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Abstract: Inclusion dependencies (INDs) are relevant to several data management tasks, such as
foreign key detection and data integration, and their discovery is a core concern of data profiling.
However, n-ary IND discovery is computationally expensive, so that existing algorithms often perform
poorly on complex datasets. To this end, we present F����, the first approximate IND discovery
algorithm. F���� combines probabilistic and exact data structures to approximate the INDs in
relational datasets. In fact, F���� guarantees to find all INDs and only with a low probability false
positives might occur due to the approximation. This little inaccuracy comes in favor of significantly
increased performance, though. In our evaluation, we show that F���� scales to very large datasets
and outperforms the state-of-the-art algorithm by a factor of up to six in terms of runtime without
reporting any false positives. This shows that F���� strikes a good balance between e�ciency and
correctness.

Keywords: inclusion dependencies, data profiling, dependency, discovery, metadata, approximation

1 The Intricacies of Inclusion Dependency Discovery

It is a well-known fact that ever-increasing amounts of data are being collected. To put such
large and complex datasets to use, be it for machine learning, data integration, or any other
application, it is crucial to know the datasets’ structure. Unfortunately, this information
is oftentimes missing, incomplete, or outdated for all sorts of reasons. To overcome this
quandary, the research area of data profiling has borne several algorithms to discover
structural metadata of any given dataset.

A very important and fundamental type of structural metadata of relational databases are
inclusion dependencies (INDs) [AGN15]. They form an integral component of foreign
key (FK) discovery [Ro09], allow for query optimizations [Gr98], enable integrity check-
ing [CTF88], and serve many further data management tasks. Intuitively, an IND describes
that a combination of columns from one database table only contains values of another
column combination, which might or might not be in the same table. Before looking at a
concrete example, let us formalize this notion.

Definition 1 (Inclusion dependency) Let r and s be two relational, potentially equal,
tables with schemata R = (R1, . . . , Rk) and S = (S1, . . . , Sm), respectively. Further, let
R̄ = Ri1 . . . Ri

n

and S̄ = Sj1 . . . Sj
n

be n-ary column combinations of distinct columns. We
say that R̄ is included in S̄, i.e., R̄ ✓ S̄, if for every tuple tr 2 r , there is a tuple ts 2 s, such
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that tr [R̄] = ts[S̄]. R̄ is called the dependent column combination and S̄ the referenced
column combination. With both of them having n columns, the IND is said to be n-ary.

Tab. 1 illustrates a lexicographical example dataset comprising a dictionary table that stores
words of di�erent languages, and a translation table that translates those words from one
language to the other. Apparently, there are, amongst some others, two interesting, ternary
INDs to be found in that example, namely word1, lang1, type1 ✓ word, lang, type and
word2, lang2, type2 ✓ word, lang, type. Intuitively, these INDs require that all words
in the translation table are found in the dictionary table. Note in particular the stronger
semantics in comparison to INDs of lower arity, e.g., word1 ✓ word and word2 ✓ word.
While the former, ternary INDs identify words not only by their literal but also their language
and syntactical type, the latter, unary INDs merely consider the word literal, which does not
su�ce to uniquely identify a word (cf. hat). Due to these stronger semantics, it is worthwhile
to discover INDs of the highest possible arity.

word lang type
hut en noun
hat en noun
has en verb
Hütte de noun
Hut de noun
hat de verb

(a) Dictionary table.

word1 lang2 type1 word2 lang2 type2 fit
hut en noun Hütte de noun ?
hat en noun Hut de noun ?
has en verb hat de verb ?

(b) Translation table.

Tab. 1: A lexicographical example dataset with several INDs.

In the last years, several IND discovery algorithms have been proposed [Pa15, DMLP09,
KR03, DMP03], pushing the boundaries in terms of e�ciency and scalability. However,
many real-world datasets cannot be processed by any of these algorithms within reasonable
time, even on powerful hardware, for two main reasons: First, the number of valid n-ary
INDs is often enormously large in real-world datasets. The result sets alone can, therefore,
already exceed main memory limits [Pa15]. Second, and more commonly, the existing
algorithms need to shu�e huge amounts of data to test IND candidates – in fact, the amount
of shu�ed data depends on the number of IND candidates and easily exceeds the inspected
dataset in size. Some algorithms perform those shu�es out-of-core to overcome main
memory limitations. Still, not only does this operation remain an e�ciency bottleneck, but
also the shu�ed data can become so large that even disk storage limitations are exceeded!

We propose to tackle the latter issue by approximating the INDs of datasets, that is, for any
given dataset we calculate a set of INDs that is complete but might contain false positives.
However, the guarantee of correctness is traded for great performance improvements. Let
us justify, why this trade is worthwhile: We observed that in real-world datasets any two
column combinations are either related by an IND or their values are disjoint to a great
extent. In other words, it is rare that the vast majority of values of one column combination
are included in the other column combination, except for a small remainder. This clear
cut allows to use more light-weight, approximate methods to test IND candidates without
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risking severe accuracy losses. Nonetheless, in the few cases where two columns overlap in,
say, 99 % of their values and an approximate method would indeed incorrectly report an
IND, then this false positive is still a partial IND, i.e., it has only few violating values. We
note that guarantueed and complete correctness of INDs is not required by many use cases,
such as FK discovery [Ro09, Zh10] and data cleaning [Bo05].

To this end, we introduce F����, the first approximate discovery algorithm for unary
and n-ary INDs. F���� uses two di�erent approximate data structures: a hash-based
probabilistic data structure to characterize column combinations with a very small memory
footprint, and a sampling-based inverted index to attenuate statistically expected inaccuracies.
The combination of these two data structures o�ers high-precision results, because both
compensate the other’s weaknesses. In fact, we found F���� to report exact results in all our
experiments. In addition, we characterize the novel class of scrap INDs, a sort of degenerate
INDs that are not applicable to typical IND use cases but usually make up a considerable
share of the INDs in a dataset. F���� identifies and prunes scrap INDs to narrow down the
search space and achieve further performance improvements. This is particularly useful to
prevail in situations where there are actually intractably many INDs, as mentioned above.

The remainder of the paper is organized as follows: In Sect. 2, we describe related work.
We proceed to give an overview of F���� in Sect. 3, followed by a detailed description of
its hybrid IND checking process in Sect. 4 and a formalization and rationale for scrap INDs
in Sect. 5. Then, in Sect. 6, we compare F���� to the exact state-of-the-art IND discovery
algorithm B����� and evaluate F����’s e�ectiveness and e�ciency in detail. Eventually,
we conclude in Sect. 7.

2 Related Work

The discovery of dependencies, such as functional dependencies, order dependencies, or
inclusion dependencies, in a given database is considered an essential component of data
profiling [AGN15]. In this section, we focus on related work that addresses the approximate
and exact discovery of inclusion dependencies.

Approximate IND discovery. We define approximation as estimation of the set of the
actual INDs in a dataset. This nomenclature is in contrast to “approximate INDs” (also:
“partial INDs”) that hold only on a subset of the rows [LPT02, DMLP09]. This orthogonal
concern is not the focus of this paper.

The only existing approach to approximate IND discovery is described by Zhang et al. as
part of foreign-key (FK) discovery [Zh10]. It uses bottom-k sketches and the Jaccard index
to approximate the inclusion of two columns based on Jaccard coe�cients. Their approach
has several disadvantages: For each level of n-ary INDs the hashes for the bottom-k sketches
have to be computed from all actual values. Furthermore, it su�ers from a similar problem
as the probabilistic data structure used by F���� when comparing a column c1 that has only
few distinct values with a column c2 that has many distinct values. The two bottom sets have
potentially only a small overlap and in the worst case, all bottom hashes of c2 are smaller
than the bottom hashes of c1. While F����’s errors are limited to false positives, this e�ect
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can additionally lead to false negatives. Moreover, the authors focus on FK candidates and
apply the approach only to relatively few candidates where the right-hand side has to be
a known primary key. For these reasons, the proposed algorithm produces significantly
di�erent result sets than F����, so that a performance comparison between these algorithms
does not make sense.

Exact IND discovery. In previous research, much attention has been paid to the discovery
of unary INDs, i.e., INDs between single columns. Di�erent discovery strategies have been
proposed, based on inverted indices [DMLP09], sort-merge joins [Ba07], and distributed
data aggregation [KPN15]. While e�cient unary IND discovery is an important part of
n-ary IND detection, the problem is not of exponential complexity and therefore a much
simpler task. Of course, F���� can also be applied to the e�cient discovery of unary INDs.

Research has also devised exact algorithms for the discovery of n-ary INDs, in particular
M��� [DMLP09] and B����� [Pa15]. Both employ an Apriori-like discovery scheme to
find IND candidates. While M��� tests these candidates individually against a database,
B����� employs a more e�cient divide-and-conquer strategy to test complete candidate
sets in a single pass over the data. This makes B����� the current state-of the-art algorithm,
which we compare against in our evaluation. Nevertheless, both strategies exhibit declined
performance and increased memory consumption when testing IND candidates of high
arity. In contrast, F����, which also builds upon Apriori candidate generation, employs
probabilistic data structures that do not su�er from this e�ect.

Besides Apriori-based approaches, depth-first algorithms have been proposed that optimize
candidate generation towards inclusion dependencies of very high arity [KR03, DMP03].
However, these algorithms employ the same expensive IND checking mechanisms as M���
and are only applicable to pairs of tables, lacking a strategy to deal e�ciently with whole
datasets. Another recent approach avoids candidate generation entirely [SM16]. This is
achieved by determining for every pair of tuples from two given tables, which unary INDs
they support. These sets of unary INDs are then successively merged into maximal n-ary
INDs. Again, no strategy is given to e�ciently profile datasets with more than two tables.

Foreign key discovery. Although strongly connected, IND discovery and FK discovery are
distinct problems: not every IND that holds on a given dataset is a FK relationship. Vice
versa, in unclean databases, there might be semantically intended FK relationships whose
corresponding INDs are violated by several tuples [Zh10]. However, INDs are a prerequisite
for several FK discovery algorithms [Ro09, Zh10].

3 Overview of FAIDA

In this section, we present F����, our Fast Approximate IND Discovery Algorithm, from a
bird’s eye view before giving more details in the following sections. Fig. 1 depicts F����’s
general mode of operation. As for most n-ary IND discovery algorithms, F���� starts
by identifying unary INDs, then uses an Apriori-style candidate generation process to
generate binary IND candidates, and checks those in turn. This generate-and-test procedure
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is repeated – i.e., the latest discovered, n-ary INDs are used to generate (n+1)-ary IND
candidates, which are tested subsequently to retain the actual (n+1)-ary INDs – until the
candidate generator produces no more IND candidates for some arity nmax. In the following,
we describe the various processing steps in more detail.
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Fig. 1: Overview of F����.

Preprocessing. The performance of IND discovery algorithms is mainly impacted by the
fact that the input dataset has to be re-read and shu�ed in every IND test phase. F����
attenuates this issue in a preprocessing step. At first, it converts the input dataset into hashed
columns, i.e., the values in the input dataset tables are hashed and stored in a columnar
layout. During the IND test phases, F���� will then resort to those hashed columns rather
than the original input dataset, thereby greatly reducing the amount of data to be read, as
we explain in the next paragraph. Furthermore, hashed samples of every table are stored –
they are needed for bootstrapping the inverted index in the IND test phase. In Sect. 4.1, we
explain the preprocessing step and its impact on performance and the IND result quality
in greater detail. Still, we already want to remark that the use of compact hashes instead
of actual values greatly improves performance of F���� in the subsequent phases, but it
cannot guarantee exact results due to potential hash collisions. If two values share the same
hash value, F���� will deem those two values equal. Nevertheless, this phenomenon can
only cause false positive INDs but not miss out any INDs. Moreover, it is extremely unlikely
that single hash collisions yield false positive INDs, because the distinction between INDs
and non-INDs is usually not governed by single values only.

IND test. To test IND candidates, F���� uses a hybrid approach that builds upon a
probabilistic HyperLogLog structure [Fl07] to represent columns with many distinct values
and a sampling-based inverted index to represent columns with few distinct values. For each
level, i.e., for each IND arity, F���� passes once over the relevant hashed columns, inserts
them into the two data structures, and finally jointly evaluates them to determine the actual
INDs. The IND tests might also produce false positives in addition to those caused by the
hashing during preprocessing, but it does not produce false negatives. Because the IND
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tests and the hashing have consistent error characteristics, F���� is guaranteed to find all
INDs in a dataset. Sect. 4.2 to 4.3 discuss our hybrid IND test strategy in detail.

Candidate generation. F���� uses the same Apriori-style candidate generation as existing
algorithms [DMLP09, Pa15]. This procedure makes use of the downward closure property
of INDs: It only generates an n-ary IND candidate A1 A2 . . . An ✓ B1B2 . . . Bn, if the
n (n�1)-ary INDs A2 A3 . . . An ✓ B2B3 . . . Bn, A1 A3 . . . An ✓ B1B3 . . . Bn, . . . , and
A1 A2 . . . An�1 ✓ B1B2 . . . Bn�1 are verified to hold on the profiled dataset. There are
multiple reasons why we did not replace the candidate generation with an approximate
version. At first, we found in our experiments that the candidate generation only takes
a tiny fraction of the overall runtime of IND algorithms - so the overall gains of any
performance improvement here would be marginal. Secondly, if an approximate candidate
generation produces false positives, we would likely end up with inferior performance,
because the algorithm would need to test those additional IND candidates as well. Finally,
if an approximate candidate generation yields false negatives, i.e., if it misses out on some
IND candidates, F���� cannot guarantee completeness of its results anymore, which would
be a bad trade. However, F���� might still prune some candidates deliberately: In Sect. 5,
we describe the class of scrap INDs that oftentimes make up a great share of all INDs in a
dataset but that are mostly useless. We show how to detect scrap INDs, so as to remove
them from the set of IND candidates for performance improvements.

4 Fast and Lean Inclusion Dependency Approximation

As stated in Sect. 3, F���� adapts the same workflow for IND discovery as most exact
algorithms: First, it discovers all unary INDs and, then, iteratively generates and tests IND
candidates of respectively next arity. However, F���� uses approximation techniques in this
process to reduce the amount of data handled in each iteration and, ultimately, to improve
performance. In the following, we explain the building blocks as well as the interplay of
this approximation scheme in more detail.

4.1 Read-Optimized Input Data

Whenever there is a set of IND candidates to be tested, exact IND discovery algorithms
(i) read the input dataset, (ii) extract the value combinations that belong to dependent or
referenced column combination of any IND candidate, and then (iii) shu�e those value
combinations to compare the column combinations of the IND candidates to determine the
actual INDs. By dropping the guarantee of the correctness of the discovered INDs, F����
can use a completely di�erent, more e�cient, and more scalable approach to test IND
candidates. Some activities of F����’s IND test can be factored out of the IND test loop and
instead be done only once, before the first IND test, which further improves performance.
We describe those in the following.

Hashing. F����’s IND test uses hashes of the values in the input dataset, rather than the
actual values. This is obviously favorable w.r.t. performance and scalability, because hashes
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are of a small, fixed size in contrast to the actual values. Thus, they consume less memory
and can be e�ciently compared. Moreover, F����’s IND test uses H����L��L�� [Fl07]
data structures, which operate on hashes anyway. However, depending on the hash function,
the hashing can be quite CPU-intensive. Of course, it is necessary to read the input data once
before it can be hashed. Because re-reading the input dataset over and over again is costly in
terms of disk I/O, F���� reads the input dataset only once, hashes its values, and writes
the resulting hashes back to disk. Note that for testing n-ary INDs with n � 2, other IND
discovery algorithms need to shu�e combinations of values. In contrast, F���� merges the
individual value hashes of those value combinations into a new, single hash value using
a simple bitwise XOR. Consequently, the descriptions of F����’s other components refer,
without loss of generality, only to single hash values and not to combinations of hash values.

Columnar data layout. In most cases, relational data is organized in a row layout. When
testing n-ary IND candidates with n � 2, most columns of the input dataset usually do not
appear in all IND candidates. Still, in a row layout, those columns have to be read without
being of any use. F���� avoids this ine�ciency by storing above described hashes in a
columnar layout, thereby allowing the IND test to read only those columns that are part
of an IND candidate. For the example dataset from Tab. 1, F���� creates nine files, each
containing the hashes of the values of one of the columns in that dataset.

Table samples. As mentioned in Sect. 3, F���� uses a hybrid IND test strategy with
H����L��L�� structures and an inverted index. The inverted index operates on a small
sample of the (hashed) input data. Our algorithm calculates this sample once in the beginning
and, then, reuses it in every IND test phase. In fact, we have the following requirements for
the sample: Given a sample size s (e.g., s = 500), we need a sample of each table, such that
this sample table contains min{s, dA} distinct values for each column A with dA being the
actual number of distinct values of A. The simple rationale for this requirement is that for
columns with only few distinct values, we aim to ensure that these are e�ectively processed
in the inverted index. If we took a random sample instead, we would most likely capture
only a subset of its actual values leading to an impaired performance of the inverted index.
To generate this sample, we use a simple greedy proceeding that is depicted in Algorithm 1.

The sampling algorithm is applied to each table individually and can be piggy-backed
onto the above described preprocessing steps. Note that it operates on the hashed values
and, thus, benefits from the low memory footprint of its data structures. The algorithm
starts by initializing two data structures, namely Ts, which collects the sample tuples, and
sampledValues, which tracks for each of the columns in the table the values that have been
sampled from it so far (Lines 1–2). Then, it iterates all the tuples of the table (Line 3) to
decide for each tuple if it should be included in the sample. A tuple should be included if a
column exists that does not yet have s di�erent sampled values and the tuple provides a yet
unseen value for that column (Lines 4–7). If so, the tuple is added to Ts and the samples
in sampledValues are updated accordingly. As an example, consider Tab. 1a and assume
s = 2. In that case, Algorithm 1 would sample the first four tuples: The first tuple is always
sampled anyway; the second tuple provides a new value for word; the third for type; and the
fourth for lang. Afterwards, the algorithm has sampled at least two values for each column,
so no further tuple will be picked.
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Algorithm 1: Create a hashed table sample
Input : hashed tuples T for a table with attributes A1 . . . An

minimum values s to be sampled per column
Output
:

sample Ts of the hashed tuples

1 Ts  ;; sampledValues arrayOfSize(n);
2 foreach 1  i  n do sampledValues[i] ; ;
3 foreach t 2 T do
4 addToSample false;
5 foreach 1  i  n do
6 if |sampledValues[i]|  s ^ t[Ai] < sampledValues[i] then
7 addToSample true;
8 if addToSample then
9 Ts  Ts [ {t};

10 foreach 1  i  n do sampledValues[i] sampledValues [ {t[Ai]} ;

4.2 Scalable Probabilistic Inclusion Dependency Test

As stated in the previous sections, the major bottleneck of exact IND discovery algorithms is
the IND candidate testing, which requires shu�ing large amounts of data, especially when
many IND candidates of higher arities arise. Not only are there more value combinations
of larger individual size with increasing arity, but the shu�ing itself also becomes more
expensive. That is because the shu�ing can eliminate duplicate values. However, the
likelihood of duplicate value combinations drastically declines with the arity. Using hashes
instead of values, as described in Sect. 4.1, can only mitigate but not completely avoid this
problem and it might also eventually succumb to memory limitations.

F���� avoids the shu�ing completely and uses a probabilistic approach for IND testing.
The main idea is to calculate a summary for each column combination in the IND candidates
and then perform a heuristic IND test on those summaries. An obvious instance of this idea
is to encode column combinations with Bloom filters and then check for each IND candidate
if its referenced column combination Bloom filter has all bits of the dependent column
combination Bloom filter set. However, Bloom filters are prone to oversaturation for very
large columns. Therefore, we use set cardinalities: Let X ✓ Y be an IND candidate and s a
function that maps a column combination to the set of all its contained value combinations.
Then X ✓ Y is an IND, if and only if |s(Y )| = |s(X) [ s(Y )|. The set cardinality of a
multiset can be e�ciently and e�ectively estimated with H����L��L�� [Fl07], which
scales to very large cardinalities with arbitrary precision.

Before we describe how F���� employs H����L��L�� for IND tests, let us briefly explain
how that counting scheme works. At the core, it makes use of the following observation:
Let s be a sample from a uniform distribution of the values from 0 to 2k � 1 for some k and
let n be the number of leading zeroes in the binary representation of min s using k digits.
Then |s | can be estimated as 2n. Assuming a good hash function that produces uniformly
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distributed, mostly collision-free hash values for its input data, we can count any values via
their hashes. H����L��L�� extends this idea by partitioning the hashes by their prefixes
into buckets and maintain for each bucket the largest number of leading zeroes observed
in the residual su�x bits. The observations in the di�erent buckets are, then, merged via
harmonic mean with additional bias correction [Fl07]. Consider Fig. 2 as an example, where
we use H����L��L�� to estimate the set cardinality of the word column from Tab. 1. We
employ a 4-bit hash function using the first bit for partitioning and the residual three bits
to count leading zeroes. Apparently, for the bucket for the prefix 0, hash(has) = 0011
provides the most leading zeroes in the su�x (namely one), while for the bucket with the
prefix 1, hash(hut) = 1000 provides the most leading zeroes, namely three. Applying the
harmonic mean and bias correction, H����L��L�� estimates four as the set cardinality of
the input values. Note that H����L��L�� is, due to its stochastic nature, rather suited to
estimate the set cardinality of larger datasets.

3
1

hut
hat
has
Hütte
Hut
hat

1000
0100
0011
1111
1011
0100

Value Hash Hyper-
LogLog

Fig. 2: Example H����L��L�� structure with two buckets.

Given this intuition of H����L��L��, we proceed to show how we use this data structure
for IND testing. As mentioned above, the basic idea is that for an IND candidate X ✓ Y
to hold, the set cardinality of Y must be equal to the joint set cardinality of X and Y . A
naïve implementation of this idea would use two H����L��L�� structures to estimate
and compare both cardinalities, say H��Y and H��X[Y . This approach requires only very
little processing e�ort in contrast to the shu�ing of exact IND discovery algorithms: It is
only necessary to scan once through the data and update the H����L��L�� structures,
which themselves are of constant size. However, this is expected to work well only when
(i) Y contains a stochastically relevant amount of elements and (ii) the di�erences of the
count estimates of H��Y and H��X[Y is greater than the expected estimation error of H��Y .
The estimation error can be controlled via the number of buckets in the H����L��L��
structures. With our observation that the distinction of INDs and non-INDs is not governed
by only few values, we can assume the second criterion to hold if we keep the expected
estimation error small, e.g., around 0.1 %.

With that theoretical understanding on the applicability of H����L��L��, we can now
tailor it a bit more towards IND tests: The only case, where H��X[Y would yield an estimate
greater than that of H��Y , applies when there is some element in X that is not Y and
that provides more leading zeroes to any partition in H��X[Y than any element from Y
does. Thus, we can instead maintain the two H����L��L�� structures H��X and H��Y
and check if H��X has observed more leading zeroes than H��Y in any of the buckets.
While this test is logically equivalent to the above naïve approach, it requires F���� to
maintain only one H����L��L�� structure per column combination rather than up to two
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H����L��L�� structures per IND, which is theoretically bounded only by the square of
column combinations.

Tab. 2 exemplifies H����L��L�� structures with two buckets applied to the example
dataset from Tab. 1. Note that in practical scenarios, more buckets should be used to enhance
H����L��L��’s accuracy. Given that all column pairs are IND candidates, the above
described IND test identifies all actual INDs correctly. For instance, word1 ✓ word is
correctly deemed to be an IND, because the H����L��L�� bucket values of word2, i.e., 1
and 3, are less then or equal to the respective bucket values of word, which are also 1 and 3.
This result completeness is guarantueed, because if X ✓ Y is actually an IND, then all
values of X must be considered in the H����L��L�� structure of Y . Correctness of the
result cannot be guaranteed, though. For instance, word ✓ word1 is deemed to be an IND
judging from the H����L��L�� structures, although it is actually not. As mentioned
above, H����L��L�� is not well-suited to compare columns with only few distinct values.
Therefore, we complement it with a second IND test as presented in the next section.

Prefix word lang type word1 lang1 type1 word2 lang2 type2 fit
0 1 1 0 1 1 0 0 0 0 0
1 3 1 2 3 0 1 1 1 1 0

Tab. 2: H����L��L�� structures for single columns of the example dataset.

4.3 Hybrid Inclusion Dependency Test

H����L��L�� is a stochastic counting approximation that works particularly well for
IND tests where both column combinations have many distinct values. To fill its blind spot
– IND candidates containing a column combination with only few values – the IND tests
additionally use an inverted index. The IND testing with inverted indexes has first been
introduced by De Marchi et al. [DMLP09]. The basic idea is to build an inverted index of
the input dataset that maps each value to the columns it appears in. For instance, for our
example dataset in Tab. 1 such an inverted index maps the value en to the set of columns
{lang, lang1, lang2}. Now to find all columns that include a certain column X , it su�ces
to select all column sets that contain X and intersect them. Applying this procedure for
every column X yields all the INDs in the dataset.

To avoid scaling problems, F���� cannot create such an inverted index on the entire dataset.
However, it is possible to create such an inverted index for a subset of the values (or rather a
subset of the hashes as described in Sect. 4.1) in the dataset and apply the said IND test to
it. This idea seems promising, because we can control the sample size and yet focus the
sample in such a manner that it comprises especially the values of columns with only few
distinct values (cf. Sect. 4.1), i.e., those cases where H����L��L�� is not so well-suited.
Moreover, this approach still preserves result completeness: If X ✓ Y is an IND, then
�(X) ✓ �(Y ) has to hold, too, where � selects only those values that are in the sample.

Algorithm 2 implements this idea. It starts by taking the sample tuples for each table
(cf. Sect. 4.1). Then, it creates an inverted index for all column combinations that appear



Fast Approximate Discovery of Inclusion Dependencies 217

in any of the IND candidates (Lines 1–7). Next, Algorithm 2 builds a H����L��L��
structure for each column combinations. Afterwards, the algorithm needs to initialize a
flag in isCovered to keep track of whether all values for a certain column combination
are actually found in the sample and, thus, in the inverted index (Lines 8–12). Having
initialized all relevant data structures, the algorithm iterates all values of all column
combinations (Line 13). If a value is included in the table samples and, thus, a key of the
inverted index, the corresponding index entry is updated with the column combination of that
value (Lines 14–16); otherwise, the algorithm updates the corresponding H����L��L��
structure with that value (Line 17). In the latter case, the algorithm also notes that the
respective column combination is not completely covered by the inverted index (Line 19).
Whether or not a column combination is covered becomes relevant in the subsequent phase
where the IND candidates are actually tested. In the beginning of that phase, only those IND
candidates are retained that hold on the inverted index (Line 20). Now, if the dependent

Algorithm 2: Hybrid IND test
Input : set of IND candidates Ic

samples of hashed tuples for each table Ts
hashes for all value combinations V

Output
:

verified INDs I

1 invertedIndex mapping(defaultValue = ;);
2 foreach Ts 2 Ts do
3 C  relevantColumnCombinations(Ts, I);
4 foreach t 2 Ts do
5 foreach c 2 C do
6 v  t[c];
7 invertedIndex[v] invertedIndex[v] [ {c}

8 isCovered mapping();
9 hlls mapping();

10 foreach c 2 allColumnCombinations(Ic) do
11 isCovered[c] true;
12 hlls[c] hyperLogLog();
13 foreach v 2 V do
14 c columnCombination(v);
15 C  invertedIndex[v];
16 if C , ; then invertedIndex[v] C [ {c};
17 else
18 insert(v into hlls[c]);
19 isCovered[v] false;
20 I 0c  testAll(Ic on invertedIndex);
21 foreach hX ✓ Yi 2 I 0c do
22 if isCovered[X] _ (¬isCovered[Y ] ^ test(hX ✓ Yi on hll[X] and hll[Y ])) then
23 I  I [ {hX ✓ Yi};
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column combination X of any retained IND candidate X ✓ Y is covered by the inverted
index, we can directly promote it as a valid IND (Lines 21–23); otherwise, if neither X nor
Y is covered, we additionally perform the H����L��L��-based IND test to verify the
candidate. Note that, if Y is covered but X is not, then there must be some value in X that
violates X ✓ Y . Thus, we do not add it to the set of actual INDs I in that case.

In summary, the presented IND test follows a hybrid strategy using H����L��L�� and an
inverted index. The sampling-based inverted index reliably discerns INDs between column
combinations with only few distinct values. If, in contrast, IND candidates between column
combinations with many distinct values need to be tested, it automatically switches to
the stochastic H����L��L��-based test that scales well because of its constant memory
footprint regardless of the size of the input data. Still, the inverted index reinforces the test
as a “control sample”.

5 Scrap Inclusion Dependencies

Exact IND discovery algorithms, and also F����, deliberately exclude some uninteresting
INDs in their result sets, even though the respective dataset actually satisfies them. Those
INDs have certain syntactical properties: First, there are trivial INDs X ✓ X with equal
dependent and referenced column combinations, which always hold. Second, discovery
algorithms respect permutability of INDs, i.e., if AB ✓ CD is a valid IND, then BA ✓ DC
must also hold. Thus, it is su�cient to check (and report) only a single IND candidate from
such permutation classes. Omitting these two kinds of INDs reduces both the amount of
resources needed during the discovery process and the size of the output that usually needs
to undergo further, often manual, processing.

On the face of those benefits, we propose to extend the criteria for omissible INDs from
syntactical properties to instance-based properties, i.e., properties of the data comprised
in the columns of an INDs. Specifically, we argue that columns that contain only NULL
values (which we call NULL columns) and columns that contain only a single distinct value
(which we call constant columns) are only contained in INDs that are degenerate and not
actually useful for typical IND use-cases, such as those described in Sect. 1. Thus, it is fair
to omit those scrap INDs – and it is also significant, because in our experiments we found
scrap INDs to appear quite frequently.

NULL columns. There are several ways to interpret NULL values, e.g., using possible-world
semantics or simply treating it as another domain value [Kö16]. Another approach is to
treat NULLs as “no value”, which conforms to the semantics of foreign keys in SQL.
Under that interpretation, a column with only NULLs basically contains no values at all; its
value set is the empty set. Because the empty set is a subset of all other sets, for a NULL
column A and any other column B, A ✓ B is a valid IND. However, not describing an
actual inclusion of values, this IND is unlikely useful. Furthermore, any other IND X ✓ Y
can be extended to X A ✓ Y B, where A and X , as well as B and Y lie in the same respective
tables. Again, this extension is not useful, because it does not refine X ✓ Y , i.e., AX does
not discern tuples beyond X . NULL columns are a common phenomenon. They can occur
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when schemata provide overly detailed column sets or simply when the data for a column
cannot be ascertained. Therefore, F���� detects NULL columns during the preprocessing
(cf. Sect. 4.1), removes them from candidate generation, and reports them in the end. In this
way, no INDs involving NULL columns will be discovered and the user is informed why.

Constant columns. We call a column constant if it stores the same non-null value for every
tuple. During the analysis of several real-world datasets, we found that in all cases of such
constant columns, the value in question (e.g., “�1” or an empty string) either is a surrogate
for a NULL value or a default value (in the sense of SQL’s DEFAULT keyword). Arguably,
INDs containing constant columns are omissible: If the constant is a NULL surrogate, then
the same rationale as for NULL columns applies; in any other case, constant columns still
do not provide much value, because they do not discern the tuples of their table. Such INDs
with constant columns can bloat the IND search and result space. In particular, two constant
columns A and B with the same value can be added to any IND X ✓ Y and form the valid
IND X A ✓ Y B where A and X as well as B and Y are from the same table. Thus, F����
also detects constant columns in order to report and remove them.

By excluding the two described kinds of scrap INDs, F���� often gains significant
performance improvements and, at the same time, enhances the quality of the discovered
INDs. Note that the removal of scrap INDs is an additional, optional improvement of F����
and not a necessity to run the algorithm.

6 Evaluation

In our evaluation, we demonstrate both the e�ciency and e�ectiveness of F����. Regarding
e�ciency, we want to answer two main questions: (i) How does F���� compare to an
exact state-of-the-art IND discovery algorithm, namely B �����? (ii) How well does
F���� scale to large datasets? To investigate the e�ectiveness, we address the following
questions: (iii) How good is F����’s result quality and to what extent is it influenced by its
parameterization? (iv) What are the e�ects of omitting the scrap INDs? We first briefly
describe our experimental setup and then answer these questions in various experiments.

6.1 Experimental setup

Hardware. All experiments were run on a machine with an Intel Core i5-4690 CPU with
1600 MHz, 8 GB of main memory, and a Seagate Barracuda ST3000DM001 3 TB hard
disk. We used Ubuntu 14 and the Oracle JRE 1.8u45 with a maximum 6 GB heap size.

Datasets. The datasets used for evaluation are all publicly available. Some details about those
datasets are listed on the left-hand side of Tab. 3. Further information and links for all datasets,
as well as an implementation of F����, can be found at https://hpi.de/naumann/
projects/repeatability/data-profiling/metanome-ind-algorithms.html.

https://hpi.de/naumann/projects/repeatability/data-profiling/metanome-ind-algorithms.html
https://hpi.de/naumann/projects/repeatability/data-profiling/metanome-ind-algorithms.html
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Parameterization. F���� is configured via two parameters: The sampling-based inverted
index requests the number of values to sample from each column, and the H����L��L��
structures require a desired accuracy of their count estimates, which e�ectively designates
their number of buckets. While F���� is guaranteed to find all INDs, it potentially reports
incorrect INDs due to its approximative nature. Thus, the configuration of the two parameters
impacts F����’s output quality: larger samples and more H����L��L�� counters reveal
violations in IND candidates more accurately. In our experiments, we set the sampling
parameter to a default of 500 and the H����L��L�� accuracy to a default of 0.1 %, which
roughly allocates 640 KiB of main memory for 1,000,000 buckets per H����L��L��
structure. Sect. 6.4 investigates F����’s sensitivity w.r.t. this parameterization and shows
that our defaults are a rather conservative and robust choice that incur no or only very few
false positive INDs. Thus, our defaults are a reasonable choice for the following comparison
with B�����.

6.2 Comparison of FAIDA and BINDER

The premise of approximate IND discovery is that a little loss in result quality can be traded
for large performance improvements. Even though F���� always discovered exactly the
correct INDs in our experiments, it relinquishes correctness guarantees, and, in turn, it
should be more e�cient than exact IND discovery algorithms. To verify this, we compare
F����’s runtimes on various datasets with those of the state-of-the-art algorithm for exact
IND discovery, B����� [Pa15]. Note that F���� prunes scrap INDs, as introduced in
Sect. 5. This novel pruning technique is not restricted to approximate IND discovery and
can be applied to other IND discovery algorithms as well. To allow a fair comparison, we
modified B����� to also prune scrap INDs and provide a separate evaluation of the scrap
IND pruning in Sect. 6.5.

In addition, we considered simple approximate IND discovery baselines. To determine the
impact of using hashes rather than actual value combinations, we modified B����� to hash
long value combinations and operate on those hashes then. This modification always was
approximately 20 % slower, because the additional hashing costs could not be redeemed.
Also, we considered F���� without its inverted index, thereby detecting INDs solely using
H����L��L��. However, while the performance overhead of the inverted index is small,
leaving it out often causes false positive INDs. Those yield unnecessary IND candidates,
so that eventually performance declines (see Sect. 6.4). With these modifications being
inferior, we focus only on F���� and B����� in the following.

Tab. 3 shows the results and runtimes of both algorithms to discover the INDs in various
datasets. F���� outperforms B����� consistently by a factor of five to six. Both algorithms
generated and tested exactly the same IND candidates, which means that F����’s data
preprocessing and approximate IND tests are more e�cient than B�����’s exact, hash
partition-based IND test.

The reason for this improvement is two-fold. At first, F���� tests INDs using compact hashes
rather than the actual values from the datasets, which allows for more e�cient comparisons
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and reduces memory requirements. For instance, the TESMA dataset contains a lot of long
string values. Although, this dataset contains only unary INDs, F����’s hashing approach
can drastically reduce the computation load and easily redeems its data preprocessing
overhead. In addition to that, value combinations of n-ary IND candidates often become
quite long. Again, F���� represents those by a single hash value. The second reason for
the performance improvement is found in the fact that F���� summarizes large datasets
with small H����L��L�� structures and does not need to do any out-of-core execution.
B�����, in contrast, needs to spill data to disk when processing large datasets. The I/O
e�ort can slow it down severely – in particular for long values and value combinations,
respectively.

Non-constant Non-scrap Max. Runtime
Dataset Size columns n-ary INDs arity BINDER F����

CENSUS 117 MB 48 222 6 39 sec 6 sec
WIKIRANK 730 MB 25 118 6 2 min 44 sec 26 sec
TESMA 1.2 GB 114 2 1 1 min 36 sec 25 sec
TCP-H 70 79.4 GB 60 111 3 9 h 32 min 1 h 47 min

Tab. 3: Comparative evaluation for n-ary IND detection.

6.3 Scalability

On the face of ever-growing datasets, scalability is an important property of IND discovery
algorithms. In particular, we investigate two scalability dimensions, namely the number of
rows and the numbers of columns in a dataset, and compare F���� with B����� along
these dimensions.

Row Scalability. To analyze the row scalability of F����, it makes sense to reduce the
impact of other factors a�ecting its runtime, such as value distributions and the number of
INDs among the test datasets. To keep those other impact factors steady across datasets of
di�erent size, we use the TPC-H dataset generator to create datasets with varying numbers
of rows but with the same schema and the same foreign keys. Nevertheless, we observed a
few more, likely spurious, INDs, as the randomly generated data volume increases. Because
their number is very small, they hardly a�ect runtime, though: TCP-H 1 has 104 INDs while
TCP-H 100 has 113.

Fig. 3 displays the results of the row scalability experiment for F���� and B�����. While
both algorithms exhibit a linear scaling behavior, F���� is always around five times faster
than B�����. In other words, the larger the dataset is, the greater are the absolute time
savings of F���� compared to B�����.

Column Scalability. To test the runtime behavior with regard to the number of columns,
we used a subset of the PDB dataset, namely 15 tables with at least 20 columns each. Then,
we executed F���� and B����� 20 times on those tables, thereby only taking into account
the first k columns for each 1  k  20. Incrementing the number of considered columns
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Fig. 3: Runtime scaling of BINDER and F���� with the number of rows.

in each table, rather than just incrementing the number of considered tables, mitigates the
runtime impact of varying numbers of tuples in the tables and yields a smooth increase of
the processed data volume.

Fig. 4 shows the runtime of F���� and B����� together with the number and distribution
of discovered INDs. Apparently, both algorithms scale somewhat linearly w.r.t. the number
of INDs. Nevertheless, F���� scales a lot better in the presence of n-ary INDs, where its
approximation schemes take particular e�ect: At first, F���� resorts to its hashed column
store to test IND candidates, while B����� has to re-read the complete input dataset
multiple times to test IND candidates of di�erent arities. Second, F���� works exclusively
on compact hashes; B����� in contrast concatenates values and shu�es the larger value
combinations to test n-ary IND candidates. Finally, F����’s H����L��L�� structures
keep its memory footprint relatively small, while B����� at some point needs to spill
the mentioned value combinations to disk in order to shu�e them. This spilling causes
B�����’s drastic runtime increase for more than 250 columns. All of the above experiments
demonstrate that F���� trades result correctness for considerable performance gains.
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6.4 Result Correctness

F���� uses two approximate data structures to test IND candidates: a sampling-based
inverted index and H����L��L�� structures, both of which can trade main memory
requirements for accuracy. Hence, it is important to size them in a way that lets F����
yield accurate results without straining main memory too much. To explore this trade-o�,
we executed F���� with di�erent H����L��L�� accuracies (see Sect. 4.2) and column
sample sizes (see Sect. 4.3), thereby measuring the false-positive rate, i.e., the ratio of
incorrectly reported INDs.

Tab. 4 displays the maximum false-positive rate of F���� across the seven datasets COMA,
CENSUS, BIOSQLSP, WIKIRANK, CATH, TESMA, and TPC-H3, and reveals two
interesting insights. First, it is clearly visible that the sampling-based inverted index and the
H����L��L�� structures complement one another. In particular, the H����L��L��
structures alone did not always yield exact results and the inverted index has to be quite
large to achieve full correctness. However, in combination, the two data structures exhibit
superior performance. As a second insight, it becomes apparent that a reasonably sized
inverted index and H����L��L�� structures can robustly provide exact IND results. As a
matter of fact, the column sample size of 500 and the H����L��L�� accuracy of 0.1 %
that we used in our e�ciency experiments turn out to be a rather conservative choice. F����
is quite robust with respect to parameter settings. While these results, of course, do not
imply that it will discover exactly the correct INDs on any given dataset, they do indicate a
high confidence in F����’s results.

HLL accuracy

Sample size 10 % 1 % 0.1 %

1 6.000 0.082 0.024
10 0.243 0.047 0.012

100 0.094 0.000 0.000
1,000 0.036 0.000 0.0000

10,000 0.000 0.000 0.0000

Tab. 4: Maximum false positive rate of F���� over various datasets under di�erent parameterizations.

Having shown that the combination of a sampled inverted index and H����L��L�� yields
high precision, it is intriguing to investigate how F���� behaves when H����L��L�� is
replaced with other data summarization techniques. For this purpose, we repeated the above
experiment with bottom-k sketches, as proposed in [Zh10], and with Bloom filters. To make
these techniques comparable to H����L��L��, we configured the size of the Bloom filter
and the number hashes in the bottom-k sketch, respectively, such that they consume as much
main memory as H����L��L�� for the various accuracy settings from Tab. 4. We found
that bottom-k sketches are not a good choice: Although still yielding good results, bottom-k
sketches performed at most as well as (but often worse than) H����L��L�� and Bloom

3 See https://hpi.de/naumann/projects/repeatability/data-profiling/metanome-ind-

algorithms.html for downloads and details of these datasets.

https://hpi.de/naumann/projects/repeatability/data-profiling/metanome-ind-algorithms.html
https://hpi.de/naumann/projects/repeatability/data-profiling/metanome-ind-algorithms.html
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filters under all parameterizations. This is because bottom-k sketches do not partition the
hash space, which would allow a pairwise comparison of their hash values, as is the case for
bits in a Bloom filter or buckets in a H����L��L�� structure. However, we also found that
Bloom filters performed similarly well as H����L��L�� and are an eligible replacement.

6.5 Omitting scrap INDs

Scrap INDs are those INDs that involve either NULL columns (columns containing no
values other than NULL) and/or constant columns (columns containing only a single value).
In Sect. 5 we argue that such INDs are not meaningful for the typical IND-based applications
and ignoring them could save much computation. It remains to show that the class of scrap
INDs is common and its dedicated treatment worthwhile.

To this end, we analyzed the di�erent types of INDs in various datasets. The results are
displayed in Fig. 5. Approximately two thirds of all INDs in this experiment are scrap INDs.
While the majority of scrap INDs involve NULL columns, we observe that datasets can also
comprise many scrap INDs related to constant columns, such as ENSEMBL. Furthermore,
we measured the runtime of F���� with and without pruning of scrap INDs and found it
to be beneficial. While for three out of the seven datasets, performance was not a�ected,
for the other four datasets, the pruning indeed yielded a performance improvement. On the
EMDE dataset, particularly, we observed a speed-up of factor 20. In consequence, it seems
appropriate to detect and prune scrap INDs already during the IND discovery process.
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Fig. 5: Break-down of IND types for various datasets.

7 Conclusion

We presented F����, an approximate algorithm for the n-ary IND discovery problem.
F���� uses a symbiotic combination of data preprocessing, hashes, a sampling-based
inverted index, and H����L��L�� to test INDs in a highly e�cient and scalable manner.
In our experiments, we found our algorithm to be as much as six times faster than the
exact state-of-the-art IND discovery algorithm B�����. Besides performance aspects,
F���� further guarantees result completeness, i.e., it will find all INDs in a given dataset.
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Although incorrect INDs might be reported, F���� did not yield any false positives in our
experiments. This shows the e�ectiveness of our hybrid IND test. A promising direction for
future research is to adapt F���� for incremental IND discovery: With the low memory
footprint of its data structures, F���� might be a particularly good fit to maintain a set of
INDs on evolving, dynamic datasets. However, especially updating those data structures on
value deletions or changes is a challenging task.
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