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ABSTRACT
Cloud storage is becoming increasingly popular among end users

that outsource their personal data to services such as Dropbox

or Google Drive. For security, uploaded data should ideally be

encrypted under a key that is controlled and only known by the

user. Current solutions that support user-centric encryption either

require the user to manage strong cryptographic keys, or derive

keys from weak passwords. While the former has massive usability

issues and requires secure storage by the user, the latter approach is

more convenient but offers only little security since encrypted data

is susceptible to offline attacks. The recent concept of password-

authenticated secret-sharing (PASS) enables users to securely derive

strong keys fromweak passwords by leveraging a distributed server

setup, and has been considered a promising step towards secure and

usable encryption. However, using PASS for encryption is not as

suitable as originally thought: it only considers the (re)construction

of a single, static key – whereas practical encryption will require

the management of many, object-specific keys. Using a dedicated
PASS instance for every key makes the solution vulnerable against

online attacks, inherently leaks access patterns to the servers and

poses the risk of permanent data loss when an incorrect password

is used at encryption. We therefore propose a new protocol that

directly targets the problem of boostrapping encryption from a

single password: distributed password-authenticated symmetric

encryption (DPaSE).
DPaSE offers strong security and usability, such as protecting

the user’s password against online and offline attacks, and ensuring

message privacy and ciphertext integrity as long as at least one

server is honest. We formally define the desired security properties

in the UC framework and propose a provably secure instantiation.

The core of our protocol is a new type of Oblivious Pseudorandom

Function (OPRF) that allows to extend a previous partially-blind

query with a follow-up request and will be used to blindly carry

over passwords across evaluations and avoid online attacks. Our

(proof-of-concept) implementation of DPaSE uses 10 exponentia-

tions at the user, 4 exponentiations and 2 pairings at each server,

and has a server throughput of 76 account creations and 37 (user

authentication followed by) encryptions per second, when run be-

tween a user and 2-10 servers.
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1 INTRODUCTION
Outsourcing storage to cloud providers is not only a common ap-

proach in enterprise settings, but is also widely appreciated by end

users relying on services such as Dropbox, Google Drive, iCloud

or Microsoft OneDrive to manage their personal data. With data

breaches happening on a daily basis, it is essential that personal

data kept in such cloud storage must be protected accordingly. The

prevalent approach is to trust the cloud with properly encrypting

the data, where the service provider controls access to the respective

encryption keys via standard user authentication, mostly relying

on username-password authentication. Clearly, such a solution

crucially relies on the honesty of the service provider who can

otherwise gain plaintext access to the users’ data.

A different approach is let the user already encrypt the data

before storing it in the cloud, which is offered e.g., by Tresorit [4]

or Mega [3]. Therein a user client is locally encrypting the data

and only uploads ciphertexts to the cloud. The cryptographic keys

are either generated and stored directly by the user client, or (re)-

derived from a human-memorizable password that the user enters

into the local client. The former provides strong security guarantees,

but is cumbersome to use as it relies on users’ being able to manage

and securely store cryptographic keys. The latter provides (roughly)

the same convenience and usability as standard cloud provides as

it does not require secure storage on the user side, but is inherently

vulnerable to so-called offline attacks: Since encryption keys are

derived from a low-entropy password, a corrupt service provider

or an attacker gaining access to the ciphertexts, can attempt to

decrypt the files by guessing the user’s password.

While recently some service providers have moved away from

password and deploy solutions where users are required to store

key material (e.g., [2]), password-based systems remain the only

truly device-independent solution at our disposal. In this paper, we

investigate how users can password-encrypt their cloud data with-
out storing any key material, and without making their encrypted

data prone to offline password-guessing attacks.

Known approaches to password-based encryption. One way to

avoid the two aforementioned issues is to use a distributed password-
based key management system: a user retrieves her encryption key

from a set of servers, using only a password as input. This does

not require the user to store any cryptograhpic material, since the

servers take over this role, and the distribution of keys among

servers thwarts of offline attacks on the password. There exist vari-

ous cryptographic primitives suitable to implement such password-

protected key retrieval, for example Password-Authenticated Se-

cret Sharing (PASS/PPSS) [6] and Oblivious Key Management [19],

which we discuss more in related work below.



All aforementioned schemes allow users to turn a password into

an encryption key. In practice, this means that users either encrypt

all their data with the same key, or they must memorize as many
passwords as keys that they want to use. For optimal usability and
security, in a password-based key management scheme, we want

to ask the user to remember only few but strong passwords, and

“behind the scenes” still use different encryption keys for every

piece of data she wants to encrypt. Varying encryption keys is

desirable to mitigate the effect of security breaches of the user’s

device, or of irresponsible handling of secret keys on the user side.

We note that there exist other ways to mitigate the effect of such

attacks, for example allowing for efficient updates of the encryption

key, which however provide no protection in case the attacker is

already in posession of ciphertexts. In this work, we prefer one-time

usage of encryption keys over updatability, since then revelance of

one key upon compromise does not impact the confidentiality of

more than one encrypted piece of data.

Figure 1: Classical password-based server-assistedKMSyields
one key per password to encrypt all the different user data.
In this work we develop a server-assisted encryption scheme
that allows to derive different encryption keys from only
one password.

1.1 Our Contributions
In this work we develop usable yet strongly secure distributed

password-based symmetric encryption (DPaSE).DPaSE allows users
to securely and conveniently encrypt and decrypt their data with

different encryption keys while relying only on a single password

and the assistance of 𝑛 servers. We provide an efficient realiza-

tion based on a new type of Oblivious Pseudorandom Function

(OPRF) that supports correlated evaluations of blind inputs, which

we believe to be of independent interest. DPaSE is not a mere key

management system, but has built-in encryption of data with the

retrieved keys already. Encryption and decryption is carried out

locally by the user using the retrieved key. This integrated modeling

allows us to demand the following strong security and functionality

from a DPaSE system, covering guarantees with respect to both

passwords and encryption of data.

Correct Encryption: If a user types an incorrect password upon

encryption, her data is not encrypted and the user instead obtains

an error message. This property is important to avoid that a user

accidentally encrypts her data with unrecoverable secret keys.

No Reuse of Keys: Every ciphertext is created with an individual

key. Hence, in case a user loses one of her encryption keys, all but

one of her encrypted files remain confidential.

Security against Offline Attacks: As long as at least one server

is honest, the encrypted data (or rather the underlying password)

cannot be offline attacked. And even if eventually all servers are
corrupted, they cannot decrypt the data immediately but must still

perform an offline attack on the password – thus when users have

chosen strong passwords, their data remains secure.

Security against Online Attacks: To detect and prevent online

guessing attacks, the servers learn which user is trying to encrypt

or decrypt, and whether her entered password was correct. In par-

ticular, we require that every file access/decryption requires explicit

approval of all servers. When an honest server has recognized sus-

picious behaviour or was alerted by the user herself, it can enforce

user-specific rate limiting or even fully block a certain account.

Obliviousness: Servers do not learn anything about the files (plain-
or ciphertext) the userwants to access

1
. It was demonstrated [15, 24]

that such leakage would have devastating effects on the user’s

privacy.

Authenticated Encryption: An adversary cannot plant wrong

information into the outsourced storage. Thus, unless the adversary

knows the user’s password (and is assisted by all servers) it must

be infeasible to create valid ciphertexts.

Security Model in the UC Framework. We formally define these

properties by means of an ideal functionality FDPaSE using the

Universal Composability (UC) framework [12], which is known to

allow for the most realistic modeling for how users (mis)handle

passwords. In game-based security models, users choose their pass-

words at random from known distributions and are assumed to

behave perfectly, i.e., never make a typo when using a password.

This clearly does not reflect reality, where users share or re-use

passwords, and make mistakes when typing them. The UC frame-

work models that much more naturally as therein the environment

provides the passwords. Thus, a UC security notion guarantees

the desired security properties without making any assumptions

regarding the passwords’ distributions or usages. Our modeling

also ensures that any DPaSE protocol is secure when executed con-

currently with other systems, thanks to the strong composability

guarantees of the UC framework.

However, these desirable features come at a cost. In order to

end up with a manageable and understandable security definition

(i.e., UC functionality), we need to make compromises and protect

against some attacks that might not be of high relevance to DPaSE
in practise

2
. For example, we need to prevent servers from inten-

tionally deriving encryption keys from wrong passwords, which

makes our protocol a bit more costly and restricted to security

against semi-honest servers. There exist many ways of protecting

against such attacks, each with different trade-offs. For example, we

1
We do not want to go further and hide the identity of the user in his requests, since

otherwise we would not be able to protect against online guessing attacks.

2
A UC functionality needs to “list” all potential attacks that can be mounted against a

protocol. While some attacks might be benign in practise and we might be okay with

the threat they are imposing on us, every such attack still shows in the functionality.

It is one of the main challenges in using the UC framework to find a mid-way between

a not overly strong notion that still allows for efficient instantiations, and one that is

not overly cluttered with such benign attacks.



could use client-side caching of password-dependent inputs, leav-

ing it up to the client to use the correct password. Such a solution

would however not suffice for our purpose of achieving a concise

UC definition (a malicious client could simply mess up the caching

then, introducing valid encryptions under wrong passwords to the

system). Hence, in this paper, we opt for a stronger and cleaner def-

inition, at the cost of slightly worse efficiency and slightly weaker

corruption model.

Efficient DPaSE Protocol. We present an efficient protocol that

provably realizes our functionality FDPaSE. The high-level idea

of the protocol is very simple and follows the known paradigm

of password-based protocols to turn the password into crypto-

graphic key material using an OPRF [7, 20]. More detailed, to

create an account, the user derives a signing key (upk, usk) ←
OPRF(𝐾, uid, pw) from her username and password, where the

OPRF key 𝐾 is split among the 𝑛 servers and the evaluation reveals

the username to the servers to later allow for user-specific rate

limiting. The servers store (uid, upk) upon registration.

To encrypt a file, the user again enters uid, pw′ and starts by

re-running the steps from account creation to recover her signing

key pair (upk, usk). She then signs a fresh nonce with usk and

sends it to the servers who verify it against the stored upk, thereby
verifying that pw = pw′. If the password is correct, the user and

server engage in a follow-up OPRF evaluation where an object-

specific encryption key is derived. The OPRF evaluation thereby

“reuses” the previously entered uid, pw′ to ensure that the actual

encryption keys are also bound to the user’ identity and correct

password. This prevents users from accidentally encrypting data

under a wrong password. To ensure obliviousness, the object for

which the key is derived is hidden in the evaluation.

Decryption works almost analogously to encryption, verifying

the password and – if correct – recovering the object-specific en-

cryption key via the distributed OPRF. The generated ciphertexts

and decryption proceeds also include checks to guarantee the de-

sired ciphertext integrity.

Extendable Distributed Partially-Oblivious PRF. The core of
our DPaSE protocol is a new type of OPRF that we believe to be

of independent interest for many password-based applications. So

far, OPRFs have been designed as single-evaluation primitives
3
that

can either be fully or partially-blind. Thus, the user sends a (par-

tially) blind query, and receives a single output related to that input.

What we need for DPaSE though is an OPRF that “remembers” the

blindly provided password from a previous query and re-uses it in

a follow-up evaluation: we need to perform a dedicated password

check and also want to ensure that encryption is done with the

same password that was verified. We model that as an extension

query, where a second OPRF query re-uses the blinded input from

a previous request. This extension feature is required on top of

partial-blindness (as the uid’s must be a known input to all parties)

and the distributed setting. We formalize the desired properties

of such an extendable OPRF in the UC framework and propose a

secure instantiation. We believe that this is a contribution of inde-

pendent interest. Namely, using an extendable OPRF instead of a

3
With the exception of OPRF with batch evaluations under several keys [23, 26]. This

is orthogonal to our problem since we have a single OPRF key.

single-evaluation OPRF could generally add secure password verifi-

cation to protocols that deploy an OPRF to bootstrap cryptographic

material from passwords.

Our OPRF construction is based on the classical double-hash

DH scheme, basically combining all tricks that have been used in

this context into a single scheme. The challenge thereby is that our

second OPRF call which blindly carries over the input from the first

call now has three inputs: the non-blind part (xpub = uid), and two

blinded values, namely the blinded (xpriv1 = pw) from the previous

evaluation and the new input (xpriv2 = oid). Previous partially-blind
OPRFs deal with two inputs only xpub and xpriv which are mostly

combined through a pairing [7, 14], with the final PRF being of the

form H𝑇 (𝑒 (H1 (xpriv), xpub)𝐾 , xpriv). In our construction, we will

already need both “slots” of the pairing to combine the two blinded

inputs, and therefore must find a different place to include the public

input.We take inspiration from [19] and replace the direct use of the

server’s secret key 𝐾 by 𝐾 ′ ← F(𝐾, uid) where F is a standard PRF.

Thus, overall our new OPRF computes the output for an extended

query as H𝑇 (𝑒 (H1 (xpriv1),H2 (xpriv2))F(𝐾,xpub) , xpriv1, xpriv2) . The
first (non-extended) query, just consisting of xpub and xpriv1 has
the same form and simply sets xpriv2 = 1.

This construction allows us to combine three values into a sin-

gle evaluation, but this extendability feature comes for a price.

First, relying on exponents that are derived from a standard PRF

𝐾 ′ ← F(𝐾, uid) only allows for a distributed, but not threshold

protocol. The distributed version simply considers the additive

combination of all 𝐾 ′ as the implicit overall secret key (per xpub).
Second, there are currently no efficient proofs that allow to check

whether the servers have computed the second evaluation correctly

– which again stems from the use of the standard PRF to derive

the OPRF secret key share. As we will require correct computation

of OPRF outputs in our DPaSE protocol, we must assume that the

servers in the OPRF are at most honest-but-curious. We stress that

considering honest-but-curious servers already captures the main

threat to passwords: an adversary stealing the password database

(or other offline-attackable information). To our knowledge, DPaSE
is currently the only protocol being secure in the presence of such

attacks.

Lastly, we note that extendability is a property that could as

well be ensured on the application level by, e.g., caching the user’s

password on the client machine. While this would enable using

DPaSE with a standard, i.e., single-evaluation OPRF and make our

protocol simpler and more efficient, it allows for a „benign“ attack

which prevents a security proof. Namely, an adversary knowing

the password of an honest user could produce encryption keys un-

der bogus passwords. If the honest user later tries to decrypt such

a maliciously crafted ciphertext, decryption would fail – yet the

adversary can decrypt using the bogus password again. While this

attack is rather harmless in practice, to prove the password-caching

version secure one would have to include this imperfection into

the security definition, with a different set of „shadow passwords“

for each (!) ciphertext that the adversary could use (even for honest

accounts). With the extendability property, we enforce password

consistency on the protocol level and hence avoid cluttering the se-

curity definition of DPaSE with attacks resulting from inconsistent

usage of passwords.



Implementation and Evaluation. Instantiating DPaSE with our

OPRF yields an efficient scheme that requires 10 exponentiations

at the user, 4 exponentiations and 2 pairings at each server. We fur-

ther provide a proof-of-concept implementation of ΠDPaSE which

respectively takes 13ms for an account creation and 27ms for each

encryption and decryption on the server side, when run between

an user and any number of servers; currently the implementation

has a server throughput of 76 account creation and 37 (user authen-

tication followed by) encryption or decryption requests per second.

1.2 Related Work
Password-authenticated secret sharing (PASS/PPSS) allows a user

to recover a strong secret that is shared among 𝑛 servers when

she can enter the correct password [6, 16–18]. In contrast to end

users, servers can easily maintain strong cryptographic keys which

is leveraged by PASS to thwart offline attacks against the password

(and consequently on the shared secret key) if at least one, or a

certain threshold, of the servers is not compromised. While this

concept is shared between PASS and DPaSE, PASS can only be

used to derive one encryption key per password, while DPaSE is

required to encrypt each piece of data under different keys, yet

enabling the user to encrypt all her data under the same password.

Password-hardened encryption (PHE) [25] targets a related set-

ting, where a user outsources key management, encryption and

decryption to a so-called rate limiter. The user can send encryp-

tion/decryption requests through a server, but needs to provide a

correct password. The rate limiter can be implemented in a thresh-

old version [8] to further enhance PHE’s security. The scheme

allows a mechanism of key rotation, to mitigate against compro-

mises or simply as a routine process. Key rotation involves the

server and the rate limiter updating their respective keys as well

as the ciphertexts accordingly. In PHE the frontend server is fully

trusted, as it learns the user’s password and keys. PHE schemes are

very efficient (no OPRF is required!) and a good option in settings

where the client fully trusts the server, since both password and

access pattern on user’s data are shared with the server. In our work,

we do not want to assume such trust and hence opt for client-side

encryption of data to hide access patterns.

Updatable Oblivious Key Management [19] also relies on a OPRF

to derive file-specific encryption keys with the help of a (single)

external server for increased security. Their work focuses on an

enterprise setting for storage systems though, i.e., it relies on strong

authentication between the client (that wants to encrypt or decrypt)

and the server that holds the OPRF key. This is a first difference to

DPaSE: our scheme achieves oblivious key management without

strong client-authentication. Second, their system uses key rotation

– similar to PHE and the general concept of updatable encryption
with post-compromise security [22, 27] – to update encryption

keys and the corresponding ciphertexts as a measure to mitigate

the effect of security breaches. The approach of our DPaSE proto-

col is orthogonal: we mitigate the risk of data breaches by using

a distributed setting instead of key rotation: the information to

recover the encryption keys is split across 𝑛 servers, and the file-

specific encryption keys are secure as long as one server remains

uncompromised.

The DiSE protocol [5] and its improvements [13, 28] for dis-

tributed symmetric encryption consider strong authentication only.

In these protocols, a group of 𝑛 parties jointly controls encryption

keys under which ciphertexts for the group get encrypted. The

secret key material is split among the group and any member of the

group can request decryption of ciphertexts which is again done

jointly by all member. DiSE implicitly – yet crucially – relies on

strong authentication to ensure that only valid members of the

group can make such requests, whereas we want only a single user

to encrypt or decrypt her files from a password. Nevertheless, the

authenticity checks in the encryption/decryption process of our

protocol are build upon the ideas of the DiSE protocol.

Finally, the PESTO protocol [7] for distributed single sign-on

(SSO) relies on a similar idea of first deriving a strong key pair

from a distributed OPRF in order to let a user authenticate to a

number of servers. The overall application is different though, SSO

vs. encryption, and consequently also the desired functionality and

security are different. PESTO is in one aspect stronger than DPaSE
since it features proactive security, meaning that a once corrupted

server can be sanitized to be honest again. This strong aspect comes

at a cost that is much more critical for the targeted encryption use

case than in SSO: PESTO guarantees no security whatsoever when

all servers are corrupt. In DPaSE, even in case of a full corruption

of all servers, the user’s data still remains confidential unless all

servers jointly mount a successful offline attack on her password.

Thus, a dedicated offline attack for each user (on top of corrupting

all servers) would be required, and the encrypted files of users with

reasonably strong passwords can remain secure.

We give a detailed comparison of properties of the schemes that

are closely related to DPaSE in Table 1.

The functionality is parametrized by a security parameter 𝜆. It interacts with servers

S := {𝑆1, ..., 𝑆𝑛 } (specified in the sid), arbitrary other parties and an adversary A.

FedpOPRF maintains a table𝑇 (xpub, xpriv1, xpriv2) initially undefined everywhere, coun-
ters ctr[xpub ] initially set to 0. FedpOPRF sends all inputs to A except for xpriv1, xpriv2 .

Key Generation

On input (KeyGen, sid) from 𝑆𝑖 , ignore this query if the sid is marked ready. Oth-
erwise, if (KeyGen, sid) was received from all 𝑆𝑖 , mark sid as ready, and output

(KeyConf, sid) to all 𝑆𝑖 .

Evaluation

On input (EvalInit, sid, qid, xpub, xpriv1) from any party 𝑈 (including A: record

(eval, sid, qid,𝑈 , xpub, xpriv1,⊥) , and output (EvalInit, sid, qid, xpub) to all 𝑆𝑖 .

On input (EvalProceed, 𝑅, sid, qid) from 𝑆𝑖 where 𝑅 ∈ {1, 2}:
• Retrieve record (eval, sid, qid,𝑈 , xpub, xpriv1, xpriv2) , where xpriv2 = ⊥ if

𝑅 = 1, and xpriv2 ≠ ⊥ if 𝑅 = 2.

• If (EvalProceed, 𝑅, sid, qid) has been received from all 𝑆𝑖 , set

ctr[xpub ] ← ctr[xpub ] + 1.

On input (EvalFollow, sid, qid, xpriv2) from any party𝑈 (including A):

• Retrieve record (eval, sid, qid,𝑈 , xpub, xpriv1,⊥) for (sid, qid,𝑈 ) .
• Update record to (eval, sid, qid,𝑈 , xpub, xpriv1, xpriv2) , and send output

(EvalFollow, sid, qid) to every 𝑆𝑖 .

On input (EvalComplete, sid, qid) from A:

• Retrieve record (eval, sid, qid,𝑈 , xpub, xpriv1, xpriv2) , only proceed if

ctr[xpub ] > 0, set ctr[xpub ] ← ctr[xpub ] − 1.
• If 𝑇 (xpub, xpriv1, xpriv2) is undefined, then pick 𝜌

$← {0, 1}𝜆 and set

𝑇 (xpub, xpriv1, xpriv2) ← 𝜌 .

• Output (EvalComplete, sid, qid, xpriv2,𝑇 (xpub, xpriv1, xpriv2)) to𝑈 .

Figure 2: Ideal functionality FedpOPRF



Properties\Schemes

Key Management Schemes (KMS) Encryption Schemes
PASS scheme PASS scheme OKMS DiSE (Threshold) PHE DPaSE

[18] Memento [10] [19] [5] [25], [8] this work

Password correctness ensured - - ✓ ✓

Can derive multiple keys per password - - - ✓

Security against online attacks - ✓ ✓ ✓

Security against offline attacks ✓ ✓ ✓ ✓

Password remains private ✓ ✓ - ✓

Access pattern remains private - - ✓ ✓

Authenticated encryption ✓ ✓ ✓ ✓

Who encrypts? (U=User, S=Server) U S S U

Mitigation of compromised encryption keys no reuse & key rotation - key rotation no reuse

Secure in concurrent settings ✓ ✓ - - - ✓

Table 1: Properties of server-assisted encryption and encryption key retrieval (KMS) schemes. Gray cells are not applicable.
Password properties do not apply to OKMS and DiSE schemes, as they rely on strong user authentication. Likewise, encryption
properties do not apply to the KMS schemes, since they are only used to recover an encryption key from a password.

2 EXTENDABLE DISTRIBUTED
PARTIALLY-OBLIVIOUS PRF

Our DPaSE construction relies on a new type of oblivious PRF

(OPRF) that allows for extension queries and which we believe

to be of interest for password-based protocols in general. In this

section, we define this new type of OPRF and present a provably

secure construction.

An OPRF is an interactive protocol between at least one user

and one server. The server holds the key 𝐾 of a pseudorandom

function PRF, the user contributes the input 𝑥 to the function. After

the protocol runs, the user holds the PRF evaluation at 𝑥 , PRF𝐾 (𝑥).
The obliviousness property demands that, while the server actively

participated in the protocol, he did not learn anything about the

value 𝑥 he helped in evaluating the function for. On the other side,

the user requires participation of the server to evaluate PRF𝐾 () at
any input. In a distributed OPRF, the key 𝐾 is split among 𝑛 servers.

Recently, there has been a flurry of OPRF constructions in the

literature all featuring different (combinations of) properties on top

of the above mentioned [7, 9, 14, 16–18, 20, 21]. For constructing

DPaSE, we require a new combination of properties that we detail

now. Our OPRF is called a extendable distributed partially-oblivious
PRF (edpOPRF).

Partial Obliviousness: The obliviousness property guarantees that
the servers do not learn on which input (xpriv1 and xpriv2) the user
wants to evaluate the function. Partial obliviousness allows for an
additional public part (xpub) of the input.
Distribution: Obtaining a PRF value requires the active partici-

pation of all 𝑛 servers. No subset of 𝑛 − 1 servers can evaluate the

function themselves.

Extendability: After the user has provided an input (xpub, xpriv1)
and learned the corresponding output PRF𝐾 (xpub, xpriv1), he can
extend the query with a second blind input xpriv2 upon which

he receives PRF𝐾 (xpub, xpriv1, xpriv2) (in both cases the output is

conditioned on the participation of all servers of course).

While the first two properties exist (individually) already (par-

tial obliviousness [14], and distribution [18], the concept of ex-

tendability of an OPRF is new. What is so special about this prop-

erty that could not be achieved by simply evaluating the OPRF

twice? The crucial difference is that an extendable OPRF guaran-

tees that certain blinded inputs are reused in the second evaluation.

With separate evaluation requests this cannot be guaranteed since

blindings information-theoretically hide inputs and thus users can

easily cheat. For DPaSE, we require such an OPRF to allow for

dedicated password verification and ensuring that actual encryp-

tion/decryption happens with the same password. We envision

extendable OPRFs to be generally useful in protocols requiring

more than one OPRF evaluation and where secret inputs of these

single evaluations need to be correlated.

2.1 Ideal functionality for edpOPRF
We define a extendable distributed partially-oblivious PRF in the

Universal Composability framework [12] in terms of an ideal func-

tionality FedpOPRF in Figure 2. For brevity, we assume the following

writing conventions.

• The functionality considers a specific session sid = (𝑆1, . . . , 𝑆𝑛,
sid ′) and only accepts inputs from servers 𝑆𝑖 that are contained

in the sid.
• When the functionality is supposed to retrieve an internal record,

but no such record can be found, then the query is ignored.

• We assume private delayed outputs, meaning that the adversary

can schedule their delivery but not read their contents beyond

session and sub-session identifiers.

The functionality FedpOPRF is inspired by functionalities from

the literature [7, 9, 16–18, 20] and introduces extendability as a

new OPRF feature. FedpOPRF talks to arbitrary users and a fixed

set of servers 𝑆1, . . . , 𝑆𝑛 . Initially, all servers are required to call the

KeyGen interface, to activate the functionality. Modeling an ideal

PRF, FedpOPRF chooses outputs at random, maintaining a function

table 𝑇 () to ensure consistency. Implementing a partially-oblivious

function, FedpOPRF tells the servers public input xpub before they
have to decide about their participation in the request. Participation

is signaled by calling (or not calling) EvalProceed. The adversary
may also evaluate the function, but crucially requires participation

of all servers as well. If all servers are corrupted, the adversary can

freely evaluate the function by sending EvalProceed on behalf of

all the corrupted servers. To allow for efficient protocols, we employ

an “evaluation ticket” counter ctr[] allowing mixing-and-matching

evaluations w.r.t the public input, as common for OPRF notions

(see, e.g., [7]).

Our FedpOPRF provides a new feature: it can be extended to

output a second PRF value which is related to the first evaluation.

This works as follows. A user obtains an evaluation on xpub, xpriv1
by calling EvalInit with session identifier qid. (The output is only
generated if all servers participate and the adversary allows the

output by calling EvalComplete, which is standard procedure for



distributed OPRFs and we thus not elaborate here.) Afterwards,

the user can provide a third input xpriv2 via interface EvalFollow,
using the still active session qid. FedpOPRF outputs the function

value at xpub, xpriv1, xpriv2, ensuring that inputs xpub, xpriv1 from

the first evaluation are reused by looking them up using qid.

2.2 Our edpOPRF Construction
Wenowpresent our construction of a extendable distributed partially-

oblivious PRF. ΠedpOPRF computes the function

PRF(𝐾 (xpub), xpriv1, 1) = H𝑇 (xpriv1, 𝑒 (H1 (xpriv1),H2 (1))𝐾 (xpub) )
PRF(𝐾 (xpub), xpriv1, xpriv2) =

H𝑇 (xpriv1, xpriv2, 𝑒 (H1 (xpriv1),H2 (xpriv2))𝐾 (xpub) )

with 𝐾 (xpub) ←
∑𝑛
𝑖=1 F(k𝑖 , xpub) for (standard) PRF F : {0, 1}∗ →

Z𝑞 , and 𝑘𝑖 from F’s key space is held by server 𝑆𝑖 . xpub denotes the
public input and xpriv1, xpriv2 the private inputs. The function 𝑒 ()
denotes a pairing, and H𝑖 denote hash functions.

Setup and Key Generation:We require an asymmetric bilinear

group (𝑔1, 𝑔2, 𝑔𝑇 ,G1,G2, G𝑇 , 𝑒) and hash functions H1 : {0, 1}∗ →
G1, H2 : {0, 1}∗ → G2, H𝑇 : {0, 1}∗ → G𝑇 . We assume servers to

choose keys k𝑖 ← Z𝑞, 𝑖 ∈ [𝑛] at the beginning of the protocol.

Evaluation: Our PRF is essentially the “2Hash Diffie-Hellman”

function [16, 17] PRF(k, xpriv1) = H(xpriv1,H′(xpriv1)k). Let us
briefly explain how evaluating this function would work. A user

blinds his input xpriv1 with randomness 𝑟 as H′(xpriv1)𝑟 and sends

this value to the server. The server sends back H′(xpriv1)𝑟k , from
which the user can compute H′(xpriv1)k by exponentiation with

1/𝑟 . This is enough for the user to compute H(xpriv1,H′(xpriv1)k).
Partial obliviousness is now achieved as in Everspaugh et al. [14]

by combining blinded private inputs as 𝑒 (H1 (xpriv1)𝑟 ,
H2 (xpriv2)k) using the pairing 𝑒 (). Due to the bilinear property

of 𝑒 () this is equal to 𝑒 (H1 (xpriv1),H2 (xpriv2))𝑟k , which again al-

lows the user to remove the blinding factor 𝑟 . One can additively

share k among all servers and let the client combine evaluation

shares using the group operation inG𝑇 . The function is computed as

PRF(k, xpriv1, xpriv2) = H𝑇 (xpriv1, xpriv2, 𝑒 (H1 (xpriv1),H2 (xpriv2))k).
For our new extendability property we require a PRF evaluated

on three inputs. Fortunately, we can efficiently and securely aug-

ment the function given above with another input by “squeezing”

it into the function’s key. This technique is inspired by the work

of Jarecki et al. [19]. We set 𝐾 (xpub) := k ← ∑
𝑖∈[𝑛] F(k𝑖 , xpub)

for a (standard) PRF F and k𝑖 being the servers’ secret keys. One

subtlety here occurs in the first evaluation on xpub and xpriv1 only.
We cannot save the pairing evaluation and simply use 𝐻1 (xpriv1)k
as k-dependent value instead: with this value, a user could com-

pute arbitrary function evaluations on input xpriv1 by himself by

applying the pairing. We therefore let servers use a “dummy” value

𝐻2 (1) and pair it with the user’s blinded input xpriv1.
A full formal description of our OPRF construction ΠedpOPRF can

be found in Figure 3. Its security is stated in the following theorem,

for which a proof sketch can be found in Appendix B.

Theorem 2.1. Let G = (𝑝,𝑔1, 𝑔2, 𝑔𝑇 ,G1,G2,G𝑇 , 𝑒) be a bilinear
group. If the Gap One-More BDH (Gapom-BDH) assumption (c.f.
Definition A.3) holds forG then the protocol ΠedpOPRF given in Figure
3, with H1,H2 and H𝑇 modeled as random oracles and F being a

User𝑈 Server 𝑆𝑖 , holding k𝑖

On input (EvalInit, xpub, xpriv1)

𝑟1
$← Z𝑝 , 𝑥1 ← H1 (xpriv1)𝑟1 -xpub, 𝑥1

Output (EvalInit, xpub)

On input (EvalProceed, 1)
osk𝑖 ← F(k𝑖 , xpub)

If all 𝑆 𝑗 ∈ S sent 𝑦 𝑗 : � 𝑦𝑖
𝑦𝑖 ← 𝑒 (𝑥1, 𝐻2 (1))osk𝑖

𝑦 ←∏
𝑗∈[𝑛] 𝑦 𝑗

𝑟−1
1 , 𝑌1 ← H𝑇 (xpriv1, 𝑦)

Output (EvalComplete,⊥, 𝑌1)

On input (EvalFollow, xpriv2)
𝑟2

$← Z𝑝 , 𝑥2 ← H2 (xpriv2)𝑟2 -𝑥2
Output (EvalFollow)

On input (EvalProceed, 2)
If all 𝑆 𝑗 ∈ S sent 𝑦 𝑗 : � 𝑦′𝑖 𝑦′𝑖 ← 𝑒 (𝑥1, 𝑥2)osk𝑖
𝑦′ ←∏

𝑗∈[𝑛] 𝑦
′
𝑗
𝑟−1
1

𝑟−1
2 ,

𝑌2 ← H𝑇 (xpriv1, xpriv2, 𝑦′)
Output (EvalComplete, xpriv2, 𝑌2)

Figure 3: Protocol ΠedpOPRF. We assume all messages, inputs
and outputs to include sid, qid.

(standard) PRF, UC-emulates FedpOPRF in the random oracle model
assuming secure and server-side authenticated channels, static honest-
but-curious corruption of servers and static malicious corruption of
clients.

On malicious security. As detailed above, our FedpOPRF ensures
that the PRF is always evaluated w.r.t the same key. This rules out

protocols where servers can freely decide what key material to use

in an evaluation. Let us note that it is quite common in the literature

[7, 18, 20] to relax this property by letting the OPRF functionality

maintain different lists representing different PRF keys. The ad-

versary can then determine which list is going to be used (in case

of server corruption). And indeed, it turns out that our FedpOPRF
enforcing such consistency in keys is challenging to realize in the

presence of malicious servers. The reason is that we cannot use

standard techniques such as NIZK proofs of honest behavior with

respect to some public server key (e.g., [14]), since our server keys

are user-specific. Reliable distribution of such keys would involve

frequent interaction with a trusted authority. Another inefficient

way to obtain malicious security is to use a 3-linear map instead of a

2-linear map (pairing), together with a NIZK. The map would allow

us to have (NIZK-compatible) uid-independent key shares simply

by putting uid as third input parameter to the map. We choose not

to give a maliciously secure protocol with such inefficient tech-

niques, and leave the construction of an efficient maliciously secure

(i.e., verifiable) extendable distributed partially-oblivious PRF as an

open problem.

3 DPASE
In this section we introduce distributed password-authenticated

symmetric encryption (DPaSE). DPaSE is an interactive protocol

between many users and a fixed set of 𝑛 servers, where the servers

assist users in conveniently and securely encrypting their data

under a single password.DPaSE operates account-based: First, users
register with a username and a single password at all servers. After

account creation, the servers (blindly) assist users in encryption

and decryption provided that they are using the correct password.



We recall the key security properties of DPaSE as already ex-

plained in more detail in Section 1: correct and authenticated en-

cryption, no reuse of encryption keys, security against offline and

online attacks, and confidentiality of password and access patterns.

We will detail in the upcoming subsection how our definition en-

sures these properties.

Our concrete schemewill leverage the serversmainly to (re)construct

object-specific encryption keys, whereas encryption and decryption

happens locally at the user side. This might pose the question why

we are modelling DPaSE as an encryption and not key manage-

ment protocol. Capturing the full encryption/decryption process is

necessary to avoid similar misconceptions as with PASS, which was

believed to be a suitable out-of-the-box tool for password-based en-

cryption. Only with modelling and considering the full encryption

process this can be ensured.

3.1 An ideal functionality for DPaSE
We define DPaSE in terms of an ideal functionality FDPaSE, which
takes inputs of parties and hands them their securely computed

outputs. FDPaSE abstracts away any protocol details and states only
the required functionality and leakage and influence (i.e., attacks)

allowed by an adversary.

We assume the same writing conventions as for FedpOPRF. In ad-

dition, we assume the adversary gets to acknowledge all inputs, but

not learn their private content. For example, if the functionality re-

ceives input “(Encrypt, sid, qid, 𝑥) from a party 𝑃” and “keeps 𝑥 pri-

vate”, we assume that the functionality sends (Encrypt, sid, qid, 𝑃)
to the adversary and only processes the original input after input

an acknowledgement from the adversary.

Our ideal functionality FDPaSE is depicted in Figure 4, with la-

beled instructions to enable easy matching to the explanations in

this section. On a high level, FDPaSE is a password-protected lookup
table for (username,message,ciphertext) tuples. Users can create

new such tupes by first logging in to their account stored by FDPaSE
with a username and password, and then encrypt a message of their

choice, obtaining back the ciphertext. Decryption works in a similar

fashion. FDPaSE stores a password for every registered user, and

refuses service if a user does not remember his password correctly

when he wants to encrypt or decrypt. In order to perform registra-

tion, encryption or decryption, FDPaSE requires participation of 𝑛

distributed servers.

Let us first give some intuition on how FDPaSE ensures the re-

quired security and privacy properties of DPaSE. FDPaSE associates
a password with each username uid and creates an “encryption”

entry (uid,𝑚, 𝑐) upon request of user uid if and only if the user pro-

vided the password that is associated with uid. This ensures correct
and authenticated encryption. By verifying password matches

internally and not revealing passwords nor message/ciphertext

from encryption/decryption requests to the servers, FDPaSE ensures
obliviousness. By requiring all servers to assist in proceeding any

request (register, encryption, or decryption), FDPaSE ensures secu-

rity against offline attacks. FDPaSE however leaks the username

uid to the servers, which allows servers to refuse participation

if they are suspicious of an online password guessing attack
against user uid.

We now describe the interfaces of FDPaSE in more detail. The

functionality talks to arbitrary users and a fixed set of servers

𝑆1, . . . , 𝑆𝑛 .

Account Creation: Any user can register with FDPaSE by calling

its Register interface with a username uid and a password pw. If
no account uid exists yet ( R.3 ), FDPaSE informs all servers about

the new registration request and the uid, but keeps the password
private ( R.4 ). Servers can now decide to participate in the regis-

tration by sending ProceedRegister to FDPaSE. Only if all servers

do so ( PR.2 ), FDPaSE stores the account (uid, pw) and confirms

the registration to the user. ProceedRegister inputs of servers

are matched with their corresponding registration requests via

subsession identifiers qid. Since those identifiers are unique, col-
lecting servers’ participation among different requests is prevented

by FDPaSE.
Encryption: A message encryption is initiated by a user sending

an Encrypt request to FDPaSE which includes uid, pw and a mes-

sage𝑚. If account (uid, pw′) exists ( E.3 ), FDPaSE first informs all

servers about an incoming request for uid, keeping the password
as well as the message private ( E.4 ). Only if all server agree to

participate in this request for uid by using the Proceed interface for

the corresponding subsession ( P.2 ), FDPaSE continues the encryp-

tion request. By not giving away any information before, FDPaSE
prevents offline attacks. FDPaSE now verifies that the provided pass-

word pw is equal to pw′ stored with uid ( P.2.3 ). All servers and

the user are informed about the outcome of password verification

by input either PwdOK or PwdFail ( P.2.5 ). Being informed about

failed password attempts and requests of uid in general allows

servers to protect accounts against online guessing attacks: based

on this information, they can decide to throttle requests by refusing

to send Proceed, e.g., after 5 failed attempts within 1 minute. Such

throttling is however decided by the application using FDPaSE.
Finally, if verification was successful, the user obtains a cipher-

text 𝑐 from FDPaSE. While 𝑐 is adversarially chosen, we stress that,

in an honest encryption procedure, the adversary only learns the

length of the message from FDPaSE ( P.2.2 ). Thus, FDPaSE ensures

that the ciphertext does not contain any information about𝑚 be-

yond its length. Further, FDPaSE ensures that no two encryption

requests yield the same ciphertext by rejecting repeated cipher-

texts sent by the adversary ( P.2.2 ). FDPaSE stores the pair (𝑚,𝑐)
together with uid, and sends the ciphertext to the user ( P.2.7 ).

Handing out the (fresh) ciphertext only if the correct password was

provided ensures correct encryption. For this, note that for hon-

estly registered accounts (which would not have pw = ⊥) FDPaSE
prevents the adversary from influencing the “verification bit” 𝑏 in

encryption procedures in any way.

Decryption: A user initiates a decryption procedure by calling the

Decryptinterface of FDPaSE with uid, pw and a ciphertext 𝑐 . It is

instructive to note that FDPaSE does not give out any information

about ciphertexts it is not explicitly queried for, and thus cannot

be used as a storage for ciphertexts. FDPaSE informs servers about

a request for uid, keeping password and ciphertext private ( D.2 ).

Similar to an encryption procedure, all servers are required to call

Proceed in order for FDPaSE to continue with password verifica-

tion ( P.2 ). However, FDPaSE does not inform servers about which



ciphertext should be decrypted, in order to hide access patterns on

user data. We choose to not even inform servers about the type of

request - encrypt or decrypt - in order to allow also for protocols

where password verification requests do not yet reveal what a user

wants to do. Coming back to the decryption procedure, FDPaSE now
verifies the password ( P.2.3 ). In case of success and if FDPaSE finds
a record (uid,𝑚, 𝑐), the message𝑚 is given to the requesting user

( P.2.7 ). By storing uid along with message-ciphertext pairs and

revealing𝑚 only if uid’s password was provided in the decryption

query, FDPaSE enforces authenticated encryption.

Adversarial Interfaces: As explained before, we let A determine

ciphertexts as common for functionalities modeling symmetric

encryption. However, ciphertexts cannot depend on the message

beyond its length, since FDPaSE ensures that the adversary is obliv-

ious of messages to be encrypted ( E.2 and P.2.2 ). A may also

influence password verification in the following ways. First, mod-

eling DoS attacks, we allow A to make individual servers believe

that password verification failed even though the password might

have been correct. This attack is carried out by setting 𝑏𝑆𝑖 ← 0 for

the corresponding server 𝑆𝑖 ( P.2.2 and P.2.4 , “otherwise” case).

Second, A may make servers believe that password verification

suceeded even when a wrong password was used, but only for ac-

counts belonging to the adversary. FDPaSE marks a uid corrupted
if this is the case, i.e., if a corrupted user performed a successful

password verification with respect to username uid ( P.2.1 ). The

adversary then can fake successful password verification towards

𝑆𝑖 by setting 𝑏𝑆𝑖 ← 1 ( P.2.4 , “Else, if” case). The motivation is that

for such corrupted accounts we have to assume that the adversary

knows all secrets. It is then plausible that he can compute whatever

proof a protocol requires to convince servers of knowledge of the

correct password.

We further weaken FDPaSE by allowing the adversary to start,

e.g., an encryption request without yet knowing what message to

decrypt, and under which password. Technically, this is enabled by

FDPaSE accepting overwrite requests in adversarial records ( R.1 ,

E.1 and D.1 ). While this does not constitute a meaningful attack

for real-world applications (we stress that the adversary is only

allowed to change inputs for his own requests, not for the ones

of honest users), it allows for efficient realizations of FDPaSE such

as ours based on oblivious pseudo-random functions and random

oracles.

A special case - all servers corrupted: We want to highlight

which guarantees FDPaSE gives in this worst case scenario. In any

DPaSE protocol with 𝑛 servers storing a somehow shared informa-

tion about the user’s password, these servers can always throw their

data together, guess a password and run the password verification

procedure of the DPaSE protocol to learn whether the guess was

correct. This is unavoidable unless we involve more parties (such as

an external password hardening service), which is not the scope of

this work. However, we require that this is the best possible attack

on the user’s password when all servers are corrupted: they have

to invest some computation to test each of their password guesses.

This way, users with strong passwords will remain safe even in

this worst case scenario. Since FDPaSE enforces authenticated en-

cryption by revealing messages only if the correct password was

supplied ( P.2.3 and P.2.7 ) - regardless of how many servers are

corrupted - not only passwords but also encrypted data of users

with strong passwords remain secure.

The functionality is parametrized by a security parameter 𝜆. It interacts with

servers S := {𝑆1, ..., 𝑆𝑛 } (specified in the sid), as well as arbitrary users and an

adversary A.

Account Creation

On input (Register, qid, uid, pw) from𝑈 or A:

R.1 If ∃ record (register, qid,𝑈 , uid, pw′) , if𝑈 = A then overwrite pw′

with pw and if𝑈 ≠ A then ignore the query.

R.2 Keep pw private

R.3 If � record (account, uid, ∗) : create record (register, qid,𝑈 , uid, pw)
and R.4 send delayed output (Register, qid, uid) to all 𝑆𝑖 ∈ S.

On input (ProceedRegister, qid, uid) from server 𝑆𝑖 :

PR.1 Retrieve record (register, qid,𝑈 , uid, pw) .
PR.2 If (ProceedRegister, qid, uid) has been received from all 𝑆𝑖 :

– Record (account, uid, pw) ; if 𝑈 is corrupted mark uid
corrupted. Send delayed output (Registered, qid, uid) to𝑈 .

Encryption and Decryption

On input (Encrypt, qid′, uid,𝑚, pw′) from party𝑈 or A:

E.1 If ∃ record (∗, qid′,𝑈 , uid,𝑚′, pw) , if𝑈 = A then overwrite it with

(enc, qid′,𝑈 , uid,𝑚, pw′) and if𝑈 ≠ A then ignore the query.

// A can change mode, password and message in his own requests

E.2 Keep Encrypt,𝑚 and pw′ private, leak Request tag and ℓ (𝑚) to A
E.3 If ∃ record (account, uid, pw) : create record

(enc, qid′,𝑈 , uid,𝑚, pw′) and E.4 send delayed output

(Request, qid′, uid) to all 𝑆𝑖 ∈ S.

On input (Decrypt, qid′, uid, 𝑐, pw′) from party𝑈 or A:

D.1 If ∃ record (∗, qid′,𝑈 , uid, pw) , if 𝑈 = A then overwrite it with

(dec, qid′,𝑈 , uid, 𝑐, pw′) and if𝑈 ≠ A then ignore the query.

D.2 Keep Decrypt, 𝑐 and pw′ private, leak Request tag and ℓ (𝑐) to A
D.3 If ∃ (account, uid, pw) : record (dec, qid′,𝑈 , uid, 𝑐, pw′) and

D.4 send a delayed output (Request, qid′, uid) to all 𝑆𝑖 ∈ S .

On input (Proceed, qid′) from server 𝑆𝑖 :

P.1 Retrieve records (mode, qid′,𝑈 , uid, obj, pw′) and (account, uid, pw)
with mode ∈ {enc, dec}.

P.2 If (Proceed, qid′) has been received from all 𝑆𝑖 :

P.2.1 If𝑈 corrupted and pw == pw′ then mark uid corrupted.

// DoS attacks: A can prevent or sometimes even fake password

confirmation (send 𝑏𝑆𝑖 = 0 or 𝑏𝑆𝑖 = 1)

P.2.2 Send (Complete, qid′, pw == pw′) to A and receive back

(Complete, qid′, 𝑏𝑆
1
, . . . , 𝑏𝑆𝑛 , 𝑐) . Abort if mode = enc and 𝑐 has

been sent before.

P.2.3 If pw = ⊥ then set 𝑏 ← ⊥; otherwise set 𝑏 ← (pw = pw′) .
P.2.4 For 𝑖 ∈ [𝑛], if pw = ⊥ set𝑏′𝑖 ← 0. Else, if𝑈 and uid corrupted

then set 𝑏′𝑖 ← 𝑏𝑆𝑖 , otherwise set 𝑏
′
𝑖 ← 𝑏 ∧ 𝑏𝑆𝑖 .

P.2.5 For 𝑖 ∈ [𝑛], if 𝑏′𝑖 = 0 output (PwdFail, qid′) and otherwise

output (PwdOK, qid′) to all 𝑆𝑖 .

P.2.6 If 𝑏 = 0 output (PwdFail, qid′) to𝑈 .

P.2.7 If 𝑏 = 1 then

∗ If mode = dec and ∃ record (uid,𝑚, obj) , output
(Plaintext, qid′,𝑚) to𝑈 .

∗ If mode = enc: store (uid, obj, 𝑐) , output

(Ciphertext, qid′, 𝑐) to𝑈 .

Figure 4: Ideal functionality FDPaSE for distributed password-
authenticated symmetric encryption. For easy access to ex-
planations we use highlighted numbering in both figure and
text.



User𝑈 Server 𝑆𝑖

Upon input (Register, qid, uid, pw) -Register, qid, uid

-(EvalInit, uid, pw) -(EvalInit, uid)
FedpOPRF

If EvalProceed was Abort if a record for uid already exist.

received from all 𝑆𝑖 ,

compute

Else output (Register, qid, uid).

𝑌 ← PRF(𝑘, (pw, 1, uid)) Upon input (ProceedRegister, qid, uid) :
� (EvalComplete,⊥, 𝑌 ) � (EvalProceed, 1)

(upk, usk) ← SIG.Gen(𝑌 ) -upk
store (uid, upk)

upon receiving ok from all 𝑆𝑖 ∈ S, output
(Registered, qid, uid)

� ok

Upon input (Encrypt, qid ′, uid,𝑚, pw′) (Decrypt, sid, qid ′, uid, 𝑐, pw′)

𝜌
$← {0, 1}𝜆 , com← H(𝑚, 𝜌) parse 𝑐 := (𝑒, com)

-(Request, qid ′, uid)
-(EvalInit, uid, pw′) -(EvalInit, uid)

FedpOPRF
If EvalProceed was

received from all 𝑆𝑖 ,

compute

Abort if no record (uid, upk) exist, else output
(Request, qid ′, uid).

𝑌1 ← PRF(𝑘, (pw′, 1, uid)) Upon input (Proceed, qid ′):

� (EvalComplete,⊥, 𝑌1) � (EvalProceed, 1)

(upk′, usk′) ← SIG.Gen(𝑌1) � upk

if upk ≠ upk′ then output (PwdFail, qid ′)
𝜎𝑈 ← SIG.Sign(usk′, (uid, qid ′)) -𝜎𝑈

if SIG.Verify(upk, (uid, qid ′), 𝜎𝑈 ) = 0

then end with output (PwdFail, qid ′)
else output (PwdOK, qid ′)

-(EvalFollow, com) -(EvalFollow)
FedpOPRF
compute

𝑌2 ← PRF(𝑘, (pw′, 𝑐𝑜𝑚, uid)) � (EvalProceed, 2)� (EvalComplete, 𝑐𝑜𝑚,𝑌2)

𝑒 ← H-PRG(𝑌2, |𝑚 | + 𝜆) ⊕ (𝑚, 𝜌), 𝑐 ← (𝑒, com)
output (Ciphertext, qid ′, 𝑐)
(𝑚′, 𝜌 ′) ← H-PRG(𝑌2, |𝑚 | + 𝜆) ⊕ 𝑒 , abort if com ≠ H(𝑚, 𝜌)

output (Plaintext, qid ′,𝑚′)

Figure 5: Our protocol ΠDPaSE using a signature scheme SIG, ΠedpOPRF protocol and hash functions H,H-PRG. Top box shows

registration, bottom box shows encryption and decryption. Gray instructions are only executed in encryption, framed ones
only in decryption. Each encryption and decryption query has to use a fresh subsession identifier qid ′.

3.2 A DPaSE protocol ΠDPaSE

We now present our DPaSE protocol ΠDPaSE. The detailed formal

description can be found in Figure 5. ΠDPaSE uses hash functions

H : {0, 1}∗ → {0, 1}𝜆 and H-PRG : {0, 1}𝜆 → {0, 1}∗, a signature
scheme SIG and FedpOPRF as ideal building block. The main prin-

ciple of ΠDPaSE is that the servers assist the user in turning his

(low-entropy, but unique) authentication data, i.e., username and

password, into various (high-entropy) cryptographic keys. Those

keys are subsequently used for proving knowledge of the password

to servers, and to encrypt or decrypt the data. We describe the three

phases of ΠDPaSE, account creation, encryption and decryption, in

more detail in the below.

Account Creation: To create an account, a user derives a signing

key pair (usk, upk) from its username uid and password pw. For
this, FedpOPRF is queried with inputs uid, pw by the user, yielding

𝑌 ← PRF(𝑘, (pw, 1, uid)) if all servers participate in the evaluation.

Partial blindness ensures that servers learn uid but not pw. The user
then computes (usk, upk) ← SIG.Gen(𝑌 ), sends upk to all servers

and can afterwards delete the key pair. Servers are required to store

(uid, upk).



Encryption: Users are required to provide their correct password

whenever they want to encrypt (or decrypt) any data. This is now

straightforward: as in account creation, the user calls FedpOPRF
with inputs (uid, pw′), receiving PRF value 𝑌1 if again all servers

participate in the PRF evaluation. The user now computes a signing

key pair from 𝑌1, signs part of the transcript (we mention that

the identifier of this encryption session, qid ′, is globally unique)

and sends the resulting signature 𝜎𝑈 to each server. Servers will

accept (i.e., output PwdOK) only if 𝜎𝑈 is a verifying signature under

upk stored with uid, which happens if and only if pw = pw′. Of
course, this verification technique only works if servers reliably

learn uid used in the PRF compuation, which is ensured by the

partial obliviousness of FedpOPRF.
Symmetric encryption in ΠDPaSE is simply a one-time pad, with

an object-specific encryption key which is computed again from

a PRF value and with the help of all servers. But now, ΠDPaSE cru-

cially relies on the extendability of the PRF to ensure correct and

authenticated encryption of message𝑚 under encryption random-

ness 𝜌 . Namely, the key is computed from H(𝑚, 𝜌) and uid, pw
that successfully verified before. Note that this requires to evaluate

the PRF on three inputs, while the two latter are reused from the

password verification procedure detailed above. The extendability

property of FedpOPRF allows this by calling EvalFollowwith input

H(𝑚, 𝜌), still using the identifier qid ′ of the ongoing encryption

session. The user obtains 𝑌2 ← PRF(𝑘, (pw,H(𝑚, 𝜌), uid)) from
FedpOPRF.

To encrypt, 𝑌2 is XORed with (𝑚, 𝜌) (applying H-PRG first to

account for differences in lengths). The resulting ciphertext is aug-

mented with H(𝑚, 𝜌). The reason for appending this auxiliary in-

formation will become apparent below.

Decryption: In order to compute a decryption key, a user first has

to successfully pass password verification. This is done in the exact

same way as for an encryption request (in fact, in our protocol,

servers cannot distinguish an encryption request from a decryp-

tion request). Computation of the decryption key is also done the

exact same way as in encryption – now it becomes apparent why

com ← H(𝑚, 𝜌) is required to be part of the ciphertext. The user

decrypts𝑚, 𝜌 by XORing the decryption key with the first part of

the ciphertext. Finally, the user verifies correct decryption by re-

computing com from𝑚, 𝜌 . While FedpOPRF already provides correct
results, the latter check is still required since otherwise faulty ci-

phertexts (where the com contains another message) would decrypt

faithfully and users would recover data that they never encrypted.

3.3 Security of ΠDPaSE

For analyzing the security of ΠDPaSE we assume that honest users

delete all protocol values such as 𝑌1, 𝑌2, usk after performing an

encryption or decryption, i.e., upon closing a subsession. Further,

we assume that within ongoing subsessions (the identifier qid indi-

cates one such session) an honest user does not get corrupted. This

seems reasonable given the fact that, in reality, the time between

password verification and encryption (or decryption) will be only

very few seconds.

Theorem 3.1. The protocolΠDPaSE given in Figure 5 withH,H-PRG
modeled as random oracles and SIG = (Gen, Sign,Verify) an EUF-
CMA-secure signature scheme UC-emulates FDPaSE in the FedpOPRF-
hybrid random oracle model w.r.t static malicious user corruptions,
semi-honest server corruptions, and assuming server-side authenti-
cated and secure channels.

Proof Sketch. A detailed description of simulated cases can

be found in Table 5 in the Appendix.

Simulation of honest servers. Since servers do not obtain any se-

cret input that is kept from the adversary, simulating honest servers

is quite trivial: the simulator S just follows the server’s protocol.

Simulate honest user without password. First note that the pass-
word influences the outputs of the (deterministic) PRF. To know

whether former PRF values have to be reused as output (i.e., in

case of a correct password), it is enough for the simulator to learn

whether password verification was successful. Fortunately,S learns

this information fromFDPaSE on time (via (Complete, . . . )message)

before having to commit to any FedpOPRF output.
Extraction of corrupted user’s secrets. Since any user, even a

corrupted one, needs to use FedpOPRF in order to obtain a key, S
can extract a corrupted user’s password and message or ciphertext

from his inputs to FedpOPRF. Another way to see this is that, while

usage of FedpOPRF simplifies ourDPaSE simulator’s life in this case,

the burden is on the protocol realizing FedpOPRF. This protocol has
to ensure that secrets can be extracted from adversarial messages.

Three different ways to encrypt or decrypt. The simulation is

complicated by the fact thatZ can initiate, e.g., an encryption pro-

cedure either via an honest user and then recompute the symmetric

decryption key via either a corrupted user or viaZ’s adversarial

interface at FedpOPRF. Knowing only the ciphertext so far, S now

needs to produce the symmetric key without knowing the plaintext

it should decrypt to. However, all honest servers need to agree to

helpZ in computation of the symmetric key. S can use the server’s

agreement to obtain the plaintext message from FDPaSE, compute

the key linking this message with the ciphertext and send it toZ
(for this, S has to program the random oracle H-PRG to point to

the key). □

We obtain the following by combining Theorems 3.1 and 2.1.

Corollary 3.2. Let G = (𝑝,𝑔1, 𝑔2, 𝑔𝑇 ,G1,G2,G𝑇 , 𝑒) be a bilin-
ear group and H1,H2,H𝑇 ,H,H-PRG hash functions as described in
ΠedpOPRF and ΠDPaSE, modeled as random oracles. If the Gapom-
BDH assumption holds for G, SIG = (Gen, Sign,Verify) is an EUF-
CMA-secure signature scheme and F a (standard) PRF, then ΠDPaSE
with FedpOPRF instantiated by ΠedpOPRF UC-emulates FDPaSE in the
random oracle model w.r.t static honest-but-curious server corruption
and assuming server-side authenticated and secure channels.

Towards security against malicious servers. In Theorem 3.1

we restrict to static server corruptions, which is a limitation in-

herited from building block ΠedpOPRF, which only features semi-

honest security. Our proof however directly carries over to the

malicious setting: any maliciously secure realization of FedpOPRF
plugged into ΠDPaSE would yield a maliciously secure FDPaSE re-

alization. This is witnessed by our simulation (cf. Table 5 in the

Appendix), which considers malicious server behavior except for



instructions handled by FedpOPRF. We mention again that consider-

ing honest-but-curious servers already captures the main threat to

passwords: an adversary stealing the password database (or other

offline-attackable information).

4 EVALUATION & COMPARISON

Scheme

#(Exponentiations + Pairings) per Encryption

client/rate limiter server

PHE [25] 7 exps (in G) 10 exps (in G)

ΠDPaSE (Our Work) 10 exps (= 2G1 + 2G2 +
4G𝑇 + 2Gp-256)

4 exps (= 2G𝑇 + 2Gp-256)
+2 pairings

Table 2: Comparison of ΠDPaSE with closest password-based
encryption scheme PHE, where the exponentiations are
counted per group G, G1, G2, G𝑇 , the pairing is mapped as
G1 ×G2 : → G𝑇 and Gp-256 represents the prime group in the
ECDSA signature scheme secp256r1.

In this section, we consider an instantiation of the ΠDPaSE proto-

col (from Section 3.2), where the functionality FedpOPRF is instanti-
ated with ΠedpOPRF (from Section 2.2), and the signature scheme

SIG with ECDSA. We report on the efficiency of our scheme, by

counting the number of exponentiations per group and pairings,

being the most expensive operations of such protocols. We compare

our ΠDPaSE protocol with what we believe to be the closest related

password-based encryption scheme, namely Password Hardened

Encryption (PHE) [25] (see also Table 1 for the overlap of prop-

erties of both schemes). Considering each exchange of messages

between the client and servers as one round of communication,

ΠDPaSE requires 2 rounds for Account Creation and 3 rounds for

Authentication followed by a Encryption (Decryption) request.

Protocol

No. of Execution Requests

Servers Time (in ms) per server

user server (per second)

Account Creation

2 18 13 76

6 19 13 76

8 19 13 76

10 19 13 76

Authenticate + Encrypt

2 32 27 37

6 37 27 37

8 40 27 37

10 43 27 37

Table 3: Timing measurements of the protocol ΠDPaSE run
between one user and 𝑘 = {2, 6, 8, 10} number of servers.

Benchmarks.We carried out a proof-of-concept implementation [1]

of our ΠDPaSE protocol and report preliminary benchmarks on the

same. We implement in Java, and use the MIRACL - AMCL library

for the pairing computation and exponentiation operations. We use

the Boneh-Lynn-Shacham pairing with 461 bit curves for the pair-

ingG1×G2 → G𝑇 in ΠedpOPRF, ECDSA with sec256r1, SHA-512 as

the underlying hash function H, AES-256 to construct the standard

PRF function F and H-PRG and the Java’s inbuilt KeyPairGenerator

class for user key pair generation SIG.Gen. The elements in groups

G1, G2 and G𝑇 are implemented using single exponentiation opera-

tions with the respective group generators. The hash functions H1,

H2 and H𝑇 are implemented by first applying SHA-512 followed

by an exponentiation in the groups G1, G2 and G𝑇 respectively.

We measured our implementation on a machine running a Intel

Core i7-7500U series CPU with 4 virtual CPUs, 16 GiB of RAM.

We focused on measuring the local computation times both on

the client and the server sides, and did not consider delays due to

network latency. The details of our timing measurements corre-

sponding to a ΠDPaSE protocol run between one user and a number

of servers can be found in the Table 3. The time taken by each

server for processing an account creation is 13 milliseconds, while

that required for processing an user authentication followed by an

encryption request is 27 milliseconds. Consequently, each server

is able to process 76 account creation requests and 37 encryption

requests per second. Since the computation underlying an encryp-

tion or a decryption is almost the same, we have only detailed the

encryption timings. We stress here that the timing benchmarks

can be further improved by exploiting the parallelizability of the

underlying algorithms as well as utilizing the capabilities of multi-

ple cores of a computer. Since this enhancement was not the focus

of our work, in our implementation, we have relied on standard

cryptographic libraries as mentioned above, which create the bottle-

neck in our timing measures. Close to our work, Pythia achieves a

throughput of 130 requests ps [ECS+15] (also pointed in [LER+18]).

In theory, efficiency of our ΠDPaSE protocol is lower-bounded by

half the throughput of Pythia, which is 65 enc/dec requests ps. This

is because each enc/dec request in ΠDPaSE requires 2 OPRF eval-

uations, and each has the same computational cost as one Pythia

evaluation. We note that password verification and encryption both

add only little overhead.

On Scalability. Our ΠDPaSE protocol is highly scalable as can be

observed from the benchmarks in Table 3. The time required by

an individual server to process an account creation request or an

encryption (decryption) request is independent of the number of

servers used. While on the other hand, the time taken by the client

only slightly increases with increased number of servers.

Deployment Considerations. Let us now address some of the key

points to be considered when deploying the ΠDPaSE protocol in a

real-world environment. Availability is an inherent challenge in any

distributed protocol, naturally also in ΠDPaSE. If one of the servers

goes offline due to a Denial-of-Service attack or simply because of

a network connection problem, then this would lead to an abort in

ΠDPaSE. This issue can be addressed by using multiple machines

for each server and load balancing between them.

In a real-world deployment, servers would ideally be run by

different organisations on different physical machines/locations.

But ΠDPaSE could also be used by a single organization providing

all servers, which uses the protocol to "internally" distribute the

secret key and thereby minimize the risk of a detrimental server

breach.

From the usability perspective, if end-users wish to change their

passwords at a later point of time, that is possible and will require

decrypting the files under the old password first, and re-encrypt

them under the new password. This seems (somewhat) inherent in

any scheme where ciphertexts truly depend on passwords, which

is needed to protect against a full set of corrupt servers.



5 CONCLUSION AND OPEN QUESTIONS
In this paper, we attempted to answer the following question: Can
we design a device-independent cryptographic protocol for password-
based encryption with very strong security and privacy? We formalize

our interpretation of strong security and privacy by introducing the

notion of Distributed Password-Authenticated Symmetric Encryption
(DPaSE). DPaSE uses ciphertext-specific encryption keys, prevents

encryption under mistyped passwords, hides users’ access pattern,

protects against on- and offline attacks on the user password, and

maintains all these guarantees even in a concurrent setting with

arbitrary other protocols.

We answer the question above in the affirmative, by provid-

ing a DPaSE protocol based on a new type of oblivious pseudo-

random functions (OPRF). The OPRF is evaluated twice: first, to let

the user turn her password into high-entropy authentication data,

and second, to let the user compute a password- and ciphertext-

dependent symmetric key. We give a construction for such an OPRF,

which we believe is of independent interest as a new building block

for password-based cryptographic protocols. We provide proof-of-

concept implementations for our DPaSE construction (including

our OPRF construction) and compare efficiency to related protocols

in the literature. Our protocol provides only little overhead over ex-

isting solutions for password-based key retrieval/encryption, scales

well in the number of users and servers, and features provable se-

curity under standard bilinear discrete-log based assumptions in

the random oracle model.

An interesting future direction is the construction of a threshold
version of DPaSE, where only an arbitrary subset of all servers

is required to participate in each user request. This would im-

prove usability of the protocol, since users would not have to

wait for answers of busy servers. Our user-specific OPRF keys

(𝑜𝑠𝑘𝑖 = F(𝑘, uid)) hinders us to choose 𝑜𝑠𝑘𝑖 as shares of standard

threshold scheme. However constructing F as threshold PRF might

give an interesting solution towards thresholdization.

Finally, security in the presence of malicious servers would be

enabled by constructing a maliciously secure extendable distributed

partially-oblivious PRF. Alternatively, for ensuring correct encryp-

tion it seems to be sufficient to have servers use the same keys

in both OPRF evaluations. This flavor of verifiability in our OPRF

seems to be achievable with standard techniques. Although key

switching between different requests of a specific user would not

significantly weaken but clutter the description of FDPaSE, we de-
cide to present the more secure and cleaner version here, and leave

the slightly weaker but maliciously secure version as future work.
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A DEFINITIONS
Definition A.1 (Signature Schemes). A signature scheme SIG is a

triple of algorithms (Gen, Sign,Verify) with the following proper-

ties. On input the security parameter 𝜆, the randomized key gen-
eration algorithm Gen outputs a key pair (𝑝𝑘, 𝑠𝑘). On a message

𝑚 ∈ {0, 1}∗ and a secret key 𝑠𝑘 , the randomized signing algorithm
Sign outputs a signature 𝜎 . On input a public key 𝑝𝑘 , a message

𝑚 ∈ {0, 1}∗, and a signature 𝜎 , the deterministic verification algo-
rithm Verify outputs 1 if the signature is correct or 0 otherwise.

We require that the scheme satisfies correctness, i.e., for all𝑚 ∈
{0, 1}∗ and (𝑝𝑘, 𝑠𝑘) output by Gen it holds that: Verify(𝑝𝑘,𝑚,
Sign(𝑠𝑘,𝑚)) = 1. Additionally, the scheme needs to satisfy un-
forgeability under chosen message attacks (UF-CMA-security), i.e.,
after learning signatures for 𝑞 number of adaptively chosen mes-

sages {𝑚1, ...,𝑚𝑞} ∈ M, it should be impossible to find a signa-

ture/message pair (𝜎,𝑚) s.t.Verify(pk,𝑚, 𝜎) = 1 and𝑚 ∉
{
𝑚1, ...,𝑚𝑞

}
.

A.1 Bilinear Groups
Definition A.2 (Asymmetric Pairing). Let G1,G2,G𝑇 be cyclic

groups of order 𝑝 with generators 𝑔1, 𝑔2, 𝑔𝑇 , respectively. Let 𝑒 :

G1 × G2 → G𝑇 be an efficiently computable non-degenerate func-

tion such that ∀𝑎, 𝑏 ∈ Z𝑝 : 𝑒 (𝑔𝑎
1
, 𝑔𝑏

2
) = 𝑔𝑎𝑏

𝑇
. Then 𝑒 is called an

asymmetric pairing. G = (𝑝,𝑔1, 𝑔2, 𝑔𝑇 ,G1,G2,G𝑇 , 𝑒) is called an

asymmetric bilinear group setting, or bilinear group for short.

Definition A.3 (Gap One-More BDH Assumption). Let 𝜆 ∈ N be a

security parameter and G = (𝑝,𝑔1, 𝑔2, 𝑔𝑇 ,G1,G2,G𝑇 , 𝑒) be a bilin-
ear group with log(𝑝) = poly(𝜆), then we then say that the Gap

One-More Bilinear Diffie-Hellman (Gapom-BDH) assumption holds

forG if for all PPT adversariesA there is a negligible function negl·
such that Pr[ExpGA,Gapom-BDH (𝜆) = 1] ≤ negl𝜆.

The underlying experiment is defined as follows.

Experiment ExpGA,Gapom-BDH (𝜆):
𝑘

$← Z𝑝 , 𝑞𝐶 ← 0, 𝑋1 ← ∅, 𝑋2 ← ∅.
{(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 )}𝑖∈[ℓ ] ← AOG-1,OG-2,OD-help,OC-help (G, 𝑔𝑘2 )
return 0 if

0 ≤ ℓ − 1 < 𝑞𝐶 or

∃𝑖 ∈ [ℓ] : (𝑥𝑖 ∉ 𝑋1 ∨ 𝑦𝑖 ∉ 𝑋2) or
∃𝑖, 𝑗 ∈ [ℓ], 𝑖 < 𝑗 : (𝑥𝑖 = 𝑥 𝑗 ∧ 𝑦𝑖 = 𝑦 𝑗 )

return 1 if ∀𝑖 ∈ [ℓ] : 𝑒 (𝑥𝑖 , 𝑦𝑖 )𝑘 = 𝑧𝑖 and 0 otherwise.

where the experiment uses the following oracles

OG-r ()
return ⊥ if 𝑟 ∉ {1, 2}
𝑥

$← G𝑟
𝑋𝑟 ← 𝑋𝑟 ∪ {𝑥}
return 𝑥

OC-help (𝑚)
return ⊥ if𝑚 ∉ G𝑇 .
𝑞𝐶 ← 𝑞𝐶 + 1
return𝑚𝑘

OD-help (𝑚,𝑤,𝑚′,𝑤 ′)
return ⊥ if either𝑚,𝑤,𝑚′,𝑤 ′ not in G𝑇
return 1 if log𝑚 (𝑤) = log𝑚′ (𝑤 ′) and else 0

To win, A needs to find pairs (𝑥,𝑦, 𝑒 (𝑥,𝑦)𝑘 ) without querying
𝑒 (𝑥,𝑦) to OC-help and where A could not rerandomize previous

such pairs as it does not know the discrete logarithm of any 𝑥,𝑦

(enforced by sampling them at random using OG-r). A is equipped

with a DDHoracleOD-help in the groupG𝑇 . The gameGapom-BDH
follows the definition in [14].

B PROOF SKETCH OF THEOREM 2.1
We assume that users delete all protocol values such as 𝑟1, 𝑟2, 𝑦

and 𝑦′ after outputting both PRF evaluations. Further, we assume

that within ongoing subsessions (the identifier qid indicates one

subsession) an honest user does not get corrupted. We further

assume static honest-but-curious server corruptions. Essentially, a

corrupted server’s inputs and outputs are handled by the adversary,

while its code is still executed as in the protocol instruction.

Proof sketch. Our proof combines aspects of the OPRF proofs

given in [14], [11] and [7], which all follow initial ideas of [18].

In Table 4 we provide details of the simulation of our extendable

distributed partially-oblivious PRF when interacting with FedpOPRF.
The rows of the table consider all possible corruption scenarios,

while the columns focus on different tasks of the simulator.

Usage of random oracles. The random oracles are used in different

ways: either S choses outputs such that he knows their discrete

logarithms, or he observes queries to the oracle, or he programs the

oracle’s output to match other values from the simulation. More de-

tailed, S uses discrete logarithms of H1 and H2 outputs to generate

𝑈 ’s randomness 𝑟 upon learning 𝑈 ’s private input xpriv. With all

three oracles, observability is exploited (to learn xpriv1, xpriv2 and
xpub values). And finally, H𝑇 is programmed to PRF values gener-

ated by FedpOPRF. Cf. Table 4 for more details on the simulation of

the oracles.

Simulating without secrets. First, we note that simulation of servers

is trivial since inputs towards servers do not carry any secrets. The

simulation works by, for all 𝑖 ∈ [𝑛], simply running the code of 𝑆𝑖
on a k𝑖 randomly chosen in the beginning.

Contrarily, simulation of honest users must work without know-

ing secret values xpriv1, xpriv2. Observe that, in our OPRF protocol, a

user computes PRF(xpub, xpriv1, xpriv2) by hashingH𝑇 (xpriv1, xpriv2,
𝑦′), where 𝑦′ depends on all inputs and the server’s keys. However,

since a PRF is a deterministic function,Z might obtain PRF(xpub,
xpriv1xpriv2) via two ways: computing the Hash on its own through

a corrupted user, or by running evaluation via an honest user. To

make things look consistent, the simulator needs to make sure

the result is the same both ways. For this, he recognizes consistent
queries to H𝑇 made byZ using knowledge of all k𝑖 . If a consistent
query is detected, S programs the result to the same PRF value that

FedpOPRF would output. We show below that, if the Gapom-BDH

assumption holds in the underlying group, S will always obtain a

PRF value from FedpOPRF for each consistent H𝑇 query made by

Z.

The challenge of simulating extendable evaluation. One technicality
that stems from extendable evaluations is the order in which Z
computes PRF values through a corrupted user. Essentially,Z can

complete a full run of the protocol without querying H𝑇 for the

final PRF values, and then query them in an arbitrary order. Our

simulation has to deal with all possible orders, where it is crucial

that S can match queries belonging to each other (note that due



Transcript Input/output of user𝑈 Random oracles

All honest Trivial due to usage of

secure channels

To make sure that 𝑈

gets output, S sends

(EvalComplete, sid, qid, hon)
to FedpOPRF each time all 𝑆𝑖 mes-

sages are delivered to𝑈 .

S perfectly simulates all random oracles, meaning that he chooses fresh and uni-

formly random values from the groups𝐺1,𝐺2 and𝐺𝑇 for the functions H1,H2 and

H𝑇 , respectively. For each function S maintains a list of the form (H1, 𝑥, 𝑦) where
H1 (𝑥) = 𝑦.

𝑈 and up to

𝑛 − 1 𝑆𝑖 cor-

rupted

Choose k1, . . . , k𝑛
at random. Simulate

server messages as

in protocol (servers

do not have secret

inputs) using those

key shares.

Input: upon 𝑈 sending xpub, 𝑥1
S chooses xpriv1 ← 𝐺1

at random and inputs

(EvalInit, sid, qid, xpub, xpriv1)
to FedpOPRF so that servers get

Eval output for qid (note that the

simulated private input cannot be

recognized by Z since the output

towards 𝑆𝑖 does not contain any

xpriv value). Similarly, S chooses

a random xpriv2 ← 𝐺2 upon

𝑈 sending 𝑥2 to provide input

EvalFollow to FedpOPRF.

On H𝑇 (xpriv1, 𝑦1) of Z (first such query), S only proceeds if 𝑦1 =

𝑒 (𝐻1 (xpriv1), 𝑔2)
∑
F(k𝑖 ,x′pub )

for some x′pub used before by some corrupted 𝑈 . If

there is a record (∗, xpriv1, ∗, x′pub, 𝑌
′′
1
, ∗) (Z already queried second Hash) then

S programs (H𝑇 , (xpriv1, 𝑦1), 𝑌 ′′
1
) and answers Z’s H𝑇 query with 𝑌 ′′

1
. If there

is no such record (Z queries 1st Hash first), then S queries FedpOPRF with

(EvalInit, sid, qid′, x′pub, xpriv1) with a fresh identifier qid′. S delays the output

(EvalInit, ...) to servers infinitely. Then, S sends (EvalComplete, sid, qid′, hon)
to FedpOPRF. This will let FedpOPRF use the counter increased due to the simu-

lated xpriv1 and give S one PRF value (EvalComplete, sid, qid′,⊥, 𝑌1) . S then pro-

grams (H𝑇 , (xpriv1, 𝑦1), 𝑌 ′
1
) and answers Z’s H𝑇 query with 𝑌 ′

1
. S stores the tuple

(qid′, xpriv1,⊥, x′pub, 𝑌
′
1
,⊥) . If S does not receive any 𝑌 ′

1
from FedpOPRF, we say that

event fail happens.

On H𝑇 (xpriv1, xpriv2, 𝑦2) of Z (first such query), if 𝑦2 =

𝑒 (𝐻1 (xpriv1), 𝐻2 (xpriv2))
∑
F(k𝑖 ,x′′pub )

for some x′′pub used before by some cor-

rupted 𝑈 , then S looks for a recorded tuple (qid′′, xpriv1, ∗, x′′pub, ∗, ∗) for some

qid′′. If none is found (Z queries 2nd Hash first), S proceeds as above with

inputting (EvalInit, sid, qid′′, x′′pub, xpriv1) (for a fresh qid′′) to obtain some

𝑌 ′′
1
. Afterwards, and also in case such a record already exists (Z already

queried 1st Hash) S sends (EvalFollow, sid, qid′′, xpriv2) to FedpOPRF, infinitely
delaying outputs to servers again. S sends (EvalComplete, sid, qid′′, hon) to

FedpOPRF. Upon receiving (EvalComplete, sid, qid′′, xpriv2, 𝑌 ′′
2
) , then S programs

(H𝑇 , (xpriv1, xpriv2, 𝑦2), 𝑌 ′′
2
) and answers Z’s H𝑇 query with 𝑌 ′′

2
. S stores the tuple

(qid′, xpriv1, xpriv2, x′′pub, 𝑌
′′
1
, 𝑌 ′′

2
) . If S does not receive any 𝑌 ′′

2
from FedpOPRF, we

say that event fail happens.

𝑈 honest, up

to𝑛−1𝑆𝑖 cor-
rupted

S simulates the user’s

messages towards the

corrupted 𝑆𝑖 by choos-

ing 𝑥1 ← 𝐺1, 𝑥2 ←
𝐺2 at random. Note

that xpub is given to S
by FedpOPRF.

Input: comes from Z. Output: since

even corrupted servers follow the

protocol, the simulation works as in

the first row.

S might learn a honest user’s input xpriv1 via aH𝑇 (xpriv1, 𝑦1) orH𝑇 (xpriv1, xpriv2, 𝑦2)
query by Z for an 𝑦1 or 𝑦2 that he can compute as follows: S looks for a record

(xpub, 𝑣, 𝑤) (see leftmost column in this row how such records are created) such that

𝑦𝑣
−1

1
= 𝑒 (𝐻1 (xpriv1), 𝑔2)

∑
F(k𝑖 ,xpub )

, or 𝑦𝑤
−1

1
= 𝑒 (𝐻1 (xpriv1), 𝐻2 (xpriv2))

∑
F(k𝑖 ,xpub )

.

If such a record is found then S recovers or creates an H1 entry (H1, xpriv1, 𝑔𝑧 , 𝑧)
and sets the client’s randomness to 𝑟1 = 𝑣/𝑧 such that 𝑥1 = 𝑔𝑣 = 𝑔𝑧𝑟1 and the

simulated 𝑥1 (see first column) is consistent with his simulation of the RO H1. 𝑟2 is

set analogously.

𝑈 honest, all

𝑆𝑖 corrupted

Same as above Same as above The simulation is a simpler version of the "𝑈 and up to𝑛−1 𝑆𝑖 corrupted" case above,
since now S can let corrupted servers proceed requests. Thus, S can always use

fresh qid identifiers to get PRF evaluations from FedpOPRF to program them into H𝑇 .

We let S always send all necessary proceeds such that event fail never happens.

Table 4: Simulation of ΠedpOPRF

to the determinstic nature of a PRF, we cannot simply include

subsession identifiers qid inH𝑇 inputs to allow for such matching).

Reduction to the one-more BDH assumption. Our simulation relies

on FedpOPRF leaking specific PRF values to S and we specify in

Table 4 an event fail in which S does not receive this leakage.

We show that fail happens only with negligible probability if the

Gapom-BDH assumption holds in G by constructing a successful

attacker B exploiting fail. On a high level, the idea is as follows. If

FedpOPRF does not provide a PRF value for inputs xpub, xpriv1, xpriv2,
then at least one honest server did not proceed the request. This

corresponds to one missing evaluation share. Thus,Z submitting

a hash query H𝑇 (xpriv1, 𝑦1) or H𝑇 (xpriv1, xpriv2, 𝑦2) solves a hard
problem by computing a consistent 𝑦1 or 𝑦2. Namely,Z provides

either a CDH tuple (𝑥,𝑦, 𝑒 (𝑥,𝑦)𝑘 ) or a CDH tuple (𝑥, 𝑧, 𝑒 (𝑥, 𝑧)𝑘 ),
where 𝑥 ← 𝐻1 (xpriv1), 𝑦 ← 𝐻2 (xpriv2) and 𝑧 ← 𝐻2 (1). B will

use its oracles to detect consistency and to simulate the execution

without knowing discrete logs and server keys.

As a preparatory step, we choose all values F(k𝑖 , xpub) for honest
servers 𝑆𝑖 truly at random, which goes unnoticed by the environ-

ment due to pseudorandomness of F. This is needed to ensure that

embedding of a Gapom-BDH challenge does not change any distri-

bution.

Let us now state the reduction in more detail. Since fail only
occurs if at least one server is honest, w.l.o.g we assume that all but

one server eventually get corrupted. B chooses 𝑗 ∈ [𝑛] at random
and aborts if 𝑆 𝑗 gets corrupted. We show now how B emulates

the ideal execution using the oracles provided by the Gapom-BDH

experiment.

As a warm up, let us first assume thatZ always uses the same

xpub in all inputs. B, on input (G, 𝐾), where 𝐾 = 𝑔𝑘
2
for some

secret 𝑘 , stores a “DDH reference tuple” (ref, 𝑔1, 𝑔2, 𝑒 (𝑔1, 𝐾)). B
chooses random keys k𝑖 for 𝑖 ≠ 𝑗 and implicitly sets osk 𝑗 ← 𝑘 −∑
𝑖≠𝑗 F(k𝑖 , xpub). Servers 𝑆𝑖 ≠ 𝑆 𝑗 are simulated as in the protocol

using keys k𝑖 . Note that the distribution of osk 𝑗 does not change by
this embedding since F(k𝑗 , xpub) was chosen uniformly at random

in our preparatory step above.

B uses his oracles OG-1,OG-2 to answerZ’s queries to H1 and

H2, respectively. Whenever 𝑆 𝑗 receives input (EvalProceed, 𝑅)
with 𝑅 ∈ {1, 2} and corresponding messages xpub, 𝑥1 or 𝑥2 with

𝑥1 ∈ 𝐺1, 𝑥2 ∈ 𝐺2 sent to 𝑆 𝑗 from a corrupted user, B proceeds

as follows: if 𝑅 = 1, B obtains 𝑧 ← OC-help (𝑒 (𝑥1, 𝐻2 (1)), adds
(sol, 𝑥1, 𝐻2 (1), 𝑧) to a list of CDH solutions replies to the user with

𝑦 𝑗 ← 𝑧/𝑒 (𝑥1, 𝐻2 (1))
∑

𝑖≠𝑗 F(k𝑖 ,xpub)
. The case 𝑅 = 2 is handled the

same way.



Transcript Input/output of user𝑈 and server 𝑆𝑖 FedpOPRF and random oracles H,H-PRG
All honest Summary: Simulate random messages due to se-

cure channels. Discover when client and server
abort using 𝑝𝑤 == 𝑝𝑤′ info from FDPaSE and
the simulated 𝑏𝑆𝑖 bits. Due to usage of secure

channels, all messages look random. S how-

ever needs to know if to simulate a message

or not. For registration, S always simulates all

messages. For Encryptand Decrypt, upon re-

ceiving (Complete, qid′, 𝑏) , S only sends the

client’s last message if 𝑏 = 1 (since a real world

client aborts if 𝑏 = 0). In that case, S simu-

lates𝑆𝑖 ’s last message only if𝑆𝑖 received PwdOK
from FDPaSE . S knows if that is the case due to

knowing𝑏 and𝑏𝑆𝑖 which he computes himself

(see simulation on the right).

Summary: Acknowledge inputs/outputs according to
A’s scheduling of messages. S acknowledges all in-

puts and outputs according to the message scheduling

of A. Choose a random ciphertext of length ℓ using
uid and ℓ learned via message Request from FDPaSE .
If A delivers all 𝑛 messages qid′, uid unmodi-

fied then S sends (Complete, sid, qid, 1, . . . , 1, 𝑐) to
FDPaSE . S delays outputs PwdOK/PwdFail towards

a server until A delivers the corresponding message.

If Z sends (EvalInit, qid, uid, pw) to FedpOPRF via A (we can assume this is

the first EvalInit query with qid), if a corrupted𝑈 already sent

(Register, qid, uid) to all 𝑆𝑖 , then S inputs (Register, qid, uid, pw) to
FDPaSE . In case of Z switching to pw′ by sending (EvalInit, qid′, uid, pw′) to
FedpOPRF via A, S sends (Register, qid, uid, pw′) to FDPaSE , but this time

delays outputs (Register, qid, uid) towards all 𝑆𝑖 infinitely. After sending
FedpOPRF ’s output 𝑦 to Z, if𝑈 sends some upk not obtained from SIG.Gen(𝑦) ,
Then there are two cases. Case 1: Say there exists a pair (pw′, 𝑦′) such that

SIG.Gen(𝑦′) = upk and 𝑦′ was given as output to some previous FedpOPRF
computation on input password pw′ (during either registration or encryption/

decryption requests), then S sends (Register, qid, uid, pw′) to FDPaSE . Case 2:
If upk does not correspond to any FedpOPRF output, S sends

(Register, qid, uid,⊥) to FDPaSE (to ensure honest servers always output

PwdFail), infinitely delaying the Register output towards all 𝑆𝑖 .
Otherwise, qid does not belong to any registration query, but Z wants to compute

a key for encryption or decryption. S waits for Z to sent (EvalFollow, com) to
FedpOPRF via A. Let 𝑐 := (𝑒, uid, com) denote the ciphertext containing com
sent already by S to FDPaSE , otherwise let 𝑐 ← ⊥. S sends

(Decrypt, qid, uid, 𝑐, pw) to FDPaSE . If Z now sends EvalComplete to

FedpOPRF let 𝑦2 denote the second FedpOPRF output sent to Z by S via

EvalComplete. Otherwise, Z possibly switches to values pw′, com′ (by
re-sending EvalInit and EvalFollow for same uid but fresh qid′′ to FedpOPRF)
before fetching the PRF evaluations. Then let pw ← pw′, com← com′, 𝑦2 the

second PRF value sent to Z and 𝑐 := (𝑒, uid, com) the already sent ciphertext

containing com, or 𝑐 ← ⊥ if none was sent. Now that Z has committed to obtain

a key for pw and com, we distinguish three cases.

Case 1: 𝑐 was sent by S to FDPaSE in request of honest user. S sends

(Decrypt, qid, uid, 𝑐, pw) to FDPaSE and delays outputs (Request, qid, uid)
towards all 𝑆𝑖 infinitely. Finally, upon FDPaSE sending (Complete, qid, 𝑏) , if A
delivers all 𝑛 messages qid, uid unmodified, S replies with

(Complete, qid, 𝑏𝑆
1
, . . . , 𝑏𝑆𝑛 , (𝑒, uid, com)) , where 𝑏𝑆𝑖 ← 0 if Z sends a

non-verifying signature to 𝑆𝑖 and 𝑏𝑆𝑖 ← 1 otherwise. In case of receiving a

plaintext𝑚 from FDPaSE , S chooses 𝜌 at random and programs

𝐻 (𝑚, 𝜌) := com. Before sending FedpOPRF output 𝑦2 to Z S programs

H-PRG(𝑦2, |𝑚 | + 𝜆) := 𝑒 ⊕ (𝑚, 𝜌) .
Case 2: 𝑐 = ⊥ (S never sent com to FDPaSE). S looks for record

( (𝑚, 𝜌), com) in H list, creating a random one if none exists. S sends

(Encrypt, qid, uid,𝑚, pw) to FDPaSE and delays outputs (Request, qid, uid)
towards all 𝑆𝑖 infinitely . Upon sending FedpOPRF ’s output 𝑦2 to Z, S programs

H-PRG(𝑦2, |𝑚 | + 𝜆) := 𝑒 ⊕ (𝑚, 𝜌) for a randomly chosen 𝑒 . Finally, upon

FDPaSE sending (Complete, qid, 𝑏) , if A delivers all 𝑛 messages qid, uid
unmodified, S replies with (Complete, qid, 𝑏𝑆

1
, . . . , 𝑏𝑆𝑛 , (𝑒, uid, com)) , where

𝑏𝑆𝑖 ← 0 if Z sends a non-verifying signature to 𝑆𝑖 and 𝑏𝑆𝑖 ← 1 otherwise.

Case 3: 𝑐 was sent by S to FDPaSE as in case 2 above. S does not provide any

further input to FDPaSE . Since all necessary records in H,H-PRG and FedpOPRF
already exist, no additional programming is necessary.

Only𝑈 corrupted Summary: S follows ΠDPaSE with simulated k𝑖
to simulate honest servers’ messages. S deter-

mineswhichmessages to simulate the sameway

as above. But now S actually has to simulate

cleartext messages of honest servers. Upon𝑈
sending message upk𝑖 to 𝑆𝑖 , S sends back ok.

On (Request, qid′, uid) S sends back upk𝑖
from 𝑆𝑖 . Then, if 𝜎𝑈 ,𝑖 sent by corrupted 𝑈

to 𝑆𝑖 verifies w.r.t upk𝑖 , S sets 𝑏𝑆𝑖 ← 1.

In case 𝑈 sent (Register, qid, uid) to all 𝑆𝑖
and (EvalInit, qid, pw) to FedpOPRF S inputs

(Register, qid, uid, pw) to FDPaSE on behalf of

the corrupted 𝑈 . After sending FedpOPRF ’s out-

put 𝑦 to 𝑈 , if 𝑈 sends some upk not obtained

from SIG.Gen(𝑦) . Then there are two cases. Case

1: Say there exists a pair (pw′, 𝑦′) such that

SIG.Gen(𝑦′) = upk and 𝑦′ was given as out-

put to some previous FedpOPRF computation on

input password pw′ (during either registration or

encryption/ decryption requests), then S sends

(Register, qid, uid, pw′) to FDPaSE . Case 2: If upk
does not correspond to any FedpOPRF output, S
sends (Register, qid, uid,⊥) to FDPaSE (to en-

sure honest servers always output PwdFail), in-
finitely delaying the Register output towards all

𝑆𝑖 . In case, 𝑈 wants to compute a key and sends

(EvalFollow, qid, com) to FedpOPRF , he committed

to obtain the key for pw and com. S now proceeds

as in the case distinction in the rightmost column, but

replacing every occurence of Z in the code with𝑈 .

𝑈 and up to𝑛− 1
𝑆𝑖 corrupted

Same as above, but only w.r.t all honest 𝑆𝑖 . Same as above. Additionally, upon a corrupted 𝑆𝑖
sending (EvalProceed, qid) to FedpOPRF , S sends

(ProceedRegister, qid) to FDPaSE on behalf of

this 𝑆𝑖 in case qid is a registration query, and

(Proceed, qid) otherwise.

𝑈 honest, up to

𝑛−1𝑆𝑖 corrupted
Summary: simulate OPRF usage of honest client
without password.When𝑈 registers with uid,
S simulates FedpOPRF without a password as

input, choosing a fresh output 𝑦 as response to

the simulated𝑈 and storing ( ( ·, uid), 𝑦) in
the list of PRF values. Upon𝑈 encrypting or

decrypting with uid, S again simulates

FedpOPRF without a password, and postpones

giving FedpOPRF output to the simulated𝑈

unless it receives (Complete, qid, 𝑏) from
FDPaSE . If 𝑏 = 1, S sets 𝑦1 ← 𝑦, else

chooses a random fresh 𝑦1 . S chooses a fresh

𝑦2 and continues simulation of𝑈 with

FedpOPRF output 𝑦1, 𝑦2 .

Same as in first row, but only w.r.t honest 𝑆𝑖 .
Additionally, upon a corrupted 𝑆𝑖 sending

(EvalProceed, qid) to FedpOPRF , S sends

(ProceedRegister, qid) to FDPaSE on behalf of

this 𝑆𝑖 in case qid is a registration query, and

(Proceed, qid) otherwise.

Same as above. Additionally, if Z obtains a PRF evaluation on (pw, uid) for an
honestly registered uid by sending (EvalInit, qid, uid, pw) to FedpOPRF via A,

after all servers proceeded, S obtains (Complete, qid, 𝑏) and sets FedpOPRF ’s
output to 𝑦1 ← 𝑦 in case of 𝑏 = 1. Here, 𝑦 denotes the PRF value sent to the

simulated honest user who registered uid. S fills the corresponding PRF record

with pw (see leftmost column). In case of 𝑏 = 0 S chooses a random fresh 𝑦1 . S
sends 𝑦1 as FedpOPRF ’s output to Z.

𝑈 honest, all 𝑆𝑖
corrupted

Same as above. Additionally, note that all servers may

now jointly switch to a upk different from the sim-

ulated honest user’s verification key. In this case, S
lets𝑈 output PwdFail.

Table 5: Simulation of ΠDPaSE

IfZ queries H𝑇 (xpriv1, 𝑦), B retrieves record (ref, 𝑔1, 𝑔2, 𝑍 ) and
submits (𝑒 (𝑔1, 𝑔2), 𝑧, 𝑒 (𝐻1 (xpriv1), 𝐻2 (1)), 𝑦) to OD-help. In case of

receiving 1, 𝑦 is correctly computed and B submits EvalInit to

FedpOPRF as described in the simulation. B adds (sol, 𝐻1 (xpriv1),
𝐻2 (1)), 𝑦) to the list of CDH solutions. Upon FedpOPRF outputting
a PRF value 𝑌𝑇 , B programs H𝑇 (xpriv1, 𝑦) := 𝑌𝑇 . B proceeds analo-

gously for queries H𝑇 (xpriv1, xpriv2, 𝑦′) made byZ.

If even fail occurs, then B submits his list of CDH solutions

(sol, ...). In this case, this list contains one more non-trivial CDH

solution that the number of queries to OC-help and thus B wins the

Gapom-BDH experiment.

Now we lift the restriction to one xpub. Let osk
xpub,ℓ
𝑗

denote the

secret key that is used by 𝑆 𝑗 in a session for xpub,ℓ . The issue with
different such xpub,ℓ values is that Z knows a relation between

(the unknown) Gapom-BDH exponent 𝑘 and osk
xpub,ℓ
𝑗

namely that

their difference is

∑
𝑖≠𝑗 F(k𝑖 , xpub,ℓ ). To make osk

xpub,ℓ
𝑗

pseudoran-

dom from Z’ viewpoint again, B implicitly sets osk
xpub,ℓ
𝑗

← (𝑘 −∑
𝑖≠𝑗 F(k𝑖 , xpub,ℓ ))𝛼ℓ + 𝛽ℓ for 𝛼ℓ , 𝛽ℓ ← Z𝑝 uniformly at random. B

stores extended DDH reference tuples of the form (ref, 𝑔1, 𝑔2, 𝑒 (𝑔1,

𝐾)𝛽ℓ ·𝑒 (𝑔1, 𝑔𝛼ℓ
2
), 𝛼ℓ , 𝛽ℓ , xpub,ℓ ) (one for each xpub,ℓ ).B proceeds as in

the simulation with one xpub, with two changes: first, B adds ran-

domizing factors 𝛼ℓ , 𝛽ℓ to simulated shares 𝑦 𝑗 by setting 𝑦 𝑗 ←

𝑧𝛼ℓ /𝑒 (𝑥1, 𝐻2 (1))
∑

𝑖≠𝑗 𝛼ℓ ·F(k𝑖 ,xpub)+𝛽ℓ
s.t. 𝑦 𝑗 = 𝑒 (𝑥1, 𝐻2 (1))osk

xpub,ℓ
𝑗

.

Second, B checks consistency w.r.t all ref tuples now using oracle

OD-help. Assume the oracle outputs 1 for tuple (ref, 𝑔1, 𝑔2, ∗, 𝛼ℓ ,
𝛽ℓ , xpub,ℓ ) and query H𝑇 (xpriv1, 𝑦). Let 𝑒 ← 𝑒 (H1 (xpriv1),H2 (1)).
Then B adds (sol,H1 (xpriv1),H2 (1), (𝑦/𝑒𝛽ℓ−

∑
𝑖≠𝑗 F(k𝑖 ,xpub,ℓ ) )𝛼−1ℓ ) to

the list of CDH solutions and proceeds with querying FedpOPRF as
before.

□
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