜀(𝜀/𝑞 − 1/𝑝)− |ID |SDL. If 𝜀 were non-negligible, then
𝒮 would be an algorithm that wins the forgery game of the modified PS 𝑘 + 1-
message signature scheme with non-negligible probability, which is impossible
under the 𝑞-MSDH-1 assumption.

C DGS+A with Threshold Opening

In definition and construction of DGS+A in Sections 3.1 and 3.2, the issuer can
single-handedly open all tokens, making him a single point of failure for privacy.

47

However, one can modify the scheme in Section 3.2 to distribute the authority
to open tokens over a group of 𝑛 authorities, so that at least a threshold 𝜏 + 1
of them have to collaborate to open a token.

The main idea is to link the user’s identity to an element 𝑔𝑧 ∈ G which the
issuer blindly signs as part of the credential. We then use the folklore encrypt-
and-sign construction of group signatures [7, Section 5] so that every token con-
tains an ElGamal ciphertext encrypting 𝑔𝑧 under a public key, of which the
decryption key is secret-shared among all opening authorities.

In more detail, with respect to the DGS+A scheme in Section 3.2, the public
parameters contain additional elements 𝑔, ℎ1 ∈ G*. The 𝑛 opening authorities
perform a distributed key generation protocol [31] to generate a public key ℎ0 ∈
G* so that there exists a polynomial 𝑃 (𝑋) of degree 𝜏 such that ℎ0 = 𝑔𝑃 (0), and
such that the 𝑖-th authority obtains secret key share 𝑥𝑖 = 𝑃 (𝑖) mod 𝑝. The issuer
generates his keys as before, except that 𝑦id and 𝑌id are respectively renamed
𝑦𝑧 and 𝑌𝑧.

In the issuance protocol, the user chooses a random 𝑧 ∈ Z𝑝 and sends 𝑍 = 𝑔𝑧

together with a proof of knowledge of 𝑧 to the issuer. The issuer then generates
a PS signature on (𝑧, 𝑎1, . . . , 𝑎𝑘) by choosing 𝑎′ ∈ Z𝑝 and 𝑟 ∈ Z*

𝑝, and computing

a PS signature as
(︁
𝑎′, 𝑔𝑟, 𝑔𝑥+

∑︀𝑘
𝑗=1 𝑦𝑗𝑎𝑗+𝑦𝑘+1𝑎

′
· 𝑍𝑦𝑧

)︁
. The issuer sends (id , 𝑍) to

all opening authorities and sends the PS signature back to the user. The user
stores the PS signature as well as her secret exponent 𝑧.

To authenticate a message m with a credential cred = (𝑧,A, 𝜎, 𝑒(𝜎1, 𝑌𝑧),

𝑒 (𝜎1, 𝑌𝑘+1

)︁)︁
, the user first generates 𝑟 ∈ Z*

𝑝 and compute (𝜎′
1, 𝜎

′
2)← (𝜎𝑟

1, 𝜎
𝑟
2).

Next, the user computes two ElGamal ciphertexts 𝐶0 and 𝐶1 of 𝑔𝑧 under keys ℎ0

and ℎ1, respectively. Namely, she chooses 𝑟0, 𝑟1 ∈ Z𝑝 and sets 𝐶0 ← (𝑔𝑟0 , 𝑔𝑧ℎ𝑟0
0)

and 𝐶1 ← (𝑔𝑟1 , 𝑔𝑧ℎ𝑟1
1). Finally, the user computes a Schnorr signature of knowl-

edge on m of 𝑧, 𝑎′, 𝑟0 and 𝑟1 such that (𝜎′
1, 𝜎

′
2, 𝑎

′) is a PS signature of the issuer
on (𝑧,A), and such that 𝑟0 and 𝑟1 are the randomness used to respectively
compute the first and second encryptions of 𝑔𝑧. A token is thus of the form
(𝜎′

1, 𝜎
′
2, 𝐶0, 𝐶1, 𝜋 := (𝑐, 𝑣𝑧, 𝑣𝑎′ , 𝑣𝑟0 , 𝑣𝑟1)). Verification simply consists in verifying

the signature of knowledge.
To open a token (𝜎′

1, 𝜎
′
2, 𝐶0, 𝐶1, 𝜋) for a message m between 𝜏 +1 openers in

𝐼 ∈
(︀

[𝑛]
𝜏+1

)︀
, each opener 𝑖 ∈ 𝐼 first verifies the token. The 𝑖th opener broadcasts

a decryption share C𝑖 ← 𝐶
𝑥0,𝑖

0,0 of 𝐶0 =: (𝐶0,0, 𝐶0,1) to all the other openers
𝑗 ∈ 𝐼 ∖{𝑖}. Each opener can then decrypt 𝐶0 by computing 𝐶0,1/

∏︀
𝑖 C

𝑤𝑖
𝑖 , where

𝑤𝑖 is the Lagrange interpolation coefficient of 𝑖 in 𝐼, and check whether the
resulting plaintext 𝑍 matches a pair (id , 𝑍) that he received from the issuer. If
so, the opener returns id , otherwise he returns ⊥.

With the same parameters as in Section 3.2.1, tokens are now 552 Bytes long,
or more than twice as long as the single-opener scheme of Section 3.2. This is
acceptable for use in Zone Encryption, however, because the DGS+A scheme is
only used when a vehicle enters a new zone, not for every CAM.

Alternatively, one could use the threshold group signatures of Camenisch et
al. [14] which do not burden signatures which an additional encryption but keeps

48

them as short as in the single-authority setting. Tokens are then still 216 Bytes
long.

D Our Zone-Encryption Scheme

We here give the full security proofs of our zone-encryption scheme.

Proof (of Theorem 5). Under the assumptions of the theorem, the PH-CCA secu-
rity of 𝒵 can be proved via the following hybrid argument. Let 𝒜 be an adversary
for the PH-CCA security distinction experiment (i.e., 𝒜 tries to tell apart the
PH-CCA challenger 𝒞ph−cca

0 that encrypts P0 and the challenger 𝒞ph−cca
1 that en-

crypts P1). Suppose that 𝒜 wins the game with (𝒱*,P0,P1, 𝑌
, 𝑡) as a challenge

tuple. Number the zones in 𝑌 * from 1 to 𝑛𝑌 * := |𝑌 *|, i.e., 𝑌 * = {𝑦1, . . . , 𝑦𝑛𝑌 *}.
For 𝑖 = 0, . . . , 𝑛𝑌 * , consider the hybrid algorithm 𝛥𝑖 that proceeds exactly like
the PH-CCA challenger 𝒞ph−cca

0 , except that to compute the challenge cipher-
text, it encrypts the first 𝑖 zones with a payload key 𝐾 ′ and the remaining
𝑧− 𝑖 zones with another key 𝐾, and encrypts P0 with 𝐾. Namely, the challenge
ciphertext of 𝛥𝑖 is of the form

DAE.Enc(𝐾𝑦1,𝑡,𝐾
′), . . . ,DAE.Enc(𝐾𝑦𝑖,𝑡,𝐾

′),

DAE.Enc(𝐾𝑦𝑖+1,𝑡,𝐾), . . . ,DAE.Enc(𝐾𝑛𝑌 * ,𝑡,𝐾),

SE.Enc(𝐾,P0).

Consider also, for 𝑖 = 0, . . . , 𝑛𝑌 * , the hybrid algorithm 𝛥′
𝑖 that proceeds ex-

actly like the PH-CCA challenger 𝒞ph−cca
1 , except that to compute the challenge

ciphertext, it encrypts the first 𝑖 zones with a payload key 𝐾 and the remaining
𝑧− 𝑖 zones with another key 𝐾 ′, and encrypts P1 with 𝐾. Namely, the challenge
ciphertext of 𝛥′

𝑖 is of the form

DAE.Enc(𝐾𝑦1,𝑡,𝐾), . . . ,DAE.Enc(𝐾𝑦𝑖,𝑡,𝐾),

DAE.Enc(𝐾𝑦𝑖+1,𝑡,𝐾
′), . . . ,DAE.Enc(𝐾𝑛𝑌 * ,𝑡,𝐾

′),

SE.Enc(𝐾,P1).

By definition, 𝛥0 = 𝒞ph−cca
0 , the challenger that encrypts P0 and 𝛥′

𝑛𝑌 * =

𝒞ph−cca
1 , the challenger that encrypts P1. To show that 𝒜 has a negligible ad-

vantage in the PH-CCA distinction experiment, it suffices to show that the
advantage of 𝒜 in distinguishing two consecutive hybrids is negligible.

If adversary 𝒜 can distinguish 𝛥𝑖 from 𝛥𝑖+1, then it can be used to win
the DAE privacy game for DAE as follows. Assume SIG to be existentially un-
forgeable, DGSA to satisfy traceability, SE to be IND-CPA secure, PKE to be
IND-CPA secure, and DAE to satisfy authenticity. Let 𝒮 be a simulator that
features 𝒜 and interacts with a DAE privacy game 𝒞priv𝑏 for 𝑏 ∈ {0, 1}, which
generates a secret key 𝐾priv. At the beginning of the game, 𝒮 receives param-
eters ppDAE for DAE from 𝒞priv𝑏 and generates the other parameters itself. It

49

generates (pkℰ = vk , skℰ = sk) ← SIG.KG(ppSIG) and (pkℐ = pk , skℐ = sk) ←
DGSA.KG(ppDGSA). It then sends all the parameters and pkℰ and pk 𝐼 to 𝒜.
𝒮 chooses a time period 𝑡 uniformly at random and implicitly sets 𝐾𝑦𝑖+1,𝑡

:=

𝐾priv (i.e., it will query 𝒞priv𝑏 to answer queries Send queries involving zone 𝑦𝑖+1

and time 𝑡).
Throughout the game, 𝒮 locally maintains the same lists as the PH-CCA

challenger does.
For Enroll.V&Enroll.E queries, 𝒮 runs the protocol and stores the generated

certificates.
For Enroll.E queries, simulator runs the corresponding algorithms with skℰ .
For Authorize.V&I queries, 𝒮 runs the protocol and stores the generated cre-

dentials.
For Authorize.I queries, 𝒮 runs the corresponding algorithm with pk 𝐼 .
For an Enter query on input (𝒱, 𝑧, 𝑡, role), (𝒱 /∈ ℒcorrupt by definition of this

oracle) for any role, if (𝑧, 𝑡) = (𝑦𝑖+1, 𝑡) then 𝒮 starts an execution of protocol
Enter with 𝒜.

If role = requester , then simulator 𝒮 generates (ek , dk)← PKE.KG(1𝜆), com-
putes a token tok ← DGSA.Auth(pkℐ , cred𝒱,e(𝑡), (𝑧, 𝑡, ek)) and sends (𝑧, 𝑡, ek , tok𝒱)
to 𝒜.

If role = responder 𝑖, and that 𝒱 should respond according to the strategy of
responder 𝑖, then 𝒮, upon receiving (𝑦𝑖+1, 𝑡, ek , tok) from 𝒜, determines whether
it comes from a non-corrupt vehicle identity in the same protocol execution, i.e.,
whether 𝒜 is simply performing a passive attack by relaying a message from a
non-corrupt vehicle identity.

If so, then 𝒮 encrypts a random message instead of 𝐾 with PKE. The IND-
CPA security of PKE is important here to argue for indistinguishability between
the two consecutive hybrids. If 𝒱 ∈ ℒcorrupt, simulator 𝒮 returns ⊥.

If (𝑦𝑖+1, 𝑡, ek , tok) does not come from a non-corrupt vehicle in the same
protocol execution, it is an active attack. 𝒮 then aborts the protocol execution.
In the event in which 𝒜 wins the PH-CCA game, if 𝑡* = 𝑡 (𝒮 will abort if it is
not the case), the winning condition 3b) implies that no vehicle 𝒱𝑗 ∈ ℒcorrupt can
be authorized in e(𝑡), so that

– either there exists a vehicle identity 𝒲 such that (𝒲, e(𝑡)) ∈ ℒauth but
𝒲 /∈ ℒhonest (and also not in ℒcorrupt), i.e., it has obtain a credential for e(𝑡)
but has never been enrolled neither as an honest vehicle nor a corrupt one;
and it happens with negligible probability if SIG is EUF-CMA secure

– or no such vehicle exists and the token sent the adversary can be valid w.r.t.
pkℐ and e(𝑡) with only negligible probability if DGSA satisfies traceability.

Therefore, by aborting the protocol once a token is received from 𝒜 during the
Enter protocol execution, 𝒮 is computationally indistinguishable from both 𝛥𝑖

and 𝛥𝑖+1.
If (𝑧, 𝑡) ̸= (𝑦𝑖+1, 𝑡), then 𝒮 simply runs the Enter.V algorithm on input

(𝒱, 𝑧, 𝑡, role), and never has to send 𝐾priv.
For an Exit on input (𝒱, 𝑧, 𝑡), simulator 𝒮 simply deletes (𝑧, 𝑡,𝐾𝑧,𝑡) from

𝒱[𝐿𝐾] that it locally maintains for 𝒱.

50

For a Send query on (𝒱,P , 𝑌 ∋ 𝑦𝑖+1, 𝑡), simulator 𝒮 checks whether all the
zones in 𝑌 are active for 𝒱, and in particular if (𝑦𝑖+1, 𝑡, ·) ∈ 𝒱[𝐿𝐾]. If not, it
returns ⊥, otherwise 𝒮 generates a payload key 𝐾 ← DAE.KG(ppDAE), computes
ct ← DAE.Enc(𝐾,𝑃), and computes 𝛾𝑦𝑖+1,𝑡

for the zone–time pair (𝑦𝑖+1, 𝑡) by
sending 𝐾 to 𝒞priv𝑏 . Simulator 𝒮 then encrypts 𝐾 with the keys for the other
zone–time pairs in the query, and sets the ciphertext as the Enter algorithm
does. For Send queries such that 𝑦𝑖+1 /∈ 𝑌 or 𝑡 ̸= 𝑡, simulator 𝒮 runs algorithm
Send on the inputs.

For a Receive query on a vehicle identity 𝒱 and a ciphertext 𝛾 = (𝑡, 𝑌, ((𝑦,
𝛾𝑦,𝑡)𝑦∈𝑌 , ct)) such that 𝑦𝑖+1 ∈ 𝑌 , algorithm 𝒮 first determines whether 𝑦𝑖+1 is
the only zone in 𝑌 that is active for 𝒱 in time 𝑡. If not, then 𝒮 can answer
the query using any other zone 𝑧 that is active for 𝒱, i.e., by computing 𝐾P ←
DAE.Dec(𝐾𝑧,𝑡, ct , 𝛾𝑧,𝑡), and returning P ← SE.Dec(𝐾P , ct). If 𝑦𝑖+1 is the only
zone in 𝛾 that is active for 𝒱 in time 𝑡, then 𝒮 checks whether 𝛾𝑦𝑖+1,𝑡

and ct are
the output of a same previous Send query that it answered. If not, then 𝒮 replies
with ⊥. This is where the authenticity of DAE comes into play. Indeed, if DAE
satisfies authenticity, 𝒜 can submit a ciphertext that does not decrypt to ⊥ with
only negligible probability. If 𝛾𝑦𝑖+1,𝑡

and ct are part of the answer to a previous
Send query, then 𝒮 replies with the payload on which it was queried. For Receive
oracle involving other zone–time pairs, 𝒮 simply runs algorithm Receive on the
queried input.

For an Open query on input m, simulator 𝒮 parses m as (m ′, 𝑡, tok) and runs
DGSA.Open(skℐ , stℐ , (m, e(𝑡), tok)). It returns the output to 𝒜.

For a Corrupt query on an identity 𝒱, simulator 𝒮 replies by sending to 𝒜
the certificate 𝒱[cert𝒱], all the credentials 𝒱[e𝑗 , cred𝑉,𝑗] and the key list 𝒱[𝐿𝐾].
Note that in the event in which 𝒜 wins the game, if 𝑡 = 𝑡, no challenge zone
𝑦* ∈ 𝑌 * can be active for 𝒱 in time 𝑡* (condition 2). In particular, 𝒮 never has
to send 𝐾𝑦𝑖+1,𝑡

to 𝒜.
At the challenge phase, adversary 𝒜 outputs the challenge tuple (𝒱*,P0,P1,

𝑌 *, 𝑡*). If 𝒱* ∈ ℒcorrupt, then 𝒮 returns 0 as the PH-CCA challenger does. If 𝑡 ̸=
𝑡*, then 𝒮 aborts and outputs ⊥; otherwise, 𝒮 generates two payload keys 𝐾 and
𝐾 ′, sends them to 𝒞, and receives a ciphertext 𝛾*

𝑦𝑖+1,𝑡
from 𝒞priv𝑏 . For 𝑘 = 1, . . . , 𝑖,

Simulator 𝒮 computes 𝛾𝑦𝑘,𝑡
← DAE.Enc(𝐾𝑦𝑘,𝑡

,𝐾 ′), and for 𝑖 < 𝑘 ≤ 𝑛𝑌 * , it com-
putes 𝛾𝑦𝑘,𝑡

← DAE.Enc(𝐾𝑦𝑘,𝑡
,𝐾). It also compute ct ← DAE(𝐾,P0), and then

sends the ciphertext 𝛾* ←
(︀
𝑡, 𝑌 *, ((𝑦𝑘, 𝛾𝑦𝑘,𝑡

)𝑘≤𝑖, (𝑦𝑖+1, 𝛾
*
𝑦𝑖+1,𝑡

), (𝑦𝑘, 𝛾𝑦𝑘,𝑡
)𝑘>𝑖+1, ct)

)︀
to adversary 𝒜.

After the challenge phase, for Receive on (𝒱, 𝛾) queries from 𝒜, simulator 𝒮
first parses 𝛾 as (𝑡, 𝑌, 𝛾′). Conditioned on the event in which 𝒜 wins the PH-CCA
game, no part of 𝛾′ is replayed from the challenge ciphertext 𝛾*, i.e., 𝛾′∩𝛾*

′

̸= ∅.
𝒮 can then proceeds as before the challenge phase.

For the other queries, 𝒮 replies as before the challenge phase.
At the end of the experiment, 𝒮 forwards the decision bit of 𝒜. Up to the

existential unforgeability of SIG and the traceability of DGSA, 𝒮 perfectly simu-
lates 𝒞ph−cca

𝑏 to adversary 𝒜 except for Receive queries involving (𝑦𝑖+1, 𝑡) as the

51

only zone in the ciphertext that is active for the queried vehicle and for passive
Enter queries. Consequently, as 𝑡 = 𝑡* with probability 1/|𝑇 |,

Adv𝛥𝑖,𝛥𝑖+1
(𝒜)− 𝑞Enter.act(𝑦𝑖+1, 𝑡)Adveuf−cma

SIG (𝒮(𝒜))

− 𝑞Enter.act(𝑦𝑖+1, 𝑡)Advtrace
DGSA(𝒮(𝒜))

− 𝑞Receive(𝑦𝑖+1, 𝑡)Advauth
DAE (𝒮(𝒜))

− 𝑞Enter.pass(𝑦𝑖+1, 𝑡)Advind−cpa
PKE (𝒮(𝒜))

≤ |𝑇 |Advind−cpa
SE (𝒮(𝒜))

with

– 𝑞Enter.act(𝑦𝑖+1, 𝑡) the number of active enter queries in (𝑦𝑖+1, 𝑡)
– 𝑞Receive(𝑦𝑖+1, 𝑡) the number of Receive queries involving (𝑦𝑖+1, 𝑡) as the only
zone in the ciphertext that is active for the queried vehicle

– 𝑞Enter.pass(𝑦𝑖+1, 𝑡) the numer of passive Enter queries made by for zone 𝑦𝑖+1

in time 𝑡.

Therefore, if SIG is EUF-CMA secure, if DGSA satisfies traceability, if PKE is
IND-CPA secure and if DAE satisfies authenticity, then 𝛥𝑖 and 𝛥𝑖+1 are com-
putationally indistinguishable.

The IND-CPA security of SE can be reduced to the computational indistin-
guishability of 𝛥′

𝑖 and 𝛥′
𝑖+1 in the very same manner.

Note also that the IND-CPA security of SE can be reduced to the com-
putational indistinguishability of 𝛥𝑛𝑌 * and 𝛥′

0. The reduction algorithm can
implicitly set 𝐾 as the challenger key, and forward the challenge tuple (P0,P1)
at the challenge phase. It can answer of all the other Send queries (i.e., other
that the challenge one) by generating fresh payload keys. Moreover, as all the
key for active zones are known to 𝒮, it can answer all the other queries.

Overall,

Advph−cca
𝒵 (𝒜)− negl (𝜆) ≤ 2𝑛𝑌 * |𝑇 |Advpriv

DAE(𝒮(𝒜)) +Advind−cpa
SE (𝒮(𝒜)),

hence the statement of the theorem.

Proof (of Theorem 6). Assuming that DGSA satisfies anonymity, and that SIG
is EUF-CMA secure, the anonymity of 𝒵 can be proved via the following hybrid
argument. Let 𝒜 be an adversary for the ZE anonymity game that makes 𝑞
Enter* queries. One can assume that 𝑞 > 0. Indeed, an adversary that wins the
game with 𝑞 = 0 can always be run as a sub-routine by an adversary that makes
one arbitrary Enter* query. For 𝑖 = 0, . . . , 𝑞, let 𝛥𝑖 be an algorithm that proceeds
exactly that the ZE anonymity game challenger, except that to answer the (*)
queries with a bit 𝑑 up to the 𝑖th Enter*, it uses 𝒱1−𝑑. For the remaining (*)
queries (including the remaining 𝑞 − 𝑖 Enter*), it uses 𝒱𝑑. By definition, if 𝒞𝑏
denotes the ZE anonymity challenger that uses 𝒱𝑏, then 𝛥0 = 𝒞0 and 𝛥𝑞 = 𝒞1.
The advantage of 𝒜 in the ZE anonymity game is therefore at most 𝑞 times its
advantage in distinguishing 𝛥𝑖 from 𝛥𝑖+1 for some 0 ≤ 𝑖 ≤ 𝑞− 1. However, if 𝒜

52

can distinguish 𝛥𝑖 from 𝛥𝑖+1, then it can be used to win the DGS+A anonymity
game as follows.

Consider a simulator that runs 𝒜 as a subroutine and interacts with the
DGS+A anonymity challenger 𝒞DGSA,𝑏 for 𝑏 ∈ {0, 1}. Throughout the game, 𝒮
locally maintains the same lists as the PH-CCA challenger does.

Upon receiving parameters ppDGSA for DGSA and a public pk 𝐼 , simulator 𝒮
generates the parameters for the other schemes itself, generates (pkℰ = vk , skℰ =
sk)← SIG.KG(ppSIG) and sends all the parameters to 𝒜 as well as pkℰ and pkℐ .

For Enroll.V&Enroll.E queries, 𝒮 runs the protocol and stores the generated
certificates.

For Enroll.E queries, simulator runs the corresponding algorithms with skℰ .
For an Authorize.V&I on (𝒱, e), simulator 𝒮 queries the Auth oracle of 𝒞DGSA,𝑏

for (𝒱, e) and stores the output credential.
For an Authorize.I query on (𝒱, e), simulator 𝒮 starts an execution of protocol

Authorize with 𝒜. Conditioned on the event in which 𝒜 wins the game with a
pair of identities 𝒱0 and 𝑉1, if 𝒱 = 𝒱𝑑 for 𝑑 ∈ {0, 1}, upon receiving (vk𝒱 , 𝜎ℰ , 𝜎𝒱)
from 𝒜, simulator 𝒮 checks whether 𝒱𝑑 ∈ ℒhonest (i.e., it 𝒱𝑑 is enrolled). If not,
then 𝒮 aborts and is indistinguishable from the ZE anonymity challenger under
the assumption that SIG is EUF-CMA secure. If 𝒱 ≠ 𝒱0,𝒱1, then simulator
𝒮 first checks that SIG.Vf(pkℰ , (𝒱, vk𝒱), 𝜎ℰ) = 1 and that . If not, 𝒮 aborts;
otherwise it starts an execution of protocol DGSA.Issue with 𝒜 on (𝒱, e) and
simply forwarding every message from 𝒜 to the Issue.I oracle provided by 𝒞DGSA,𝑏

and vice versa.
𝒮 answers Enter queries by calling on oracle Auth to generate and verify

authentication tokens.
For an Exit on input (𝒱, 𝑧, 𝑡), simulator 𝒮 simply deletes (𝑧, 𝑡,𝐾𝑧,𝑡) from

𝒱[𝐿𝐾] that it locally maintains for 𝒱.
For Send and Receive queries, 𝒮 runs the corresponding algorithms on the

inputs.
For an Open query on input m, simulator 𝒮 queries the Open oracle provided

by the DGS+A-anonymity challenger on m .
To answer Corrupt queries on a vehicle identity 𝒱, simulator 𝒮 sends to the

Corrupt oracle provided by 𝒞 all the pairs (𝒱, e𝑗) such that (𝒱, e𝑗) ∈ ℒauth,
gets a credential cred 𝑗 for each e𝑗 , and sets cred𝒱,𝑗 ← cred 𝑗 . It can then an-
swer the query by returning the certificate 𝒱[cert𝒱] (that it maintains locally),
𝒱[(e𝑗 , cred𝒱,𝑗] and the list 𝒱[𝐿𝐾] of keys that it maintains for 𝒱.

At the challenge phase, after the adversary outputs two challenge vehicle
identities 𝒱0 and 𝒱1. Simulator 𝒮 checks that they are authorized in exactly the
same epochs and that 𝒱0[𝐿𝐾] = 𝒱1[𝐿𝐾]. If it is not the case, 𝒮 aborts.
𝒮 simulator randomly chooses a zone–time pair (𝑧, 𝑡) such that both vehicles

are authorized in e(𝑡).
After the challenge phase, the oracles Enter, Exit, Send and Receive are re-

spectively replaced with the Enter*, Exit*, Send* and Receive* oracles.

53

For all oracles queries except the queries to these oracles with a bit 𝑑, simu-
lator 𝒮 replies as before the challenge phase (and recall that conditioned on the
event in which 𝒜 wins the game, neither 𝒱0 nor 𝑉1 can be corrupt).

For the (*) queries up to the 𝑖th Enter* query,

1. if Enter* is queried on (𝑑, 𝑧, 𝑡, requester), 𝒮
– checks that (𝑒(𝑡),𝒱1−𝑑) ∈ ℒauth (aborts if not)
– checks if ∃(𝑧, 𝑡,𝐾𝑧,𝑡) ∈ 𝒱1−𝑑[𝐿𝐾] (does nothing if it is the case)
– makes an authenticated key request: it generates a (ek , dk) ← PKE.KG(1𝜆),

queries the Auth oracle of 𝒞DGSA,𝑏 on the tuple (𝒱1−𝑑, e(𝑡), (𝑧, 𝑡, ek)), receives
an authentication token tok and sends (𝑧, 𝑡, ek , tok) to 𝒜

– upon receiving (𝑧, 𝑡, ct , tok ′) from 𝒜, checks that DGSA.Vf(pkℐ ,
(𝑧, 𝑡, ct), e(𝑡), tok ′) = 1. If not, 𝒮 aborts, otherwise it decrypts 𝐾𝑧,𝑡 ←
PKE.Enc(ek , ct) and adds (𝑧, 𝑡,𝐾𝑧,𝑡) to 𝒱1−𝑑[𝐿𝐾]

2. if Enter* is queried on (𝑑, 𝑧, 𝑡, responder 𝑖), 𝒮 upon receiving (𝑧, 𝑡, ek , tok) from
𝒜, if ∃(𝑧, 𝑡,𝐾𝑧,𝑡) ∈ 𝒱1−𝑑[𝐿𝐾] and if it should reply according to the strategy
of responder 𝑖,

– checks that DGSA.Vf(pkℐ , (𝑧, 𝑡, ek), e(𝑡), tok) = 1 (aborts if not)
– computes ct ← PKE.Enc(ek ,𝐾𝑧,𝑡)
– queries the Auth oracle of 𝒞DGSA,𝑏 on (𝒱1−𝑑, e(𝑡), (𝑧, 𝑡, ct)) and receives a

token tok ′

– sends (𝑧, 𝑡, ct , tok ′) to 𝒜
3. if Exit* is queried on (𝑑, 𝑧, 𝑡), simulator 𝒮 deletes (𝑧, 𝑡,𝐾𝑧,𝑡) from both 𝒱1−𝑑[𝐿𝐾]
4. if Send* is queried on (𝑑,P , 𝑌, 𝑡), simulator 𝒮
– computes 𝛾 ← 𝒵.Enc(𝑉1−𝑑[𝐿𝐾],P , 𝑌, 𝑡) and sends it to 𝒜

For the 𝑖+1th Enter* query on input (𝑑, 𝑧, 𝑡, role), if (𝑧, 𝑡) ̸= (𝑧, 𝑡), simulator
𝒮 aborts, otherwise if it is an Enter* with role = requester , to compute an
authenticated key request, it sends (𝒱0,𝒱1, e(𝑡), (𝑧, 𝑡, ek)) as a challenge tuple
to 𝒞DGSA,𝑏. If it is an Enter* query and that role = responder 𝑖 and that it
should reply according to the strategy to the strategy of responder 𝑖, to compute
its authenticated key response, simulator 𝒮 sends (𝒱0,𝒱1, e(𝑡), (𝑧, 𝑡, ct)) as a
challenge tuple to 𝒞DGSA,𝑏.

For the remaining (*) queries 𝒮 uses the state of 𝒱𝑑 instead of 𝒱1−𝑑.
Note that the winning condition enforces that neither 𝒱0 nor 𝒱1 can be

corrupt throughout the game so 𝒮 never has to return their states.
Moreover, the winning condition also implies that 𝒜 never made an Open

query on any message exchanged during the executions protocol Enter*. As a
consequence, the distribution of the answers of 𝒮 to oracle queries except for the
𝑖+ 1th Enter* query are identically to those of 𝛥𝑖 and 𝛥𝑖+1.

At the end of the game, 𝒮 forwards the decision bit 𝑏′ of 𝒜 to 𝒞DGSA,𝑏. If
𝒜 has made no Enter* query on 𝑧 and 𝑡, then 𝒮 returns ⊥ to 𝒞, otherwise 𝒮
forwards 𝑏′ to 𝒞𝒵,𝑏, and

Adv𝛥𝑖,𝛥𝑖+1
(𝒜)− negl (𝜆) ≤ |𝑍||𝑇 |Advano

DGSA (𝒮(𝒜))

54

with the negligible factor coming from the unforgeability of SIG.
Therefore,

Advano
𝒵 (𝒜)− negl (𝜆) ≤ 𝑞|𝑍||𝑇 |Advano

DGSA (𝒮(𝒜)) .

As 1/𝑞|𝑍||𝑇 | is non-negligible, if 𝒜 has a non-negligible advantage in the ZE
anonymity game, then so does 𝒮 in the DGS+A anonymity game; hence the
theorem.

Proof (of Theorem 7). Consider an adversary 𝒜 that wins the ZE traceabilty
game with a non-negligible probability. To win the game, at the challenge phase,
𝒜 outputs a tuple (𝑧*, 𝑡*,𝐾𝑧*,𝑡*) such that there exists an honest vehicle identity
𝒱 such that (𝑧*, 𝑡*,𝐾𝑧*,𝑡*) ∈ 𝒱[𝐿𝐾].

The winning condition implies that 𝐾𝑧*,𝑡* /∈ ℒkeys, so for 𝐾𝑧*,𝑡* to be active
for 𝒱, either there exists at least one message m𝑗 (with m𝑗 = (𝑧*, 𝑡*, ct , tok) or
(𝑧*, 𝑡*, ek , tok)) such that (𝒜, 𝑧*, 𝑡*,m𝑗) ∈ ℒenter or (𝒲, 𝑧*, 𝑡*,m𝑗) ∈ ℒenter for
𝒲 ∈ ℒcorrupt, or there does not exist such a message.

If there is no such message (case 0), then the traceability of 𝒵 can be reduced
to the IND-CPA security of PKE since 𝒜 only sees transcripts of Enter protocol
executions.

If there exists at least one such message m𝑗 , then the winning condition
ensures that for 𝒱𝑗 ← Open(skℐ , stℐ ,m𝑗),

1. 𝒱𝑗 /∈ ℒcorrupt or
2. (𝒱𝑗 ∈ ℒcorrupt) ∧ (𝒱𝑗 , 𝑒(𝑡*)) /∈ ℒauth).

In case 1), the traceability of 𝒵 can be reduced to the unforgeability of SIG or
the IND-CPA security of PKE. Indeed, the fact that 𝐾𝑧*,𝑡* ∈ 𝒱[𝐿𝐾] means that
𝒜 has sent an authentication token tok for a message m𝑗 that was accepted by an
honest vehicle in (𝑧*, 𝑡*), be it 𝒱, (since𝐾𝑧*,𝑡* ∈ 𝒱[𝐿𝐾]) during an Enter protocol
execution, i.e., DGSA.Vf(pkℐ ,m𝑗 , e(𝑡

*), tok) = 1. However, as 𝒱𝑗 /∈ ℒcorrupt, if

1.1) 𝒱𝑗 ∈ ℒhonest, then 𝒜 either 1.1.1) simply relayed a message between 𝒱𝑗 and
that honest vehicle, and the traceability of 𝒵 can be reduced to the IND-
CPA security of PKE, or 1.1.2) the adversary forged a token that opens to
an honest vehicle that never computed it, in which case the traceability of 𝒵
can be reduced to the traceability of DGSA

1.2) 𝒱𝑗 /∈ ℒhonest (and also not in ℒcorrupt), then the traceability of 𝒵 can be
reduced to the unforgeability of SIG if 1.2.1) (𝒱𝑗 , 𝑒(𝑡*)) ∈ ℒauth (𝒱𝑗 was never
enrolled, i.e., 𝒜 forged a certificate for it) or the traceability of DGSA if 1.2.2)
(𝒱𝑗 , 𝑒(𝑡*)) /∈ ℒauth.

In case 2), the traceability of 𝒵 can be reduced to the traceability of DGSA
as 𝒱𝑗 is corrupt, but was not authorized in e(𝑡*).

The reduction to the IND-CPA security of PKE in case 0) and 1.1.1), is done
by encrypting random a random key instead of the challenger in passive Enter
queries.

55

To reduce to the traceability of DGSA in cases 1.1.2), 1.2.2) and 2), a simu-
lator 𝒮 running 𝒜 as a subroutine uses message m𝑗 and token tok sent by 𝒜 as
a forgery for the vehicle identity 𝒱𝑗 in epoch e(𝑡*).

To reduce to the unforgeability of SIG in case 1.2.1), 𝒮 uses the signature of
the certificate of 𝒱𝑗 as a forgery.

Proof (of Theorem 8). Assume SIG to be EUF-CMA secure, DGSA to satisfy
traceability and PKE to be IND-CPA secure. The ciphertext integrity of 𝒵 can
be reduced to the authenticity of DAE as follows. Let𝒜 be an adversary that wins
the authenticity game of 𝒵 with probability at least 𝜀. Let 𝒮 be a simulator which
runs 𝒜 as a subroutine and interacts with the challenger 𝒞 of the authenticity
game of DAE (which generates a secret key 𝐾). At the beginning of the game, 𝒮
receives parameters ppDAE for DAE from 𝒞priv𝑏 and generates the other parameters
itself. It generates (pkℰ = vk , skℰ = sk)← SIG.KG(ppSIG) and (pkℐ = pk , skℐ =
sk)← DGSA.KG(ppDGSA). It then sends all the parameters and pkℰ and pk 𝐼 to
𝒜.

Simulator 𝒮 chooses a zone–time pair (𝑧, 𝑡) uniformly at random and im-
plicitly sets 𝐾𝑧,𝑡 := 𝐾 (i.e., it will query 𝒞 to answer queries involving 𝑧 and
𝑡).

Throughout the game, 𝒮 locally maintains the same lists as the PH-CCA
challenger does.

For Enroll.V&Enroll.E queries, 𝒮 runs the protocol and stores the generated
certificates.

For Enroll.E queries, simulator runs the corresponding algorithms with skℰ .
For Authorize.V&I queries, 𝒮 runs the protocol and stores the generated cre-

dentials.
For Authorize.I queries, 𝒮 runs the corresponding algorithm with pk 𝐼 .
For an Enter query on input (𝒱, 𝑧, 𝑡, role), (𝒱 /∈ ℒcorrupt by definition of this

oracle) for any role, if (𝑧, 𝑡) = (𝑧, 𝑡) then 𝒮 starts an execution of protocol Enter
with 𝒜.

If role = requester , then 𝒮 generates (ek , dk) ← PKE.KG(1𝜆), computes
tok ← DGSA.Auth(pkℐ , cred𝒱,e(𝑡), (𝑧, 𝑡, ek)) and sends (𝑧, 𝑡, ek , tok𝒱) to 𝒜.

If role = responder 𝑖, and that 𝒱 should respond according to the strategy of
responder 𝑖, then 𝒮, upon receiving (𝑧, 𝑡, ek , tok) from 𝒜, determines whether it
comes from a non-corrupt vehicle identity in the same protocol execution, i.e.,
whether 𝒜 is simply performing a passive attack by relaying a message from a
non-corrupt vehicle identity.

Simulator 𝒮 then encrypts a random message instead of 𝐾 with PKE. The
IND-CPA security of PKE is important here to argue for indistinguishability
between the two consecutive hybrids. If 𝒱 ∈ ℒcorrupt, simulator 𝒮 returns ⊥.

If (𝑧, 𝑡, ek , tok) does not come from a non-corrupt vehicle in the same pro-
tocol execution, it is an active attack. 𝒮 then aborts the protocol execution.
Conditioned on the event in which 𝒜 wins the PH-CCA game, if 𝑡* = 𝑡 (𝒮 will
abort if it is not the case), the winning condition 3b) implies that no vehicle
𝒱𝑗 ∈ ℒcorrupt can be authorized in e(𝑡), so that

56

– either there exists a vehicle identity 𝒲 such that (𝒲, e(𝑡)) ∈ ℒauth but
𝒲 /∈ ℒhonest (and also not in ℒcorrupt), i.e., it has obtain a credential for
e(𝑡) but has never been enrolled whether as an honest vehicle or not; and it
happens with negligible probability if SIG is EUF-CMA secure

– or no such vehicle exists and the token sent the adversary can be valid w.r.t.
pkℐ and e(𝑡) with only negligible probability if DGSA satisfies traceability.

Therefore, by aborting the protocol once a token is received from 𝒜 during the
Enter protocol execution, 𝒮 is computationally indistinguishable from both 𝛥𝑖

and 𝛥𝑖+1.
If (𝑧, 𝑡) ̸= (𝑧, 𝑡), then 𝒮 simply runs the Enter.V algorithm on input (𝒱, 𝑧, 𝑡, role),

and never has to send 𝐾priv.
For an Exit on input (𝒱, 𝑧, 𝑡), simulator 𝒮 simply deletes (𝑧, 𝑡,𝐾𝑧,𝑡) from

𝒱[𝐿𝐾] that it locally maintains for 𝒱.
For a Send query on (𝒱,P , 𝑌 ∋ 𝑧, 𝑡), simulator 𝒮 checks whether all the

zones in 𝑌 are active for 𝒱, and in particular if (𝑧, 𝑡, ·) ∈ 𝒱[𝐿𝐾]. If not, it
returns ⊥, otherwise 𝒮 generates a payload key 𝐾 ← SE.KG(ppSE), computes
ct ← SE.Enc(𝐾,𝑃), and computes 𝛾𝑧,𝑡 for the zone–time pair (𝑧, 𝑡) by sending
𝐾 to 𝒞priv𝑏 . Simulator 𝒮 then encrypts 𝐾 with the keys for the other zone–time
pairs in the query, and sets the ciphertext as the Enter algorithm does. For Send
queries such that 𝑧 /∈ 𝑌 or 𝑡 ̸= 𝑡, simulator 𝒮 runs algorithm Send on the inputs.

For every Receive query on vehicle identity 𝒱 and a ciphertext 𝛾 = (𝑡, 𝑌 ∋
𝑧, ((𝑦, 𝛾𝑦,𝑡)𝑦∈𝑌 , ct)) such that 𝑡 = 𝑡, simulator 𝒮 first checks whether there exists
a zone 𝑦 ̸= 𝑧 in 𝑌 such that (𝑦, 𝑡, ·) ∈ 𝒱[𝐿𝐾]. If so, it decrypts using 𝐾𝑦,𝑡 and
replies as algorithm Receive does, otherwise it checks whether (𝑧, 𝑡, ·) ∈ 𝒱[𝐿𝐾].
If not, it returns ⊥; otherwise it sends 𝛾𝑧,𝑡 together with ct as a header to 𝒞
and forwards its answert to 𝒜. For Receive queries such that 𝑧 /∈ 𝑌 or 𝑡 ̸= 𝑡,
simulator 𝒮 runs the corresponding algorithm on the inputs.

For an Open query on input m, simulator 𝒮 parses m as (m ′, 𝑡, tok) and runs
DGSA.Open(skℐ , stℐ , (m, e(𝑡), tok)). It forwards the output to 𝒜.

For a Corrupt query on an indentity 𝒱, simulator 𝒮 replies by sending to 𝒜
the certificate 𝒱[cert𝒱], all the credentials 𝒱[e𝑗 , cred𝑉,𝑗] and the key list 𝒱[𝐿𝐾].
Note that in the event in which 𝒜 wins the game, no challenge zone 𝑦* ∈ 𝑌 *

can be active for 𝒱 in time 𝑡* (condition 2). In particular, if 𝑡 = 𝑡 (simulator 𝒮
will abort otherwise), 𝒮 never has to send 𝐾𝑧,𝑡 to 𝒜.
𝒜 ultimately outputs a challenge tuple (𝒱, 𝛾*). Simulator 𝒮 parses 𝛾* as

(𝑡*, 𝑌 *, 𝛾*
′

). If 𝑡 ̸= 𝑡* or 𝑧 /∈ 𝑌 *, simulator 𝒮 aborts; otherwise, in the event
in which 𝒜 wins, Receive(𝒱[𝐿𝑘], 𝛾

) ̸= ⊥, meaning that there exists 𝑦 ∈ 𝑌 *

such that DAE.Dec(𝐾𝑦*,𝑡, 𝛾𝑦*,𝑡) ̸= ⊥. Such a 𝑦* is equal to 𝑧 with probability
at least 1/|𝑍| and 𝑡 = 𝑡 with probability 1/|𝑇 |. Moreover, since ∀(𝑡*, 𝑌, 𝛾) /∈
ℒsent, 𝛾∩𝛾* = ∅, it follows that 𝛾𝑧,𝑡 was never output by 𝒞

priv
𝑏 . Simulator 𝒮 then

sends 𝛾𝑧,𝑡 to 𝒜.
As SIG is assumed to be EUF-CMA secure, DGSA to satisfy traceabilty and

PKE to be IND-CPA secure, simulator 𝒮 is computationally indistinguishable
from the ZE-scheme integrity challenger. Adversary 𝒜 then wins the authenticity

57

game with probability at least (𝜀−negl (𝜆))/|𝑍||𝑇 |. As DAE satisfies authenticity
and as 1/|𝑍||𝑇 | is non-negligible, 𝜀 must be negligible.

58

	Zone Encryption with Anonymous Authentication for V2V Communication
	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Pairing Groups
	Hardness Assumptions
	Deterministic Authenticated Encryption
	Signatures

	Group Signatures with Attributes
	Definition of DGS+A
	Syntax.
	Security Properties.

	Our DGS+A Scheme
	Efficiency.
	DGS+A with Threshold Opening.

	Zone Encryption
	Syntax of Zone Encryption Schemes
	Security of Zone Encryption Schemes
	Common Oracles.
	Payload Hiding.
	Anonymity.
	Traceability.
	Ciphertext Integrity.
	Comparison to Existing Models.

	Our Zone Encryption Scheme
	Formal Description.
	Correctness & Security.

	Efficiency & Comparison
	Efficiency.
	C-ITS Deployment and Comparison.

	Threat Model and Design Choices
	Deployment Challenges

	Conclusion
	Deterministic Authenticated Encryption
	Security Properties.
	SIV Construction.

	Dynamic Group Signatures with Attributes
	Definition of DGS+A
	Our DGS+A scheme
	Correctness and Security of our DGS+A Scheme.

	DGS+A with Threshold Opening
	Our Zone-Encryption Scheme

