
MalRank: A Measure of Maliciousness in
SIEM-based Knowledge Graphs

Pejman Najafi
Hasso Plattner Institute
pejman.najafi@hpi.de

Alexander Mühle
Hasso Plattner Institute
alexander.muehle@hpi.de

Wenzel Pünter
Hasso Plattner Institute

wenzel.puenter@student.hpi.de

Feng Cheng
Hasso Plattner Institute
feng.cheng@hpi.de

Christoph Meinel
Hasso Plattner Institute
christoph.meinel@hpi.de

ABSTRACT
In this paper, we formulate threat detection in SIEM environments
as a large-scale graph inference problem. We introduce a SIEM-
based knowledge graph which models global associations among
entities observed in proxy and DNS logs, enriched with related
open source intelligence (OSINT) and cyber threat intelligence
(CTI). Next, we propose MalRank, a graph-based inference algo-
rithm designed to infer a node maliciousness score based on its
associations to other entities presented in the knowledge graph,
e.g., shared IP ranges or name servers.

After a series of experiments on real-world data captured from
a global enterprise’s SIEM (spanning over 3TB of disk space), we
show that MalRank maintains a high detection rate (AUC = 96%)
outperforming its predecessor, Belief Propagation, both in terms of
accuracy and efficiency. Furthermore, we show that this approach
is effective in identifying previously unknown malicious entities
such as malicious domain names and IP addresses. The system
proposed in this research can be implemented in conjunction with
an organization’s SIEM, providing a maliciousness score for all
observed entities, hence aiding SOC investigations.

CCS CONCEPTS
• Security and privacy → Intrusion detection systems; Malware
and its mitigation; • Information systems→ Data mining.
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1 INTRODUCTION
The majority of today’s medium to large sized organizations collect
event logs generated by different components on the organization’s
premises. These event logs are shipped to a centralized system
known as Security Information and Event Management (SIEM).
Traditionally, this collection and storage has been mostly done for
compliance. However, nowadays, the organizations monitor these
events within their Security Operations Center (SOC), constantly
seeking indicators of compromise such as a sudden spike in the
number of requests made to a server, or access to an unknown port.
More and more organizations are starting to realize the value and
the potential of monitoring and analyzing these data.

SIEMs are expected to be the centralized repository for all events
and information. If there is a threat that has managed to success-
fully bypass the perimeters of defense such as firewall, intrusion
detection system, anti-virus, etc., it is quite likely that there are
traces of its activities somewhere in these log-data shipped to the
SIEM system.

There are numerous works introduced over the last decade that
explore these dark data stored within SIEMs to derive security
value, thus introducing concepts such as big data analytics, machine
learning, data mining and pattern matching into cybersecurity [9].

The majority of those works study the application of machine
learning and data mining for log analysis. Whilst machine learn-
ing has been successfully adopted in other domains, it has been
extremely challenging to utilize it successfully in the cybersecurity
domain. This is mostly due to the nature of security data. In con-
trast to other domains, there are no public, unbiased and up-to-date
datasets that can be used to train a successful and realistic ML al-
gorithm. Even if there exists such a perfectly labeled and unbiased
dataset, there are still serious challenges in building a successful
ML algorithm.

ML-based techniques such as anomaly detection assume that
malicious events have a set of features that are distinguishable from
those of legitimate events. However, this is a strong assumption as
the majority of the features within these data are extremely volatile
and temporal. All it takes is for the adversary to change a few
lines to create a new set of values for a particular feature [17, 44].
Consider an ML algorithm that has learned to distinguish between
legitimate and malicious URLs using number of subdomains and
URL’s entropy as distinct features. While this might work at first
within its training set, it is wrong to assume it can classify under
different circumstances, as all it takes, is to replace the URL string
with a slightly altered string to defeat theML classifier. Furthermore,
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if the ML algorithm tries to include broader patterns, the false
positive rates will increase drastically as legitimate events will end
up posing as malicious from the ML algorithm point of view. That
is the biggest challenge in the application of generic data mining
and machine learning algorithms in the security domain. In other
words, ignoring the existence of an adversary that can constantly
adapt to defeat the detection algorithm.

While the features utilized by the majority of previous efforts are
relatively easy to change, there are other features that are harder to
change. Meaningful associations among entities are such features,
we would like to refer to those as global features. Local features
in contrast are those that adhere to a single entity. For instance,
in malicious domain detection, while URL structure as a feature
is local to a single entity, IP address resolution or the ASNs/IP
range mapping are global as they investigate the association among
different entities. This concept of local/global features in regards
to security analytics has been introduced by Khalil et al. [23] and
Najafi et al. [35].

The hypothesis here is that an adversary’s resources are limited.
Therefore reuse of infrastructure is inevitable, e.g., usage of the
same X.509 certificate, pool of IPs for domains, or even Tactics,
Techniques and Procedures (TTPs). The other key intuition is that
an external entity is less likely to be malicious when it is associated
with a large number of benign entities, e.g., if a domain is visited
by the majority of the workstations in a company, it is less likely to
be a malicious domain [11][46]. Unsurprisingly, this reasoning (i.e.,
guilt-by-association [25]) is also adopted in SOC or forensic inves-
tigation. For example, investigating a potential malicious domain
involves the investigation of open source intelligence and threat
intelligence related to that domain, e.g., its registrar, subdomains,
connected domains, TI feed observation, etc. In this regard, while
an association with malicious entities does not necessarily imply
maliciousness, it could be an indicator of a higher risk.

Ultimately, our approach is expected to utilize a small seed of
threat intelligence to detect previously unknown malicious entities,
therefore allowing us to increase the quality and quantity of our
threat intelligence. It is also an effective threat detection techniques
combating: malvertising, exploit kits’ landing pages, rogue ASNs
or registrars, fast-flux networks, domain shadowing, infrastructure
reuse, malicious entities (e.g., malicious domains/IPs, rogue X.509
certificates).

The main distinct contributions of this paper can be summarized
as follows:

� We propose the blueprint for a SIEM-based knowledge graph
(section 2), emphasizing on the most important entities and
relationships observed in DNS and proxy logs and the rel-
evant Open-Source Intelligence (OSINT) as well as Cyber
Threat Intelligence (CTI).
� We introduce, MalRank, a large-scale graph-based inference
algorithm designed to infer maliciousness using the associa-
tions presented in the knowledge graph (section 3).
� We evaluate MalRank on a SIEM-based knowledge graph
constucted from data collected by an international enter-
prise’s SIEM (2-days of proxy, DNS, DHCP logs) enriched
with related OSINT/CTI (IP ranges, ASN, DNS RRs, X.509
certificates) (section 4).

� We provide a comprehensive overview of all related graph-
based inference algorithms particularly in the context of
cybersecurity (section 5 and 3).

2 SIEM-BASED KNOWLEDGE GRAPH
2.1 Event Logs of Interest
SIEM systems within organizations are centralized repositories that
are expected to hold all relevant security-related data. However, the
amount and the variety of the data ingested into these SIEM systems
vary drastically depending on the organization and its dedication
to security practices, regulatory compliance, and analytics. These
can include events and alerts generated by Intrusion Detection
Systems (IDSs), firewalls, proxy servers, VPN servers, mail servers,
workstations, authentication logs, NetFlow, HTTP/HTTPS traffic,
DNS traffic, inventory, etc. Thus, it is important to determine a
scope in which our knowledge graph is bound to.

In this regard for the purpose of this research, we are going to
only focus on proxy, DNS, and DHCP logs.

Due to the fact that web traffic is typically allowed by the most
of firewalls, HTTP, HTTPS, and DNS traffic are extensively abused
by cybercriminals [1, 14] (e.g., bots communication with command-
and-control servers), hence leading to the popularity of proxy and
DNS log analysis in the security domain.

Oprea et al. [36] discuss the set of features extractable from
proxy logs (e.g., domain connectivity, the referrer string, the user-
agent string) that aid in the detection of malicious domains. Ma
et al. [28, 29] address the same problem using URL’ lexical and
host-based features (e.g., number of dots) with the intuition that
malicious URLs exhibit certain common distinguishing features.
Zhang et al. [49] use term frequency/inverse document frequency
(TF-IDF) algorithm to tackle malicious URL detection. Bilge et al. [7]
introduce EXPOSURE, a system that employs large-scale passive
DNS analysis to detect malicious domains using features such as
the number of distinct IP addresses per domain, average TLL, the
percentage of numerical characters, and etc. Antonakakis et al. [4]
propose Notos, a similar system to EXPOSURE while distinguishing
itself by incorporating complementary information such as the
registration, DNS zones, BGP prefixes, and AS information. In a
later research [5] Kopis is introduced, which separates itself from
previous work by analyzing the DNS traffic at the upper level of
DNS hierarchy rather than local recursive DNS servers.

Unlike these efforts which mostly target local features, we focus
on global features extracted from proxy and DNS logs correlated
with DHCP. Figure 1 shows the nodes and relationships extracted,
and table 1 described each relationship.

2.2 OSINT and CTI
We would like to define Open Source Intelligence (OSINT) as any
type of information gathered from publicly available sources (i.e.,
open-source) that provide context to those observed entities ex-
tracted from our SIEM-based data. OSINT has the potential to im-
prove the inference and reasoning about maliciousness of an entity
(e.g., IP range or ASN for an IP). Furthermore would like define
Cyber Threat Intelligence (CTI) as subset of OSINT that can aid
particularly with the threat detection tasks (e.g., list of Indicators
of Compromise such as malicious domains) [12].



Figure 1: Knowledge graph schema, showing the extracted entities and relationships.

Table 1: The Description and the intuition behind the importance of each relationship used in the knowledge graph, as well as the data source
used to extract such relationship.

Relationship Description Intuition Data Source

subDomainOf Dependency between di�erent levels of a Fully Qual-
i�ed Domain Name (FQDN), e.g., x.example.com, is a
subdomain of example.com

Subdomain abusement (e.g., domain shadowing) is one of the simplest yet e�ective techniques
utilized by cybercriminals to evade detection [35]

Proxy, DNS

requestedAccessTo HTTP/HTTPS request or a DNS query from a client
work station (MAC address) to/for domain/IP

Infected hosts are more likely to visit various malicious domains whereas user behavior on
benign hosts should result in benign domain access [33]

Proxy, DNS
(correlated with
DHCP)

referedTo Relationship between two domain/IP if one has referred
to the other

The majority of the malware serving networks (e.g., exploit kits, drive-by-download, malvertis-
ing) are composed of a tree-like structure in which the victims are usually redirected through
various hops before landing on the main distribution site [33]

Proxy

uses The user agent used by an endpoint (MAC) for a speci�c
HTTP/HTTPS query

If malware is trying to disguise itself as an innocent application (e.g., a browser) to reach out
using HTTP, the user agent string might still di�er from the major UA used by the workstation

Proxy

resolvesTo DNS resolution of a domain name to an IPv4 address
(DNS A records) or reverse DNS lookups for an IPv4
address (DNS PTR record)

In many cases, if a domain is listed as a malicious, intuitively we could assume that the IP
address it resolves to is also malicious for the duration of that resolution [20, 23, 35, 50]

Proxy, DNS

nameServerFor and
mailServerFor

Delegation of a domain name to a set of name servers
(NS) or mail server (MX)

Infrastructure reuse by cybercriminals DNS

aliasFor Canonical names (CNAME) for a domain domains connected by CNAME records share intrinsic relation and are likely to be in a ho-
mophilic state [39]

DNS

isInRange Relationship between an IP and its IP address spaceCybercriminals tend to utilize almost an entire address range for their malicious purpose [30] OSINT: IPR/ASN

assignedTo Relationship between an IP range and its associated
autonomous system (AS)

Malicious domains tend to be hosted on a pool of IPs hosted by speci�c hosting providers (i.e,
ASs) [4, 23, 30]

OSINT: IPR/ASN

belongsTo Relationship between an AS and the organization re-
sponsible for it

Same organization could be responsible for multiple ASs OSINT: IPR/ASN

associatedWith Association between an X.509 certi�cate and a DNS
domain/IP, extraxtable from Subject Alternative Name,
or Subject Common [13]

X.509 certi�cates reuse by cybercriminals. It could be costly and ine�cient to register a cer-
ti�cate for each domain/IP under the attackers' control, and it is easier to reuse a pool of
certi�cates

OSINT: X.509

signedBy The validity of the certi�cate chain extractable from the
chain's certi�cates �ngerprints

Intended to counter malicious self-signed certi�cates and rogue intermediate certi�cates OSINT: X.509

issuedFor Relationship between the subject name (organization)
and the X.509 certi�cate

Although the Subject's Distinguished Name (DN) can be a bogus name, it might still be useful
to utilize with the intuition that a rogue organization might have more than one certi�cate

OSINT: X.509

issuedBy Captures the issuer DN for a X.509 certi�cate Set of issuer might be preferred by a group of cybercriminals due to an easier validation process
[3], or a compromise [40]

OSING: X.509



Similar to event logs, OSINT and CTI could also pivot endlessly,
therefore, it is important to also de�ne a scope for the related OS-
INT. OSINT Framework1 provides a good overview of all available
OSINT sources, Enaqx2 provides a comprehensive collection of OS-
INT tools and Slatman3 provides a curated list of CTI. Furthermore,
due to the fact that our event logs can reach up to 10 terabyte (TB)
gernerated per day, it is also important to select those OSINT and
CTI which can be collected/crawled at scale. Lastly, we would like
to also distinguish between passive and active collection. We de�ne
active as those that require an active engagement with a server or
an API for the collection, e.g., DNS RRs. While passives are those
that can be collected as bulk without an active engagement (e.g.,
ASN).

Thus for the purpose of this research we limit our OSINT/CTI
to IPRanges, ASN, X.509 certi�cates, DNS Resource Records, and our
CTI to malicious domains and IPs. Please refer to Figure 1 for the
related nodes and relationships extracted from those OSINT, and
table 1 for the description and importance of each relationship.

3 MALRANK
3.1 Problem De�nition and Requirements
At high level, we would like to reason about an entity based on its
association with other entities, with the intuition that malicious
entities tend to share some global properties. In this regard, graphs
are ideal for this task due to their capability to preserve the cor-
relation and association among di�erent entities. That is why we
formulate our problem as a graph-based inference problem. More
speci�cally,

Given:

� A directed weighted graphG¹V;Eº whereV corresponds to
the collection of entities (e.g., domains, IPs), andE corre-
sponds to the set of relationships between those entities (e.g.,
resolvesTo).

� A Priorp (label) and prior con�dencec de�ned over V, where
p 2 f0;1g andc 2 »0;1¼. Wherep = 0 represents a neutral
node andp = 1indicates a known malicious node.c represent
the con�dence in the label,0 being no con�dence ,and1
absolute con�dence in trustworthiness of that label (expected
to be set according to the TI source).

Find:

� Maliciousness scores(MalRank) of a nodex, i.e.,s¹xº 2 »0; 1¼.
Higher MalRank score indicates a higher risk.

Graph-based inference has been studied widely in a variety of
domains. Although it is referred to di�erently depending on the
domain (e.g., in�uence, di�usion, propagation, classi�cation), at
the core, the problem can be simpli�ed to the inference of nodes'
properties based on their neighbors. In our case, inferring the ma-
liciousness of a node based on the maliciousness of its neighbors.
This is also known as guilt-by-association throughout the literature
[46]. Before providing an overview of the most related algorithms,
it is important to �rst de�ne our main requirements for our use

1http://osintframework.com/
2https://github.com/enaqx/awesome-pentest#osint-tools
3https://github.com/hslatman/awesome-threat-intelligence/

case that would allow us to better reason about the limitations of
the previous algorithms.

3.1.1 Single Di�used Label.Due to the fact that our graph (de-
scribed in the previous section) is constructed from entities and
relationships observed in an enterprise's SIEM, it is quite unlikely
that the number of benign and malicious entities are proportional,
i.e., majority of the entities are expected to be benign. This is due to
the fact that the most tra�c within an organization is expected to be
benign. That is why it is important for us to consider only one label
(maliciousness). Therefore the algorithm should be able to infer a
maliciousness score for any given node based on the maliciousness
scores of its neighbours while taking into consideration the number
of neutral neighbours to reduce the maliciousness, i.e., if a node
has a high degree with a large number of neutral neighbours, it is
less likely to be malicious The intuition here is that, if an entity is
observed many times, it is less likely to be a malicious entity (e.g.,
a malicious domain is more likely to be accessed by a few number
of enterprise's workstations rather than the majority of them [32]).
This requirement would also allow us to eliminate the super node
issues (nodes with a high degree, e.g., content delivery networks,
web hosting services, or advertising networks).

3.1.2 Directed Weighted Propagation.The next important require-
ment is the ability to de�ne edge weights. Since the knowledge
graph is expected to consist of various types of nodes and edges,
it is important that the algorithm is capable of considering how
maliciousness should be propagated through a particular associ-
ation. For instance, aresolvesToedge should have a much higher
in�uence than requestedAccessTo. Furthermore, although the ma-
jority of the relationships described in the previous section can be
treated as bidirectional edges, the algorithm should be able to not
only incorporate edge directions but also di�erent edge weights
on di�erent directions. This would allow one to have much more
control over not only the in�uence weights but also its directions.
This is important as it can stop an adversary from defeating the
algorithm by connecting to a large number of neutral nodes (e.g.,
referring to large number of benign domains, or adding CNAME
record pointing to other legitimate domain). Although it's quite un-
likely that this is happening at the moment, one must also consider
this as part of the threat modeling.

3.1.3 Maliciousness Influence Maximization.Maliciousness should
be treated like a disease, i.e., the more malicious a node is, the higher
its in�uence. This ensures that the maliciousness does not disap-
pear within a graph of extreme bias towards benignness. Thus, the
algorithm should have a mechanism to adjust the edge weights de-
pending on the source's maliciousness score, i.e., if a node gets more
malicious, the edge weights on the edges connecting that node to
others should be increased accordingly thus allowing maliciousness
to be propagated more e�ectively, and the opposite.

3.2 Background: Graph-based Inference
Algorithms

As mentioned, there are various graph-based inference algorithms
applied in di�erent domains. While investigating all related graph-
based inference algorithms in details is beyond the scope of this
paper, it is still important to mention the in�uential related work



Table 2: Related graph-based inference algorithms and their shortcomings for the purpose of threat detection.

Algorithm Description Shortcomings

Belief Propagation (BP) Also known as sum-product, one of the most popular and successful
applications of label propagation used in probabilistic graphical
models, e.g., Bayesian Networks and Markov Random Field. BP
infers a node's label from some prior knowledge about that node and
other neighboring nodes by iteratively passing messages between
all pairs of nodes in the graph [38,48]. BP is the most widely adopted
graph based inference algorithm used for threat detection (further
described in section 5).

First, BP is designed to work best with probabilistic graphical models which do
not generally take into consideration the type of nodes/edges nor directions [16].
Second, BP expects a balance among labels which is not the case for us (i.e., extreme
bias toward benignness). Hence, due to the numerical instability of multiplication,
maliciousness ends up disappearing for the majority of the nodes that has a con-
nection to a large number of benign nodes. Consider a node having 3 connection to
neutral nodes withP¹xunknown º = 0:5 and 1 connection to a malicious node with
P¹xmal º = 1, running BP until convergence will change the score of the node from
originally 0:5 (P¹xmal º = P¹xbenº = 0:5) to P¹xmal º = 0:508, which is clearly, a
low score for such a structure.

Random Walk with Restart
(RWR)

RW-based algorithms emulate random walkers taking steps within
a graph while having a small probability of teleporting to a random
node, rather than following an out-edge. RWR has been successfully
utilized in numerous related setting, e.g., Google's classic PageRank
[8, 37], TrustRank [26], Distrust Rank [15] and SybilRank [10].

Inability to de�ne di�erent types of nodes and edges, or the ability to introduce
weights on the edges. Although there have been a number of works tackling those
speci�c issues, e.g., Personalized PageRank [6] and Topic-Sensitive PageRank [19] to
incorporate the node's context (types), Biased Random Walks, Weighted PageRank
[47] introducing the concept of edge weights, yet RWR are not adaptable for threat
detection. RWR algorithms are designed to be a measure of importance and not
beliefs, and importance is a relative measure which means, in the most of RWR-
based algorithms the values are never created nor destroyed, rather it is passed from
one node to another. This works great to measure importance, but not maliciousness.
Maliciousness needs to be treated like a disease. Lastly, RWR-based algorithms
assume a connected graph whereas our knowledge graph is extremely sparse [25].

In�uence and Di�usion Designed to study the in�uence and di�usion in social networks
such as how a group of people might adopt an idea, or how informa-
tion might spread. Linear Threshold (LT), and Independent Cascade
(IC) [22] are among the most notable algorithms in this �eld.

These algorithms are extremely simple and require a major adjustment to support
our main requirements, i.e., directional and weighted edges, echo cancelation, and
in�uence maximization.

SimRank A graph-based structural context similarity measure with the in-
tuition that two objects are similar if they are related to similar
objects, which intuitively can be adapted to measure in�uence [21].

Computational complexity, which makes it impossible to use considering the scale
of our knowledge graph

Graph-based Semi-
Supervised Learning

Also known as label propagation tackles the problem of unlabeled
data with the principle idea that unlabeled data can be utilized
to decide the metric between data points and improve models'
performance [45]

Require a major adjustment to support our main requirements.

GraphSAGE A node embedding algorithm that uses neural networks to learn em-
beddings for nodes in the graph structure while taking aggregated
features from a node's local neighborhood [18]

Implementation challenges for the scale of our knowledge graph (i.e., challenges in
parallel and scalable neural network).

and their shortcomings, hence leading us to the introduction of our
MalRank algorithm, and how it is designed to �t our requirements
the best. Table 2 provides a brief overview of the most relevant
graph-based inference algorithms on their shortcomings. We would
like to refer the reader to the references provided to learn more
about the details of each algorithm.

3.3 MalRank Formulation
Let us denote the maliciousness score of a nodex 2 V ass¹xº,
following our earlier intuition and de�nition,s¹xº can be calculated
with:

s¹xº = cso ¹x ºs
o¹xº + ¹1 � cso ¹x ºº

Í

y 2N ¹x º

Í

t 2Tx y

^! yx ¹t º :s¹yº

Í

y 2N ¹x º

Í

t 2Tx y

^! yx ¹t º
(1)

whereso¹xº 2 »0; 1¼refer to the prior of nodex. If x is known ma-
licious nodeso¹xº = 1, and0 otherwise (usually set ifx is observed
in a TI source).cso ¹x º 2 »0;1¼is the prior strength ofso¹xº. This
indicates the trust level of the prior. The value is decided according
to the trust level for the corresponding TI source. This is introduced
to control low quality threat intelligence, we shall discuss this later.

N¹xº is the set of nodes neighboring nodex, Txy is the set of edge
types betweenx andy. ^! xy ¹t º is the maximized/minimized edge
weight on the edge typet directed fromx to y.

3.3.1 Maximized/Minimized Edge Weight,^! xy ¹t º . As discussed pre-
viously, there are three main requirements to control the propaga-
tion and in�uence: �rst, the ability to decay the in�uence di�er-
ently on di�erent edge types. This is achieved by introducing edge
weights,! xy ¹t º denoting the weight on the edge of typet between
x andy. Second, the ability to have di�erent weights on di�erent
directions of the edges. This is achieved by distinguishing the di-
rection of the weight. i.e.,! xy ¹t º , ! yx ¹t º . It is worth to mention
that this is how the algorithm sees the directions. Although our
knowledge graph is a directed graph, from the algorithm perspec-
tive all edges are bidirectional, but the in�uence can be di�erent
on each direction. This way, one could de�ne the! xy ¹t º = 0 and
! yx ¹t º = k if the edge typet betweenx andy is directed fromy to
x only. Lastly, the ability to adjust this decay based on the score of
the in�uencer. Thus, introducing the maximized/minimized edge
weight (^! xy ¹t º). This value is calculated by taking the weighted
average of the original edge weight and the source maliciousness
score:



^! xy ¹t º =

8>><

>>
:

0; if ! o
xy ¹t º = 0

ks¹xº + ¹1 � kº:! o
xy ¹t º; otherwise

(2)

where! o
xy ¹t º is the original edge weight on edge typet directed

from nodex to y andk is the maximizer factor which is expected
to take a value between0:5 and0:8. The higherk values enforce
a higher maximization for the new weight (̂! ) according to the
in�uencer's score.

3.3.2 Iterative MalRank.MalRank can also be calculated iteratively
as follows:

si +1¹xº = cso ¹x ºs
o¹xº + ¹1 � cso ¹x ºº

Í

y 2N ¹x º

Í

t 2Tx y

mi
yx ¹t º

Í

y 2N ¹x º

Í

t 2Tx y

^! i
yx ¹t º

(3)

mi +1
yx ¹t º = »si ¹yº � ¹ 1 � cso ¹x ºº

Í

t 2Tx y

mi
xy ¹t º

Í

z2N ¹x º

Í

t 2Tzx

! i
zx ¹t º

|                                    {z                                    }
echo cancellation

¼: ^! i +1
yx ¹t º (4)

^! i +1
yx ¹t º =

8>><

>>
:

0; if ! o
xy ¹t º = 0

ksi ¹yº + ¹1 � kº:! o
yx ¹t º; otherwise

(5)

wheremi +1
yx ¹t º is the MalRank score sent from nodey to nodex in

iteration i + 1 over edge typet . si ¹xº is the MalRank score of node
x in iteration i .

4 EXPERIMENT: SIEM-BASED KNOWLEDGE
GRAPH AND MALRANK

In this section, we present the details of our experiments running
MalRank on a real-world SIEM-based knowledge graph.

4.1 Experiment Setup
4.1.1 Dataset Description.For the purpose of this research, we
used two days of proxy, DNS, and DHCP logs (almost 3 billion
events) collected by a large international enterprise SIEM, spanning
over 3 TB. For details refer to appendix A.1 table 5.

The described event logs were later enriched with related OSINT
as described in Section 2, i.e., ASN, X.509 certi�cates, and DNS RRs.
In this regard, we used the sanitized version of the BGP pre�xes,
origin ASNs4, and ASN to organization name mapping5 available at
thyme.apnic.net. These �les span to approximately 20 MB total. For
X.509 certi�cates we used censys6 IPv4 snapshot which consists of
the entire IPv4 address space scanned for all ports. This data spans
over 1.2 TB of disk space. Note that, we were only interested in port
443 scans. Due to the enterprise's con�guration for DNS servers
to not log the DNS responses (DNS RRs), we had to pass all the
DNS queries (logged by the DNS server) to our active OSINT-DNS

4http://thyme.apnic.net/current/data-raw-table
5http://thyme.apnic.net/current/data-used-autnums
6https://censys.io/

enricher (scalable implementation of Gieben DNS library7) and log
the responses ourselves.

Lastly, we utilized various sources (e.g., Google's Safe brows-
ing, malwaredomains.com, etc.8) to collect our threat intelligence
that was used as the ground truth trough out our experiments.
Ultimately, we managed to passively collect a total of 1.5 million
malicious indicators (domains and IPs) and 1 million benign do-
mains (from Cisco's top 1 million domains, one can also use Alexa's
tom 1 million domains). Note that our algorithm does not rely
on benignness, and this list was collected only for the purpose of
evaluation.

4.1.2 Hardware Setup.For the purpose of this research, we set up a
big data processing cluster consisting of two Dell PowerEdge (R730,
R820) and �ve Fujitsu Primergy RX600 with a total of 1,864 GB
RAM, 24 CPUs (200 total cores), and 4 TB storage interconnected
via 10 Gb optical �ber. In addition, the data was initially stored
on an external Network Attached Storage (NAS) connected to the
cluster via 3x 10Gb optical �ber. While the detailed description of
the cluster setup is beyond the scope of this paper, we would like to
mention that this cluster is backed by Kubernetes9 for orchestration,
Apache Spark10 for distributed processing, and Apache Kafka11 for
distributed queueing. This allows us to scale our implementations
both vertically and horizontally.

4.2 Implementation
The majority of graph algorithm libraries are designed for single ma-
chine use, thus making large-scale graph processing an extremely
challenging task for today's big data. Pregel originally introduced
by Malewicz et al. [31] brings graph algorithms into the map-reduce
world by expressing graph algorithms as a sequence of iterations,
in each of which a vertex can receive messages sent in the previous
iteration, send messages to other vertices, and modify its own state
and that of its outgoing edges or mutate graph topology. Using this
vertex-centric intuition ("think like a vertex"), one can express a
broad set of algorithms while parallelizing its computation across
any number of nodes. GraphX is Apache Spark's API for paral-
lel and fault-tolerant graph computation at scale. In this regard,
we decided to implement the whole system (the knowledge graph
and MalRank algorithm) with Pregel's computational model using
Apache Spark GraphX. It is worth mentioning that throughout our
experiments Apache Spark was con�gured to utilize a maximum of
72 CPU cores and 1.4TB of memory from the described hardware
setup.

Figure 2, shows the high-level architectural design for the system
implemented for the purpose of this research. As shown there
are four main layers within the system:Event logs PET, OSINT
Enrichment, Loading, andMalRank.

4.2.1 Event Logs PET.This layer is responsible to �rst, preprocess
(e.g., prepare, clean, deduplicate, parse, validate, etc.) the raw event
logs. Second, to extract entities and relationships of interest (as
described in the Section 2 and Figure 1), and �nally, transform

7https://github.com/miekg/dns
8https://github.com/hslatman/awesome-threat-intelligence/
9https://kubernetes.io/
10https://spark.apache.org/
11https://kafka.apache.org/



Figure 2: System architecture for the SIEM-based knowledge graph
and MalRank algorithm implemented for the purpose of this re-
search.

those into graph vertices and edges. The output of this layer is a
set of independent vertices and edges which is then passed to the
loading and the enrichment modules (as expressed in the Figure 2,
whereD represents a vertex typeDomainandRArepresents the
relationshipRequestedAccessTo, and so on).

Each vertex object has avid (vertex identi�er), name, type, tiOb-
servation, andmrScore. Each edge has asrcId, dstId, srcV(the whole
source vertex object),dstV, andeType(edge type). The intuition
behind this speci�c design is to embrace micro service, stateless,
and distributed design patterns. In this regard, despite, duplicating
each vertex within each edge object, the system can scale-out more
e�ciently. This is due to the fact that the loading module can pro-
cess the received vertices and edges independently no matter the
order or distibution.

4.2.2 OSINT Enrichment.This layer consists of various enricher
modules. Upon initialization, each enricher �rst loads and prepare
the previously collected OSINT data (e.g., ASN mapping). Then, it
subscribes to a repository (either a message queue or a �le system
directory) waiting for a batch of vertices. These vertices are pro-
vided as part of PET layer's output. Finally, the enrichers enrich
those observed entities with their corresponding OSINT. For in-
stance, ASN enricher listens for a batch of IPv4 vertices to enrich
with IP range and ASN. The output of the OSINT enrichment layer
is also a set of entities (vertices) and relationships (edges) which is
passed to not only the loading module but also other enrichers for
further enrichment as shown in Figure 2.

4.2.3 Loading.All extracted and processed entities and relation-
ships arrive independently at the loading module. This module is
responsible for de-duplicating, indexing, cleaning and combining
all the vertices and edges. It is also responsible for labeling all ver-
tices according to the TI collected previously while marking some
for the purpose of evaluation. The output of this layer is the �nal
labeled and processed distributed graph.

4.2.4 MalRank Runner.The output of the loading module is then
passed to this layer which runs a distributed and iterative imple-
mentation of the MalRank algorithm. In each iteration for every
edge in the graph, a map function calculates the MalRank msg to
be sent to the destination vertex (according to MalRank Eq. (4)).
Intuitively by the end of this mapper round, each vertex is going to
receive a message for every incoming edge (from other vertices).
Then the reduce function is used to combine all msgs at each vertex
(MalRank Eq. 3). The reduce function itself is written to handle
only two messages at a time, but it will be repeated until all of the
messages have collapsed into a single message.

The described system is designed to work both in streaming and
batch mode. However, in this research, we only utilized its batch
mode. The current implementation of the MalRank does not sup-
port incremental updates. Therefore, one must re-run the MalRank
algorithm to score newly added vertices. We would like to leave this
to our future work, to implement the temporal incremental mode
of MalRank which not only operates on streams but also takes time
(�rst-seen and last-seen) into consideration.

4.3 Graph Structure
Before presenting our results it is important to understand some
key characteristics of our �nal knowledge graph.

After passing the described data set through the event logs PET
layer, 13 million vertices and 122 million edges were extracted.
This process took approximately 4 hours on the described setup.
Next, after passing through the enrichment layer an extra 6 million
vertices and 12 million edges were added making a total of 19 million
vertices and 134 million edges being passed to the loading module.
The enrichment layer processing time was about 2 hours. After the
loading module stage, the �nal graph was created with 15 million
unique vertices and 132 million unique edges.

Figure 3 shows the degree and component distribution of the
created knowledge graph. The distribution follows a power-law
distribution which indicates an extremely sparse graph with very
few edges between the majority of the node and minority with
high degree connected clusters. This is understandable since the
majority of our relationships enforce low degree when we have no
global view of the association rather an enterprise-level view of only
observed entities. The majority of high degree nodes were entities
associated with the enterprise itself, e.g., enterprise domains, and
workstations. For the details of vertex and edge types and their
corresponding counts refer to table 7 in appendix A.3.

As mentioned before, the loading module is also responsible for
labeling the nodes according to the collected TI as well as marking
some for the purpose of evaluation. In this regard, out of 1.5 million
combined TI collected in our experiment we had only 10 thousand
matches (within 15 million vertices).

The loading module took almost 3 hours to complete, with the
�nal graph spanning over 100 GB in memory across the cluster.

4.4 Evaluation
The evaluation in this section has two main objectives, �rst, eval-
uating the e�ectiveness of our approach and intuition as a threat
detection technique. Second, evaluating the MalRank algorithm as
a graph-based inference algorithm.
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