
Inclusion Dependency Discovery:
An Experimental Evaluation of Thirteen Algorithms

Falco Dürsch1, Axel Stebner1, Fabian Windheuser1, Maxi Fischer1, Tim Friedrich1, Nils Strelow1,
Tobias Bleifuß2, Hazar Harmouch2, Lan Jiang2, Thorsten Papenbrock2, Felix Naumann2

Hasso Plattner Institute, University of Potsdam, Germany
1firstname.lastname@student.hpi.de, 2firstname.lastname@hpi.de

ABSTRACT

Inclusion dependencies are an important type of metadata in rela-
tional databases, because they indicate foreign key relationships
and serve a variety of data management tasks, such as data linkage,
query optimization, and data integration. The discovery of inclusion
dependencies is, therefore, a well-studied problem and has been
addressed by many algorithms. Each of these discovery algorithms
follows its own strategy with certain strengths and weaknesses,
which makes it difficult for data scientists to choose the optimal
algorithm for a given profiling task.

This paper summarizes the different state-of-the-art discovery
approaches and discusses their commonalities. For evaluation pur-
poses, we carefully re-implemented the thirteen most popular dis-
covery algorithms and discuss their individual properties. Our ex-
tensive evaluation on several real-world and synthetic datasets
shows the unbiased performance of the different discovery ap-
proaches and, hence, provides a guideline on when and where each
approach works best. Comparing the different runtimes and scala-
bility graphs, we identify the best approaches for certain situations
and demonstrate where certain algorithms fail.

KEYWORDS

Inclusion Dependency Discovery, Data Profiling, Evaluation
ACM Reference Format:

Falco Dürsch, Axel Stebner, FabianWindheuser, Maxi Fischer, Tim Friedrich,
Nils Strelow, Tobias Bleifuß, Hazar Harmouch, Lan Jiang, Thorsten Pa-
penbrock and Felix Naumann. 2019. Inclusion Dependency Discovery: An
Experimental Evaluation of Thirteen Algorithms. In The 28th ACM Interna-

tional Conference on Information and Knowledge Management (CIKM ’19),

November 3–7, 2019, Beijing, China. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3357384.3357916

1 INCLUSION DEPENDENCIES

An inclusion dependency (Ind) is a statement about a relational
dataset indicating that all values of a certain attribute-combina-
tion are also contained in the values of another attribute-combi-
nation. This property makes Inds not only an important integrity
constraint for relational databases [6] but also a prevalent notion in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’19, November 3–7, 2019, Beijing, China

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6976-3/19/11. . . $15.00
https://doi.org/10.1145/3357384.3357916

various data management use cases, such as foreign key detection
[21, 26], query optimization [10], schema (re-)design [16], and data
integration [18]. However, most datasets do not provide their Inds,
either because the Inds have never been determined, because they
have been lost during data integration, or simply because the data
format does not allow the storage of such metadata. Whenever
this is the case, data profiling algorithms are needed to efficiently
discover the inclusion dependencies from the raw data.
Problem Statement. Ind discovery is one of the hardest tasks in
data profiling: It is NP-hard [11], as well as one of the first real-
world problems proven to beW [3]-complete [5]. The problem’s
complexity is mainly due to its exponentially large and complex
search space combined with the expensive candidate checks that
are required to verify Inds. For this reason, even the fastest Ind
discovery algorithms take hours or even days to compute larger
datasets, i.e., datasets of several Gigabyte size. Choosing the best
algorithm is, therefore, crucial for the success of Ind profiling.

To deal with the high complexity, various Ind discovery algo-
rithms pursue different search strategies that strive to prune and
optimize the candidate checks. Each strategy has a different impact
as well as strategy-specific costs and shortcomings depending on
the input data and available computing resources. The difference
in discovery performance is often several orders of magnitude so
that picking one algorithm over another can make the difference
of getting a job done in several minutes or failing in several hours.
Unfortunately, no experimental study has ever compared all state-
of-the-art Ind discovery approaches. The experiments published
with each individual discovery algorithm cover only two, at best
three approaches in a setting that is favourable for the published
approach. So choosing the right approach is often a matter of luck.
Contributions. With this paper, we present the first comparative
study that considers all state-of-the-art Ind discovery strategies.
For this purpose, we survey, evaluate, and compare the most popu-
lar algorithms for Ind discovery namely Bell and Brockhausen
[4], DeMarchi [7], Spider [3], S-indd [22], Binder [20], Sindy
[15], Faida [14], Many [25], S-indd++ [24], Mind [8], ZigZag [9],
Find2 [12], and Mind2 [23]. Each algorithm makes a significant
contribution in at least one of the following areas:

• Pruning strategies that eliminate candidates from the search
space without checking them

• Traversal strategies for the search space that maximize the
pruning effects

• Candidate checking techniques that combine and/or shorten
validation processes

• Data management techniques that avoid memory exhaustion

Session: Long - Database and System CIKM ’19, November 3–7, 2019, Beijing, China

219

https://doi.org/10.1145/3357384.3357916
https://doi.org/10.1145/3357384.3357916

We support the choice of the right algorithm for a specific data-
set by discussing the different strategies and techniques and by
pinpointing their strengths and weaknesses. We measure the dis-
covery times of all algorithms on real-world and synthetic datasets
and make suggestions on when to use which algorithm based on
the evaluation results. All algorithm (re-)implementations and all
datasets are available online1.
Structure. We start in Section 2 by providing the formal notations
and terminology used in this paper. Section 3 then provides a survey
of the uInd algorithms and Section 4 does the same for the nInd
algorithms. In Section 5, we present our experimental evaluation
and detailed discussions of the results. Section 6 summarizes the
advantages and disadvantages of the algorithms and provides an
outlook on possible future work in the field of Ind discovery.

2 FOUNDATIONS

Formally, Inds are defined as follows [8]: Given two relational
instances ri and r j of the relational schemata Ri and Rj respectively.
When denoting tuples in ri and r j as u and v and attribute lists
taken from Ri and Rj as X and Y, an Ind σ = Ri [X] ⊆ Rj [Y] (short:
X ⊆ Y) is satisfied iff ∀u ∈ ri ,∃v ∈ r j such that u[X] = v[Y]. Note
that R[X] and u[X] denote the projection of schema R and record u
on the attributes X.

We refer to the left-hand side X of an Ind as dependent attribute(s)
and the right-hand side Y as referenced attribute(s). The arity of an
Ind is defined as the number of its dependent attributes n = |X| =
|Y|. Henceforth, a unary Ind (uInd) is an Ind with an arity of n = 1
and an n-ary Ind (nInd) is an Indwith an arity of n > 1. Inds of the
form R[X] ⊆ R[X] with exactly the same referenced and dependent
attributes X are satisfied on any possible instance. Such trivial Inds
do not need to be discovered.

According to the projection and permutation inference rules
presented in [6], an Ind σ ′ = Ri [X′] ⊆ Rj [Y′] implies an Ind
σ = Ri [X] ⊆ Rj [Y] if X is a projection of any permutation of X′ and
Y is the same projection of the same permutation of Y′. Applying
the same permutation to both lists of attributes X and Y of an Ind
σ always produces a new Ind σ ′ that is effectively the same Ind as
σ . Hence, it is common practice to fix the order of the dependent
attributes X in each Ind according to their order in the schema. It is
also common practice to not consider Inds with repeating attributes
(e.g., Ri [A,A] ⊆ Rj [B,C]), because such Inds are irrelevant for most
use cases. Finally, an Ind σ is called maximal, if no other Ind σ ′

implies σ . The set of all maximal Inds is a complete set of Inds,
because all non-maximal Inds can be derived from it.

Figure 1 shows an example of two relations, namely Movies and
Showings. The following unary and n-ary Inds are valid, the last
one being the only maximum Ind:

Showings[Movie] ⊆ Movies[Title]
Showings[Length] ⊆ Movies[Time]

Showings[Movie, Length] ⊆ Movies[Title, Time]

1https://hpi.de/naumann/projects/repeatability/data-profiling/
metanome-ind-algorithms.html

Showings Movies

Screen Movie Length

1 Titanic 194
2 Titanic 194
3 Shrek 90
1 Ben-Hur 212

Title Stars Time

Titanic 7.8 194
Shrek 7.9 90
Ben-Hur 8.1 212
Gladiator 8.5 155

Figure 1: Example instances of two relations

Candidate validation. Every uInd discovery algorithm, except
Bell and Brockhausen, proposes its own, optimized candidate
evaluation technique that we discuss in detail with each algorithm.
Bell and Brockhausen and all nInd discovery algorithms, except
Binder, Mind2, and Faida, however, rely on SQL (and hence a
database) for their candidate checks. The three most popular vali-
dation queries for Ind candidates either use an outer join, such as
LEFT OUTER JOIN, a set operation, such as NOT IN or MINUS, or a
correlated subquery, such as NOT EXISTS or NOT IN. The optimal
query pattern for Ind validations and, hence, the query pattern used
for all algorithms in this experimental survey is the outer join for
the following two reasons: First, set operations handle null values
differently, i.e., as unknown values that can take the role of any
missing left hand side value. For this reason, set operations find
more and potentially wrong Inds when facing null values. Second,
outer joins are highly optimized in most RDBMS, can use indexes
if present, and support early termination with the LIMIT 1 and
FETCH FIRST 1 ONLY keywords. If no null values are involved,
though, RDBMS might produce same execution plans for both set

operations and outer joins. In our experiments, outer joins were in
fact always the fastest approach – usually a few orders of magni-
tude faster than correlated subqueries and on par with set operation

– and they always produced the expected results, in contrast to set

operation. Hence, all our SQL-based algorithms use outer joins. For
more details on SQL-based candidate validation, we refer to [1].

3 UNARY IND DISCOVERY

In this section, we discuss the various algorithms that have been
proposed for the discovery of unary inclusion dependencies over
the past years of research. Table 1 gives an overview of the nine
algorithms that we consider in this study. Each of these algorithms
contributes at least one unique technique that is often also used
by their successor algorithms. Before we discuss the algorithms
individually, we quickly go over their lineage.

3.1 History of unary IND discovery

In 1995, Bell and Brockhausen proposed the first pruning strategies
that effectively reduce the search space for uInd discovery [4]. Their
main idea was to use logical inference over already discovered Inds
as well as basic column statistics to avoid many of the expensive
candidate checks. To improve the efficiency of the individual candi-
date checks,DeMarchi et al. suggested the use of an inverted index
in 2002 [7]. Because this entire inverted index can become large
and needs to be stored in main memory, Bauckmann et al. proposed
a disk-based sort-merge-join algorithm called Spider in 2006 that
not only overcomes the memory problem of DeMarchi, but also

Session: Long - Database and System CIKM ’19, November 3–7, 2019, Beijing, China

220

https://hpi.de/naumann/projects/repeatability/data-profiling/metanome-ind-algorithms.html
https://hpi.de/naumann/projects/repeatability/data-profiling/metanome-ind-algorithms.html

Table 1: Overview of unary inclusion dependency discovery algorithms

Name Year Validation Storage Special

Bell and Brockhausen [4] 1995 SQL outer join in-memory extensive pruning with statistics
DeMarchi [7, 8] 2002 hash join in-memory all-column hash join
Spider [3] 2006 sort-merge join disk-backed all-column sort-merge join
S-indd [22] 2015 sort-merge join disk-backed all-column sort-merge join and attribute clustering
Binder [20] 2015 hash join disk-backed all-column hash join and divide & conquer
Sindy [15] 2015 map-reduce disk-backed MapReduce-style parallel/distributed discovery
Faida [14] 2017 HLL intersect disk-backed approximation via hashing, sampling, and sketching
Many [25] 2017 hash set intersect in-memory BloomFilter-based candidate generation
S-indd++ [24] 2018 sort-merge join disk-backed all-column sort-merge join and non-uniform bucketing

improves the validation efficiency dramatically by checking several
candidates simultaneously and using early termination for the can-
didate checks [3]. An issue in Spider, namely that it might need to
open too many file handles simultaneously, was solved by Shaabani
and Meinel’s algorithm S-indd in 2015 [22]. Their approach solves
the file handle problem by deriving clusters of attributes incremen-
tally and utilizing different partitioning schemes in the process. At
the same time, Papenbrock et al. introduced Binder, a disk-based
hash-join approach that tackles the Ind discovery task with divide &
conquer techniques [20]. A first fully distributable Ind discovery al-
gorithm called Sindywas also presented in 2015 [15]. The approach
proposed by Kruse et al. also extends the DeMarchi algorithm,
but by making it parallel and distributed rather than using early
termination techniques. In 2017, Kruse et al. proposed another Ind
discovery algorithm that uses various approximation techniques
to improve the discovery performance [14]. The algorithm cannot
guarantee correct results, but it almost always provides correct
results in practice. TheMany algorithm by Tschirschnitz et al. is
a uInd discovery algorithm of 2017 that is optimized for many,
i.e., hundreds of thousands of tables with only very few records. It
proposes a clever uInd candidate generation that avoids generating
n2 many candidates. The most recent algorithm S-indd++ by Shaa-
bani et al. takes inspiration from S-indd and Binder and seeks to
improve upon both of these algorithms [24].

3.2 Unary IND algorithms

Bell and Brockhausen. The unary Ind discovery algorithm
Bell and Brockhausen [4] uses SQL-join statements to validate
the various uInd candidates. Because SQL-based candidate valida-
tions are expensive, the algorithm tries to prune as many candidates
as possible via statistical pruning and transitivity pruning. For sta-
tistical pruning, the algorithm generates only those candidates that
have matching value ranges and data types, i.e., the uInd candi-
dates A ⊆ B is initially generated from data statistics only if A
and B have the same data type and the value range of B, which is
[min(B),max(B)], encloses the value range of A. After the candi-
date generation, the algorithm iteratively validates the candidates
(via SQL) inserting every true uInd A ⊆ B as a directed edge (A,B)
into a graph structure. For every inserted uInd, it tries to infer the
(in-)validity of other uInds through transitivity properties, i.e., it
applies transitivity pruning. For every two edges (A,B) and (B,C)
in the graph, it adds the transitive edge (A,C) and removes the

respective uInd candidate A ⊆ C from the candidate list, because
this candidate needs to be true as well. Since the candidate list of
uInds is sorted by their dependent attribute, the algorithm can,
when inserting an edge (B,A), also prune any B ⊆ C where A ⊆ C
has no edge in the graph, because these uInds must be invalid too.
DeMarchi. The DeMarchi [7, 8] algorithm uses a novel candi-
date validation technique based on an inverted index. Similar to
Bell and Brockhausen, the algorithm first groups the attributes
by their data types into extraction contexts to generate (and val-
idate) only candidates with matching attributes. To generate all
candidates, every attribute (= dependent A) is mapped to the set
of all other attributes (= referenced Ref A) of the same extraction
context. For every extraction context, the algorithm then builds
an inverted index, which is held in main memory, such that every
value v is mapped to a set of all attributesUv containing that value.
A uInd A ⊆ B is valid if every attribute setUv in the inverted index
that contains A also contains B. Hence, to evaluate all candidates,
DeMarchi’s uInd inference step scans allUv of the inverted index
intersecting every Ref A with Uv where A ∈ Uv . In other words,
every intersection removes all candidates A ⊆ B where A contains
value v but B does not. All candidates that survive the intersection
process are true uInd and are reported as {A ⊆ B|B ∈ Ref A}.
Spider. The uInd discovery algorithm Spider [3] is a disk-backed
all-column sort-merge join with early termination. In the sorting
step, the algorithm reads the input relation(s) attribute-wise, sorts
and de-duplicates each column, and writes the sorted lists of values
back to disk into individual files – one per attribute. The authors of
Spider propose to sort the columns via in-database SQL ORDER BY
statements, but non-SQL-based sorting is also possible with Spider
as shown in [20]. After generating all uInd candidates (just like
DeMarchi as a map of dependent attributes A to sets of referenced
attributes Ref A all of same data type), Spider opens all sorted
value files simultaneously creating one file iterator per attribute.
By inserting all head values with their respective attributes into a
min-heap data structure (min by head value), the algorithm can read
a set of attributes with same value v from the head of the min-heap.
This attribute set is equivalent to an index valueUv in DeMarchi’s
inverted index. Hence, for candidate validation, Spider intersects
the retrieved Uv with all Ref A attribute sets with A ∈ Uv . Then, it
reads the next value for all attributes inUv , which updates the min-
heap and lets the algorithm read the attribute set Uv ′ for the next
value v ′. If an attribute has been removed from all uInd candidates,

Session: Long - Database and System CIKM ’19, November 3–7, 2019, Beijing, China

221

its iterator can be closed. When an iterator reaches the end of a
value list, Spider can close it and, when all iterators are closed, all
remaining candidates must be true uInds.
S-indd. The S-indd [22] is an extension of Spider that seeks to
reduces the number of simultaneously opened file handles with
an iterative merging phase. Similar to Spider, S-indd first trans-
forms the input into sorted value files, but it adds an attribute
label to each value in these files, i.e., instead of writing the values
a, b, and c , it writes the tuples (a,A), (b,A), and (c ,A) into the file
of attribute A. Then, instead of opening all files simultaneously,
S-indd opens k files and to merge their sorted lists into one sorted
list of value-attributelist pairs, such as (a,A), (b,AB), (c ,AB), and
(d ,B). The merge process continues until fewer than k lists remain.
To cope with large input datasets, S-indd also proposes to hori-
zontally partition the data in the merge process and to merge the
partitions in the last merge step. The algorithm could now open the
remaining files and run the sort-based intersections from Spider,
but instead S-indd introduces another trick: The algorithm merges
all remaining sorted-value lists into one list of attribute lists Uv (=
the values of DeMarchi’s inverted index) and de-duplicates this
list. Only these duplicate-free attributes lists are then used for the
intersection-based candidate validation process.
Binder. The algorithm Binder [20] is an all-column hash-join
approach similar to DeMarchi but with three major improvements:
First, Binder hash-partitions the data into smaller chunks that fit
into main memory before actually checking for Inds; second, it uses
an additional, dense index to avoid redundant intersect operations
during candidate validation; and, third, it adopts the apriori-gen-
based [2] bottom-up lattice traversal strategy of theMind algorithm,
which we introduce in Section 4, to discover not only unary but
also n-ary Inds. The algorithm’s overall discovery strategy follows
the divide & conquer paradigm: The divide phase reads all input
relations and splits the values in each column via hash-partitioning
into a fixed number of buckets; all values with the same hash are
placed into the same bucket and duplicate values are removed. In
the end, all buckets are written to disk. The conquer phase, then,
reads the buckets successively back into main memory for candi-
date validation. Every read operation fetches all such buckets that
share the same hash. If these buckets do not fit into main memory,
Binder re-partitions them as described in the divide phase. Once
successfully loaded, the data is transformed into an inverted index
(see DeMarchi) and a dense index that points values to the lists
of attributes that they occur in. During candidate validation, the
inverted index is used to intersect the candidates’ referenced sets
Ref A and the dense index is used to select the attribute setsUv from
the inverted index, such that redundant intersections are avoided.
Processing the buckets successively avoids memory overflows and
allows the algorithm to prune buckets of attributes whose Ind can-
didates have all been falsified (see Spider). In the end, only valid
Inds remain. The divide-and-conquer cycle then repeats for each
arity of n-ary Ind candidates using a variation of the apriori-gen
algorithm for candidate generation (see Section 4).
Sindy. The algorithm Sindy [15] is a distributed and, hence, fully
parallel uInd discovery algorithm. It is designed around the func-
tional programming primitives map and reduce and, therefore, well
suited for data flow frameworks, such as Apache Hadoop, Apache

Spark, and Apache Flink. The core idea is similar to the DeMarchi
algorithm, but expressed in distributable terms: In the index con-
struction phase, Sindy reads all records to first map their values to
the attributes they occur in and then group these mappings into
what is DeMarchi’s inverted index. For the candidate generation
phase, Sindy takes the attribute sets from the inverted index and,
then, uses a map to transform each attribute set into all uInd candi-
dates that can be deduced from this attribute set. Marching on with
the candidates, Sindy’s validation phase groups all candidates by
their dependent attribute and, then, intersects their lists of refer-
enced attributes. Again, only the true uInds survive the intersection
process. Due to the distributed nature of Sindy’s discovery strategy,
however, no early termination optimizations are being applied.
Faida. In contrast to all other algorithms in this survey, Faida [14]
is not an exact but an approximate approach to the discovery of
Inds. Although approximate algorithms also try to find all valid
Inds, their results are not guaranteed to be correct and/or complete.
Waiving certain result guarantees allows the use of more efficient
discovery strategies, such as sampling or sketching. The Faida
algorithm in particular sacrifices correctness for efficiency, but it
still guarantees completeness, which means that all true Inds are
discovered but some of them might actually be false positives. This
is an important feature, because re-validating a given Ind is much
cheaper than finding missing Inds. Furthermore, the experiments
in [14] and our own experiments show that Faida’s false positives
rate is really small – the algorithm reported exact results in most of
our experiments. The three approximation techniques that Faida
uses are hashing, sampling, and sketching. In a preprocessing step,
the algorithm first hashes every value in the input relation to com-
pact the data and to accelerate its later processing. The hashed
values are then stored column-wise on disk to not exhaust main
memory. At the same time, Faida bootstraps a small sample of the
hashed records. After hashing and sampling, Faida generates all
uInd candidates. To validate them, the algorithm creates probabilis-
tic HyperLogLog (HLL) structures from the hashed columns and an
inverted index (see DeMarchi) from the sample. A candidate is
then validated on the inverted index, if its dependent side is of low
cardinality, and on the HLL sketches, otherwise. A candidate X ⊆ Y
is valid, if the set cardinality of Y, which is approximated by HLLY,
is equal to the joint set cardinality of X and Y, which is HLLX∪Y.
The cardinality-based test is imprecise if the cardinalities are low;
hence, low cardinality attributes are tested using the inverted in-
dex. Similar to other validation strategies, this approximate test
can be applied to unary and n-ary Ind candidates. For this reason,
Faida can – similar to Binder– successively generate and validate
candidates of higher arity to discover both uInds and nInds.
Many. The Many algorithm [25] is a uInd discovery approach
optimized for a high number of short input relations, i.e., millions
of attributes with only a few dozens values (see, for instance, web
table data). If the number of attributes is high, materializing all
possible uInd candidates is infeasible due to their quadratic mem-
ory consumption. For this reason,Many’s main contribution is a
clever candidate generation strategy that is followed by a simple
candidate validation step: At first, the algorithm reads the all input
tables running each relational column through a BloomFilter. Then,
it successively generates all possible uInd candidates from these

Session: Long - Database and System CIKM ’19, November 3–7, 2019, Beijing, China

222

BloomFilters. A ⊆ B is a uInd candidate if and only if all bits in
A’s BloomFilter are also set in B’s BloomFilter. To efficiently gen-
erate all candidates that meet this condition, Many transforms all
n BloomFilters of lengthm into am × n matrix of bitsets, i.e., the
column-based BloomFilters are turned into row-based bitsets. The
algorithm then considers every attribute A as a potential dependent
side attribute and collects all those bitsets from the matrix that
hold a 1-bit for attribute A. After intersecting these (few dozen)
bitsets, the resulting bitset holds a 1-bit for all those attributes B
that form potential uInds A ⊆ Bwith A. Because the input tables are
expected to be short,Many quickly validates each such candidate
via in-memory hashing-based set intersection on the actual values.
For this intersection, the tables are dynamically loaded from disk
while a least-recently-used cache is used to minimize disk I/O.
S-indd++. The algorithm S-indd++ [24] is an improvement of the
algorithm S-indd in that it introduces a new partitioning approach
for the sorted value-attribute(lists). In the sorting phase, S-indd++
starts by partitioning the data using a hash-function. In contrast
to Binder and S-indd, S-indd++ does not aim for equally sized
partitions and instead deliberately creates a skew in their size: The
first level of partitions should be small and further level increas-
ingly larger. The intuition is that, usually, some attributes can be
pruned early on when they get disconnected from all their Ind can-
didates, which makes subsequent partitions naturally smaller any-
ways. Hence, by processing buckets of smaller size first, S-indd++
tries to avoid the merging of many value lists.

4 N-ARY IND DISCOVERY

This section discusses four well established discovery techniques
for n-ary inclusion dependencies – an overview is given in Table 2.
All nInd algorithms start with the uInds that they either computed
themselves or gathered from one of the uInd algorithms discussed
before. Then, all except Mind2 traverse a search space that is mod-
eled as a candidate lattice. In the following, we first introduce this
search space model, then discuss the lineage of n-ary discovery
techniques, and finally survey each technique individually.
Search spacemodel. A lattice is a partially ordered set of attribute
lists where each pair of elements has a unique supremum and
infimum. The first level of the lattice contains all valid unary Inds,
which are to be discovered with one of the more specialized uInd
algorithms. All further levels combine (n−1)-ary candidates from
the previous level to n-ary candidates as seen in Figure 2, such
that an edge between nodes means that the larger Ind implies the
smaller one. This property, which is also known as anti-monotony,
is useful in Ind-discovery, because whenever an Ind is known to
be unsatisfied, all Inds that are reachable by only following edges
upwards, are also known to be unsatisfied.

4.1 History of n-ary IND discovery

The algorithm Mind by De Marchi et al. was proposed in 2002 and
constitutes the first published algorithm for nInd discovery [7]. It
proposes an apriori-gen-based approach to generate nInd candi-
dates and, hence, traverses the lattice bottom-up using the anti-
monotony property of the candidates to prune invalid ones from the
lattice using their invalid generalizations (upward-pruning). The ex-
tension with which Binder and Faida are later also able to discover

A ⊆ B A ⊆ C B ⊆ A B ⊆ C

AA ⊆ BC AB ⊆ CA BB ⊆ ACAB ⊆ BA AB ⊆ BC AB ⊆ CC

AAB ⊆ BCA AAB ⊆ BCC ABB ⊆ BAC ABB ⊆ CAC

AABB ⊆ BCAC

∅

Level 1

Level 0

Level 2

Level 3

Level 4

Figure 2: A 5-level example lattice: Each node is one Ind

candidate. The four unary Inds are given; the three marked

nInds are to be checked; the white nodes can be disregarded.

nInds is the same bottom-up lattice traversal as used byMind. They,
however, continue with optimized candidate validation strategies.
Because it is also possible to infer the validity of uInd candidates
from their valid specializations (downward-pruning), De Marchi
and Petit proposed shortly after Mind another nInd algorithm,
ZigZag, which estimates an optimistic and a pessimistic border of
Ind candidates and alternates between them using bottom-up and
top-down traversals [9].

Also in 2003, Koeller et al. pursued a similar strategy with their
algorithm Find2 [12]. Instead of estimating an optimistic border,
their algorithm first models the candidates as a hypergraph. With
this representation, Find2 can calculate hypercliques that serve to
deduce large nInd candidates early on; it then traverses the lattice
in an aggressive bottom-up fashion using smaller hypercliques. In
2016, Shaabani and Meinel presented an alternative search space
traversal technique, which infers all maximum uInds from so-called
uInd coordinates [23]: When iteratively intersected, these coordi-
nates generate all maximum uInds directly from the data; hence,
the algorithm does not need to validate candidates individually.

Mind, ZigZag, and Find2 use SQL for candidate validation,
while the other three use their own strategies. Furthermore, Find2,
ZigZag, and Mind2 require all unary Inds (and sometimes even
more Inds) as input – they cannot discover them. And finally,
Find2,Mind2, and ZigZag discover only maximal Inds whileMind,
Binder, and Faida report all n-ary Inds due to their apriori candi-
date generation – the final result set sizes therefore usually differ
between these two groups.

4.2 N-ary IND algorithms

Mind. The nary Ind discovery algorithmMind [8] is an apriori-

gen-based bottom-up lattice traversal algorithm using SQL candi-
date validation.Mind takes all true uInds as input. Starting with
the uInds, it traverses the lattice level-wise, generating and test-
ing ever larger nInd candidates. The candidate generation uses
a variant of the apriori-gen algorithm, proposed by Agrawal and
Srikant for frequent itemset mining [2]. The apriori-gen algorithm
is applicable to the generation of nInd candidates due to their anti-
monotonicity property: Every Ind candidate that is implied by a
valid Ind, i.e., that is a projection of a valid Ind, must be a valid Ind
as well (downward-pruning). Vice versa, every Ind candidate that
implies an invalid Ind must be invalid, too (upward-pruning).

Session: Long - Database and System CIKM ’19, November 3–7, 2019, Beijing, China

223

Table 2: Overview of n-ary inclusion dependency discovery algorithms

Algorithm Year Validation Pruning Traversal Special

Mind [8] 2002 SQL outer join upwards bottom-up apriori-gen based candidate generation
ZigZag [9] 2003 SQL outer join up-/downwards bi-directional pruning via optimistic and pessimistic borders
Find2 [12] 2003 SQL outer join up-/downwards bi-directional clique-finding in hypergraphs
Binder [20] 2015 hash join upwards bottom-up apriori-gen based candidate generation
Mind2 [23] 2016 sort-merge join upwards inference iterative merging of uInd coordinates
Faida [14] 2017 HLL intersect upwards bottom-up apriori-gen based candidate generation

Mind’s variant of apriori-gen generates nInd candidates in such
a way that only possibly true candidates are created – false nInds
are automatically inferred and (upward-)pruned in the process. To
generate all candidates for level k , the algorithm uses the true Inds
from level k−1: In short, X′ ⊆ Y′ is a valid candidate if all its implied
Inds X ⊆ Ywith |X| = |X′ | −1 and |Y| = |Y′ | −1 are true Inds of the
previous level. After generating all candidates for level k , they are
validated using SQL queries against a database. The process repeats
for every level k ′ = k + 1 until no more candidates are created. The
same candidate generation strategy but with different validation
approaches is also used by the algorithms Binder and Faida.
ZigZag. The ZigZag algorithm [9] also uses the candidate lattice
as a search space model, but it alternates between using the apriori-
gen-based bottom-up traversal and a top-down traversal, ‘zigzaging’
between bottom and top Ind candidates. The algorithm takes not
only the unary Inds as input but all Inds of the first k lattice levels;
as proposed by the authors, we use k = 2 as default. The valid Inds
are used to initialize a negative border, a positive border, and an
optimistic positive border. The negative border contains all known
minimal invalid Inds and the positive border contains all maximal

valid Inds. Whenever an Ind candidate is tested to be true or false,
it is added to the corresponding border. The optimistic positive
border, in contrast, contains themaximal candidate Inds, which are
derived as largest compositions of valid, positive cover Inds.

During nInd discovery, ZigZag jumps back and forth between
the negative/positive borders and the optimistic positive border.
The algorithm starts by validating the maximal Ind candidates in
the optimistic positive border. If a candidate is true, all implied
candidates must be true as well and can be pruned (downward-
pruning). If the tested candidate is large, this pruning might have a
high impact. However, if the candidate is false, ZigZag calculates
the percentage of rows that dissatisfy the Ind, i.e., the д′3 error
measure [17]. Because ZigZag needs the number of violating rows,
the SQL queries cannot use early termination when validating Ind
candidates. In case the error measure is below a certain threshold ε ,
the algorithm checks all direct subset Inds of the invalid candidate
(top-down traversal); otherwise or after evaluating all optimistic
positive border candidates, ZigZag jumps to the positive border to
generate and validate the next level in bottom-up apriori-gen-style.
Find2. The bi-directional nInd discovery algorithm Find2 [12]
translates the problem of nInd discovery to the discovery of cliques
in k-uniform-hypergraphs, where each edge must connect exactly
k nodes. The given uInds are the nodes in these graphs and the
nInds at level k of the search space lattice are the k-hyperedges
connecting the uInds from which they are composed. Each level

of the lattice, which is a set of k-ary Inds, is represented as a k-
uniform-hypergraph. Just like ZigZag, Find2 takes the first k levels
of true Inds as input (we use k = 2 by default). After constructing
the k-uniform-hypergraph for the largest given k , the algorithm
calculates all maximum cliques in that graph; these cliques corre-
spond to maximum nInd candidates. Finding maximum cliques in
k-uniform-hypergraphs is NP-hard, but Find2’s Hypercliqe algo-
rithm solves the problem efficiently for sparse graphs with only a
few cliques, which is usually the case for nInd discovery scenarios.
After generating all cliques, i.e., maximum nInd candidates, Find2
validates them using SQL validation queries. If an Ind candidate
evaluates to true, the algorithm has discovered a maximal Ind and
prunes all implied candidates from the search space (downward-
pruning); otherwise, the candidate is broken into Inds of arity k + 1,
which are evaluated thereafter. The valid ones are then used in the
next iteration that starts by finding maximum cliques in level k + 1.
Find2 terminates if no new cliques are found.
Mind2. The nInd discovery algorithm Mind2 [23] requires all
valid uInds as input and then discovers all maximum inclusion
dependencies by deriving them from so-called uInd coordinates.
The coordinates of a uInd A ⊆ B is the set of all tuple pairs (i, j)
for which the value of A at index i is equal to the value of B at
index j. Mind2 groups these uInd coordinates by their i-index
resulting in a mapping of i-indices to lists corresponding j-indices.
By transforming value lists into coordinates, Mind2 formulates
an index structure for the nInd discovery process that relies on
simple integers rather than complex (string) values. The creation
of the coordinates is done via SQL inside a database. Afterwards,
however, Mind2 stores the coordinate mapping (sorted by i-index)
for each uInd in a separate file on disk. It then infers an initial set
of maximum Inds from the given uInds and opens a file reader to
each uInd coordinates file.

The intuition for the next step is the following: AC ⊆ BD is
valid, iff for all i in A ⊆ B and C ⊆ D’s coordinate files the in-
tersection of the respective j-lists is not empty. In other words,
∀ ri [AC] ∃ r j [BD] : ri [AC] = r j [BD].Mind2 checks this property
by iterating all coordinate files simultaneously. After reading the
next mapping of i to a list of j-values from all files, the algorithm
constructs maximum sets of dependent attributes (and according
referenced attributes) such that their intersection of j-value lists is
not empty. These maximum Inds at position i are used to update,
i.e., prune the working set of maximum Inds. Mind2 then reads
and processes the next position i + 1 until all coordinate files are
finished. In the end, the working set contains all maximal Inds.

Session: Long - Database and System CIKM ’19, November 3–7, 2019, Beijing, China

224

5 EVALUATION

This section analyzes and compares the state-of-the-art Ind dis-
covery algorithms of the previous sections. After introducing our
experimental setup, we first present the results for uInd discovery
and then those for nInd discovery.

5.1 Experimental setup

We implemented all algorithms for our Metanome data profiling
framework2, which defines standard interfaces for different kinds of
profiling algorithms [19]. All common tasks, such as input parsing,
result formatting, performance measuring, and algorithm parame-
trization, are standardized by the framework, and decoupled from
the algorithms to ensure a uniform test environment for all thirteen
implementations. Our implementations, additional documentation,
and the datasets used in the experiments are available online3.
Datasets. We evaluate all algorithms on several real-world and
three synthetic datasets, namely TPC-H, Tesma, and ghaIND. Ta-
ble 3 lists all datasets and their characteristics. Faida’s approximate
Ind counts are given in brackets if they differ from the exact re-
sults. Many of these datasets already served evaluation purposes in
the original publications. The numerous selected datasets reflect
a broad range of application domains, such as biology, medicine,
literature, and business.
Null semantics. Depending on the interpretation of null values,
certain Inds might be true or false. Finding the right interpretation
depends on the use case and can be more [13] or less [14] complex.
Because null semantics for Inds are still an open research topic
and the focus of this evaluation is on performance rather than Ind
semantics, we decided to interpret all null values as empty strings,
which basically bypasses the interpretation issue: null values are
equal to each other but different to all other values. We also discard
completely empty columns, because they trivially generate nInds
with all other Inds.
Hardware and software. All experiments are executed on a
Dell PowerEdge R620 running CentOS 6.10. The test machine has
two Intel Xeon E5-2650 (2.00 GHz, Octa-Core) processors and
128 GB DDR3-1600 RAM. All algorithms (besides Sindy) are single-
threaded and use only one processor core. The algorithms run on
Oracle’s JDK 64-Bit Server VM 1.8.0_151 and read their input data
from a PostgreSQL 9.3.23 database.

5.2 UIND experiments

We first evaluate the runtime of the unary Ind discovery algorithms
on different datasets and then analyze the algorithms’ runtime be-
havior for increasing dataset sizes. The experiments will, in sum-
mary, show the following: The in-memory algorithm DeMarchi
performs best for all datasets that easily fit into main memory; if the
datasets are larger than main memory or at least a few gigabytes
large, Binder is the most efficient approach in general; however,
Faida is faster than Binder, if we can tolerate false positives in the
results, and Sindy is even faster than Faida (and, hence, the fastest
algorithm over all), if the hardware has at least eight cores.

2http://www.metanome.de
3https://hpi.de/naumann/projects/repeatability/data-profiling/
metanome-ind-algorithms.html

Table 3: Dataset characteristics

Dataset Size Attributes uInds nInds

Scop 16MB 22 39 36
Cath 4.0 16MB 25 50 81
Census 112MB 42 39 89
Wikipedia 540MB 14 2 0
BioSql 560MB 77 348 507
Wikirank 697MB 29 15 103
Lod 830MB 41 258 Unknown
Ensembl 836MB 130 364 100
†ghaIND 822MB 36 18 203
†Tesma 1GB 114 2 0
†TPC-H 1 1GB 61 96 (99) 8
†TPC-H 10 10GB 61 97 11
Musicbrainz 27GB 1 054 49 829 (49867) Unknown
†synthetic datasets

Runtimes on different datasets. Table 4 lists the measured run-
times of all nine uInd discovery algorithms for all evaluation data-
sets. Despite its clever candidate pruning strategies, Bell and
Brockhausen performs worst, being the only approach that relies
on SQL. DeMarchi performs remarkably well on small datasets,
even though its validation strategy has been used and optimized by
all other algorithms, because it saves the time these other algorithms
need to spill intermediate data structures to disk. On datasets with
only a few attributes and few distinct values (e.g., TPC-H, which
is generated from a fixed-size seed), DeMarchi’s redundant set
intersections are much less expensive than any disk writing costs;
however, on large datasets, such as Musicbrainz, the redundancy
in the candidate validations is more expensive than the disk I/O. Spi-
der does not require the input dataset to fit into main memory and
still offers a reliably good performance. The algorithm is very easy
to implement and works well as long as the number of attributes
is below the operating system’s maximum number of open file
handles. The S-indd algorithm does not have Spider’s file handle
limitation. It is, though, not a clear performance improvement over
Spider: S-indd is sometimes faster, because the algorithm explicitly
de-duplicates the attribute listsUv , which prunes many redundant
list-intersect operations; S-indd is also sometimes slower, because
it writes more data to disk (values and attribute instead of only
values), it might read the data more often (iterative merge process),
and it needs to calculate additional hashes for the data partitioning.

The Binder algorithm outperforms Spider and S-indd on most
datasets, because its hash-join approach is more efficient than the
sort-merge-join approach (O(n) instead of O(n logn)) and because
Binder reads the input relation only once, while the sort-based ap-
proaches read every attribute once. It performs more attribute-list
intersections than S-indd, but it reads and writes less data from/to
disk. S-indd++ improves the disk I/O of S-indd and, hence, achieves
better runtimes; its overall performance still slightly falls behind
Binder. The approximate Ind discovery algorithm Faida sacrifices
the correctness guarantee of its results for clearly better runtimes
than all other (single-threaded) algorithms. The approximation tech-
niques clearly outperform the exact algorithms especially on large
datasets, where data management is not trivial. Although Faida

Session: Long - Database and System CIKM ’19, November 3–7, 2019, Beijing, China

225

http://www.metanome.de
https://hpi.de/naumann/projects/repeatability/data-profiling/metanome-ind-algorithms.html
https://hpi.de/naumann/projects/repeatability/data-profiling/metanome-ind-algorithms.html

Table 4: uInd performance on real-world datasets (minutes)

Datasets B&B DeMarchi Spider S-indd Binder S-indd++ Faida Many Sindy

1 worker 8 workers 32 workers

Scop 0.14 0.04 0.08 0.09 0.07 0.08 0.05 0.08 0.49 0.35 0.36
Cath 0.11 0.02 0.05 0.05 0.04 0.05 0.03 0.04 0.45 0.38 0.37
Census 1.05 0.09 0.15 0.17 0.14 0.14 0.12 0.14 0.66 0.38 0.38
Wikipedia >4h 1.02 1.47 1.56 1.22 1.25 1.11 1.34 1.93 0.59 0.51

BioSql 4.98 0.76 1.30 1.48 1.41 1.15 0.9 1.15 2.14 0.63 0.51

Wikirank 2.90 0.73 1.53 1.44 1.23 1.04 0.87 0.97 2.33 0.85 0.55

Lod 0.34 0.25 0.45 0.41 0.30 0.37 0.69 0.36 1.81 0.68 0.46
Ensembl 23.52 2.1 3.04 3.70 2.39 3.05 1.76 2.85 3.50 0.91 0.62

Tesma >4h 3.66 3.30 4.75 4.27 6.13 3.11 3.71 2.57 0.69 0.54

TPC-H 1 17.79 1.96 3.88 3.58 2.96 2.72 2.08 3.00 5.55 1.34 0.78

TPC-H 10 >4h 22.81 44.43 36.54 28.21 28.39 19.19 >4h 57.78 10.22 4.89

Musicbrainz >4h 136.03 61.42 106.26 45.69 71.22 27.67 105.49 175.97 30.22 15.38

Figure 3: Column scalability of uInd algorithms

does not guarantee correctness, it reported correct results for most
datasets (see Table 3). TheMany algorithm is optimized for datasets
with many attributes but only few rows. It can process the datasets
in this evaluation only because the datasets fit into main memory,
where simple set-based intersections can be used. On smaller data-
sets, the algorithm even competes well with those competitors that
use optimized Ind validation techniques, becauseMany prunes the
candidate space very effectively. Sindy, the parallel uInd discovery
algorithm, is the second slowest approach if only one CPU core
can be used for the discovery, because its parallelization capabil-
ities with Apache Flink introduce some overhead for, e.g., work
scheduling, data transformation, and framework startup. However,
because the algorithm scales very well with the number of cores, it
surpasses all other discovery approaches on larger datasets given
at least eight cores (on small datasets, the startup-time for a Flink
cluster is higher than the actual discovery times).
Runtimes on different row and columnnumbers. Tomeasure
the algorithms’ scalability w.r.t. the number of columns and rows
in the input dataset, we use the editor_sanitised relation of the
Musicbrainz dataset, which has 20 columns and 1 245 661 rows, is
270 MB in size, and offers 48 uInds. To scale the number of columns,
we start by measuring the runtime for editor_sanitised alone
and then successively replicate the same relation, such that the first
run processes 20 columns, the second run 40, and so on. In this
way, the number of rows is fixed. Figure 3 shows the result of this

Figure 4: Row scalability of uInd algorithms

experiment. The † symbol at the end of a runtime curve indicates
that the algorithm exceeded the four-hour time limit.

The measurements show that all algorithms scale similarly with
the number of columns, which is, the relative runtimes stay about
the same and no algorithm surpasses others whenmore columns are
being added. In general, S-indd, S-indd++, andMany should profit
from an increasing number of columns: While all other algorithms
generate all n2 uInd candidates (just to clear most of them later on),
these three algorithms generate the candidates directly from the
data, i.e., they generate fewer candidates. On the 400 columns in
this experiment and on up to 1054 columns (see Musicbrainz) in
other experiments, we could not measure this advantage, because
the candidate generation and pruning is, although quadratic, still
highly optimized and dominated by I/O. On datasets with many
thousand attributes, as were used in the evaluations of [22] and [25],
the algorithms should however show some advantage, because the
allocation and removal of many millions of candidates is costly.

To assess the algorithms’ scalability with the number of rows, we
again took the editor_sanitised relation and, this time, extended
the relation via repeated copy-and-append. Figure 4 shows the run-
times of the different algorithms when successively increasing the
length of the relation. Overall, the runtimes for all algorithms scale
about linearly with the length of the input. This is mainly due to the
fact that the I/O costs, which dominate the algorithms’ runtimes, in-
crease about linearly for all algorithms; non-linear aspects, such as

Session: Long - Database and System CIKM ’19, November 3–7, 2019, Beijing, China

226

re-partitioning and sorting processes, do not have a noticeable im-
pact in this experiment. The runtime spikes in the linear-trending
curves are a result of the hashing-based candidate pruning and
no measuring artifact: Sometimes, the algorithms read important
pruning information from their intermediate data structures earlier,
sometimes later, depending on how the intermediate data struc-
tures have grown. Like in the column scalability experiment, the
relative performance of the different algorithms is, apart from the
curves’ noise, relatively stable and no algorithm takes a particular
advantage from longer datasets.

5.3 NIND experiments

In this section, we evaluate the runtimes of the six n-ary Ind discov-
ery algorithmsMind, Binder, ZigZag, Find2,Mind2, and Faida
on the datasets described in Table 3. The experiments will show
that the bottom-up lattice traversal algorithm Binder is the most
efficient approach for n-ary Ind discovery on real-world datasets,
but the bi-directional lattice traversal approach Find2 can outper-
form Binder on certain synthetic datasets that have many nInds
of high arity; however, if false positives are acceptable, Faida is
several orders of magnitude faster than all other algorithms and,
hence, the most efficient discovery approach.

Note that the optimized, disk-backed validation strategies of
Binder, Faida, andMind2 do have a problem that we cannot show
in the runtime charts: Their memory consumption on disk is signif-
icant and can become much larger than the input dataset itself. The
number of value pairs as well as the number of attribute combina-
tions that Binder and Faida need to consider grows exponentially;
the coordinate files of Mind2 grow only quadratically with the
length of the data (if the attributes share many values), but by
simultaneously opening one file handle for every uInd,Mind2 can-
not processes datasets with more uInds than the operating system’s
file handle limit. Solving these issues is still a topic for future work.

The algorithms Mind, ZigZag, Find2, and Mind2 require the
first (and second) level of Inds as input. Although different algo-
rithms can provide these inputs, we use Spider for the uInds and
Mind for the binary Inds due to their SQL-nature (SQL-based sort-
ing and SQL candidate validations), which is similar to the nature
of the nInd algorithms. We add the initial uInd discovery times to
the nInd discovery time so that all reported runtimes reflect the
total time needed to discover the n-ary Inds of all arities. Binder
and Faida compute the uInds themselves. For parameterization,
we used the algorithm’s proposed default settings, which are an ϵ
of 1.0 for ZigZag and ten buckets per attribute for Binder.
Runtimes on different datasets. Table 5 shows the runtimes for
all nInd discovery algorithms. Because most of the Inds found in
the real-world datasets have low arity, we added the synthetically
generated ghaIND dataset to evaluate how well the algorithms
deal with deep search spaces, i.e., many Inds of high arity. The
generated dataset contains several 5-, 6-, and 7-ary maximum Inds.

The measurements show thatMind’s bottom-up lattice traversal
performs well on all datasets. It though fails on long datasets (e.g.
TPC-H 10) where the SQL-validation queries become very expen-
sive, and it fails on datasets with very many candidate nInds (e.g.
Lod and Musicbrainz). Binder is a bit faster than Mind on most

Table 5: nInd performance on real-world datasets (minutes)

Datasets Mind Binder ZigZag Find2 Mind2 Faida

Scop 0.36 0.30 0.50 0.37 1.85 0.07

Cath 3.15 4.18 3.23 3.24 29.16 0.05

Census 2.01 0.68 3.37 2.28 n.a. 0.16

Wikipedia 1.48 1.40 1.54 1.50 1.47 1.11

BioSql 5.36 3.65 4.88 5.51 >4h 0.96

Wikirank 8.89 8.10 2.96 2.99 >4h 1

Lod >4h >4h >4h >4h >4h >4h
Ensembl 7.13 6.31 206.94 8.33 >4h 1.90

ghaIND 27.94 177.65 13.13 13.28 13.45 3.97

Tesma 3.38 4.35 3.39 3.39 8.79 3.1

TPC-H 1 7.01 9.97 12.37 7.49 >4h 2.37

TPC-H 10 >4h 121.09 >4h >4h >4h 22.65

MUSICBR. >4h >4h >4h >4h >4h >4h

datasets due to its own, not SQL-based validation technique. How-
ever, if the number of nInd candidates is very small (see Tesma) or
if the data is dense and contains many different value-combinations
(see ghaIND and TPC-H 1), Binder’s validation is slower than
simple SQL queries, because the validation requires the algorithm
to generate many, often very large and, hence, I/O intensive value
partitions. The expensive generation of these partitions does ac-
tually pay off on larger datasets, because it’s performance scales
better than the performance of SQL queries (see TPC-H 10). Be-
cause ZigZag uses an ϵ of 1.0, the algorithm aggressively prefers
top-down over bottom-up search. If the nInds are of high arity
(seeWikirank and ghaIND), this strategy pays of; but if the uInds
are actually of low cardinality, which is true for most real-world
datasets, the algorithm performs worse than simple buttom-up ap-
proaches. The same is true for Find2, but the algorithm’s clique find-
ing approach for selecting high arity Ind candidates is more precise
than ZigZag’s optimistic border estimation (see ENSEMBL). Due to
its SQL-based candidate validation, though, Find2 fails to compute
large datasets and those with very many nInds. Mind2 also per-
forms very well on datasets with high-arity Inds (see ghaIND) due
to its implicit candidate generation that avoids traversing the other-
wise large search space. The algorithm however struggles process-
ing most other datasets, because the amount of uInd-coordinates
grows quadratically with the data if many columns of uInds share
the same values. It is also not applicable to Census, because it re-
quires at least two relations as input. The Faida algorithm clearly
outperforms all other nInd algorithms with its naive bottom-up
search space traversal and its various approximation techniques.
The algorithm generates a considerable amount of candidates, but
it is able to validate them very quickly. Due to the sampling, the
summary data structures, and their efficient combination, Faida
processes even high-arity Ind candidates efficiently. Still, Faida
also failed to process Lod andMusicbrainz in our time limit due to
their enormous candidate space. The algorithm’s precision in the-
ory reduces with every higher lattice level, but all its nInd results
for the tested datasets were correct.
Runtimes on different column numbers. To evaluate the algo-
rithms’ scalability with the number of columns, we start with the
artist and artist_alias relations of Musicbrainz (35 attributes

Session: Long - Database and System CIKM ’19, November 3–7, 2019, Beijing, China

227

Figure 5: Attribute scalability of nInd algorithms

and 175 nInds) and successively add additional relations following
logical join-paths in Musicbrainz: artist, artist_ alias, area,
area_alias, label, label_alias etc. Figure 5 shows the runtimes
for the six nInd algorithms. The † again denotes that an algorithm
did not finish within the time limit of four hours. Mind2 does not
show up in the graph, because the algorithm already exceeds the
time limit for the first relation pair due its large I/O overhead. We
also see all three SQL-based algorithms, i.e., Mind, ZigZag, and
Find2, exceed the four hour time limit early on, because their vali-
dation queries are expensive.Mind survives longer than ZigZag
and Find2, because most real-world Inds are small and ZigZag and
Find2 overestimate their size. Mind suddenly fails when adding
the 10th relation, because that relation is large and generates many,
mostly false nInd candidates. With its all-column hash join, Binder
can finish this relation in still less than 30 minutes. Binder then
exceeds the time limit at 340 attributes. Due to its approximation
techniques, Faida again shows the best performance albeit actually
making a few mistakes on this dataset.

6 CONCLUSION AND FUTUREWORK

In this research project, we implemented and evaluated thirteen
state-of-the-art algorithms for the discovery of unary and n-ary
inclusion dependencies. With this paper, we provide a survey and
detailed analysis of all important Ind discovery strategies. We mea-
sured the algorithms’ execution times on several datasets and in-
vestigated their scalability.

In summary, we can draw the following conclusions: An in-
memory algorithm, such as DeMarchi, is the most efficient discov-
ery approach as long as the data fits into main memory – even if
the validation procedure is not perfect. The Binder algorithm is the
most efficient general purpose solution for unary and n-ary Ind dis-
covery. If the risk of getting a false positive Ind is tolerable, Faida
can discover all unary and n-ary Inds even faster than Binder.
However, the by far fastest approach for unary Ind discovery is
Sindy, if at least 8 cores are available.

Our experiments also showed that the discovery of Inds is still
a challenge that requires approximation and parallelization to be
solved. Efficient techniques to handle intermediate data in memory
and on disk are still needed, because even the fastest algorithms
(i.e., Binder, Faida, and Sindy) tend to exhaust these resources.
Furthermore, most use cases require only a certain subset of all
discoverable Inds. The selection of relevant Inds at discovery time
could therefore further improve the efficiency of Ind profiling.

REFERENCES

[1] Ziawasch Abedjan, Lukasz Golab, Felix Naumann, and Thorsten Papenbrock.
2018. Data Profiling. Morgan & Claypool Publishers.

[2] Rakesh Agrawal and Ramakrishnan Srikant. 1994. Fast Algorithms for Mining As-
sociation Rules in Large Databases. In Proceedings of the International Conference

on Very Large Databases (VLDB). 487–499.
[3] Jana Bauckmann, Ulf Leser, Felix Naumann, and Veronique Tietz. 2007. Efficiently

Detecting Inclusion Dependencies. In Proceedings of the International Conference

on Data Engineering (ICDE). 1448–1450.
[4] Siegfried Bell and Peter Brockhausen. 1995. Discovery of Data Dependencies in

Relational Databases. In Statistics, Machine Learning and Knowledge Discovery in

Databases, ML–Net Familiarization Workshop. 53–58.
[5] Thomas Bläsius, Tobias Friedrich, and Martin Schirneck. 2016. The Parameterized

Complexity of Dependency Detection in Relational Databases. In International

Symposium on Parameterized and Exact Computation (IPEC), Vol. 63. 6:1–6:13.
[6] Marco A Casanova, Ronald Fagin, and Christos H Papadimitriou. 1984. Inclusion

dependencies and their interaction with functional dependencies. J. Comput.

System Sci. 28, 1 (1984), 29–59.
[7] Fabien De Marchi, Stéphane Lopes, and Jean-Marc Petit. 2002. Efficient Algo-

rithms for Mining Inclusion Dependencies. In Proceedings of the International

Conference on Extending Database Technology (EDBT). 464–476.
[8] Fabien De Marchi, Stéphane Lopes, and Jean-Marc Petit. 2009. Unary and n-ary

inclusion dependency discovery in relational databases. Journal of Intelligent
Information Systems 32, 1 (2009), 53–73.

[9] Fabien De Marchi and Jean-Marc Petit. 2003. Zigzag: a new algorithm for mining
large inclusion dependencies in databases. In Proceedings of the International

Conference on Data Mining (ICDM). 27–34.
[10] Jarek Gryz. 1998. Query folding with inclusion dependencies. In Proceedings of

the International Conference on Data Engineering (ICDE). 126–133.
[11] Martti Kantola, HeikkiMannila, Kari-Jouko Räihä, andHarri Siirtola. 1992. Discov-

ering functional and inclusion dependencies in relational databases. International
Journal of Intelligent Systems 7, 7 (1992), 591–607.

[12] Andreas Koeller and Elke A Rundensteiner. 2003. Discovery of high-dimensional
inclusion dependencies. In Proceedings of the International Conference on Data

Engineering (ICDE). 683–685.
[13] Henning Köhler, Uwe Leck, Sebastian Link, and Xiaofang Zhou. 2016. Possible

and certain keys for SQL. VLDB Journal 25, 4 (2016), 571–596.
[14] Sebastian Kruse, Thorsten Papenbrock, Christian Dullweber, Moritz Finke,

Manuel Hegner, Martin Zabel, Christian Zöllner, and Felix Naumann. 2017. Fast
approximate discovery of inclusion dependencies. In Proceedings of the Conference
Datenbanksysteme in Business, Technologie und Web Technik (BTW). 207–226.

[15] Sebastian Kruse, Thorsten Papenbrock, and Felix Naumann. 2015. Scaling out
the discovery of inclusion dependencies. In Proceedings of the Conference Daten-

banksysteme in Business, Technologie und Web Technik (BTW). 445–454.
[16] Mark Levene and Vincent. 2000. Justification for inclusion dependency normal

form. IEEE Transactions on Knowledge and Data Engineering (TKDE) (2000).
[17] Stéphane Lopes, Jean-Marc Petit, and Farouk Toumani. 2002. Discovering inter-

esting inclusion dependencies: application to logical database tuning. Information

Systems 27, 1 (2002), 1–19.
[18] Renée J Miller, Mauricio A Hernández, Laura M Haas, Ling-Ling Yan, CT Howard

Ho, Ronald Fagin, and Lucian Popa. 2001. The Clio project: managing hetero-
geneity. SIGMOD Record 30, 1 (2001), 78–83.

[19] Thorsten Papenbrock, Tanja Bergmann, Moritz Finke, Jakob Zwiener, and Felix
Naumann. 2015. Data Profiling with Metanome (demo). Proceedings of the VLDB
Endowment (PVLDB) 8, 12 (2015), 1860–1863.

[20] Thorsten Papenbrock, Sebastian Kruse, Jorge-Arnulfo Quiané-Ruiz, and Felix
Naumann. 2015. Divide & conquer-based inclusion dependency discovery. Pro-
ceedings of the VLDB Endowment (PVLDB) 8, 7 (2015), 774–785.

[21] Alexandra Rostin, Oliver Albrecht, Jana Bauckmann, Felix Naumann, and Ulf
Leser. 2009. A machine learning approach to foreign key discovery. In Proceedings
of the ACM SIGMOD Workshop on the Web and Databases (WebDB).

[22] Nuhad Shaabani and Christoph Meinel. 2015. Scalable Inclusion Dependency
Discovery. In Proceedings of the International Conference on Database Systems for

Advanced Applications (DASFAA). 425–440.
[23] Nuhad Shaabani and Christoph Meinel. 2016. Detecting Maximum Inclusion

Dependencies without Candidate Generation. In Proceedings of the International

Conference on Database and Expert Systems Applications (DEXA). 118–133.
[24] Nuhad Shaabani and Christoph Meinel. 2018. Improving the Efficiency of In-

clusion Dependency Detection. In Proceedings of the International Conference on

Information and Knowledge Management (CIKM). ACM, 207–216.
[25] Fabian Tschirschnitz, Thorsten Papenbrock, and Felix Naumann. 2017. Detecting

Inclusion Dependencies on Very Many Tables. ACM Transactions on Database

Systems (TODS) 1, 1 (2017), 1–30.
[26] Meihui Zhang, Marios Hadjieleftheriou, Beng Chin Ooi, Cecilia M Procopiuc, and

Divesh Srivastava. 2010. On multi-column foreign key discovery. Proceedings of
the VLDB Endowment (PVLDB) 3, 1-2 (2010), 805–814.

Session: Long - Database and System CIKM ’19, November 3–7, 2019, Beijing, China

228

	Abstract
	1 Inclusion dependencies
	2 Foundations
	3 Unary IND Discovery
	3.1 History of unary IND discovery
	3.2 Unary IND algorithms

	4 N-ary IND discovery
	4.1 History of n-ary IND discovery
	4.2 N-ary IND algorithms

	5 Evaluation
	5.1 Experimental setup
	5.2 UIND experiments
	5.3 NIND experiments

	6 Conclusion and Future Work
	References

