
SEKA: Secretless Key Exchange and Authentication in LiFi Networks

Eric Ackermann
CISPA§

eric.ackermann@cispa.de

Kai Lennert Bober, Volker Jungnickel
Fraunhofer HHI

{kai.lennert.bober,volker.jungnickel}@hhi.fraunhofer.de

Anja Lehmann
Hasso-Plattner-Institute,
University of Potsdam
anja.lehmann@hpi.de

Abstract—Light Fidelity (LiFi) networks transmit informa-
tion via light waves and are an interesting alternative to
Radio Frequency networks: as light can be confined easily,
LiFi provides better performance and makes eavesdropping
attacks much more difficult. A core application of LiFi
networks is self-contained and local networks among a group
of autonomous devices, e.g., in industrial or medical envi-
ronments. Cryptographic protocols are used to secure these
networks, however the key exchange sometimes relies solely
on the confineability of light signals and sends key material
in plain over the network. This is clearly not desirable from
a security perspective and newer standards recommend key
exchange protocols to establish shared keys. A crucial part in
any authenticated key exchange protocol is how to bootstrap
trust, e.g., by assuming a PKI, pre-installed keys or an out-of-
band-channel. Well established solutions exist, but they are
not ideal for the type of self-contained networks targeted by
LiFi communication.

In this work we investigate how the physical properties
of a LiFi channel can be used to replace these mechanisms,
resulting in a more convenient and also more efficient
solution for key exchange. To this end we propose a new
type of secret-less key exchange (SEKA) that does not rely
on any pre-shared secrets, and instead runs in two phases: a
short bootstrap phase where we make stronger assumptions
on the physical security, ruling out active attacks. This can
be realized by putting all devices in a closed room, taking
advantage of the light’s confineability feature. The bootstrap
phase is followed by a more classical key-exchange phase,
where the actual key material gets exchanged in the presence
of active attacks – relying on the shared states from the
bootstrap phase. We formally define this new type of key-
exchange protocol which offers authenticated key exchange
with post-compromise security without relying on pre-shared
secrets. We then show that a simpler and more efficient
version of the signed Diffie-Hellmann protocol, now relying
on MACs instead of signatures for the mutual authentication,
can be proven secure in our model. Finally, a proof-of-
concept implementation of the SEKA protocol is evaluated in
a testbed demonstrating the efficiency gains of our approach.

1. Introduction

Light Fidelity (LiFi) networks constitute an alternative
or addition to existing Radio Frequency (RF) networks.

§. Research conducted while affiliated with HPI and Fraunhofer HHI.
Eric Ackermann is a member of the Saarbrücken Graduate School of
Computer Science.

They rely on light waves as carrier waves, utilizing Light
Emitting Diodes (LEDs) as transmitters and photocells
as receivers. Different modulation schemes are used to
encode digital information onto light waves, providing
different trade-offs between energy efficiency and data
rate. For example, the IEEE 802.15.13 LiFi standard
defines two physical layers that utilize On-Off-Keying
favoring energy efficiency and Orthogonal Frequency Di-
vision Multiplexing (OFDM) favoring data rate, respec-
tively [19]. An exemplary LiFi network, serving a factory
hall, is illustrated in Figure 1.

In comparison to Radio Frequency networks that rely
on radio waves, LiFi networks provide performance and
reliability advantages. As LiFi network are physically
confined by walls, inter-cell interference solely needs to
be considered within the same room. Therefore, in terms
of performance, LiFi networks can provide data rates
between 100 and 1000 times faster than RF networks [34].

Security via Confineability. Being able to block the prop-
agation of LiFi signals in certain directions, is also a
core advantage over RF networks in terms of security. In
particular, as light waves are fully absorbed or reflected
by opaque materials, LiFi networks are unable to escape
a fully closed room (confineability). This is not generally
true for RF networks, whose carrier waves are easily
capable of traveling large distances and through obstacles.

This combination of high throughput and natural se-
curity properties, makes LiFi highly suitable for indus-
trial and medical communication systems. Therein, LiFi
is used to establish local networks among a group of
neighboring devices. While cryptography is used to pro-
tect communication in these networks, the underlying key
exchange often relies on the physical protection alone [29–
31, 33, 35, 36, 39, 44, 45]. For example, Suduwella
et al. [36] propose transfering the WPA2-PSK secret key
in plain via LiFi within a confined space in order to allow
devices to connect to the network conveniently.

Despite its strong characteristics on the physical layer,
security should not solely rely on the confineability of
signals. An empirical study by Classen et al. [10] found
that eavesdropping on LiFi networks using indirect light
paths, e.g., through keyholes or door gaps, allows attackers
to decode a large part of transmitted messages, even at
high data rates. As a consequence, several of the afore-
mentioned schemes ([29–31, 33, 39, 44, 45]) utilize jam-
ming and other techniques in order to artificially decrease
the signal-to-noise-ratio of any eavesdropper, decreasing
the likelihood that the attack by Classen et al. succeeds.
However, the security of this approach relies on strong,

633

2024 9th IEEE European Symposium on Security and Privacy (Euro&SP)

© 2024, Eric Ackermann. Under license to IEEE.
DOI 10.1109/EuroSP60621.2024.00041

Figure 1: Industrial LiFi network with ceiling-mounted
optical front ends (OFEs) and autonomous vehicles as
endpoints. A maintenance room (on the right) is isolated
from the light propagation in the main hall (on the left).

novel assumptions about LiFi channels that have not been
studied extensively [2, 9, 47]. In particular, physical-layer-
security protocols like [30, 36] transmit secrets in the
clear and thus are insecure in our model. Their security is
based on the assumption that the eavesdroppers’ location
is precisely known, such that their received signal can be
attenuated enough that the adversary is unable to decode
the communication.

Basing security on uncertain physical properties will
only lead to an arms race in attack and defense mech-
anisms. Luckily, establishing shared key material over
an insecure channel is one of the most fundamental –
and well solved – problems in cryptography. That is, any
secure (authenticated) key exchange protocol can be used
in a LiFi network in order to exchange keys and bootstrap
secure communication.

Password-based Key Exchange in LiFi. In fact, recent
LiFi standards such as IEEE 802.11bb [18] or Rec. ITU-
T G.9991 [22] rely on channel-agnostic key exchange
protocols instead of physical security. Both use password-
authenticated key exchange protocols (PAKEs), namely
Dragonfly [41], in the case of the IEEE 802.11bb LiFi
network, and PAK [7], in Rec. ITU-T G.9991.

Thus, the authentication in the key exchange proto-
col requires choosing and manually entering strong pass
phrases into the devices. This is a tedious and error-
prone process, especially when the password is complex.
Also, by design, security of a PAKE hinges on a proper
selection and usage of passwords. It is easy to violate
this assumption, e.g., by writing the password down,
choosing weak passwords or relying on weak default
passwords [26, 43, 48].

Key-based Authentication. Key exchange protocols such
as EAP-TLS rely on public-keys for mutual authentication
instead of passwords and clearly provide superior security
to any password-based approach. The additional certificate
verification increases the computational costs of the key
exchange protocol though. Furthermore, bootstrapping the
initial keys and certificates bears several challenges and
none of the existing solutions truly fits the industrial
communication setting where autonomous devices aim to
establish a local network.

A typical way to establish trust, is to equip devices
with manufacturer-installed and device-specific keys, cer-

tified by a trusted entity. For the targeted domain of indus-
trial communication systems, this makes the network sus-
ceptible to wardriving attacks: An adversary who has own-
ership of any industrial device with a valid manufacturer-
supplied key can attempt to associate the device with any
industrial network, using the access for attacks against
the legitimate industrial devices and other hosts in the
network. As especially industrial internet of things (IIOT)
devices are becoming increasingly affordable, the entry
barrier for this attack is becoming lower and lower. Thus,
a solution for verifying whether a device may join the
network is still required. This increases operating costs
and requires a vigilant human operator.

Messaging protocols such as Signal utilize a semi-
trusted server instead of a PKI to address this issue [12].
User clients upload long-term (and ephemeral) keys to
the server, and rely on the server for secure provisioning
of the adequate keys. Apart from the strong trust that
needs to be put in the central server, another pitfall of this
solution is that clients require an authenticated channel
with the server, as they cannot verify the authenticity of
the key material. In contrast to instant messaging that
runs over a well-established internet PKI, this solution
is not a good fit for network authentication. In order
to ensure network availability, authentication servers are
typically set up on-premise. In such a setting, utilizing
the Signal protocol would only shift the problem from
establishing a secure channel between a network member
and infrastructure devices to establishing a secure channel
between network member devices and the semi-trusted
server, again requiring manual configuration or PKI.

In summary, none of the existing key exchange pro-
tocols provide the ease-of-use that would be needed to
establish secure self-contained LiFi networks comprised
of numerous local physical devices.

1.1. Our Contributions

In this work we investigate whether the channel char-
acteristics of LiFi networks can be leveraged for the con-
struction of a key exchange protocol that provides a better
trade-off between security, performance and ease-of-use
for the industrial LiFi domain than existing approaches.
In particular, both the human interaction required and the
necessary setup assumptions should be minimal, and at the
same time no unreasonable assumptions on the physical
protection should be made.

This paper solves that challenge by introducing the
Secretless Key Exchange and Authentication (SEKA) pro-
tocol, an authenticated key exchange protocol for LiFi
networks. SEKA provides provably secure and highly
efficient key exchange in the presence of (partially) active
adversaries in the LiFi setting without relying on pre-
installed secrets such as private keys or passwords.

The core idea is to split the key exchange into two
different phases: a bootstrap and a key exchange phase.
In the bootstrap phase we assume that special care is taken
to take advantage of the confineability of LiFi networks.
That is, the devices to exchange keys via LiFi are put in a
closed and protected room, such as the maintenance room
in Figure 1. We do not want to fully rely on the physical
protection, and generously assume that an adversary can
eavesdrop on all communication. We do exclude active

634

capabilities though, and restrict the adversary to passive
behavior in this bootstrap phase. The devices will use the
closed and protected area to establish a pairwise secret
state which each other.

This shared secret is then utilized to exchange – and
regularly update – shared keys in a more standard key
exchange phase. Thereby, the LiFi devices can be moved
out of the separate room, as this phase can provide security
against active adversaries. A core technical step needed
here is to realize that “authentication-by-recognition”, i.e.,
devices being able to securely recognize that they are
communicating to a particular device they trusted at an
earlier stage, is sufficient for the targeted network setting.

In more detail, we make the following contributions:

Formal Model. Our core contribution is to reflect and
leverage the stronger physical features that LiFi can pro-
vide in a formally sound way, and confining the stronger
assumptions to a short phase of the protocol. We provide a
formal definition and security model for SEKA, capturing
passive eavesdropping during the Bootstrap phase and ac-
tive attacks (including, e.g., message modification, imper-
sonation and unknown key share attacks) in all subsequent
protocol executions. Our model is based on the state-of-
the-art security model for key exchange by Cohn-Gordon
et al. [11], and even allows compromise of random number
generation and all device secrets, under the assumption
that the adversary stays passive in at least one session
after the compromise. This is the first model, that captures
Post-Compromise Security (PCS) for protocols that do not
rely on pre-installed secret keys.

Simple and Efficient Protocol. We then propose a sim-
ple and provably secure construction of SEKA from
generic building blocks, and a minimal number of NIST-
standardized concrete instantiations. The protocol follows
the classical Diffie-Hellman based key exchange [13], but
uses symmetric authentication instead of signatures and
public-keys for the mutual authentication – improving the
efficiency compared to the standard approach.

Implementation and Benchmarks. We provide a reference
implementation of SEKA and a computation-time bench-
mark of SEKA in comparison to the WPA key exchange
protocols, showing that SEKA outperforms the WPA se-
curity protocols by factors between 10 and 100. Finally, an
evaluation of the suitability of SEKA for Time-Sensitive
Networking (TSN) and multi-gigabit throughput, shows
that SEKA provides the performance required for real-
world LiFi networks.

1.2. Related Work

Key exchange protocols that do not rely on out-of-
band channels or pre-installed secrets have already been
deployed in wireless networks, e.g., Wi-Fi Protected Setup
(WPS) [1], the “just works” mode of Bluetooth SSP [6]
and Opportunistic Wireless Encryption (OWE) with the
optional PMK Caching feature [17]. In case the host keys
are not compared out-of-band, SSH effectively also func-
tions as SEKA protocol [46]. Like SEKA, these protocols
consist of an initial phase that negotiates an authentication
key followed by an authenticated key exchange. However,
none of the existing protocols provide SEKA security:

OWE uses a textbook (non-authenticated) Diffie-
Hellman protocol to establish a mutual shared secret
authentication key. This key is then used as pairwise
master key in a second phase, the 4-Way Handshake,
which resembles the rekey protocol proposed by Canetti
and Krawczyk [8]. In particular, symmetric primitives
are used for mutual authentication and key derivation.
However, OWE only provides security against passive
adversaries and does not guarantee post-compromise or
forward security as demanded by our SEKA security
model: An active adversary with MITM capabilities can
learn the initial authentication key. The compromise of
the internal state invalidates the security of all previous
sessions as the adversary can re-compute all session keys
from the transcript. Likewise, as long as the authentication
key remains valid, the security cannot be regained, even
if the adversary remains passive in all future sessions.
Finally, the lifetime of the bootstrapped authentication
key is unspecified. After its expiry, the initial bootstrap
phase needs to be executed again without authentication,
enabling attacks against authentication like evil twin.

Bluetooth SSP in the “just works” mode is concep-
tually identical to OWE. The main difference is that
in SSP, the initial authentication key has an unlimited
lifetime. Thereby, given a passive adversary during the
initial phase, SSP can provide mutual authentication. Like
OWE, SSP cannot recover from MITM attacks during the
initial phase. Adding insult to injury, downgrade attacks
allow an adversary to force two devices to fall back
to the “just works” mode when stronger authentication,
e.g., using short authenticated strings, would be available.
Thus, the conceptually more secure SSP modes can be
attacked using the generic MITM attack against the Diffie-
Hellman key exchange [16, 37, 38].

WPS computes an authentication key in the same
way as OWE and uses it for encrypted transfer of the
network password used by the WPA protocols. However,
as the network password is the only form of authentication
in WPA (personal), successful attacks against WPS can
lead to the adversary learning the passphrase [42]. The
WPA/WPA2 protocols are not designed to provide any
security for any device in the network after the password
has been compromised [23, 40]. In fact, the 4-Way Hand-
shake underlying the WPA2 protocol does not provide
forward secrecy, which Canetti and Krawczyk pointed
out for their conceptually identical “Rekey” protocol [8].
The more recent WPA3 protocol provides PFS, i.e., it
can provide security against passive adversaries and for
previous communication after key compromise [24, 41].

SSH can initially exchange public host keys in-band
or out-of-band, enabling an authenticated DH in the sec-
ond phase. Thereby, SSH can provide forward secrecy
[8, 24]. However, as it is stateless, it cannot provide
post-compromise security [11]. Thereby, again, it cannot
recover from MITM attacks during the initial exchange of
authentication keys, even if the adversary remains passive
in a later session.

Section 5.2 discusses the benefits that SEKA can
provide in comparison to the existing protocols.

635

2. SEKA – Functionality & Security

This section introduces the new type of secret-less key
exchange (SEKA), and defines the desired security prop-
erties through a formal security model. We start with the
functionality and syntax, and then explain and thoroughly
define the guaranteed security properties.

Notation. Throughout this paper, we use the following
notational conventions. Assignment of a variable will be
denoted as follows: a← b. Uniformly random assignment
of a variable will be denoted like a ←R {0, 1}. Binary
concatenation of two values a and b will be denoted like
a||b. Undefined or invalid values will be denoted as ⊥,
ignored output values will be denoted as and ignored or
arbitrary input values will be denoted as the · symbol. τ
is the security parameter.

2.1. Definition of SEKA

SEKA is a novel two-party key exchange protocol
that was designed specifically for LiFi networks, and is
intended for mobile or embedded LiFi devices without
input/output capabilities. SEKA is executed in two phases,
Bootstrap and Key-Exchange.

Bootstrap is expected to be executed in a physically
secure, confined location, and generates an initial pairwise
authentication secret (called the protocol state).

The Key-Exchange phase uses the current protocol
state for mutual authentication of the parties and for the
exchange of a session key between the parties in the
presence of an active adversary. In each invocation, the
party that transmits the first message assumes the initiator
(I) role, and the party that receives the first message
assumes the responder (R) role.

More formally, SEKA is defined as follows:
Definition 1 (SEKA Protocol). A SEKA protocol is a

tuple (Initialize, Bootstrap, Key-Exchange, K) of a
probabilistic function Initialize, two-party protocols
Bootstrap and Key-Exchange and a probability
distribution of session keys K such that:

Initialize(1τ) → pp On input the security parameter τ ,
returns the public parameters pp.

Bootstrap : ⟨Pi(pp, IDi, IDj , role = I);Pj(pp, IDj ,
IDi, role = R)⟩ → sti,j , stj,i A two-party protocol
between a party Pi with identity IDi

1 in initiator role
and a party Pj with identity IDj in responder role.
After it was accepted2, the initial state sti,j = stj,i is
output for both parties.

Key-Exchange : ⟨Pi(pp, sti,j , IDi, IDj , role = I);
Pj(pp, stj,i, IDj , IDi, role = R)⟩ → (ki, st

′
i,j), (kj ,

st′j,i) A two-party protocol between parties Pi with
identity IDi in initiator role and Pj with identity
IDj in responder role. Its input sti,j = stj,i is the
shared secret state output by the last invocation of
Key-Exchange or Bootstrap initially, the other inputs
have the same semantics as in Bootstrap. The output
is a session key ki = kj with ki ∈ K and a state
st′i,j = st′j,i.

1. In the implementation, IDi and IDj are 48-bit MAC addresses.
2. Accepted refers to completed and not aborted in this context.

Bootstrap
Manual
trigger

once Initial stateonce

Network
connected

Key-Exchangeonce once
Network

disconnected

once

once

0...N

Figure 2: Intended order of the SEKA phases.

The execution order of Initialize, Bootstrap and
Key-Exchange is as follows. Initialize is run first and only
once. Bootstrap is run second, and also only once. Finally,
Key-Exchange can be run arbitrarily often. The output
state of each invocation of the protocols is passed to the
following invocation of any of the protocols. If any output
is ⊥, the protocol is considered aborted.

The order of the SEKA phases is illustrated in Fig-
ure 2.

We require any SEKA protocol to be correct. Infor-
mally, Bootstrap is correct if two honest parties compute
the same output state. Key-Exchange is correct if two
honest parties compute the same session key and output
state. More formally, correctness is defined as follows:
Definition 2 (SEKA Correctness).

A SEKA protocol is correct when Bootstrap and
Key-Exchange fulfill these requirements:

• The Bootstrap protocol is correct if all honest
parties Pi, Pj that invoke the protocol with roles
I and R respectively and the same identities IDi,
IDj and public parameters pp output the same
state sti,j = stj,i and accept.

• The Key-Exchange protocol is correct if all honest
parties Pi, Pj that invoke the protocol with the
same state sti,j = stj,i and roles I and R respec-
tively and the same identities IDi, IDj and public
parameters pp output the same state st′i,j = st′j,i
and session key ki = kj and accept.

2.2. Security of SEKA

This section starts by stating the security goals of
SEKA informally. After that, key terms and concepts are
introduced before the formal security definition is stated.

Because SEKA is designed for link layer security
protocols rather than application-layer security, its de-
sign goals partially differ from existing security mod-
els [8, 11, 25], and are as follows:

Bootstrapped Authentication. First, in the interest of ease-
of-use, SEKA is secretless. This means initiator and re-
sponder initially have no information about each other.
In particular, neither a pre-shared secret nor a public-key
infrastructure is assumed. Instead, when a pair of parties
communicate for the first time, they need to bootstrap a
shared secret, the initial state st. This is why the first
phase of the protocol is called Bootstrap. The pairwise
state st is the only long-term secret in the SEKA protocol.
The state is then used to authenticate messages during the
second phase, Key-Exchange.

636

Authentication by Recognition. Second, authentication is
only provided implicitly. If the Key-Exchange phase com-
mences between two parties identified by MAC addresses
after the same parties accepted Bootstrap, they recog-
nize each other using the shared state. In other words,
authentication in the context of SEKA means that devices
are ensured that they are still communicating with the
same device they performed Bootstrap with. This level
of authentication is sufficient for protecting LiFi networks
from common attacks against link-layer protocols such as
eavesdropping, MAC address spoofing and wardriving.

Secure Key Exchange and Post-Compromise Security.
Clearly, the main goal is to provide secure key exchange
over an insecure channel. That is, an adversary being
able to intercept (or even modify) all exchanged messages
between two honest parties must not learn anything about
the exchanged key. The adversary is limited to passive
attacks in the Bootstrap phase, but can actively inter-
fere with all exchanged messages in the Key-Exchange
sessions. Our protocol guarantees Forward Security in
the Key-Exchange phase, i.e., if a party gets eventually
compromised in a session, and the adversary learns its full
state, the security of the previous sessions is not affected.

Further, SEKA also provides Post-Compromise Secu-
rity for the Key-Exchange phase. This means that the
protocol is able to heal from the compromise, leaving the
adversary with no advantage in guessing the session key
in future sessions. To achieve this strong property, the
protocol again requires passive behavior of the adversary
in at least one session after the last compromise. This is
the same as in the work by Cohn-Gordon et al. [11], and
we call such a session with passive adversarial behaviour
only, a clean session. In the context of LiFi, ensuring a
clean session can be realized e.g., by moving the devices
in a closed room again or removing all untrusted devices
from the communication area. After the clean session was
accepted, the protocol provides the same security for the
following sessions as if there had been no compromise,
i.e., the compromise is healed. In fact, a clean session in
the Key-Exchange phase can also heal an active attack in
Bootstrap. As the Bootstrap session is intended to be a
clean session by design, we do not focus on that option
in the rest of the discussion though.

In summary, our protocol guarantees secrecy of ex-
changed keys in the presence of active attacks, if there is
at least one clean session before (typically the Bootstrap)
and can even heal from compromise if another clean
session is completed after the compromise. That is, SEKA
requires one clean session between each pair of parties
regardless if they were ever compromised. This uses (a
weaker variant of) the confineability assumption made
about the underlying LiFi channel. In other words, while
Cohn-Gordon et al. use passivity of the adversary only to
recover from out-of-band attacks such as device compro-
mise, a passive adversary during at least one session is a
central design element of the SEKA security model and
the reason SEKA does not require out-of-band-channels
or pre-installed secrets.

In Section 5.1 we discuss why be believe that the
limitation of passive adversarial behavior is a reasonable
assumption based on the confineability of light.

2.2.1. Security Model. We now present our formal se-
curity model that captures the aforementioned properties,
Our model closely follows the existing key exchange
models, such as [4, 8, 11, 24, 25]. Roughly, it gives the
adversary oracle access to honest parties with which it can
interact through the stages, and even allows to compro-
mise them. Eventually, there is a test session in which the
adversary is tasked with the challenge of distinguishing
a random key from the actual session key established by
two honest parties. The main challenge in the model is
to keep track of the adversaries behavior and detect and
exclude any trivial wins. In more detail, our model makes
use of the following concepts and modelling choices:

Sessions. An invocation of SEKA between two parties
leads to an exchange of messages or conversation. Each
party has its own view on a conversation or session con-
sisting of the messages it transmitted and received. If two
sessions are two parties’ views on the same conversation,
they are matching. Since the adversary controls message
delivery, a session need not have a matching session.
Sessions have an ephemeral state as defined in Table 1.

Oracles. The adversary has access to the oracles listed in
Table 2, which allows it to interact with honest parties,
trigger their behaviour or compromise them. The oracles
used in the SEKA security model are based on the oracles
in the Post-Compromise Security model [11]. The oracles
allow the compromise of both long-term and ephemeral
secrets, session keys, generated random numbers and
insertion, deletion and modification of messages. Unre-
stricted utilization of the oracles enables trivial victory
against any valid SEKA construction, as the adversary
is able to, e.g., query the session key that it is expected
to guess. Thus, in the next step, a number of freshness
predicates are defined. These limit the permissible use
of the oracles in a way such that no trivial victory is
possible. Also, the restriction that the adversary needs to
behave passively during a session (which is intended to be
Bootstrap, but can also be Key-Exchange) is implemented
in the freshness predicates.

Freshness Predicates. Finally, a set of freshness predicates
is defined, constraining the adversary’s access to the ora-
cles such that trivial victory is not possible. Adherence to
the freshness predicates is enforced by requiring the test
session to be test-fresh in the corresponding oracle.

The freshness definitions use the definition of match-
ing and partially matching sessions provided by Cohn-
Gordon et al.: Two sessions are partially matching if both
parties agree on the identity and role of their respective
peer and all except possibly the last message in the con-
versation. Two sessions are matching if they are partially
matching and the parties agree on all messages exchanged
in the session [11]. After giving formal definitions for
the freshness predicates, it is detailed how the security
properties are reflected in the definition.

Definition 3 (Fresh sessions). A session s identified by
(IDi, IDj) and invocation-ids = i in Pi is consid-
ered bootstrap-fresh if none of the following oracle
queries were made by the adversary:

• randomness(IDi, i) or cr-create(IDi, IDj , ·)
creating s

637

Attribute Description
partys Identity of the party at which s was created by the creation oracles or by receipt of the first message.
roles Role of the party in s, either I (initiator) or R (responder). The initiator is the party which is invoked from the outside

(i.e., the adversary in the security game or the operator), while the responder is the party which receives the first message
from the initiator.

randomnesss All random inputs that were read from the random tape of the party during the execution of s.
initiator-identitys,
responder-identitys Identity of the initiator and the responder of s, respectively.
πs The protocol phase that is executed by s, πs ∈ {Bootstrap, Key-Exchange}.
statuss Current status of s, statuss ∈ {unknown, active, aborted, accepted}. Sessions are initially unknown. When they

are invoked at a party, they become active. When the last protocol message for the session s has been sent or received
at the party, respectively, and an output different from ⊥ is generated, the session transitions into accepted. When an
active session is explicitly aborted by the protocol, the state transitions to aborted. Sessions are completed when they
are either accepted or aborted.

sents, receiveds Concatenation of all messages sent or received by s, respectively.
invocation-ids The session was the invocation-ids th session that was created at partys.

TABLE 1: State attributes of a SEKA session s known to a party Pi.

Oracle Description
cr-create(IDi, IDj , role,π, rnd)
→ m1

“Corruptly” create new session with initiator identity IDi and responder identity IDj , subprotocol
π ∈ {Bootstrap,Key-Exchange}, role role and attacker-supplied random tape rnd, passing the input
to the protocol accordingly and return first message m1. rnd is used for all computations until the session
is completed. To this end, the oracle starts the honest party Pi with access to the supplied random tape
rnd and its persistent database of states sti,j and activates either Bootstrap or Key-Exchange, returning
the first protocol message if role = I. For all parties and possible peers, a session that corresponded
to the Bootstrap phase must be accepted before the first Key-Exchange phase can be created. Also, at
most one Bootstrap phase may be created for each pair of parties.

create(IDi, IDj , role, π)→ m1 Invoke cr-create with rnd sampled from an ideal random number source, i.e., create an honest session.
send(IDi, i,min)→ mout Process message min in the ith session started by honest Pi, return mout or ⊥ if there is no response.
corrupt(IDi)→ (sti,j , sti,j′ , ...) Return all states (sti,j , sti,j′ , ...) in the persistent state database of party Pi. The tuple is empty initially.
randomness(IDi, i)→ randomnessi Reveal randomnessi of the ith session in party Pi, i.e., all outputs of the random number generator

during the session (see Table 1). To this end, A gains read access to the random tape used in the session.
session-key(IDi, i)→ k Reveal session key k of the ith Key-Exchange session by honest Pi. The session must be accepted.
test-session(IDi, i)→ k′ Generate a random bit b←R {0, 1} and if b = 1 return k′ ← session-key(IDi, i), else return random

k′ ←R K. The session s with invocation-ids = i must be suitable for session-key and be test-fresh.
guess(b′) Terminate with guess b′.

TABLE 2: Oracles available to the adversary in our security model, adapted from [11].

• if a session s′ partially matching s in Pj

with invocation-ids′ = i′ exists, either
randomness(IDj , i

′) or cr-create(IDj , IDi, ·)
creating s′

A session s identified by (IDi, IDj) and
invocation-ids = i in Pi is considered test-
fresh if none of the following oracle queries were
made by the adversary:

• corrupt(IDi) between the completion of the
clean session and any partially matching sessions
and the completion of the session s and any par-
tially matching sessions

• corrupt(IDj) between the completion of the
clean session and any partially matching sessions
and the completion of the session s and any par-
tially matching sessions

• corrupt(IDj) after the completion of the clean
session and any partially matching sessions if no
partially matching session to the test-session exists
or it was not accepted.

• session-key(IDi, i) revealing the session key of
s

• session-key(IDj , i
′) revealing the session key of

s′ if s′ partially matches s.

and a clean session exists.
A session c is considered clean if it is the last session
such that:

1) There is a partially matching3 session c′.
2) c and c′ were accepted before the test session

or any of its partially matching sessions were
created, or c is the test session and both c and c′

were accepted.
3) The partners of the clean session are also the

partners of the test session.
4) c is bootstrap-fresh.
5) If c executes Bootstrap, c′ is also matching,

otherwise, c′ is at least partially matching.

The notion of bootstrap-freshness in the definition
captures a session whose randomness has not been cor-
rupted by the adversary. A clean session is a session
during which the adversary remained passive, i.e., relayed
messages faithfully ((partially) matching) and did not
corrupt randomness (bootstrap-fresh). A session is test-
fresh when it is preceded by a clean session between the
same pair of parties and the adversary did not query the
pairwise state after the completion of the clean session
and did not query the session key of the test-fresh session.
The adversary needs to distinguish the session key of the
test-fresh session from random in the security game.

Robustness. SEKA also relies on the robustness definition
by Cohn-Gordon et al. [11]. Informally, if a protocol

3. Remember that this means both matching peers and roles and
unmodified messages.

638

is post-network robust, no adversary that is restricted to
message modification is able to desynchronize two parties,
i.e., cause the state st stored in both parties not to match. If
this was not given, adversaries could prevent parties from
communicating using only message-modification attacks.

Security Game. SEKA uses the security game defined
by Canetti and Krawczyk [8]. With O being the tuple of
oracles defined above, stA being an optional adversarially-
defined state, fresh(IDs, s) −→ f being a deterministic
function that returns 1 if session s in party IDs is test-
fresh according to the freshness predicates defined above
and 0 otherwise, A = (A1,A2) being an adversary com-
prised of two PPT adversaries and K being the protocol-
specified session key probability distribution, the security
game can be stated:

pp← Initialize(1τ)

IDi, s, stA ← AO
1 (pp)

k0 ←R K, k1 ← session-key(IDi, s), b←R {0, 1}
b′ ← AO

2 (pp, stA, kb)

if b = b′ ∧ fresh(IDs, s) = 1 output 1

else output 0

Note that the session s returned by A1 is the session
provided to the test-session oracle, and the bit b′ returned
by A2 is the bit provided to the guess oracle. Also,
remember that the session s must be test-fresh.
Definition 4 (Secure SEKA protocol). Let np ∈ N, ns ∈

N be the maximum number of parties and sessions
per party, respectively. A SEKA protocol π is said
to be secure when for all np, ns all of the following
requirements hold for all PPT adversaries A:

1) The advantage of A in guessing the bit b, i.e., the
probability that b = b′, is equal to or less than
1
2 + negl(τ).

2) π is post-network robust if network adversaries
are restricted to message-passing during invoca-
tions of Bootstrap.

2.2.2. Discussion of our Model. We now explain how
the security properties sketched at the beginning of the
section are realized in this model.

Bootstrapped Authentication via Freshness Predicates. In-
formally, the clean session serves bootstrapping authen-
tication between two parties. Therefore, the adversary
is restricted to passive eavesdropping (by demanding a
matching session) and prohibited from revealing random-
ness used in the clean session, and a clean session must
precede the test session. Thereby, the adversary has no
trivial knowledge of the output state and session key of
the clean session, giving the protocol the opportunity to
compute a secret shared state for use in later sessions.
This is why SEKA does not require pre-installed keys.
Note that the clean session may execute either protocol
phase, modelling both a successful initial Bootstrap phase
and recovery from the compromise in Key-Exchange.

Authentication by Recognition via Freshness Predicates.
Also, the adversary is not allowed to query the session
key of the test session or any partially matching session.

Obviously, allowing the adversary to query the session key
of the test session leads to trivial victory. Due to protocol
correctness, the partially matching session is expected to
output the same session key if it accepts, which is why
its session key cannot be queried either.

Note that if the adversary manages to create a session
that computes the same session key as the test session
but does not partially match it, the adversary is allowed
to query the session key of that session and to win the
game. This is a valid attack against the Authentication by
Recognition, and such a session should not be accepted,
such that the session-key oracle cannot be used on it.

Modelling of Post-Compromise Security. As in the origi-
nal Post-Compromise Security model presented by Cohn-
Gordon et al., in the proposed model, the SEKA adversary
is allowed to compromise all state of the peers of the
test-session before the test-session is created [11]. Also,
as in the previous work, a clean session is required to be
accepted before the test-session, and no state compromise
between the start of the clean session and the expiration
of both the clean session and the test-session is allowed.
Additionally, the adversary is restricted to passivity in the
clean session. Contrary to the original Post-Compromise
Security model, in the SEKA model, the clean session
and the test session may be the same session. In this
case, the adversary is restricted to passing messages hon-
estly and prohibited from querying the ephemeral state
of the session, however. Thereby, this case on its own is
equivalent to the weak perfect forward secrecy definition
by Krawczyk, covering the scenario of a fully passive
adversary during the test session [24].

The main differences between SEKA and the original
Post-Compromise Security model are related to authenti-
cation and the assumptions about long-term states. Cohn-
Gordon et al. use explicit (strong) authentication, relying
on public keys for both initiator and responder to be ex-
changed over a tamper-resistant out-of-band channel [11].
On the other hand, the SEKA provides Bootstrapped
Authentication and Authentication by Recognition without
relying on ouf-of-band channels. Therefore, the corrupt
oracle was changed to only return the long-term state st,
as no long-term key exists. Finally, for the SEKA secu-
rity model, the restriction of passive adversarial behavior
during the Bootstrap phase in the security and robustness
game is added. There is no equivalent requirement in the
Post-Compromise Security model since it relies on the
exchange of public keys via an out-of-band channel [11].

3. Our SEKA Protocol

We now present our simple construction of a SEKA
protocol. In a nutshell, our protocol follows the clas-
sic approach of Canetti and Krawczyk [8]. It com-
bines a passively-secure two-round key exchange protocol
(KE) with a Message Authentication Code (MAC). The
Bootstrap phase excludes active attacks, and runs KE to
establish a key from which both parties derive a shared
MAC key. In the Key-Exchange the actual key material k
gets derived in the presence of active adversaries and even
state compromise. Here we again use the passively-secure
KE but now authenticate the exchanged messages via the
MAC keys from the Bootstrap phase. For each round, a

639

new key k and state (serving as MAC key in the next
round) is derived from the current state and the output of
KE via a key-derivation function. The detailed description
is in Figure 3 and Figure 4 and discussed below.

The construction of the Key-Exchange phase takes
inspiration from previously proposed constructions. The
signature-authenticated Diffie-Hellman key exchange pro-
posed by Canetti and Krawczyk is used as the template for
how we use a MAC scheme to authenticate the messages
of the underlying passively secure key exchange protocol
in Key-Exchange [8]. Furthermore, Cohn-Gordon et al.
have proposed a transformation that can be used to add
post-network robustness and post-compromise security to
any authenticated key exchange with security under the
AKE security model that was previously proposed by
LaMacchia et al. [11, 25]. This transformation has inspired
the encoding and utilization of the pairwise state in SEKA.

Building Blocks. The construction of the SEKA requires
the following building blocks. For space reasons we
introduce them only briefly, and refer to Appendix A for
the detailed definitions.

Key Derivation Function (KDF), i.e., a function KDF(σ,
l,r, c)−→ k that deterministically computes a key k of
l bits from keying material σ with salt r and (optional,
arbitrary) context c. In the security proof, the KDF is
assumed to be a random oracle.

Message Authentication Code, i.e., a MAC (KGen,
Mac,Vf), where we assume KGen(1τ) to randomly
sample keys k ← {0, 1}τ , and tags are generated via
t ← Mac(k,m) and verified via 0/1 ← Vf(k,m, t)
respectively. We require the MAC to be deterministic
and have SNFCMA

A,Π -security. Determinism is necessary,
since the adversary in our model is allowed to corrupt
and influence random number generation during the test
session and common MAC security definitions do not
consider compromise of the random number generator.
Note that Game 5 in our security proof relies on strong
unforgeability of the MAC scheme.

Two-round key exchange protocol with CKAM
PFS-

security [8] and weak perfect forward secrecy [24],
i.e., the key exchange is expected to provide key
indistinguishability against a passive adversary before and
after compromise of long-term secrets. The key exchange
protocol has an initialization function KE.init(1τ) −→ pp
and two further interfaces: KE.exchange(pp, IDi, IDj ,
s, role) −→ k is the uninterrupted run of the key
exchange protocol for parameters pp, own identity IDi,
peer IDj , session ID s and role role ∈ {I,R}. It
performs the key exchange with the peer and returns
a session key k ∈ {0, 1}τ . We will use this interface
in the Bootstrap-phase of our protocol. KE.handle(pp,
IDi, IDj , s, role, steph,min) −→ (st′eph,mout, k) is the
corresponding message-by-message interface to the key
exchange protocol and will be used in the Key-Exchange
sessions.

State Conventions. Both phases encode the pairwise state
sti,j as a tuple (sti,jc, sti,jp) of the current state sti,jc
and the list of potential states sti,jp. This separation has
been proposed by Cohn-Gordon et al. and is necessary for

post-network robustness. Section 3.1 explains how sti,jp
is used to resolve situations in which the current states
of two parties sti,jc, stj,ic differ. This can happen when
the third message of Key-Exchange is not delivered to the
responder. Without resolution, in this scenario, the parties
would be unable to ever communicate again [11].

The security model makes no assumption regarding
the structure of the pairwise state sti,j . Therefore, the
corrupt oracle reveals both parts of the pairwise state,
i.e., both current and potential states, to the adversary.
Thus, the protocol needs to carefully remove states that are
no longer needed from sti,jp in order to achieve security
under the security model.

3.1. Protocol Description of πSEKA

Our πSEKA protocol is initialized by running the cor-
responding algorithm from the underlying key exchange,
i.e., Initialize(1τ) returns pp← KE.init(1τ). The detailed
Bootstrap phase is given in Figure 3 and Key-Exchange
is specified in Figure 4.

Bootstrap. The construction simply performs an ini-
tial key exchange over the insecure channel. Remember
that the adversary is assumed to remain passive during
Bootstrap. Thus, CKAM

PFS-security of the underlying key
exchange (i.e., security against passive adversaries) is
sufficient here and guarantees that the adversary cannot
distinguish the output state from random. The KDF is then
used to derive an τ -bit initial state from the exchanged
key. The salt in the KDF is set to the nonce s. This en-
sures domain separation and is necessary for the provable
indistinguishability from random of the initial state, as
discussed by [15]. Also, the context is used to associate
the initial state with the identities of the parties, which is
necessary to lay the foundations for the Authentication by
Recognition and Bootstrapped Authentication.

Key-Exchange. This phase runs a stateful authenticated
key exchange composed of a passively-secure key ex-
change KE and a MAC. In essence, the signed Diffie-
Hellman protocol (DH is here generalized as a generic
key-exchange protocol KE) presented by Canetti and
Krawczyk [8] is adapted to the symmetric setting, replac-
ing the signature scheme with a MAC. The MAC uses the
current pairwise state sti,jc as key, as in the transformation
presented by Cohn-Gordon et al. [8, 11]. The MAC is used
to authenticate all exchanged KE values an honest party
IDi sends to IDj (and vice-versa). In total, both parties
exchange three tags to ensure that they have the same
view of the protocol. This realizes the Authentication By
Recognition as envisioned by our SEKA model, even in
the presence of active adversaries. In case a parties accepts
all incoming messages, it derives the session key via the
KDF using the exchanged key keph, session nonce, local
secret state as well as both identifiers as inputs.

Remember that in this phase, the adversary is able
to perform active attacks such as injecting or modifying
messages, as well as compromising the state, randomness
or keys of honest parties. In case a preceding Bootstrap
(or Key-Exchange) session was clean, and the adversary
did not corrupt the pairwise state, the CKAM

PFS-security of
the underlying key exchange protocol guarantees that the
adversary cannot distinguish the input state of the current

640

Bootstrap(pp, IDi, IDj , I)→ sti,j Bootstrap(pp, IDj , IDi,R)→ stj,i

s← {0, 1}τ

keph ← KE.exchange(pp, IDi, IDj , s, I) ←→ keph ← KE.exchange(pp, IDj , IDi,⊥,R)
sti,jc ← KDF(keph, τ, s, (0, IDi, IDj)) stj,ic ← KDF(keph, τ, s, (0, IDi, IDj))

return (sti,jc, ∅) return (stj,ic, ∅)

Figure 3: Bootstrap phase of the πSEKA protocol.

Key-Exchange(pp, (sti,jc, sti,jp), IDi, IDj , I) Key-Exchange(pp, (stj,ic, stj,ip), IDj , IDi,R)
→ (k, (sti,j

′
c, sti,j

′
p)) → (k, (stj,i

′
c, stj,i

′
p))

s← {0, 1}τ

m1, steph, ← KE.handle(pp, IDi, IDj , s, I,⊥,⊥)

t1 ← Mac(sti,jc, (IDi, s,m1)) IDi, s,m1, t1 abort if ∀st′ ∈ stj,ip ∪ {stj,ic} :
Vf(st′, (IDi, s,m1), t1) = 0

if Vf(stj,ic, (IDi, s,m1), t1) = 0 ∧
∃st′ ∈ stj,ip : Vf(st′, (IDi, s,m1), t1) = 1 :

persist stj,i ← (st′, ∅)
else st′ ← stj,ic
m2, , keph ← KE.handle(pp, IDj , IDi, s,R,⊥,m1)

stj,i
′
c, k ← KDF(keph, 2 · τ, s, (st′, IDi, IDj))

persist stj,i ← (st′, stj,ip ∪ {stj,i
′
c})

abort if Vf(sti,jc, (IDj , s,m2,m1, IDi), t2) = 0 IDi, s,m2, t2 t2 ← Mac(st′, (IDj , s,m2,m1, IDi))

, , keph ← KE.handle(pp, IDi, IDj , s,R, steph,m2)

sti,j
′
c, k ← KDF(keph, 2 · τ, s, (sti,jc, IDi, IDj))

t3 ← Mac(sti,jc, (IDi, s,m1,m2, IDj)) IDi, s, t3

abort if Vf(st′, (IDi, s,m1,m2, IDj), t3) = 0

return (k, (sti,j
′
c, ∅)) return (k, (stj,i

′
c, ∅))

Figure 4: Stateful authenticated key exchange that implements the Key-Exchange phase, adapted from the signature-
authenticated key exchange by [8] and the state transformation by [11].

Key-Exchange session from random. Thereby, using the
same argument as Canetti and Krawczyk, one can prove
that an active adversary cannot distinguish the session key
of the later sessions from random.

Robustness. Our protocol must take extra care to not get
out of sync, in case an adversary drops or alters messages
between two honest parties. To this end, just as in the
construction by [11], the Key-Exchange phase maintains
a list stp of potential states as well as the current state stc.
Thereby, if the last message of a Key-Exchange session is
lost, the responder can recover the stc used by the initiator
from stp by using the first Mac tag to detect which stc
the initiator uses, updating its stc if necessary.

As soon as the responder computes the ephemeral ses-
sion key (but before the session accepts), it adds the output
state of the current session to stp. If a session accepts, stp
is cleared and stc is updated. Thereby, the responder has
knowledge of all states that the initiator might have at the
current time. Note that the current state stc of both parties
need not be the same at the time the initiator executes the
next session, because the adversary might have modified
or dropped the third protocol message, causing the session
at the responder not to accept. In this case, verifying the

first MAC tag in the next conversation with stc fails in
the responder. It can now iterate stp, determining which
of the contained states the initiator used for the session,
and replace stc accordingly.

3.2. Proof Sketch

In order to prove the security of the construction under
the security model, the following needs to be proven:

Theorem 1. Let πSEKA be the construction given in Sec-
tion 3. Let KDF be a random oracle. Let MAC be a
deterministic MAC scheme with SNFCMA

A,Π -security.
Let KE provide CKAM

PFS-security and weak perfect
forward secrecy. Then πSEKA is correct, robust and
secure according to Definitions 2 and 4.

The correctness of the protocol follows immediately from
the correctness properties of the building blocks. Also, the
robustness can be proven by the same argument that was
used by [11]. Hence, this section only gives a short proof
sketch for the security of the presented πSEKA construc-
tion. More detailed proofs of correctness, robustness and
security can be found in Appendix B.

641

Session-key secrecy will be proven using the
sequences-of-games technique, requiring three major steps
that combine arguments from two previous works [8, 11]:
In the first step, using a reduction to the CKAM

PFS-security
of the underlying key exchange protocol, it is proven that
the adversary cannot distinguish the output state of the
clean session from random. In the second step, utilizing a
reduction to the SNFCMA

A,Π -security of the MAC scheme,
it is proven that the adversary cannot violate authentica-
tion in Key-Exchange. Thereby, it can be shown that the
adversary cannot query the session key it is supposed to
guess using the session-key oracle. This step relies on the
determinism of the MAC scheme, as the adversary has full
control over random number generation outside the clean
session. This step has essentially already been proven by
Canetti and Krawczyk [8]. In the final step, it is argued
that the freshness predicates leave no room for a trivial
attack against the construction. Combining all steps, one
can see that the adversary cannot break security of πSEKA

without breaking an underlying primitive, proving security
of the scheme.

In the first major step (Game 2), it is proven that the
adversary cannot predict the ephemeral key computed dur-
ing the clean session. Due to the restrictions laid out in the
freshness predicates, the adversary has no powers over the
clean session that it does not have in the CKAM

PFS-game
against the underlying key exchange protocol. Remember
that CKAM

PFS was defined by [8] and considers a passive
adversary without knowledge of random numbers used in
the test session. As CKAM

PFS-security is required for the
underlying key exchange protocol, a simple reduction can
show that if an adversary can distinguish the ephemeral
key computed in the clean session from random, it can
break the CKAM

PFS-security of the key exchange, which
was assumed to be infeasible. Thereby, it is known that
the adversary cannot distinguish the ephemeral key of
the clean session from random, implying that the same
is true for the session key and output state of the session
due to the random oracle assumption. Informally, this step
captures both bootstrapping and recovery of the pairwise
secret, relying on passivity of the adversary which was
motivated by the characteristics of the light channel.

In the second major step (Game 5), the fact that
the test session and the clean session are not the same
session that was established in the first step is used. The
goal of the second step is to prove that no session that
computes the same session key as the test session without
partially matching it exists. Thereby, according to the
freshness conditions, the adversary is not allowed use the
session− key oracle to query the session key computed
by the test session. In other words, the authentication
provided by Key-Exchange is proven here. Because of
the restrictions imposed on the adversary by the freshness
conditions, proving this step is very similar (but not for-
mally equivalent due to differences in the formal model)
to proving the CKUM

PFS-security of Key-Exchange, i.e.,
session-key secrecy in the presence of an active adversary
without knowledge of the long-term secrets used in the
session. Therefore, a proof similar to the one presented
by Canetti and Krawczyk is used, accounting for the
differences between the models and the fact that Mac tags
rather than signatures are used [8]. Essentially, this step
is proven by a reduction to the SNFCMA

A,Π -security of the

Mac scheme. Remember that in the SNFCMA
A,Π -game, the

adversary has no control over random number generation.
As the adversary controls the random number generation
during the test session, however, the determinism of the
Mac scheme is crucial for this step.

The third step (which is broken up into Games 3, 4
and 6) is to argue that the adversary cannot use its oracles
in order to retrieve the input state of the test session with-
out violating the freshness conditions and losing the game.
Thereby, this step only serves the purpose of showing that
no trivial attacks are enabled by the security model. The
step also shows that the list of potential states stp does not
enable any attacks that would otherwise be impossible, as
it is cleared in the clean session. This step of the proof
is similar to the security proof of the PCS transformation
provided by Cohn-Gordon et al. [11].

The proof concludes in Game 7 by stating that the only
way left for the adversary to win the game is to predict
the session key computed in the test session without
using the session − key oracle and without knowledge
of the input state. Since KDF is a random oracle, this
is only possible with negligible probability. Thereby, the
presented construction is secure in the SEKA model.

4. Implementation and Evaluation

This section describes a prototype implementation of
πSEKA and evaluates its impact on processing time, trans-
mission delay, and throughput. Our implementation was
done on the same software and hardware that is used by a
real prototype system. It utilizes only cryptographic prim-
itives from libcrypto, which are available for bare-metal
use (e.g., in WolfSSL). The first experiment measures the
average computational duration of the πSEKA phases in
isolation, comparing the performance of SEKA and the
commonly used WPA key exchange protocols. We show
that πSEKA noticeably outperforms the 4-Way Handshake
(WPA2-PSK), EAP-TLS (WPA-Enterprise) and Dragonfly
(WPA3-SAE), while providing stronger security and a
more convenient setup. We then investigate the impact
of SEKA on network latency and throughput.

4.1. πSEKA Implementation

The reference implementation libSEKA of πSEKA con-
tains the proposed Key-Exchange and Bootstrap phases,
and relies on OpenSSL 3.0 for the implementation of all
cryptographic primitives. For our implementation, we first
need to instantiate the three generic building blocks from
πSEKA, which is done as follows:

• KDF: HKDF with SHA2-512
• KE: X25519 [5], i.e., ECDH
• MAC: AES-128-GMAC (deterministic version)

KDF is instantiated as HKDF [15] with SHA2-512,
as this instantiation is efficient and widely available in
cryptographic libraries. X25519 [5], i.e., ECDH on the
curve25519 elliptic curve, is used as key exchange. It pro-
vides high performance, a 128-bit security level and resists
all known side-channel attacks against ECDH protocols.

AES-128-GMAC as deterministic MAC. Our choice of
AES-128-GMAC [28] as message authentication scheme

642

requires some justification. Remember that a deterministic
Mac function was required. By default, GMAC is proba-
bilistic. Thus, utilizing GMAC as message authentication
scheme might appear odd, as deterministic message au-
thentication schemes such as SHA512-HMAC could be
utilized instead. The reason this proposal uses GMAC is
as follows. πSEKA is expected to be implemented in con-
junction with authenticated encryption and message au-
thentication. Furthermore, authenticated encryption with
GCM and message authentication with GMAC are often
combined into a single functional unit in hardware imple-
mentations, reducing chip complexity and thus cost. In the
interest of not requiring a second, functionally equivalent,
building block instantiation for πSEKA and thus additional
implementation complexity, the proposal reuses GMAC
for message authentication in πSEKA.

To this end, a deterministic version of GMAC needs
to be constructed. The key material of GMAC consists of
a static part (the actual key) and a per-message nonce (the
initialization vector or IV). With the exception of nonce
selection, the implementation of GMAC is deterministic.
NIST SP80038D, which standardizes GCM and GMAC,
permits two constructions of the IV: random selection and
sequential selection [14]. libSEKA relies on a sequen-
tial IV, making GMAC deterministic. In particular, the
used IV consists of a pairwise-fixed prefix (a truncated
SHA2-512-hash of the identities of both peers) and a 16-
bit per-message counter. The counter implicitly becomes
part of the computed tag, while the prefix is not trans-
mitted explicitly, reducing overhead of the protocol. In
case a counter is repeated for the same pairwise state,
the corresponding message is dropped, following NIST
guidelines [14]. It is assumed that each invocation of
Key-Exchange is completed before the counter overflows.
Should this ever happen, a new Bootstrap is required.
As libSEKA assumes reliable transmission, the counter
should not exceed 2 during honest protocol usage.

Authenticated Encryption. libSEKA also implements li-
brary functions for encryption and authentication of mes-
sages using the session key established by Key-Exchange.
libSEKA provides message authentication with GMAC
and authenticated encryption with GCM, again relying on
the 128 bit AES cipher. Both GCM and GMAC use a
sequential initialization vector as described for GMAC in
Key-Exchange. This is permitted by SP80038D, as it does
not lead to a security risk unless a combination of key and
initialization vector is repeated [14]. Therefore, as soon
as the counter overflows, the session key is rotated.

libSEKA can be used to directly integrate SEKA and
authenticated encryption into the MAC layers of LiFi
networks. In addition, both functionalities were used to
build a layer-2 VPN, sekatunnel, allowing investigation
of network performance in realistic load scenarios over
any network, including loopback, Ethernet and LiFi net-
works which do not provide security themselves such as
IEEE 802.15.13. The sekatunnel uses a custom link-layer
encapsulation protocol, allowing it to keep utilizing the
last session key computed by Key-Exchange for authenti-
cation or encryption while Key-Exchange is in progress.
Also, sekatunnel uses tap devices for input/output of plain
data frames and AF PACKET sockets for input/output of
encapsulated data frames.

4.2. Benchmark

The benchmark consisted of continuous runs of the
SEKA phases over 30 seconds, measuring the duration
for both parties. The parties were simulated in the same
address space, exchanging messages via shared memory.
1000 warm-up runs were conducted. Six different CPUs
were used4. The executable was pinned to one CPU thread
using processor affinity. We used compiler flags -O3 -
march=native -mtune=native.

Also, the three WPA key exchange protocols were
benchmarked in the same setup: the 4-Way Handshake
(WPA2-PSK), EAP-TLS (WPA-Enterprise) and Dragonfly
(WPA3-SAE). To this end, a simple benchmark harness
was built around iwd5.

Hypothesis. SEKA should be highly efficient across all test
platforms. Also, due to its simpler construction, SEKA is
expected to outperform all WiFi key exchange protocols,
possibly with the exception of the 4-Way Handshake. For
all protocols, run-to-run-variance should be negligible.

Bootstrap
Key-Exchange

Protocol and phase

0

2

4

6

8

10

Op
er

at
io

n
du

ra
tio

n
in

 m
illi

se
co

nd
s

0.
62

0.
59

0.
5

0.
5

0.
28

0.
29

1.
1

1.
1

2.
2

2.
2

6.
1 6.
2

AMD Ryzen 7 1700
Intel Xeon Silver 4210
AMD Ryzen 5 2500U
Intel Xeon E5620
Raspberry Pi 3B arm64
Xilinx Zynq-7000

Figure 5: Average and standard deviation of execution
times of SEKA protocol phases measured in the bench-
mark.

Results. Results of the benchmark can be found in Figure 5
and Figure 6. One can see that both πSEKA phases have
similar performance. Also, the x64 CPUs outperform the
ARM CPUs, while all πSEKA phases complete in less
than ten milliseconds on all CPUs on average. Finally,
Dragonfly and the EAP-TLS key exchanges are signifi-
cantly slower than all πSEKA protocols, while the 4-Way
Handshake performs comparably to the πSEKA protocols.

4. We used three workstation CPUs of different age (Intel Xeon Silver
4210, Intel Xeon E5620, AMD Ryzen 7 1700) with Ubuntu 20.04 LTS
(Xeon 4210, Ryzen) and Debian 12 (Xeon E5620), a mobile CPU (AMD
Ryzen 5 2500U) with Alpine Linux v3.17, a Raspberry Pi 3 model B
with Alpine Linux v3.17 aarch64 and a dual-core Xilinx Zynq-7000 with
Linux v5.15 armv7l configured with PREEMPT RT.

5. https://web.archive.org/web/20230114085148/https://iwd.
wiki.kernel.org/, date: 2023-03-14 16:40, utilized commit:
62301b7918160672009250a2db7e900c64df4440. The benchmark
of the 4-Way Handshake captures the key derivation from the PSK
“TestWPA2PSK” as well as random number generation and the
derivation of the Pairwise Transient Key in both parties. The benchmark
of EAP-TLS relied on default configurations within iwd, specifically
TLS 1.2 with 2048-bit RSA, AES-256-CBC, SHA-1 and ECDH on
P-256. For Dragonfly, the passphrase “secret123” and the default curve
(P-256) were selected.

643

https://web.archive.org/web/20230114085148/https://iwd.wiki.kernel.org/
https://web.archive.org/web/20230114085148/https://iwd.wiki.kernel.org/

4-Way Handshake Dragonfly EAP-TLS

Protocol and phase

0

500

1000

1500
Op

er
at

io
n

du
ra

tio
n

in
 m

illi
se

co
nd

s

0.
29

72

7.
43

9

51
.5

6

0.
32

75

9.
82

2

69
.2

8

0.
36

96

7.
28

8

17
.8

0.
50

25

13
.3

9

95
.8

8

3.
55

7

47
.0

3 28
0.

5

3.
45 12

6.
7

97
5.

3

AMD Ryzen 7 1700
Intel Xeon Silver 4210
AMD Ryzen 5 2500U
Intel Xeon E5620
Raspberry Pi 3B arm64
Xilinx Zynq-7000

Figure 6: Average and standard deviation of execution
times of WiFi key exchange protocols for reference.

We used the Linux perf(1) utility to record where CPU
time was spent during the benchmarks. Perf records both
time spent in userspace and in kernel space.

For the 4-Way Handshake, we have found that 98.34%
of the computation time was spent in af alg sendmsg in
the Linux kernel. This method’s sole responsibility is to
copy decryption buffers from userspace to kernel space
for decryption (it does not perform any cryptographic
operation). The reason for that is probably the overhead
associated with copying buffers from user address space
to kernel address space. Therefore, we must conclude that
the overhead on the 4-Way Handshake is substantial. We
assume that due to how fast the cryptographic operations
are, they are not reflected in the perf record. All of
the cryptographic operations required for SAE are imple-
mented in userspace. Subtracting all method invocations
that are not related to the cryptographic operations, we
have found that 81.41% of the computation time of SAE
was spent in cryptographic implementations. For EAP-
TLS, we found that 88.26% of computation time was
spent in the rsa dec method (directly computing RSA
signatures). Additional 0.15% of the computation time
was spent computing SHA256 hashes. Additional 0.50%
of computation time was spent verifying RSA signatures.

The perf records show that the SEKA implemen-
tation imposes only negligible overheads on the cryp-
tographic primitives provided by OpenSSL. During the
Bootstrap phase of SEKA, time was split almost evenly
into generation of ephemeral states and computation of
the ephemeral key, with only appx. 2% of computation
time spent evaluating the key derivation function. Dur-
ing the Key-Exchange phase, appx. 2.5% of the overall
computation time was additionally spent in the message
authentication code generation and verification functions.

Conclusions. Analysis of the results shows that SEKA is
suitable for use in LiFi networks. The high performance
of the protocol enables both high data rates for individual
devices and a large number of devices.

The significant performance differences between
SEKA and Dragonfly or EAP-TLS have three probable
causes. First, Dragonfly requires three modular exponenti-
ations and EAP-TLS typically requires at least four modu-
lar exponentiations (key exchange and certificate/signature
verification), while SEKA only needs two, per party.
Second, exponentiations on Curve25519 are faster than
on P-256 [5]. Curve25519 was not available in WPA at
the time of writing. Finally, as [41] have shown, Dragonfly
in particular is prone to timing-based side channels that

allow an adversary to reveal the password from timing dif-
ferences. The side channels require expensive mitigations,
increasing the run time. To the best of our knowledge,
the building blocks used for the πSEKA do not suffer
from this kind of side-channel vulnerability and require
no additional mitigations for security in practice.

We expected the 4-Way Handshake to provide higher
performance than measured. We conclude that the over-
head on the 4-Way Handshake is substantial, and while the
results reflect a real-world implementation of the protocol,
they are not representative of the performance of the pro-
tocol itself. Still, comparable performance between πSEKA

and the 4-Way Handshake in practice is an impressive
result. Recall that the 4-Way Handshake does not provide
forward secrecy, and is prone to offline dictionary attacks,
while πSEKA provides far stronger security.

On the other hand, the benchmarks of EAP-TLS and
SAE have an overhead of appx. 12-20%, which allows
for fair comparison between the protocols and the SEKA
protocols.

The results also show that the standard deviation for
both πSEKA and WPA is very small, with the exception
of EAP-TLS. This matches the expectation. Using CPU
affinity, we controlled for jitter introduced by scheduling
and CPU boosting. Different random numbers and other
input data should not affect the computation time in
any way, as this would indicate possible timing-based
side channel vulnerabilities. The slightly higher standard
deviation of EAP-TLS can be explained by parsing and
protocol overhead.

4.3. Impact on Delay & Throughput

As LiFi networks have been proposed that rely heav-
ily on the physical protection instead of using cryptog-
raphy, we further investigate the overall impact SEKA
(and authenticated encryption) have on the latency and
throughput of the link-layer protocol. Our analysis shows
that SEKA in conjunction with AES-GCM is suitable for
Time-Sensitive Networking (TSN), which is important for
TSN-capable LiFi networks like IEEE 802.15.13. In terms
of throughput, we demonstrate that the SEKA in conjunc-
tion with AES-GCM is capable of supporting a multi-
gigabit-per-second LiFi network. All testbeds resemble
the hardware and software used on real IEEE 802.15.13
prototype systems.

For space limitations we only summarize our study
here, and refer to Appendix C for the detailed descriptions.

Impact on Delay. We investigated the impact of SEKA on
network delays by deploying our sekatunnel VPN between
two docker containers on the same host and measured
round-trip communication delays.

The results of our experiment confirm that the perfor-
mance impact SEKA imposes on link delay is negligible.
In particular, SEKA and encryption impose a constant
delay overhead of 10-20 microseconds to the link delay. At
the same time, standard deviation and worst-case latencies
of a reference measurement were virtually the same as in
tests with SEKA.

We also measured the impact of SEKA on network
delays on a proprietary IEEE 802.15.13 LiFi system. To
this end, we integrated libSEKA into the MAC implemen-
tation. Due to limitations of the prototype system, we were

644

only able to test at a low data rate. Still, we were able to
show that the latency impact of SEKA is negligible.

All in all, the results confirm that SEKA is suitable
for usage in TSN-capable LiFi networks.

Impact on Throughput. We investigated the impact of
SEKA on throughput with the same setup used for delay.
Due to the throughput limitations of our LiFi test system at
the time of writing, we were unable to perform a meaning-
full throughput evaluation. As the wired network provides
significantly higher throughput, we believe that our results
are still representative of the real world, however.

We managed to achieve a throughput of up to four
gigabits per second, which is the same as the throughput of
the insecure reference measurement. Also, we managed to
show that the throughput of SEKA increases linearly with
the number of threads used for cryptographic operations
until the limit of four gigabits per second is reached.

We concluded that hardware limitations caused by
having to copy data in memory were the bottleneck in
our test. Thereby, we are certain that SEKA is suitable
for use in high-performance LiFi networks.

5. Discussion & Comparison

In this section we discuss the feasibility of our physical
layer assumption, as well as what can be guaranteed if the
assumption is not satisfied. We also compare the security
and convenience of SEKA with other key exchange proto-
cols that use a passively secure key exchange and discuss
deployment considerations.

5.1. Passive Attack Limitation in LiFi

SEKA makes a strong assumption: Passivity of the ad-
versary is required during at least one session (presumable
the Bootstrap phase). Passivity of the adversary is gener-
ally considered a naı̈ve assumption, since key exchange
protocols are not usually restricted to usage on link-
layer networks. In a network-, transport- or application-
layer-protocol, devices are not able to control the path
a message takes through the network. Thereby, it must
be assumed that messages are relayed via compromised
nodes, necessitating considering an active adversary.

However, in the envisioned use cases of SEKA, pro-
tocol messages can be exchanged directly via the optical
medium without passing through other devices. Thus,
in this scenario, the properties of the utilized link-layer
network dictate whether a passive adversary is a reason-
able assumption. As mentioned in the introduction, LiFi
networks are believed to be confineable to a room. RF
confinement using electromagnetic shielding is possible in
the same fashion, albeit expensive and impractical. Light
waves being absorbed by opaque obstacles makes shield-
ing practical. Empirical research generally supports this
assumption, with the limitation that parts of the message
might be leaked to eavesdroppers [10]. LiFi is intended
primarily for mobile machinery such as autonomous de-
livery robots in a larger factory hall, which can easily be
moved into a more secure room for Bootstrap. For heavy
stationary equipment, one can temporarily erect an opaque
shielding box with an additional repeater OFE that shares
a symmetric key with the network.

In order to perform a message-modification attack
such as a MITM-attack in the same scenario, an adversary
is not only required to ingest a decodable message into the
room, but it also needs to completely cancel the original
message. Otherwise, both parties can easily recognize
the attack and abort the session. This makes the attack
substantially more difficult than an eavesdropping attack.
At the same time, assuming that Bootstrap is executed in
a physically secured location, the adversary needs a high
amount of physical access. However, if the adversary has
this level of access, it is likely already able to achieve its
goals without compromising the LiFi network. Thereby, we
believe that the assumption is realistic in LiFi networks.

All in all, while we are comfortable assuming solely
passive adversaries during the short Bootstrap (or a single
Key-Exchange session), it is not realistic for the entire
lifetime of the KE. Therein, attacks like Evil Twin/MAC
spoofing are hard to prevent and SEKA must guarantee
security against such active attacks.

Consequences of Violating the Assumption. In case the
adversary is not passive during Bootstrap, SEKA can
still bootstrap a secure state during a later session. This
requires passivity of the adversary during an arbitrary
future session. In other words, as soon as the adversary
fails to corrupt messages in a single session, the com-
promise is healed and the adversary has no advantage
in guessing future session keys. Due to device mobility,
signal blockage and the directionality of LiFi channels, it
is difficult for the adversary to continuously modify SEKA
messages. If the adversary does not keep close proximity
to the victim devices at all times, it is very likely that it
will be unable to modify messages in a session at some
point, which makes recovery of security likely.

A slightly modified (pessimistic) Bootstrap can pro-
vide security in scenarios in which passivity of the adver-
sary cannot generally be assumed. To that end, Bootstrap
can be implemented as key exchange protocol authenti-
cated by a short authenticated sequence, e.g., using the
construction published by [32]. Thereby, no passivity of
the adversary in any session is required for the security of
the protocol. Still, passivity of the adversary in a session
can be utilized in order to heal prior compromise of
device secrets or random number generation. Thereby, the
pessimistic SEKA can still utilize the properties of the
underlying channel for increased security.

5.2. Security-Usability Tradeoff

The design of SEKA provides a trade-off between
security and usability that is more favorable for LiFi
networks than what is provided by existing protocols. In
this section, we summarize how SEKA provides higher se-
curity than existing configuration-free key exchange pro-
tocols with the same usability, higher efficiency than state-
of-the-art authenticated key exchange protocols, stronger
authentication than the password-authenticated key ex-
change protocols in the way they are commonly used in
wireless networks and what implications these advantages
have for practical use.

Security against Active Adversaries. LiFi is clearly not
the only setting in which SEKA can be used. In fact, there
are a number of configuration-free cryptographic protocols

645

that also exploit passive adversaries such as Bluetooth SSP
(Secure Simple Pairing) [6], WPA3-OWE (Opportunistic
Wireless Encryption) [17] and Push-Button WPS (Wire-
less Protected Setup) with WPA2-PSK or WPA3-SAE [1].

As was already discussed in Section 1.2, none of
the aforementioned protocols can provide security against
active adversaries if active attacks against the bootstrap
phase are conducted. OWE does not even aim at pro-
viding any security against active adversaries [17]. In
contrast, SEKA is fully secure against active attacks in
the Key-Exchange phase (conditioned on passive attack
security during Bootstrap), with strong Forward Secrecy
and Post-Compromise Security as specified in our model.
It can even heal from an active attack in the Bootstrap
phase, if a single following session is not compromised.

Efficiency allows for periodic key updates. It was also
demonstrated empirically that SEKA has significant per-
formance benefits over EAP-TLS and Dragonfly. This
allows execution of SEKA and Key-Exchange periodi-
cally, increasing the likelihood of recovering from any
compromise while imposing a negligible overhead on
delay and throughput. The efficiency gain also makes
SEKA suitable for battery-powered or otherwise compute-
constrained devices.

Authentication w/o Certificates. Finally, we would like
to point out that SEKA provides stronger authentica-
tion than WPA-personal. In WPA2-PSK and WPA3-SAE,
there is one passphrase shared by all devices in the net-
work. Therefore, every device in the network can perform
generic MITM attacks against all other devices in the net-
work, breaking confidentialiy, integrity, authenticity and
availability of communication. In particular, any device
with knowledge of the network passphrase can imper-
sonate any other device towards the network. In contrast,
as SEKA negotiates a pairwise shared state that is only
known to one initiator and one responder, one device in
the network cannot impersonate a different device.

Still, key exchange protocols based on certificates
such as EAP-TLS can provide stronger authentication. In
addition to ensuring devices that they are communicating
with the same device as in previous sessions, the PKI
guarantees that the claimed identities are accurate. Also,
this approach allows global revocation. As pointed out
earlier, this comes at the cost of higher setup and per-
formance overhead. Therefore, we believe that for almost
all use cases of link-layer networks, the tradeoff between
security and usability provided by SEKA is preferable.

5.3. Deployment Considerations

Finally, we discuss two practical considerations: topol-
ogy changes and MAC address randomization.

Network Topology Changes. As was detailed earlier, a
passive adversary during Bootstrap allows the elimina-
tion of out-of-band-channels in SEKA implementations.
This makes SEKA highly suitable for embedded devices
without I/O capabilities. A possible disadvantage of this
approach is that once the network coordinator (responder)
is replaced or a second network is created, all devices
(initiators) need to be brought into the confined room
separately in order to bootstrap a new shared secret.

In large networks, this can cause significant costs. On
the other hand, as lifecycles of especially LiFi network
infrastructure devices such as coordinators (responders)
are projected to be comparatively long [27], this problem
occurs very infrequently. At the same time, an extension of
SEKA can possibly utilize the secure channel between the
devices (initiators) and the existing network coordinator
(responder) in order to bootstrap a shared state with the
new coordinator (responder) outside of the secure room.

Randomized MAC Addresses. A subtle but important dif-
ference between SEKA and, e.g., WPA lies in that SEKA
expects the identities of two parties to remain constant.
The security model also allows these identities to be
known to the adversary, and the construction transmits
them in the clear. At the time of writing, there is an
ongoing effort in other link-layer key exchange proto-
cols, such as the ones used in IEEE 802.11 [20] and
802.15.4 [21], to randomize the MAC addresses of mobile
network devices. Thereby, it is made impossible for an
eavesdropper to link two network sessions of the same
device, improving privacy of the devices. Because of its
reliance on static party identities, SEKA does not support
similar privacy features. If privacy is a concern, initiators
can change their identity regularly and complete a new
Bootstrap. SEKA can also transmit the long-term iden-
tities of the parties encrypted with a key derived from
the current shared state and associate long-term identities
with randomized ephemeral session identities. Thereby, no
additional Bootstrap invocations are required.

6. Conclusion

This paper introduced SEKA, a key exchange protocol
designed for LiFi networks. SEKA improves upon two
crucial weaknesses of existing wireless key exchange
protocols: reliance on pre-installed keys and overhead in
terms of performance and setup effort.

SEKA’s Bootstrapped Authentication reduces device
setup to a single button press. At the same time, Au-
thentication by Recognition protects the network from
impersonation and wardriving attacks. Finally, the proto-
col provides Post-Compromise Security, i.e., it can fully
recover from complete compromise of a device’s secrets.

All properties and required assumptions regarding
the adversaries’ behavior are precisely defined through
a formal security model and a simple provably-secure
construction is given. The assumptions on the physical
security of the LiFi network are kept minimal and are
required for short phases only. The implementation of
our protocol shows that SEKA is significantly faster than
state-of-the-art protocols for wireless key exchange and
supports networking applications that are delay-critical or
require multi-gigabit throughputs.

Still, improvements to SEKA are possible. For in-
stance, investigating how to achieve a a stateless version
of SEKA, which will be interesting when targeting de-
vices with ephemeral filesystems. Further, we have already
taken advantage of the SEKA model to replace signature-
based authentication with MACs. Weaker versions version
of the security model might even allow instantiations with
only symmetric primitives, allowing for higher perfor-
mance and post-quantum variants [3].

646

Acknowledgments

We thank the anonymous reviewers for their helpful
feedback. The authors would also like to thank the Corpo-
rate Communications department at Fraunhofer HHI for
their help in designing the illustrations for this publication.

Data Availability

The source code of libSEKA and sekatunnel, which
is used for the benchmark of SEKA in section 4, was
developed in the context of an industry project and is
part of proprietary software. Therefore, at this time, it can
unfortunately not be cleared for public release. However,
we believe that the detailed description of the protocol
provided in this paper makes it easy to implement SEKA
from scratch.

The modified version of iwd is available at https://
github.com/WorldofJARcraft/iwd.git.

References

[1] Wi-Fi Alliance. Wi-fi protected setup™ specification
version 2.0.8. Wi-Fi Protected Setup™ Specification,
2020. URL https://www.wi-fi.org/system/files/
Wi-Fi Protected Setup Specification v2.0.8.pdf.
URL date: 2023-10-30 11:48.

[2] Mohamed Amine Arfaoui, Mohammad Dehghani
Soltani, Iman Tavakkolnia, Ali Ghrayeb, Majid Sa-
fari, Chadi M Assi, and Harald Haas. Physical layer
security for visible light communication systems: A
survey. IEEE Communications Surveys & Tutorials,
22(3), 2020. doi: 10.1109/COMST.2020.2988615.

[3] Gildas Avoine, Sébastien Canard, and Loı̈c Ferreira.
Symmetric-key authenticated key exchange (sake)
with perfect forward secrecy. In The Cryptogra-
phers’ Track at the RSA Conference 2020, CT-RSA
2020, Berlin, Heidelberg, 2020. Springer-Verlag. doi:
10.1007/978-3-030-40186-3 10.

[4] Mihir Bellare and Phillip Rogaway. Entity authenti-
cation and key distribution. In 13th Annual Interna-
tional Cryptology Conference, CRYPTO 1993, 1993.
doi: 10.1007/3-540-48329-2 21.

[5] Daniel J Bernstein. Curve25519: new diffie-hellman
speed records. In International Workshop on Pub-
lic Key Cryptography, Berlin, Heidelberg, 2006.
Springer-Verlag. doi: 10.1007/11745853 14.

[6] Bluetooth SIG. Bluetooth core specification
version 5.4. Bluetooth Core Specification, 2023.
URL https://www.bluetooth.org/DocMan/handlers/
DownloadDoc.ashx?doc id=556599. URL date:
2023-10-30 11:48.

[7] Victor Boyko, Philip MacKenzie, and Sarvar Pa-
tel. Provably secure password-authenticated key
exchange using diffie-hellman. In 19th International
Conference on Theory and Application of Crypto-
graphic Techniques, EUROCRYPT’00, Berlin, Hei-
delberg, 2000. Springer-Verlag. doi: 10.1007/
3-540-45539-6 12.

[8] Ran Canetti and Hugo Krawczyk. Analysis of key-
exchange protocols and their use for building secure
channels. In International Conference on the Theory

and Applications of Cryptographic Techniques, EU-
ROCRYPT’01, Berlin, Heidelberg, 2001. Springer-
Verlag. doi: 10.1007/3-540-44987-6 28.

[9] Sunghwan Cho, Gaojie Chen, Justin P Coon, and
Pei Xiao. Challenges in physical layer security for
visible light communication systems. Network, 2(1),
2022. doi: 10.3390/network2010004.

[10] Jiska Classen, Joe Chen, Daniel Steinmetzer,
Matthias Hollick, and Edward W Knightly. The
spy next door: Eavesdropping on high throughput
visible light communications. In 2nd International
Workshop on Visible Light Communications Systems,
VLCS’15:, 2015. doi: 10.1145/2801073.2801075.

[11] Katriel Cohn-Gordon, Cas Cremers, and Luke Gar-
ratt. On post-compromise security. In 2016 IEEE
29th Computer Security Foundations Symposium,
CSF 2016, New York, 2016. Institute of Electrical
and Electronics Engineers. doi: 10.1109/CSF.2016.
19.

[12] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowl-
ing, Luke Garratt, and Douglas Stebila. A for-
mal security analysis of the signal messaging pro-
tocol. Journal of Cryptology, 33(4), 2020. doi:
10.1007/s00145-020-09360-1.

[13] Whitfield Diffie and Martin E Hellman. New di-
rections in cryptography. IEEE Transactions on
Information Theory, 22(6), 1976. doi: 10.1109/TIT.
1976.1055638.

[14] Morris J Dworkin. Recommendation for block cipher
modes of operation: Galois/counter mode (gcm) for
confidentiality and authentication. Technical Report
NIST Special Publication (SP) 800-38D, National
Institute of Standards and Technology, Gaithersburg,
2007.

[15] H. Krawczyk. Cryptographic extraction and key
derivation: The hkdf scheme. In 30th Inter-
national Cryptology Conference, CRYPTO 2010,
Berlin, Heidelberg, 2010. Springer-Verlag. doi:
10.1007/978-3-642-14623-7 34.

[16] Keijo Haataja and Pekka Toivanen. Two practical
man-in-the-middle attacks on bluetooth secure sim-
ple pairing and countermeasures. IEEE Transac-
tions on Wireless Communications, 9(1), 2010. doi:
10.1109/TWC.2010.01.090935.

[17] Dan Harkins and Warren ”Ace” Kumari. Opportunis-
tic Wireless Encryption. RFC 8110, 2017.

[18] IEEE SA. Ieee draft standard for information
technology–telecommunications and information ex-
change between systems local and metropolitan area
networks–specific requirements - part 11: Wire-
less lan medium access control (mac) and physi-
cal layer (phy) specifications amendment 7: Light
communications. P802.11bb/D4.1, October 2022,
2022. URL https://ieeexplore.ieee.org/servlet/opac?
punumber=10063240. URL date: 2023-10-31 11:40.

[19] IEEE SA. Ieee draft standard for multi-gigabit per
second optical wireless communications (owc), with
ranges up to 200 meters, for both stationary and
mobile devices. P802.15.13/D10.0, November 2022,
2022. URL https://ieeexplore.ieee.org/servlet/opac?
punumber=10205959. URL date: 2023-10-31 11:40.

[20] IEEE SA. Standard for information technology–
telecommunications and information exchange

647

https://github.com/WorldofJARcraft/iwd.git
https://github.com/WorldofJARcraft/iwd.git
https://www.wi-fi.org/system/files/Wi-Fi_Protected_Setup_Specification_v2.0.8.pdf
https://www.wi-fi.org/system/files/Wi-Fi_Protected_Setup_Specification_v2.0.8.pdf
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=556599
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=556599
https://ieeexplore.ieee.org/servlet/opac?punumber=10063240
https://ieeexplore.ieee.org/servlet/opac?punumber=10063240
https://ieeexplore.ieee.org/servlet/opac?punumber=10205959
https://ieeexplore.ieee.org/servlet/opac?punumber=10205959

between systems local and metropolitan area
networks–specific requirements - part 11: Wireless
lan medium access control (mac) and physical
layer (phy) specifications amendment: Operation
with randomized and changing mac addresses.
https://web.archive.org/web/20230712093518/https:
//standards.ieee.org/ieee/802.11bh/10525/, 2023.
URL Date: 2023-10-31 08:44.

[21] IEEE SA. Ieee 802.15 wsn™ task group 4ac
(tg4ac) amendment to ieee standard 802.15.4-
2020. https://web.archive.org/web/20230712093447/
https://www.ieee802.org/15/pub/TG4ac.html, 2023.
URL Date: 2023-10-31 08:46.

[22] International Telecommunication Union. High-speed
indoor visible light communication transceiver –
system architecture, physical layer and data link
layer specification. Rec. ITU-T G.9991-2, 2019.
URL https://www.itu.int/rec/dologin pub.asp?lang=
e&id=T-REC-G.9991-202104-I!Amd2!PDF-E&
type=items. URL date: 2023-10-31 11:43.

[23] Christopher P Kohlios and Thaier Hayajneh. A com-
prehensive attack flow model and security analysis
for wi-fi and wpa3. Electronics, 7(11), 2018. doi:
10.3390/electronics7110284.

[24] Hugo Krawczyk. Hmqv: A high-performance se-
cure diffie-hellman protocol. In 25th International
Cryptology Conference, CRYPTO 2005, Berlin, Hei-
delberg, 2005. Springer-Verlag. doi: 10.1007/
11535218 33.

[25] Brian LaMacchia, Kristin Lauter, and Anton Mitya-
gin. Stronger security of authenticated key exchange.
In International Conference on Provable Security,
ProvSec 2007, Berlin, Heidelberg, 2007. Springer-
Verlag. doi: 10.1007/978-3-540-75670-5 1.

[26] Eduardo Novella Lorente, Carlo Meijer, and Roel
Verdult. Scrutinizing wpa2 password generating
algorithms in wireless routers. In 9th USENIX Work-
shop on Offensive Technologies, WOOT 15, 2015.
URL https://www.usenix.org/conference/woot15/
workshop-program/presentation/lorente&sa=U.
URL Date: 2023-10-30 11:47.

[27] Carmen Mas-Machuca, Madeleine Kaufmann, Max-
imilian Riegel, Dominic Schulz, Pieter Stobbe-
laar, Marcel Müller, and Daniel Behnke. Techno-
economics of lifi compared to wi-fi in industrial
iot applications. In 48th Annual Conference of the
IEEE Industrial Electronics Society, IECON 2022,
New York, 2022. Institute of Electrical and Elec-
tronics Engineers. doi: 10.1109/IECON49645.2022.
9968851.

[28] David A McGrew and John Viega. The security and
performance of the galois/counter mode (gcm) of op-
eration. In International Conference on Cryptology
in India, Indocrypt 2004, Berlin, Heidelberg, 2004.
Springer-Verlag. doi: 10.1007/978-3-540-30556-9
27.

[29] Ayman Mostafa and Lutz Lampe. Securing visible
light communications via friendly jamming. In 2014
IEEE Globecom Workshops, GC Wkshps, New York,
2014. Institute of Electrical and Electronics Engi-
neers. doi: 10.1109/glocomw.2014.7063485.

[30] Ayman Mostafa and Lutz Lampe. Physical-layer se-
curity for miso visible light communication channels.

IEEE Journal on Selected Areas in Communications,
33(9), 2015. doi: 10.1109/jsac.2015.2432513.

[31] Rohit Negi and Satashu Goel. Secret communication
using artificial noise. In 2005 IEEE 62nd Vehicular
Technology Conference, VTC-2005-Fall, New York,
2005. Institute of Electrical and Electronics Engi-
neers. doi: 10.1109/vetecf.2005.1558439.

[32] Sylvain Pasini and Serge Vaudenay. Sas-based au-
thenticated key agreement. In Public Key Cryp-
tography: 9th International Workshop on Practice
and Theory in Public Key Cryptography, PKC 2006,
Berlin, Heidelberg, 2006. Springer-Verlag. doi:
10.1007/11745853 26.

[33] Ge Shi, Yong Li, Wei Cheng, Xiang Gao, and Li-
meng Dong. Artificial-noise aided secure transmis-
sion over visible light communication system under
coexistent passive and active eavesdroppers. Optics
Express, 30(5), 2022. doi: 10.1364/oe.448860.

[34] Irina Stefan, Harald Burchardt, and Harald Haas.
Area spectral efficiency performance comparison be-
tween vlc and rf femtocell networks. In 2013 IEEE
International Conference on Communications, ICC
2013, 2013. doi: 10.1109/ICC.2013.6655152.

[35] Chathura P. Suduwella, Yohani S. Ranasinghe, and
Kasun de Zoysa. Visible light communication based
authentication protocol designed for location based
network connectivity. In 2017 Seventeenth Interna-
tional Conference on Advances in ICT for Emerging
Regions (ICTer), 2017. doi: 10.1109/ICTER.2017.
8257800.

[36] Chathura P Suduwella, Yohani S Ranasinghe, and
Kasun De Zoysa. Visible light communication
based authentication protocol designed for location
based network connectivity. In 2017 Seventeenth
International Conference on Advances in ICT for
Emerging Regions, ICTer 2017, New York, 2017.
Institute of Electrical and Electronics Engineers. doi:
10.1109/ICTER.2017.8257800.

[37] Da-Zhi Sun and Li Sun. On secure simple pairing
in bluetooth standard v5.0-part i: Authenticated link
key security and its home automation and enter-
tainment applications. Sensors, 19(5), 2019. doi:
10.3390/s19051158.

[38] Da-Zhi Sun, Yi Mu, and Willy Susilo. Man-in-the-
middle attacks on secure simple pairing in bluetooth
standard v5.0 and its countermeasure. Personal and
Ubiquitous Computing, 22(1), 2018. doi: 10.1007/
s00779-017-1081-6.

[39] A Lee Swindlehurst. Fixed sinr solutions for the
mimo wiretap channel. In 2009 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing, New York, 2009. Institute of Electrical
and Electronics Engineers. doi: 10.1109/icassp.2009.
4960114.

[40] Achilleas Tsitroulis, Dimitris Lampoudis, and Em-
manuel Tsekleves. Exposing wpa2 security pro-
tocol vulnerabilities. International Journal of In-
formation and Computer Security, 6, 2014. doi:
10.1504/IJICS.2014.059797.

[41] Mathy Vanhoef and Eyal Ronen. Dragonblood:
Analyzing the dragonfly handshake of wpa3 and
eap-pwd. In 2020 IEEE Symposium on Security
and Privacy, SP 2020, New York, 2020. Institute of

648

https://web.archive.org/web/20230712093518/https://standards.ieee.org/ieee/802.11bh/10525/
https://web.archive.org/web/20230712093518/https://standards.ieee.org/ieee/802.11bh/10525/
https://web.archive.org/web/20230712093447/https://www.ieee802.org/15/pub/TG4ac.html
https://web.archive.org/web/20230712093447/https://www.ieee802.org/15/pub/TG4ac.html
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-G.9991-202104-I!Amd2!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-G.9991-202104-I!Amd2!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-G.9991-202104-I!Amd2!PDF-E&type=items
https://www.usenix.org/conference/woot15/workshop-program/presentation/lorente&sa=U
https://www.usenix.org/conference/woot15/workshop-program/presentation/lorente&sa=U

Electrical and Electronics Engineers. doi: 10.1109/
SP40000.2020.00031.

[42] Stefan Viehböck. Brute forcing wi-
fi protected setup, 2011. URL https:
//web.archive.org/web/20220522173328/https:
//sec-consult.com/fileadmin/user upload/
sec-consult/Dynamisch/Blogartikel/Old Blogposts/
sec-consult-kcodes-netsub-viehboeck.pdf. URL
date: 2023-03-29 11:32.

[43] Chun Wang, Steve T K Jan, Hang Hu, Douglas
Bossart, and Gang Wang. The next domino to fall:
Empirical analysis of user passwords across online
services. In Eighth ACM Conference on Data and
Application Security and Privacy, DBSec’18, New
York, 2018. Association for Computing Machinery.
doi: 10.1145/3176258.3176332.

[44] Yiru Wang and Lin Zhang. High security orthogo-
nal factorized channel scrambling scheme with lo-
cation information embedded for mimo-based vlc
system. In 2017 IEEE 85th Vehicular Technology
Conference, VTC-2017-Spring, New York, 2017. In-
stitute of Electrical and Electronics Engineers. doi:
10.1109/VTCSpring.2017.8108583.

[45] Liang Yin and Harald Haas. Physical-layer security
in multiuser visible light communication networks.
IEEE Journal on Selected Areas in Communications,
36(1), 2017. doi: 10.1109/jsac.2017.2774429.

[46] Tatu Ylonen and Chris M Lonvick. The secure shell
(ssh) transport layer protocol. RFC 4253, 2006.

[47] Junqing Zhang, Trung Q Duong, Alan Marshall,
and Roger Woods. Key generation from wireless
channels: A review. IEEE Access, 4, 2016. doi:
10.1109/ACCESS.2016.2521718.

[48] Moshe Zviran and William J Haga. Password se-
curity: An empirical study. Journal of Manage-
ment Information Systems, 15, 1999. doi: 10.1080/
07421222.1999.11518226.

A. Definitions and Security Requirements of
Building Blocks

In the following subsections, the abstract crypto-
graphic building blocks required to implement a SEKA
are discussed in more detail. For each building block, a
formal definition and the required security assumptions
are given.

Key Derivation Function.
Definition 5 (Key Derivation Function). “A key derivation

function is a function KDF(σ, l,r, c)−→ k that given
keying material σ, length value l, optional salt r and
optional context c outputs a string k of l bits.” [15]

Within SEKA, the seed r is used for domain sep-
aration. In particular, it enforces independence of the
probability distribution Σ of the keying material σ from
KDF. The context is also used to bind the output to the
identities and previous state of the parties.

The KDF is assumed to be a random oracle in the
security proof.

Message Authentication Scheme. The SEKA also requires
a message authentication scheme, which is defined as
follows:

Definition 6 (Message Authentication (MAC) Scheme).
Let M be a set of (potential) messages, K be a set
of potential keys and T be a set of potential tags. A
message authentication scheme for M is a triple of
functions Π = (KGen,Mac,Vf) such that:

• KGen(1τ) −→ k On input the security parameter
τ , the PPT function KGen generates a key k ∈ K.

• Mac(k,m) −→ t On input key k and message
m ∈ M, the PPT function Mac generates a tag
t ∈ T .

• Vf(k,m, t) −→ b On input key k, message m and
tag t, the deterministic Vf function returns b ∈ {0,
1}. If and only if b = 1, t is valid for k and m.

The message authentication scheme is correct if ∀m ∈
M : ∀k ∈ K : Vf(k,m,Mac(k,m)) = 1.

SNFCMA
A,Π -security is required from the message au-

thentication scheme:
Definition 7 (Strongly unforgeable MAC scheme). Let A

be a PPT adversary. Define a Mac(k, ·) −→ t oracle
that for each input message mi returns ti ← Mac(k,
mi) and logs both mi and ti. Define the SNFCMA

A,Π -
security game as follows:

k ← KGen(1τ)

(m∗, t∗)← AMac(k,·)(1τ)

return 1 if Vf(k,m∗, t∗) = 1 ∧ ∀i : (m∗, t∗) ̸= (mi, ti)

return 0 otherwise

A message authentication scheme Π = (KGen,Mac,
Vf) is strongly unforgeable, denoted as SNFCMA

A,Π -
secure, if ∀A : Pr[SNFCMA

A,Π (τ) = 1] ≤ negl(τ).

Furthermore, it is assumed that the Mac scheme con-
tinues to be SNFCMA

A,Π -secure when the adversary has
knowledge of or control over random number generation.
This is enforced by requiring a deterministic message
authentication scheme, like, e.g., GMAC with a sequential
initialization vector. Obviously, if a scheme does not use
random numbers, an adversary gains no advantage from
controlling random number generation.

Key Exchange Protocol. The SEKA requires a key ex-
change protocol as defined by Canetti and Krawczyk [8].
In the CK model, a key exchange protocol is an n-party,
message-driven protocol that constructs a session key. The
key exchange protocol KE is modeled as follows:

• init(1τ) −→ pp, the initialization function that
given the security parameter τ provides public
parameters pp. This models, e.g., the used group.

• exchange(pp, IDi, IDj , s, role) −→ k, the invo-
cation of the key exchange protocol which given
public parameters pp, own identity IDi, peer IDj ,
session ID s and role role ∈ {I,R} performs the
key exchange with the peer and returns session key
k. The parameter s is ignored if role = R, and it
is assumed that the session-id is conveyed within
the key exchange protocol messages instead.

• handle(pp, IDi, IDj , s, role, steph,min) −→
(st′eph,mout, k), a message-by-message interface
to the key exchange protocol that given public

649

https://web.archive.org/web/20220522173328/https://sec-consult.com/fileadmin/user_upload/sec-consult/Dynamisch/Blogartikel/Old_Blogposts/sec-consult-kcodes-netsub-viehboeck.pdf
https://web.archive.org/web/20220522173328/https://sec-consult.com/fileadmin/user_upload/sec-consult/Dynamisch/Blogartikel/Old_Blogposts/sec-consult-kcodes-netsub-viehboeck.pdf
https://web.archive.org/web/20220522173328/https://sec-consult.com/fileadmin/user_upload/sec-consult/Dynamisch/Blogartikel/Old_Blogposts/sec-consult-kcodes-netsub-viehboeck.pdf
https://web.archive.org/web/20220522173328/https://sec-consult.com/fileadmin/user_upload/sec-consult/Dynamisch/Blogartikel/Old_Blogposts/sec-consult-kcodes-netsub-viehboeck.pdf
https://web.archive.org/web/20220522173328/https://sec-consult.com/fileadmin/user_upload/sec-consult/Dynamisch/Blogartikel/Old_Blogposts/sec-consult-kcodes-netsub-viehboeck.pdf

parameters pp, identities IDi and IDj , role
role, ephemeral session state steph and incoming
message (or ⊥) min generates an outgoing
ephemeral state st′eph or ⊥, an outgoing message
mout or ⊥ and on the final invocation a
session key k. The parameter s is ignored in
all invocations except the first invocation by the
initiator, and assumed to be extracted from the
key exchange messages instead.

The key exchange KE is required to be CKAM
PFS-

secure, i.e., secure against passive adversaries. The fol-
lowing additional properties are assumed:

1) The protocol exchanges two messages.
2) The protocol provides weak perfect forward se-

crecy, in other words, the adversary cannot dis-
tinguish session keys from random if it did not
modify messages during the session, even if it
compromised all long-term secrets of both par-
ties [24]. This is trivially true for any protocol
that does not assume the existence of a long-term
secret, like the Diffie-Hellman protocol that will
be used in the instantiation. For these protocols,
weak perfect forward secrecy is directly implied
by CKAM

PFS-security, as the definitions are for-
mally equivalent in this case.

B. Full Security Proof of πSEKA

The full security proof of the proposed πSEKA con-
struction will be structured as follows. First, the correct-
ness and post-network robustness properties of πSEKA are
proven. After that, a detailed proof of security is given.

B.1. Correctness Proof

The following needs to be proven:
Theorem 2. Two matching sessions output the same state

st′i,j = st′j,i and (if they correspond to Key-Exchange)
the same session key ki = kj .

This can be proven as follows. Matching sessions have
to be (1) accepted (2) between the partners in the roles
that the involved parties expect (3) without modification
of messages. The correctness of SEKA relies on the fol-
lowing invariant: the input state of both parties is always
the same in a matching session. Using these conclusions,
the following inductive argument proves the claim:

Induction Start. For the Bootstrap session, the correctness
of the underlying key exchange protocol guarantees that
the ephemeral key keph is the same. Hence, the inputs to
KDF are the same and the output state is the same.

Induction Step. For any Key-Exchange session, assume
that the input state is the same for both parties. This
causes the output state and session key to be the same. In
this case, the message authentication scheme is invoked
with equivalent inputs for all tags. Because it is correct,
all tags can be verified. This means that the sessions
accept. Because the key exchange protocol is correct, the
ephemeral key keph computed in both sessions is equal.
Because of this, the inputs to KDF are equal, and the
output state and session key are also equal.

B.2. Post-Network Robustness Proof

Formally, the post-network robustness of the
Key-Exchange construction was proven by Cohn-Gordon
et al. [11]. However, this proof assumes a pre-shared
initial state that is computed from the public keys of both
parties. Remember that in the post-network robustness
game, the adversary is restricted to passivity during the
Bootstrap phase between the parties. Thereby, the state
output by Bootstrap is computed exactly the same as the
initial state based on pre-shared public keys defined by
[11]. Also, Bootstrap must be accepted at both parties
before Key-Exchange. Hence, the same proof also covers
the SEKA construction. Note that if a party is restricted
to the initiator (I) role, the implementation may omit
sti,jp while still providing post-network robustness, as
the potential states need never be updated.

B.3. Session-Key Secrecy Proof

This subsection focuses on formally proving that
each game step given in section 3.2 does not change
the probability of winning the modified game from
negligible to non-negligible or vice versa. Let A be a
PPT adversary. Let the utilized state of a session refer to
the state sti,jc or st′ that is used as a key for the message
authentication scheme and as key derivation context. The
event of A winning the game i or Wi is formalized as
the event of the game outputting 1. Finally, it is assumed
that np ≥ 2 and ns ≥ 2. Otherwise, the adversary would
not be able to create a valid test session and always lose
the game.

Game 0. The original SEKA game.

Game 1. The same game as game 0, but the challenger
randomly selects the indices (pc, pc′ , sc, sc′) of the
parties pc, pc′ and sessions within the parties sc, sc′ .
The challenger aborts the game if (pc, pc′ , sc, sc′) do
not correspond to the clean session c and its partially
matching session c′, respectively. In other words, the
challenger guesses the parties and sessions that execute
the clean session and its partially matching session
and aborts if it guessed incorrectly. Remember that
for each execution of the security game, np and ns

are fixed upper bounds for the numbers of parties and
sessions, respectively. Hence, this step is a standard
game hop based on a large failure event, and therefore
|Pr(W1) − 1

2 | ≤ negl(τ) ⇐⇒ |Pr(W0) − 1
2 | ≤ negl(τ)

□.

Game 2. The same game as game 1, but aborts if
KDF is queried with key material kcleaneph , which is the
ephemeral key of the clean session. In this game, the
challenger knows the clean session before it is created. As
it simulates the computations of the honest parties itself, it
always knows kcleaneph . Thus, the challenger can compare all
inputs made to the random oracle by A with the identified
kcleaneph and abort if it is ever input into the oracle. Because
of the random oracle assumption, the challenger knows all
inputs that the adversary queried from KDF [15].

650

Let Pr(F) denote the event that the failure condition
occurs. It needs to be proven that Pr(F) ≤ negl(τ) in
order to prove that |Pr(W2)| − |Pr(W1)| ≤ negl(τ). Let
ϵKE denote the advantage of an adversary winning the
CKAM

PFS-game. Using a reduction, it can be proven that
Pr(F) ≤ ϵKE + negl(τ). To this end, an adversary A′ in
the CKAM

PFS-game can be constructed from an adversary
A in game 2 as follows. For all sessions except the clean
session, A′ simulates all oracles like the challenger would.
In the clean session, A′ uses its oracles to retrieve m1 and
m2 of the underlying key exchange protocol. Remember
that the clean session c is the last session that fulfills
the requirements laid out in the freshness attributes, i.e.,
its partially matching session c′ is created before c. In
this game, the challenger knows which session will be the
partially matching session to the clean session and which
session will be the clean session. By extension, A′ can use
the same approach of guessing these sessions and resort to
randomly generating the output bit if it selected the wrong
sessions. Thereby, A′ can ingest m1 into c′ and m2 into
c, replacing the honestly generated messages of only this
conversation with messages from the CKAM

PFS-game in
cases in which it guessed correctly. It then queries the test-
session oracle in the CKAM

PFS-game for this session, using
the returned value as kcleaneph , and performs the remaining
computations in the protocol honestly. A′ logs all KDF
inputs. If A ever queries KDF with kcleaneph , A′ outputs 1.
Else, it outputs 0.
A′ has a polynomial run time if A has a polynomial

run time. Also, in case A′ does not abort, game 2 is
simulated perfectly for A until the invocation of the
random oracle that A′ is waiting for. Because of the
freshness requirements for the clean session, A cannot
query the randomness of the clean session or modify mes-
sages without losing the game. Hence, only valid oracle
queries in the CKAM

PFS-game are made. The session key
k and output state sti,j of the clean session are computed
incorrectly if a truly random kcleaneph is used instead of the
real ephemeral key. However, due to the random oracle
assumption, these outputs do not give the adversary any
advantage in guessing kcleaneph .

Pr(F) ≤ negl(τ) can be shown as follows for A′.
Ignore executions in which A′ did not guess the correct
sessions for c and c′, as in these cases, A′ has a probability
of exactly 1

2 of winning the CKAM
PFS-game. Consider the

following cases in executions where A′ guessed correctly:

1) Assume that a random key instead of the real
kcleaneph is returned. kcleaneph is not used anywhere in
the protocol except as an input for KDF. Hence,
A has only a negligible chance of guessing
kcleaneph . This means that the key is only queried
in the random oracle with probability negl(τ).
Thereby, with probability 1 − negl(τ), A′ wins
the CKAM

PFS-game in this case.
2) Assume that the real kcleaneph is returned. If kcleaneph

is queried in KDF by A, then A′ returns 1 and
wins the game. The likelihood of A′ winning the
game in this case is exactly Pr(F).

Overall, the likelihood of A′ winning the CKAM
PFS-game

is
1+ 1

(np·ns)2
·(Pr(F)−negl(τ))

2 . Since the underlying key

exchange protocol is CKAM
PFS-secure, Pr(F) must be

negligible, proving |Pr(W2)− Pr(W1)| ≤ negl(τ) □.
Also, one can conclude that if the test session and

the clean session are the same session, the likelihood of
the adversary winning the game is negligible. Due to
the freshness conditions, the adversary cannot query the
session key of this session. Since kcleaneph is never queried
in the random oracle, A does not learn the session key
from the oracle. Due to the random oracle assumption,
there is no other way of learning the session key, which
means that the advantage of A winning the game is
negligible. Thereby, in the following steps, it can be
assumed that the test session and the clean session are
not the same.

Game 3. The same game as game 2, but aborts if
the state sti,j utilized in any session between the clean
and including the test session and between the partners
of the test session is returned from the corrupt oracle.
The likelihood of this event is negligible. This can be
concluded from the freshness conditions in the SEKA
game as follows.

By the protocol specification, as soon as the clean
session and its partially matching session are accepted,
the list of potential states sti,jp is cleared. That means
that in the session following the clean session, the state
sti,jc = stj,ic computed in the clean session must be
used. Because of the freshness conditions, the adversary
cannot query the state utilized in any session between
the clean and the test session and between the partners
of the test session using the corrupt oracle. If the test
session has a partially matching session, after the test
session and any partially matching session have accepted,
sti,jp is cleared in both parties and sti,jc is updated.
Hence, the states utilized in any previous sessions are
no longer contained in the output of the corrupt oracle.
Also, if the test session has no partially matching session
or it is not accepted, the adversary is prohibited from
using the corrupt oracle against the party which did not
clear its states indefinitely. The test session must have
been accepted, which means that the states at its party
are always cleared. Hence, all previous states cannot
be learned from a corrupt query issued after the test
session ends. Usage of the corrupt oracle between the
clean and the test session is directly forbidden by the
freshness conditions. Finally, because of the random
oracle assumption, the inclusion of the partners of the
session in the context argument and the chaining of the
random oracle, one of the desired states is only repeated
in an unrelated session with a negligible probability. This
proves that |Pr(W3)− Pr(W2)| ≤ negl(τ) □.

Game 4. The same game as game 3, but aborts if
the adversary queries KDF in a way such that the state
sti,jc utilized in any session between the clean session
and including the test session between the partners of the
test session is returned. As was discussed in game 3, the
challenger can trace the input of KDF generated by A
using the random oracle, which means that the challenger
can detect that the event occurred.

In this game, A is not allowed to query KDF with
kcleaneph . The output state sti,j

clean
c of the clean session

651

is the output of a random oracle whose input includes
kcleaneph . Thus, it cannot compute the output state sti,j

clean
c

of the clean session directly. Hence, the adversary can only
compute sti,j

clean
c with a negligible probability. Likewise,

the states utilized in all sessions until and including the
test session depend on the input state, which in turn cannot
be computed without knowledge of sti,jcleanc .

Also, there is no other way that A can use to
learn the state utilized in the relevant sessions. Let
sti,jc be the state utilized in any session started after
the clean up to including the test session between the
partners of the test session. In this game, the adversary
is not allowed to retrieve any of these input states
using the corrupt oracle. Because of the random oracle
assumption, all sti,jc can only be computed from an
output state or session key with negligible probability.
Furthermore, the message authentication scheme could
not reach SNFCMA

A,Π -security if the adversary was able
to compute an sti,jc from the authentication tags. Finally,
remember that this state may also be exchanged with
a state from the list of potential states sti,jp during
execution of the session. All states in sti,jp are cleared
as soon as the clean session accepts. Hence, no state in
sti,jp can be computed without knowledge of sti,j

clean
c .

That means that the adversary has only a negligible
probability of guessing any potential state in sti,jp.
In conclusion, A has only a negligible probability of
guessing any input sti,jc, which means it cannot compute
the output state using the random oracle. This proves that
|Pr(W4)− Pr(W3)| ≤ negl(τ) □.

Game 5. The same game as game 4, but it aborts if any
session that is not the test session and does not partially
match the test session accepts and outputs the same ses-
sion key k. In order to prove that |Pr(W5)−Pr(W4)| ≤
negl(τ), assume that the failure condition has a non-
negligible likelihood. One can see that this leads to a
contradiction using the following argument.

Let s identify an accepted session that is not the test
session and does not partially match it, but outputs the
same session key. Since it was assumed that the failure
condition is true, s exists. Also, if the session key k output
by s is the same as in the test session, s must compute the
same ephemeral key keph and utilize the same state sti,jc.
Otherwise, by the random oracle assumption, the output
is only the same as in the test session with negligible
probability. That implies (1) that s accepted, but (2) the
first or second message sent or received by it were altered
from the ones sent by the test session or (3) the messages
were unaltered, but session states, roles or identities do
not match. For (1) to be true, A must have input one or
two messages into the send oracle, targeting s, depending
on roles.

The probability that (3) is true and s exists is negli-
gible. The identities and utilized states must be the same,
and the roles must be different, for both parties to generate
the same input for KDF. If the input of KDF is different,
the likelihood that the session key matches is negligible.

However, for (2) to be true, A must forge authenti-
cation tags for the input messages. Both roles verify an
authentication tag that includes both messages in order
to accept. As each authentication tag is computed on an

unique input tuple, an authentication tag within the session
cannot be replayed by A. Also, as discussed in the earlier
games, the state utilized in s was never used before, which
means replaying an earlier tag is impossible even if it
was computed for the same input tuple of identities and
messages. Thereby, there are only two ways to accomplish
the forgery: (2.1) forging an authentication tag without
knowledge of the utilized state, or (2.2) knowledge of the
utilized state.

The negligibility of A accomplishing (2.1) can be
reduced to the SNFCMA

A,Π -security of the message authen-
tication scheme. To that end, one can construct an adver-
sary A′ in the SNFCMA

A,Π -game against the underlying
MAC scheme from A in the following way. A′ simulates
all oracles before the test session in the same way the
challenger would. In the test session, A′ uses its own
Mac(k, ·) oracle to compute the authentication tags for
the exchanged messages. Furthermore, A uses a random
session key instead of the session key output by the test
session for the test − session oracle. Since it simulates
all parties, A′ can compare the inputs to the send oracle
with the messages it generated and detect when a message
has been altered. In this case, A′ terminates and presents
the message and tag as forgery in the SNFCMA

A,Π -game.
Obviously, as long as A has a polynomial runtime,

A′ also has a polynomial runtime. One can see that
neither the tags nor the session key in the test session are
computed honestly. However, in (2.2), it will be shown
that A has no advantage over guessing the state utilized
in the session. Thereby, A cannot distinguish honestly
computed authentication tags from authentication tags
computed by the Mac oracle. Also, A cannot compute
the session key of the test session using the random
oracle. Additionally, as a deterministic MAC was required,
no bit of the random number generator is used for the
computation of the MAC, which allows A′ to simulate the
cr−create and randomness oracles correctly. Hence, the
game simulated by A′ is indistinguishable from the true
SEKA game as long as A has no knowledge of the state
utilized in the test session. That means that if A has a non-
negligible advantage in winning the SEKA security game,
it must have a non-negligible likelihood of querying the
session key of the test session using the session − key
oracle. The only remaining way for A to achieve this is
to modify a message or tag generated in the test session,
making the session in the involved parties non-matching.
In this case, there are two outcomes:

1) The modified message and tag are invalid. In this
case, the receiver session aborts, and A cannot
query its session key. A has a likelihood of
1
2 + negl(τ) of winning the game, as it gains
no advantage from the manipulation.

2) The modified message and tag are valid. In this
case, the combination of message and tag is a
valid forgery in the SNFCMA

A,Π -game, and A′

wins the game.

Hence, one can see that if the advantage of A winning
the SEKA game over guessing is not negligible, then the
likelihood of A′ winning the SNFCMA

A,Π -game against the
MAC scheme is not negligible. Since the MAC scheme
is SNFCMA

A,Π -secure, the advantage of A winning the
SEKA game must be negligible. Thereby, the likelihood

652

of (2.1) is non-negligible. In order to accomplish (2.2), the
adversary needs to know sti,j

′
c utilized in s. In this game,

the adversary is not allowed to query the state using the
corrupt oracle or compute it using KDF, and it was argued
that no other way to learn the state exists in game 4.

Hence, s only exists with negligible probability. All
in all, this proves that Pr(F) ≤ negl(τ), which implies
that |Pr(W5)− Pr(W4)| ≤ negl(τ)□.

Game 6. The same game as game 5, but aborts if a query
KDF(ktesteph , ·, ·, (sti,jc, IDi, IDj)) with the ephemeral key
of the test session ktesteph , the state utilized in the test session
sti,j

′
c and the identities of the partners of the test session

IDi, IDj and any salt and output length is issued.
By using public information and the randomness

oracle, A may learn ktesteph and the identities. However,
as discussed previously, the adversary has only a
negligible probability of guessing sti,j

′
c. Hence, the

likelihood of the failure condition is negligible. Thereby,
|Pr(W6)− Pr(W5)| ≤ negl(τ).

Game 7. The same game as game 6, but replaces the
session key k output by the test session with a random
k ←R K. |Pr(W7) − Pr(W6)| ≤ negl(τ) can be argued
as follows. Executions of the game in which a session
outputs the same session key as the test session but
does not partially match it were excluded in game 5.
Furthermore, the adversary is prohibited from using the
session-key oracle to query the session key from the test
session and all partially matching sessions in the test-
fresh predicate. The output state of the test session is
statistically independent from the session key due to the
random oracle assumption. Thus, the adversary does not
gain any advantage from querying the output state using
the corrupt oracle. Finally, the adversary is not allowed
to query KDF with the input necessary to re-compute the
session key. Because the output of KDF is truly random,
A only has a negligible advantage in guessing the session
key. All in all, as the adversary is unable to guess the
session key with non-negligible probability, the changes
between the games are undetectable to the adversary and
one can see that |Pr(W7)− Pr(W6)| ≤ negl(τ).

However, in game 7, the session key k is selected
uniformly at random irregardless of the bit b that the chal-
lenger selects. Hence, the output of the test-session query
for each choice of b is computationally indistinguishable.
Thereby, one can see that |Pr(W7)− 1

2 | ≤ negl(τ) □.

Conclusion. For every game step it was proven that if
and only if the advantage of any adversary A winning
the game over guessing is negligible, the advantage of
any adversary winning the original game over guessing
is negligible. Finally, it was proven that the probability
of the adversary winning the last game is 1

2 + negl(τ).
Thereby, Pr(W0) ≤ 1

2 + negl(τ), proving the security of
the construction in the SEKA security model □.

C. Full Evaluation of Impact on Network
Delay and Throughput

This section first introduces an additional optimization
of SEKA that we used to increase network throughput.

This section then details the setups and results of the
experiments that were conducted to evaluate the impact
of SEKA on network delay and throughput. Also, the
conclusions from the experiments are discussed in detail.

C.1. Optimization: Stretching the Session Key

As an optional optimization, a deterministic function
Key − Rotate can use the key derivation function to
stretch a session key computed by SEKA by a config-
urable factor nk. Assuming the key derivation function is
a random oracle (or in practice a strong hash function),
an adversary without knowledge of the SEKA session
key cannot distinguish any of the nk session keys from
random. Thereby, this optimization does not jeopardize
security of the scheme. However, the optimization re-
duces the number of invocations of SEKA by nk. As
the key derivation function can be assumed to execute
significantly faster than SEKA, this reduces the impact
the protocol has on latency and throughput.

C.2. Impact on Delay

We have evaluated the overhead SEKA imposes on
network delays in two different scenarios. First, we de-
ployed sekatunnel on a (loopback) wired network. Due
to the very low baseline latency of the network, we are
able to more accurately measure the overhead imposed by
SEKA.

We also evaluate SEKA on an IEEE 802.15.13 LiFi
prototype system. To this end, we encapsulated the pro-
tocol messages in IEEE 802.15.13 vendor-specific frames
and added custom MAC header fields for authenticated
encryption. We then used the API of libSEKA to add
SEKA for key exchange in conjunction with authenticated
encryption on top of the existing MAC procedures. Due to
technological limitations of the LiFi network at the time
of writing, we were only able to test at the lowest data
rate provided by IEEE 802.15.13. Because of this fact and
the TDMA scheduling, the latency baseline is higher and
noisier, making it more difficult to deduce the exact impact
of SEKA. However, the evaluation suffices to show that
SEKA is practical for use in LiFi networks.

C.2.1. Wired Setup. Setup. This experiment investigated
the impact that SEKA and authenticated encryption have
on the latency of a link-layer network. To this end, a
setup was built around the same Ryzen 7 1700-workstation
that SEKA was already evaluated on in Section 4.2.
Two instances of the sekatunnel were encapsulated into
a network namespace using two Docker containers that
shared a network bridge. Alpine Linux version 3.17 was
used for both containers. The sekatunnel was launched
with between one and four threads per container, and
nk = 1. That is, after 216 packets, a new Key-Exchange
was invoked, and Key − Rotate only derived one key from
each session key. Thereby, this test was designed to be
a worst-case scenario. Both containers were connected
using a virtual bridge, facilitating communication at the
link layer, while preventing the kernel from forwarding
from one tap device to the other tap device without the
packet being sent through the sekatunnel application. That

653

Scenario M σ min max
Reference 0.01 0.004 0.004 0.41

Tunnel w/o Security (1) 0.017 0.003 0.01 0.354
Tunnel w/o Security (2) 0.013 0.003 0.008 0.444

Authentication (1) 0.022 0.005 0.014 0.449
Authentication (2) 0.017 0.003 0.011 0.386

Encryption (1) 0.022 0.005 0.014 0.442
Encryption (2) 0.016 0.003 0.01 0.392

TABLE 3: Mean M , standard deviation σ, minimum min
and maximum one-way latency max in milliseconds by
measurement scenario in the wired setting. Number of
threads in parentheses.

is, each packet input to the tap device was encapsulated
into a sekatunnel frame and encrypted or authenticated,
depending on the configuration.

Before each test, 1000 packets per second were sent
using ping for 10 seconds, serving as a warmup run. One
of the containers ran an iperf 2.1.5 server process in its
network namespace, and the other container ran an iperf
client process in its network namespace. iperf was config-
ured for UDP, sending 10000 packets of the default length
(1470 bytes) per second into the tap interface and running
for 100 seconds. Two additional reference measurements
were conducted: a measurement over sekatunnel without
security, and a measurement via the network bridge, by-
passing the sekatunnel application. Thereby, at least 14
invocations of Key-Exchange were completed during the
test duration if authentication or encryption were enabled.
For the two reference measurements, Key-Exchange was
not executed during the test.

Hypothesis. Because of the asynchronous computation
of Key-Exchange and the Key − Rotate function, there
should only be negligible differences between the mea-
surements with authentication and encryption and the
reference measurements.

Results. In Figure 7 and Table 3, the results of the test
runs can be found. In Figure 7 one can see that both ref-
erence measurements and the encryption enabled scenario
are prone to small spikes in latency that are not correlated
with the 14 periodic invocations of the Key-Exchange
phase during the test with encryption. Table 3 contains
a full statistical evaluation of all measurement scenarios.
The evaluation shows that the average latency slightly
increases when encryption or authentication are enabled,
while latency stability remains essentially the same. In
particular, even the largest spikes in latency are smaller
than the computation time of Key-Exchange on the test
platform that was measured in Section 4.2.

Conclusions. Differences between sekatunnel and the
reference measurements are negligible in a practical ap-
plication. Especially, the reference measurements show
that all measured latency spikes can be explained by
noise in the measurement. The sekatunnel uses elevated
scheduling priority in order to minimize jitter introduced
by scheduling and static ARP entries in order to eliminate
jitter introduced by address resolution. Still, no strict
bounds of the latency can be expected. The slightly higher
average latency when the sekatunnel was enabled can
be fully explained by the encapsulation overhead. The
computation time of encryption or authentication explains

why the average latency increases again when sekatunnel
is started in a secure configuration. The difference between
the maximum latency of the sekatunnel when no security
protocol is active and when security is active is negligible,
as was expected. The difference between the reference
measurements and the sekatunnel measurements can be
explained with the package encapsulation and tap device
overheads. All in all, SEKA in conjunction with AES-
GCM is suitable for Time-Sensitive Networking (TSN),
which is important for TSN-capable LiFi networks like
IEEE 802.15.13.

C.2.2. LiFi Setup. Setup. A setup representative of a real
LiFi network was used to measure the performance impact
of SEKA on real networks. To this end, the HILIGHT
IEEE 802.15.13 prototype network was started with a
coordinator and one network member, with a workstation
connected to the gigabit Ethernet backhaul ports of coordi-
nator and member. The coordinator utilized an Intel Xeon
W3690 and Ubuntu Linux 20.04 with Linux 5.4.0-137-
generic and glibc 2.31, and the member used the Xilinx
Zynq 7000 CPU, the Linux 4.9.0-xilinx kernel and uClibc
1.0.34. OpenSSL 3.0.7 was used on both devices. Due
to limitations of the LiFi system, the IEEE 802.15.13
PM-PHY at its slowest clock rate (12.5 MHz or appx.
nine megabits per second) was used for the measurement.
At slow clock rates, due to the resulting high frame
transmission times, extra round-trips have a higher impact
on round-trip times than on higher data rates. Hence, the
values measured in this experiment are representative of
a worst-case scenario.

The coordinator used one thread for encryption and
decryption, respectively, while the member ran decryption
and encryption on the same thread. Static internet protocol
addresses were assigned to the Ethernet devices of the
workstations.

During the first test, the ping utility provided by
Ubuntu was used to send ICMP echo requests through the
LiFi network to the other client device and measure the
round-trip time. A reference measurement during which
the network security and key exchange protocols were
disabled was also conducted. 100,000 probes were sent
with 100 probes per second, adapting the scenario used
in the wired network scenario to the lower data rate of the
PM-PHY. Due to the used parameters, no Key-Exchange
invocation is expected to be necessary during the test run.
Hence, this test specifically evaluates the latency impact
imposed by the network security protocol. Bootstrap and
the first Key-Exchange were completed before the mea-
surement started, and ten probes were sent before the start
of the test as a warm-up run.

For the second test, iperf version 2.0.13 was started
in UDP server and client modes on both workstations.
The clocks of both workstations were synchronized using
the network time protocol for accurate time measurement.
After that, a uniform UDP flow with a data rate of
one megabit per second was sent through the network,
and the inter-packet delays and latencies were measured.
This allowed testing uplink (from member to coordinator)
and downlink (from coordinator to member) directions
separately. The test was run for one hour and transmitted
750.000 frames with nk = 10, necessitating at least one

654

0 20 40 60 80 100
Time in s

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

m
in

im
um

, a
ve

ra
ge

 a
nd

 m
ax

im
um

 in
 m

s Key-Exchange needed at
Tunneling w/o Security (2)
Encryption (2)
Reference

Figure 7: Average and range of one-way latency between initiator and responder container in the wired latency
measurement setting over the test duration, aggregated for each one-second interval, comparing encryption enabled
with two insecure reference configurations. Appx. start intervals of Key-Exchange invocations marked, revealing that
latency spikes and Key-Exchange invocations are not correlated.

Scenario M σ min max
Authentication 3.92 0.42 2.6 14.60

Encryption 3.92 0.44 2.55 14.6
Reference 3.91 0.22 2.52 13.2

TABLE 4: Median M , standard deviation σ, minimum
min and maximum round-trip time max in milliseconds
by measurement scenario in the IEEE 802.15.13 setting.

invocation of Key-Exchange. Hence, this test is represen-
tative of long-term usage of the network and measures
the effects of both network security and key exchange
protocol. Due to the PM-PHY’s lower data rate and the
TDMA scheduling, if incoming data frames had to wait
for a key exchange to complete, this would be evident in
a latency spike. Since wired networks have faster round-
trip times, the same scenario would be less obvious in a
wired setting. Hence, this test setup was only used with
the LiFi network.

Hypothesis. Because of the asynchronous computation
of Key-Exchange and the Key − Rotate function, there
should be only negligible differences between the SEKA
measurements and the reference measurement.

Results. In figure 10 and table 4, the results of the first
test can be found. Figure 8 and figure 9 contain the results
of the second test.

Conclusions. All in all, the measurements for all three
scenarios in all three tests are within the margin of error.
Especially, one can see that the network security and key
exchange protocol has no measurable impact on the high
percentiles and maximum. As in the previous scenario,
authentication and encryption slow the network down

by less than 100 µs on average. This discrepancy can
be explained by the computation time required and the
overhead introduced by the upcall into libSEKA.

Furthermore, one can see that in the uplink scenario
in particular, latencies even stabilize slightly when the
network security protocol is enabled. In the reference mea-
surement, the minimum-maximum-range of the latency
oscillates by about 1.5 milliseconds. This is roughly the
same as the TDMA slot size used by the scheduler in the
given scenario. Hence, the oscillation can be explained
by frames that arrive marginally too late and have to be
scheduled in the next slot. The additional time used in
the upcall likely reduces the likelihood of this scenario,
stabilizing latencies.

Finally, note that the isolated latency spikes can be at
least partially attributed to clock drift and synchronization
between the measurement systems. Because of the high
timing stability of the LiFi network, clock synchronization
has a slight impact on the results.

C.3. Impact on Throughput

Setup. The final experiment in this section investigated
the sustainable throughput. Using the same setup as in
Section C.2, authenticated encryption was enabled for
both communication directions and the number of threads
launched in both sekatunnel processes was varied. Be-
tween 1 and 7 threads were launched, avoiding thrashing,
and nk was set to 10 in order to decrease computational
overhead of the protocol. iperf was started in TCP mode
with default settings and without bandwidth restriction,
measuring the maximum sustained throughput through

655

0 500 1000 1500 2000 2500 3000 3500
Time in s

0

5

10

15

20

25
La

te
nc

y
m

in
im

um
, a

ve
ra

ge
 a

nd
 m

ax
im

um
 in

 m
s Key-Exchange needed at

Downlink Authentication
Downlink Encryption
Downlink Reference

Figure 8: Average and range of one-way latency in the IEEE 802.15.13 setting, downlink measurement.

0 500 1000 1500 2000 2500 3000 3500
Time in s

0

5

10

15

20

25

30

La
te

nc
y

m
in

im
um

, a
ve

ra
ge

 a
nd

 m
ax

im
um

 in
 m

s Key-Exchange needed at
Uplink Authentication
Uplink Encryption
Uplink Reference

Figure 9: Average and range of one-way latency in the IEEE 802.15.13 setting, uplink measurement.

3.6 3.8 4.0 4.2 4.4
Round-Trip Time in milliseconds

0

5

10

15

20

25

30

35

De
ns

ity

Authentication
Encryption
Reference

Figure 10: Histogram of round-trip times in milliseconds
by scenario in the IEEE 802.15.13 setting.

the tunnel. As a reference, the throughput of sekatunnel
without encryption or authentication was measured.

Hypothesis. The sekatunnel application provides a
throughput above 1 Gigabit per second in all scenarios.

Results. Figure 11 illustrates the throughput in each sce-
nario. The performance of the sekatunnel is identical both
when encryption is enabled or disabled with 5 or more
threads, while lower thread count reduces throughput.

Conclusions. The encapsulation in sekatunnel and the tap
device seems to be the bottleneck in this scenario. This
can be explained by the system call and context switch
overhead. Also, as data needed to be copied between
buffers in different address spaces for encapsulation, en-

656

0 50 100 150 200 250 300
Time since test start in seconds

0

1000

2000

3000

4000

5000

6000

7000

Th
ro

ug
hp

ut
 in

 m
eg

ab
its

 p
er

 se
co

nd

Encryption (1)
Encryption (2)

Encryption (3)
Encryption (4)

Encryption (5)
Encryption (6)

Encryption (7)
No Security (7)

Figure 11: Receiver throughput over a loopback interface in megabits per second in different scenarios. Number of
threads in parentheses.

cryption and decapsulation, the data rate of the used
dual-channel DDR4-3000 memory modules might have
limited the overall performance as well. However, one
can also see that the sekatunnel scales with the number

of threads launched, and that it is capable of providing
multiple gigabits of throughput per second. This means
that the SEKA in conjunction with AES-GCM is capable
of supporting a multi-gigabit-per-second LiFi network.

657

