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Abstract—A considerable amount of useful information on the
web is (semi-)structured, such as tables and lists. An extensive
corpus of prior work addresses the problem of making these
human-readable representations interpretable by algorithms.
Most of these works focus only on the most recent snapshot of
these web objects. However, their evolution over time represents
valuable information that has barely been tapped, enabling
various applications, including visual change exploration and
trust assessment. To realize the full potential of this information,
it is critical to match such objects across page revisions.

In this work, we present novel techniques that match tables,
infoboxes and lists within a page across page revisions. We are,
thus, able to extract the evolution of structured information in
various forms from a long series of web page revisions. We
evaluate our approach on a representative sample of pages and
measure the number of correct matches. Our approach achieves
a significant improvement in object matching over baselines and
over related work.

Index Terms—object matching, change exploration

I. TRACKING CHANGES ON THE WEB

On the web, lists and tables serve as a structured, concise
representation of information. Infoboxes are a standardized
way to convey information about different topics on Wikipe-
dia, so they arguably serve the same purpose. Many of those
structured web objects are subject to frequent change, often
because the represented information is dynamic and changes
over time. Many other reasons exist for why an infobox, a
list or a table changes, especially on the web: authors may
enrich a table with additional information by appending new
items, columns or rows; or, to condense data, less relevant
parts might be deleted or moved to a different list or table.
Even if the content stays unchanged, a table’s format or the
list’s structure might be adjusted, for example, to highlight
important aspects or to group related content. On parts of
the web that are curated jointly by several authors, such as
infoboxes, people may disagree about what the right content
should be. This can go as far as to cause edit-wars [1]. Another
undesired but highly prominent source of changes on the web
is vandalism, which is deliberately destructive [2].

A. Challenges and goals

It is essential to obtain the history of individual objects (i.e.,
tables, lists or infoboxes) to study and explore these changes
and their variety – we present several use-cases later in this
section. The first hurdle is the retention of different document

versions that contain the objects. For instance, the Internet
Archive (www.archive.org) provides, to a limited extent, the
history of crawled web pages. Some web projects, especially
those with user participation, save the history of the changes
themselves. The most prominent and important example is
Wikipedia, which provides every version of every page as a
document in Wikitext markup. In fact, for the approximately
2.7 million tables on more than a million Wikipedia articles,
we have collected 40 million revisions.

To analyze this data, a new challenge arises: Given two
consecutive versions of the same page, the two versions of
Wikitext or HTML do not unambiguously reveal which struc-
tured object of the old page matches to which such object of
the new page, or whether it matches any at all. The underlying
problem is not web-specific, but arises frequently for evolving
data, e.g., in data lakes or open data. In fact, our proposal
of the change-cube as a universal data model to capture
changes identifies populating those change-cubes as one of
the fundamental challenges to enable change exploration in
data and metadata [3].

Clearly, we can compare two document versions line by
line, but that line-wise difference is purely syntactic and the
resulting diff-set does not necessarily represent the intentions
of the user. Line-wise differences assume that the (relative)
positions of objects stay constant over their lifetime and this
method is hence incapable of identifying objects, such as web
tables, that have moved within the web page. Our aim is to link
multiple versions of the same object over multiple revisions
in a way that reflects the actual edits performed by users.
Multiple object instances may be different versions of the same
object; the identity graph connects all such object instances.

The problems of structured object matching become more
challenging for web pages that contain many objects. The
larger candidate spaces make incorrect matching decisions
more likely, and such errors propagate easily. Another chal-
lenging case arises when individual objects contain scarce or
volatile information. This case resembles the philosophical
problem of the ship of Theseus: the question of how many
timbers of a ship can be exchanged while it still remains to
be the same ship [4]. Figure 1 shows examples for the wide
variety of changes that objects on web pages can undergo.

When solving the problem of temporal object matching,
that is, to construct the identity graph, we benefit from the



Fig. 1: Examples of infobox, list and table revisions.

observation that changes typically happen gradually, so that
the context of changed elements can be used to help identify
elements over time. We model this task as a matching problem,
where for every new document version, we either match an
object instance to a previous history or consider it to be a new
object, if no sufficiently similar history exists.

Example 1: Consider common Wikipedia pages like “List of
awards and nominations received by . . . ” for musicians or
actors. These pages usually contain a separate table for each
award, such as a table for “MTV Award”. At first glance, these
tables may seem quite static, but in fact, they are extended
whenever awards are won, and they are changed, e.g., with
an update of the result from “nominated” to “won”, with a
layout revision, with new links that are inserted, etc. Many of
these tables on a page also look very similar, because they
all have the same schema, and common award titles (like
“best actor”) exist for different events. This, together with
the small sizes of the tables, makes matching difficult. Similar
considerations apply to lists and infoboxes.

The identity graph makes the object history available as a
new dimension of each element, because for each object it
tells us about previous and subsequent versions. A very first
application could be to overlay an object with a heatmap to
show the volatility of each cell (see Figure 2).

B. Use cases

Knowledge about matching objects across web page revi-
sions can serve many different use cases in the context of
web mining. We briefly outline a few, partly taken from the
recent overview of web table usage [5]. Generally, knowledge
of the history of an object enriches the knowledge about and
understanding of the contained information.

1) Understanding web tables: There are many approaches
to enhance knowledge of individual web tables, such as
generating their title [6], generating column headers [7], or
finding subject columns [8]. All of these approaches make
use of table content, headers and surrounding text and data.

Fig. 2: Browser plugin displaying the history of Wikipedia
tables highlighting frequently changing cells.

Providing more such data, and in particular different versions
of such data gives these machine learning approaches a richer
input set, which has recently been proven useful for fact-
extraction [9] and key discovery [10]. For the latter task, we
show the benefit of having a table’s version history available
in our case study in Section V-E.

2) Entity linking: Linking entities across different locations
on the web is a popular but difficult task, aiming to identify
entity representations in different data sources representing
the same real-world entity [11], [12]. As data on the web
is updated independently, old and new representations exist
simultaneously. With knowledge of an object’s history, linking
approaches can make use of the higher similarity of records
that represent data about the same point in time. Records
sharing the same values for large parts of their lifetime allow
a more confident linking.

3) Search in web data: Researchers have identified the rich
nature of web tables and the problem of making available
this data through advanced search interfaces. In particular,
such search systems cannot assume fixed schemata and user
knowledge about how entities are described [13]. Being able
to index past data, and using past data to build more general
models can improve the search experience. For instance, the



authors of [14] propose using a wide set of “clues” about a
table’s schema and content to map search queries to specific
tables and columns. Extending these clues to past versions of
tables has the potential to improve the results.

4) Data quality: The ability to identify object changes,
and knowledge about matching entities, allows propagating
changes across sources, improving their timeliness. For ex-
ample, WiClean [15] uses frequent change patterns of the
Wikipedia link graph to help users perform complete and
consistent updates. Further, mining change patterns can point
to unexpected changes or to expected changes that did not
occur, thus enabling quality assessment of the data contained
by the object [3] or past changes can hint at the most likely
fixes for constraint violations [16].

C. Contributions and overview
Our main contributions toward tracking the history of struc-

tured web objects are the following:

• A definition of the generalized problem of temporal
object matching and three specific problem instances:
table, infobox and list matching.

• A general content- and context-based solution combining
multiple similarity-based matching stages to achieve both
high precision and high recall.

• Application of this general solution to the three matching
problems of tables, infoboxes and lists. For infobox- and
table-matching we achieve F1-measure above 99%, and
for list-matching above 98%.

• Manually annotated gold-standards for all three problems,
which we use for our empirical evaluation and make
publicly available for repeatability.

The remainder of this paper is structured as follows: We
present related work in Section II, a formal problem definition
in Section III, and our matching process in Section IV. We
evaluate our results in Section V and conclude in Section VI.

II. RELATED WORK

We discuss a variety of related work: structured datasets
with history, related techniques and matching problems, and
Wikipedia change analysis.

1) Related corpora: Wikipedia provides access to its entire
version history, allowing us to track very fine-grained changes.
A variety of datasets that also deal with (semi-) structured
content have been extracted from the web and Wikipedia
before. Multiple corpora of web tables [17], [18] provide
extracts of static versions of tables on the web and have since
been subject to extensive research [5]. The infobox history
dataset WHAD [19] comprises structured information on Wi-
kipedia, namely the changes of infoboxes. However, there is
no matching problem within one infobox instance, as each
property of an infobox has a unique identifier and property
labels are drawn from standardized templates. Additionally,
the authors do not consider the fact that a Wikipedia article can
contain multiple infoboxes, effectively ignoring any matching
problem.

2) Related problems and techniques: Korn et al. propose
a table matching approach as part of their work on fact-
extraction [9]. We experimentally compare our table matching
solution to their work. A problem related to table matching,
which also aims to combine several semantically related tables,
is table union search or table stitching [20]–[22]. That problem
is orthogonal to our problem, as these works do not consider
the time dimension and changing data, but instead try to find
additional data that is not already present in the table.

For our problem as well as for the table union search, tables
that match do not necessarily share the same schema. Given
multiple schemata, the vast work on schema matching [23]
attempts to match semantically corresponding attributes and
can help to perform the actual integration of the information
contained in the tables. Especially in web tables, the schema is
often opaque, so in many cases only instance-based techniques
[24], [25] are applicable.

Record linking aims to identify which specific records in
a set of records refer to the same entity. This problem has
been extensively studied [26]. Recently, changes in attributes
over time have been considered, for linking temporal records
[12], [27]–[30]. However, this body of work typically assumes
a well-defined and static schema, which does not apply to
web tables and their version history, because of their opaque
schema and column headers, which change over time.

3) Analyzing changes in Wikipedia: The content of Wiki-
pedia has been the subject of much research [31]. Both the
evolution of content [32] and of the page link graph [33]
including the links’ anchor texts [34] have been studied.
Specifically, the study of content evolution can help detect
conflicts [35] or controversy that may result in edit-wars [1].
The edit histories serve as input to event-extraction [36] and
are also valuable for trust assignment [37]. Our approach can
provide a better understanding of what has really changed,
which should benefit many of these studies.

III. FORMAL PROBLEM DEFINITION

While we gave an intuition for the identity graph in Sec-
tion I, we now provide a definition of the graph and formally
define the addressed problem itself. First, we introduce some
of the terms used in the paper: Every change to a web page
– context in general – represents a revision. The result of a
revision is a new version of that context. Each version of
a context contains several object instances (such as tables,
infoboxes or lists). These object instances can be new versions
of previously identified objects or represent new objects. For
example, object instances are shown in Figure 3 by colored
circles. In Version 1, the blue, red and yellow circles are new
versions of previously identified objects of Version 0, while
the green circle represents a new object.

Definition 1: The identity graph of a sequence of context
versions is a graph that satisfies the following conditions:

• Every object instance contained in the context versions
is represented as a node.
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Fig. 3: An illustrative example that shows how the different matching stages interact.

• Every edit of an object instance that results in another
object instance is represented as an identity edge. As there
is only one object instance for “creation” or “deletion”
of an object, there are no incoming respectively outgoing
identity edges in these cases.

Identity graphs are linear graphs (there is at most one
incoming and one outgoing edge for every node), because
each object can occur only once in each context version. We
refer to the connected components in the identity graph as
(previously) identified objects, and all object instances that are
part of this connected component the object’s versions. Two
adjacent (object instance) nodes in an identity graph may occur
in non-consecutive context versions (such as the green object
in Version 1 and Version 3 of Figure 3). The identity graph
carries information about the physical nature of an object; in
the editing process a user does not physically merge or split
an object.

We can now state the problem of temporal object matching
as follows: Given a list of versions r1, . . . , rn of contexts, e.g.,
web pages in our case, where each version ri contains a set
of object instances of interest (e.g., infoboxes, lists or tables),
the problem of temporal object matching is to construct the
identity graph for these object instances (so to construct all
edges in the output graph of Figure 3). In this paper, we solve
three instances of this problem, namely temporal matching of
tables, lists and infoboxes. As the context for each of these
objects are pages, we use “pages” instead of “context” in the
following section. The method nevertheless applies to other
contexts, such as domains in open data lakes as we show in
Section V-B, where different subdomains can act as context.

IV. MATCHING OBJECTS OVER TIME

This section explains our general solution to the temporal
matching problem. Its input is a list of web page versions –
either snapshots that have been crawled, or specifically from
Wikipedia the complete edit history as a set of XML files.
Through parsing, we obtain for every page version a (possibly
empty) list of parsed object nodes. From those we extract a
number of features for each of the object versions. Now we can
perform the actual matching, which performs a matching step
for each page change: we extract a list of all objects contained
in the page that are of the object type (infobox, list, or table)

that is currently matched. This list, which corresponds to the
gray nodes o0 to o3 shown in Figure 3, in combination with
the previously identified objects of the same type, constitutes
the input for the actual matching step.

In each matching step, i.e., for each page revision, it is
necessary to decide whether the objects therein are versions
of previously identified objects or entirely new objects. It
is not sufficient to consider only objects of the previous
version, because objects can be deleted and then restored
several revisions later (such as the green object that reappears
in Version 3). This step-wise approach that matches object
versions with only the information available up until this point,
makes it suitable for an online scenario in which new versions
arrive incrementally. This section first explains this matching
step in general before we discuss the exact implementation for
the three object types that we consider in this paper.

A. Matching step overview

Our approach is based on measures of similarity between
objects and new object instances. We first match objects that
have very high similarity and then allow larger changes (i.e.,
lower similarity) for the remaining objects. Within each stage,
we find a maximum-weight matching.

1) Multi-stage matching: The matching process is divided
into three stages:

1) a local search,
2) a strict search, and
3) a relaxed search,

each based on measures of similarity between objects. Within
each stage, only elements that have not yet found a match are
considered further, and we find a maximum-weight matching.
The first stage is mainly a performance optimization; the
second stage obtains high precision matches, and the third
stage increases recall.

Each matching stage si = (λ, sim, θ) is defined by
1) a candidate generation function

λ : (X = {x1, . . . ,xm}, O = {o1, . . . , on})
→ P({x1, . . . ,xm} × {o1, . . . , on}),

2) a similarity function sim : (x, o)→ R and
3) a similarity threshold θ ∈ R.

The candidate generation function determines a set of possible
matching pairs (for which to evaluate the similarity function).



Algorithm 1: Matching step
Data: previous objects {x1, . . . ,xm},

new object versions [o1, . . . , on]
Parameters: Matching stages [s1, . . . , sn], past-version

window size k, decay factor ϕ
Result: list of objects O that contains previously

identified objects (possibly with new versions)
and newly identified objects

1 Mo ← {x1, . . . ,xm}, Mn ← {o1, . . . , on}, O ←Mo

2 for (λ, sim, θ) ∈ [s1, . . . , sn] do
3 C ← λ(Mo,Mn)

4 G ← (Mo ∪Mn, {(x, o) ∈ C | ˆsimk,ϕ(x, o) ≥ θ})
5 for (x, o) ∈ matching(G, ˆsimk,ϕ) do
6 x← [x, o], Mo ←Mo \ x, Mn ←Mn \ o

7 return O ∪ {[o] | o ∈Mn}

This function takes two arguments: the set X of identified
objects and a list O of new object instances. The default
candidate generation function considers all remaining, non-
matched pairs of previously identified objects and new object
instances: λ(X,O) = {(x, o) | x ∈ X, o ∈ O}. The similarity
function sim maps pairs of object versions to similarity scores.
The similarity threshold θ determines the minimum similarity
score that can still create a match; Section V-C explains the
influence and choice of these thresholds.

Algorithm 1 iterates over all stages (in our case exactly
three stages) in Line 2. For each stage, in Line 3 the candidate
generation λ creates all pairs of previously identified objects
and new object instances to be considered in this stage. The
algorithm then constructs a bipartite graph, where each of
these pairs serves as an edge with a weight based on sim
(Line 4), if this similarity score is not smaller than the
threshold θ. To be more precise, the graph construction is
based on an extended similarity function ˆsimk,ϕ, which also
considers past object versions and which is formally defined
next, in Section IV-A2. Finally, Line 5 finds a maximum-
weight matching using the Hungarian algorithm [38] and
iterates over its edges. The matching breaks ties based on the
two ranking functions ↓LT and ↓POS, which are explained in
Section IV-A3 below. For each match in the assignment, the
algorithm assigns the candidate’s object instance to the object
x and marks both of them as matched (Line 6). Objects for
which no matching partner has been found, end up in the pool
for potential matches in the next stage. Finally, once all stages
are executed, all remaining object instances are considered to
be newly created objects (Line 7).

2) Glance through the rear-view mirror: Many of the
changes we observe for Wikipedia are relatively short-lived,
because they are quickly reverted. For this reason a “look
through the rear-view mirror” allows matches with objects
from revisions further in the past, even if the object was not
present in the meantime. In fact, we observed such cases of re-
appearing objects 2,343 times for infoboxes, 2,741 times for

lists, and 4,879 times for tables in our gold standard alone.
When comparing a new object instance with a previously
identified object, we compare it not only with the latest version
of that object, but with the k latest (non-empty) versions. We
try to keep k small, because the time for similarity calculation
grows linearly with k, and because objects can be subject to a
topical shift, potentially leading to false positives. However,
even a small k = 5 affords robustness against short-lived
changes like vandalism (see Section V-C for an experiment
on choosing k).

The similarity measure should also reflect the fact that a
new object instance resembles only the object of a previous
revision, and should give priority to similarities with more
recent object versions. For this reason, we weight the similarity
with a decay-factor that scales exponentially with the number
of different object versions that have occurred in the meantime.
For an object x that has the object versions x0, . . . , xn (with
x0 as the first version and xn as the most recent), we define the
similarity to a new object version o as the maximum similarity
of the last k versions weighted by the corresponding power of
the decay factor ϕ ∈ [0, 1]:

ˆsimk,ϕ(x = [x0, . . . , xn], o) = max
i=0→min (n,k)−1

ϕi sim(xn−i, o)

3) Meta-data similarity: A common phenomenon in Wi-
kipedia is that a user unintentionally duplicates parts of an
article or even the entire article. This results in two (or more)
object instances that both have exactly the same similarities to
a previous object. As the content of both object instances is
the same, the decision of which objects to match, can rely only
on meta-data, such as the position of the object instance in its
environment. If several object instances have high similarity
with only a small difference between them, our system prefers
matches that minimize the difference between the previous
position and the position of the new object instance.

↓POS (x = [x0, . . . , xn], o) = |position(xn)− position(o)|

An inverse problem occurs when such duplicated objects
are deleted at a later point in time. In this case, two existing
objects have exactly the same similarity to a single new object
instance, and it is necessary to decide which one remained and
which one was deleted. We use a heuristic: if in doubt, we
match the object with a longer lifetime, because longer and
therefore more comprehensive histories are preferable.

↓LT (x = [x0, . . . , xn], o) = lifetime(x)

B. Object matching details

Now that we have explained the basic matching procedure,
we can define the exact features, similarity measures and
stages for the object matching.

1) Object features: To compare the content of different
tables, lists, or infoboxes, we create a bag-of-words represen-
tation of their content. In order to not let elements (such as
cells or items) with long content dominate this representation,
we truncate element values after 10 words. The bag-of-words
approach has the advantage that it is robust against larger



changes, such as table layout changes and list reorderings; a
representation that considers the position of words within the
object would change much more when layout changes occur.
Furthermore, we add all appropriate hierarchical section titles
or HTML headings of the surrounding sections to the bag-of-
words. For object version o, we create one vector ~vo where
every dimension represents the number of occurrences for one
specific word either in the object or in its section headers.
Besides those content-features, we also consider certain meta-
data of the object. The position of the object is the position-
rank of the object among all objects of the same type on the
page (in the order the objects appear in the page source).

2) Similarity measures: For object matching, we calculate
similarities of the bag-of-words vectors based on a generalized
Jaccard similarity coefficient, also called Ruzicka similar-
ity [39], of two multisets. This Ruzicka similarity simstrict is
defined as the sum of the respective lower frequencies (across
both objects) for each word (occurring in at least one of
the two objects) divided by the sum of the respective higher
frequencies for each word.

simstrict(~v = (v1,...,vn) , ~w = (w1,...,wn) ) =

∑
imin(vi, wi)∑
imax(vi, wi)

Due to its normalizing denominator, the Ruzicka similarity
penalizes object size changes. As many objects grow or shrink
over time, we introduce a relaxed version of this similarity
measure, an element-wise containment simrelaxed that we apply
in our last matching stage. In comparison to Ruzicka, this
similarity measure uses the token count of the smaller object
as the normalizing denominator.

simrelaxed(~v = (v1,...,vn) , ~w = (w1,...,wn) ) =

∑
i min(vi, wi)

min(
∑

i vi,
∑

i wi)

Some tokens appear in many objects and are of little help in
deciding whether an object should be the successor of another
object. To account for such noise, we use a token weighting
that is similar to the idea of inverse document frequencies
(IDFs). More precisely, we multiply the token frequencies
by the inverse of the number of new or previously identified
objects containing this token, whichever is larger. As a result,
a token that appears in up to one previously identified object
and up to one new object version is not given less weight. For
instance, a token that appears in three previously identified
and five new object versions would be weighted 1

5 .
3) Object matching stages: We have observed that in many

cases the position of an infobox, a list or a table changes
only slightly, so many good matches can be found efficiently
by a local search. Thus, the first stage searches for very
good match partners locally, i.e., in a very limited spatial
context of the previously identified object, on the revised
page. This stage avoids the calculation of similarities of all
possible candidates, rather calculating the similarity for a
constant number of neighbors for each identified object. For
infoboxes, lists and tables, the position-rank of the object
among all objects of the same type on the same page defines

its neighborhood. In particular, we say that a new object
instance is in the neighborhood of a previously existing object
when the absolute difference between their position-ranks
on the page does not exceed a certain threshold. Hence,
the first stage candidate generation function is defined as
λθPOS(X,O) = {(x, o) | x ∈ X, o ∈ O, ↓POS (x, o) ≤ θPOS}.
That is, it considers only such pairs, where the position of the
new object instance is sufficiently close to the last position
of the previous objects. For our experiments, we say that
an object is in the neighborhood of a previous object if the
absolute difference of their positions is ≤ 2 (Section V-C
shows that this is a good choice).

In the second stage all remaining object pairs (of previously
identified objects and new object versions) are compared
using the relatively strict similarity measure simstrict and are
again sorted accordingly. The similarity measure is strict to
anticipate matches of high quality (preferring precision over
recall) and it strictly penalizes larger changes. Both this second
stage and the last stage use the default candidate generation
function. While this stage therefore has quadratic complexity
in theory, in practice (as we have observed) it is very efficient
as many objects are already matched during the first stage.
Since only objects with sufficient similarity are matched here,
additional objects can remain for the third stage.

Finally, the third stage uses the relaxed similarity measure
simrelaxed to allow larger changes in the objects, in a manner
similar to the second stage. At this point, all objects with
similar partners according to the stricter similarity measure
are already matched. While the previous stages focus on high
precision, the last stage optimizes for a higher recall.

4) Illustrative example: Figure 3 shows how the different
stages interact. In the first stage, we need to compute sim-
ilarities for each object (left side) to a maximum of three
new object instances (right side) assuming a neighborhood of
θPOS = 1. Only one similarity score fulfills the threshold for
stage 1 and we add the edge (x0,o0) to the identity graph.
Note that for calculating each of the similarities past versions
of an object also need to be considered. In the second stage,
all except for four similarities are already computed and can
be reused. In this case, four similarity scores fulfill the (lower)
threshold and according to the maximum-weight matching
we match (x1,o2) and (x3,o1). For the last stage, only two
similarity scores remain to be calculated, and both equally
fulfill the similarity threshold. Due to the lifetime-tiebreaker
↓LT we match (x2,o3).

V. EVALUATION

In the following, we evaluate our approach in two main
dimensions: quality and performance. Prior to this, we pro-
vide the most interesting figures about our observations and
statistical findings.

A. Basic statistics

To determine the quality of our matching, we have created
a gold standard of infobox, list and table matchings by hand.
This gold standard as well as the following statistics are based
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Fig. 4: Histogram of the maximum number of simultaneously existing object instances per page. This is also the minimum
number of objects on that page, because each of those object instances must belong to its own object.

on the English Wikidump of 01.09.2019. We furthermore
reconstructed and labeled the history for a number of web
tables from the Dresden Web Table Corpus (DWTC) [40],
which are not from Wikipedia. Since general web tables do
not maintain their own history, we used the Internet Archive
to retrieve page histories. Both our gold standard and output
dataset are available at our project website www.IANVS.org.

As can be seen in Figure 4, the vast majority of web pages
contain only a few tables, lists or infoboxes (we omitted the
even larger number that do not contain any such objects at
all). Because a random sample of pages would, thus, mostly
select pages where not much matching is required, we used
a stratified sample for our Wikipedia gold standard. As can
also be seen in Figure 4, most of the lists and tables (but not
infoboxes) exist on pages with more than one list or table on
that page. Out of the pages that contain at least one table at
any point in time, we selected 15 random pages that never
contain more than one table, another 15 random pages that
at some point contain more than one but always fewer than
four tables, and so on up to 15 random pages with up to 64
tables. On these selected 90 pages we identified 1,445 tables,
with a total of 16,919 distinct table versions. We repeated
this process for infoboxes, where we again selected 90 pages
for which we identified 812 infoboxes, with a total of 9,747
distinct infobox versions, and finally again 90 pages for lists,
where we identified 1,648 lists, with a total of 16,919 distinct
list versions. For each version of each object of each of these
object types we manually created all correct matches. Unless
otherwise mentioned, the results in this section are based on
this Wikipedia gold standard.

The average object in our gold standard is re-inserted 1.78
times, deleted 2.28 times, and updated 10.33 times. Of the 1.78
re-inserts, 0.10 are fresh objects, i.e., the object’s content is
different from any previous version, which means 1.68 of the
inserts restore previously existing object versions that were
deleted at some prior point in time. For the 10.33 updates,
the ratio of fresh and old versions is 8.82 fresh versus 1.51
updates that restore previously existing versions. While the
vast majority of objects is never deleted or deleted only once,
there is a larger skew in the distribution of deletes. One
table about Melbourne’s climate was deleted 38 times during
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Fig. 5: Similarity simstrict for each object version and the
object’s first version. Each line represents one object.

its lifetime, an infobox about Leprosy 74 times, and list on
Archimedes 110 times.

From the time an object is created until it is deleted (or until
the end-date of the dataset), the average in our gold standard
is 3.62 years. In 97.0% of that time, the object is truly part
of the page, while in the remaining 38.95 days the object is
(temporarily) deleted. During that time, 21.7% of all tables
either grow or shrink in the number of columns, and 30.0%
grow or shrink in the number of rows. However, 62.1% of all
tables retain their original size throughout their lifetime. Of
all lists, 26.6% grow or shrink in the number of items, and
37.1% of all infoboxes grow or shrink in their schema.

While for most page revisions, the objects do not move or
move only slightly in their positions, there are page revisions
for which infoboxes/lists/tables move by up to 28/45/46 posi-
tions, respectively. We observe that objects rather move down
on the page (9.8%) than they move up (6.9%). The distribution
of object movements in relation to other objects of the same
type on the page and especially the number of object versions
with the same position as the previous version (83.3%), are
already an indicator of how well a baseline that uses only the
object position as an identifier can perform.

Figure 5 shows how the contents of all objects in our
gold-standard develop over time. More precisely, it shows the
simstrict similarity of each object version compared to the first
version of that object. In general, the similarity is expected to
decrease over time, but it can also rise if the object content
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10
0.0

0
88
.24

93
.75

10
0.0

0

93
.75

56
.25

10
0.0

0
10
0.0

0
87
.50

69
.23

55
.00
40
.00

78
.85

75
.00

72
.50

90
.38 97
.50

90
.00

74
.11

20
.00

50
.67

86
.61

80
.00

65
.33

92
.86

88
.89 97
.33

35
.63

21
.31

22
.87

63
.13

60
.99

55
.16

88
.75

78
.28 87
.00

32
.88

11
.90 32
.96

41
.03 49
.58

78
.87

77
.72 83
.98

89
.30

60
.95 18
.50

9.7
8

61
.90 29

.08
59
.92

95
.24

76
.33 87
.77

1 2–3 4–7 8–15 16–31 32–63

Po
sit
io
n

Ba
se
lin

e
Sc
he
m
a

Ba
se
lin

e
Ko

rn
et

al
.[
9]

O
ur

A
pp

ro
ac
h

Maximum object count

M
et
ho

d

(b) ... in the different sample buckets.
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Fig. 6: Overall matching performance as the accuracy of correctly matched object histories ...

becomes more similar to its original version. While there
are some objects that stay almost unchanged throughout their
lifetime, other objects rapidly change within the first few days
of their existence. One reason for this could be that authors
copy & paste other objects as templates and then adjust the
content. Another reason is that tables can capture static content
(stable real-world facts, such as place-of-birth) and dynamic
content (such as current-address).

To validate our approach, we took a random sample of
100 pages that contain at least two tables in the DWTC
and retrieved the history for those 32 of the 100 pages that
were indexed by the Internet Archive. This validation dataset
provides insight on how our approach generalizes to general
web tables, which are not from Wikipedia. Furthermore, we
used a second validation dataset from the domain of open
data lakes to show that our approach generalizes beyond web
objects. This consists of 2,722 datasets that were published
on Socrata (https://dev.socrata.com/data/) in the subdomains
of Chicago and Utah and for which we tracked any changes
over the course of the last year.

B. Matching quality

In the following, we report results about the quality of
our identity graph construction for tables, infoboxes and lists.
In Figures 6a–6c, we report the accuracy as the fraction
of objects, for which every version was correctly matched.
There are gaps in the plot where methods do not apply to
specific object types. Figure 6a gives an overview of the
overall performance of our approach in comparison to two
baselines and a related work approach. The position baseline
matches two objects (infoboxes, lists, tables), if they appear
in the same position on the same page (they have the same
position-rank on that page). The schema baseline matches
infoboxes and tables based on their schema using a single
threshold for simstrict in combination with our tiebreakers.
We also implemented the related approach by Korn et al. [9]
using TableMiner+ [8] to detect subject columns, which are a
prerequisite of that approach. Lists do not have a schema, so
the schema baseline does not apply to them, just like Korn et
al. [9] on any other object type but tables. Figure 6a shows
the results for a matching not only when every single edit



TABLE I: Matching results for both baselines, related work
and our approach on two validation datasets: DWTC web table
and Socrata open data lake.

Object
Accuracy Precision Recall F1

D
W

T
C

Position baseline 38.5 % 66.4 % 75.6 % 70.7 %

Schema baseline 76.1 % 88.4 % 93.1 % 90.7 %

Korn et al. [9] 60.6 % 85.8 % 88.4 % 87.1 %

Our approach 89.9 % 92.0 % 92.4 % 92.2 %

So
cr

at
a Schema baseline 94.7 % 99.3 % 99.3 % 99.3 %

Korn et al. [9] 96.1 % 99.5 % 99.1 % 99.3 %

Our approach 98.2 % 99.7 % 99.6 % 99.7 %

is available (first column), but also for lower time resolutions,
simulating how the matching behaves if the page versions were
captured only at certain frequencies (e.g., once a month). As
will be described later, with low temporal resolution (larger
intervals between snapshots) the individual matching steps
become more difficult. At the same time, there are fewer
matches necessary, so the overall result is typically better.

For the 725 web tables from DWTC (Table I), the posi-
tional baseline performs significantly worse, even though the
random, non-stratified sample should even favor that baseline
due to the higher probability of smaller pages on which the
tables can naturally move less. The lower time resolutions of
the Internet Archive crawls explain at least parts of the worse
results for all three approaches. Our approach still performs
best on this corpus. Table I also shows the result on the
Socrata dataset. For this experiment, we hide the stable ID
that Socrata provides for each dataset and measured how well
the approaches can reconstruct the correct matching. Each
subdomain (Chicago, Utah) serves as one context, but as there
is no order available, we disabled all spatial features and could
not compare against a positional baseline. Overall the results
are very good for all approaches. This is not too surprising
because the tables are much larger and contain more evidence
for matches, so the dataset is less difficult. For some datasets,
like the Socrata dataset, our positional features might not be
applicable. Therefore, we also ran a experiment for which we
disabled all spatial features and compared the overall matching
performance for each object type at edit level. The matching
performance decreased by 1.3% for lists and tables and only by
0.1% for infoboxes. This is not too surprising, as the positional
features mostly act as tie-breakers. Nevertheless, they allow
significant runtime improvements as shown in Section V-D.

Like Figure 6a, Figures 6b and 6c show the matching
accuracy as the fraction of correctly matched objects. Fig-
ure 6b shows how the different matching approaches perform
in the strata that we selected in our sampling. Especially the
baselines suffer with a higher object count, because there
is a much higher chance for object movements and similar
schemata on one page. Note, that even an object with only

TABLE II: Infobox, list, and table matching results for
baselines, related work and our approach at different time
resolutions.

Time
Resolution

Edit 1h 1d 1w 1m 1y

Infobox matching

Po
si

tio
n

ba
se

lin
e Precision [%] 86.2 89.4 87.3 85.7 85.1 83.3

Recall [%] 86.5 89.7 87.7 86.2 85.8 85.2
F1 [%] 86.4 89.5 87.5 85.9 85.4 84.2

Sc
he

m
a

ba
se

lin
e Precision [%] 90.2 92.5 91.2 90.1 88.9 87.1

Recall [%] 90.4 92.8 91.5 90.5 89.4 88.4
F1 [%] 90.3 92.6 91.3 90.3 89.2 87.8

O
ur

ap
pr

oa
ch Precision [%] 99.4 99.5 99.4 99.3 99.0 97.9

Recall [%] 99.6 99.7 99.7 99.7 99.6 99.1
F1 [%] 99.5 99.6 99.6 99.5 99.3 98.5

List matching

Po
si

tio
n

ba
se

lin
e Precision [%] 75.7 78.2 79.6 79.6 78.4 64.0

Recall [%] 76.5 79.2 80.7 80.8 79.9 67.3
F1 [%] 76.1 78.7 80.1 80.2 79.1 65.6

O
ur

ap
pr

oa
ch Precision [%] 98.6 98.7 98.8 98.8 98.5 96.4

Recall [%] 98.7 98.8 99.0 98.9 98.7 96.7
F1 [%] 98.6 98.7 98.9 98.8 98.6 96.6

Table matching

Po
si

tio
n

ba
se

lin
e Precision [%] 87.1 91.0 90.9 91.1 89.8 80.8

Recall [%] 87.5 91.4 91.3 91.6 90.4 82.4
F1 [%] 87.3 91.2 91.1 91.3 90.1 81.6

Sc
he

m
a

ba
se

lin
e Precision [%] 92.3 94.3 94.1 94.2 92.8 86.3

Recall [%] 92.4 94.4 94.2 94.3 92.9 86.8
F1 [%] 92.3 94.4 94.2 94.2 92.9 86.5

K
or

n
et

al
.[

9]

Precision [%] 95.5 96.9 97.5 98.3 98.4 97.9
Recall [%] 91.8 94.1 94.4 94.7 93.7 89.3
F1 [%] 93.6 95.5 96.0 96.5 96.0 93.4

O
ur

ap
pr

oa
ch Precision [%] 99.5 99.6 99.6 99.5 99.3 98.6

Recall [%] 99.6 99.7 99.7 99.7 99.5 99.2
F1 [%] 99.6 99.6 99.7 99.6 99.4 98.9

one version can be matched incorrectly, if this one version
is not recognized as an individual object (either matched
to a previously existing object or to more object versions).
Figure 6c confirms the expected behavior that more object
versions make it harder to match every version correctly. In
this case, the number of versions is not artificially controlled
as in the time resolution experiment, but naturally, objects are
edited with a different frequency.

Table II shows the results for precision, recall and F-
measure of individual edges in the identity graph for the
infobox, list and table matching. Here, precision is the fraction
of the output edges that are correct, i.e., appear in the gold
standard. Recall is the fraction of correct edges that appear
in the output. F-measure is the harmonic mean of precision
and recall. For our evaluation, we consider only non-trivial
edges: We call a matching between two object versions of
two consecutive page versions trivial, if (i) the number of



TABLE III: Error analysis for the identity matching.

Our matchingInfoboxes TP/TN FN FP FP∧FN
∑

Po
si

tio
n

ba
se

lin
e TP/TN 18,634 26 20 40 18,720

FN 113 2 0 7 122
FP 134 0 60 0 194

FP∧FN 2,690 3 0 4 2,697∑
21,571 31 80 51 21,733

Our matchingLists TP/TN FN FP FP∧FN
∑

Po
si

tio
n

ba
se

lin
e TP/TN 33,090 55 16 276 33,437

FN 447 6 0 14 467
FP 777 0 136 0 913

FP∧FN 9,376 62 0 159 9,597∑
43,690 123 152 449 44,414

Our matchingTables TP/TN FN FP FP∧FN
∑

Po
si

tio
n

ba
se

lin
e TP/TN 35,438 19 14 52 35,523

FN 337 3 0 0 340
FP 437 0 82 0 519

FP∧FN 4,557 9 0 57 4,623∑
40,769 31 96 109 41,005

objects in the two page versions stays almost constant (at most
one object added/deleted), (ii) all or all except for one objects
have the same content and same context, and (iii) the object
content and context are unchanged. Our approach can provide
an almost perfect matching if every single edit is available.
Lower time resolutions initially have only a minor influence
on all four solutions. However, starting with a resolution of
one year, it becomes clear that the problem becomes much
more difficult and all solutions make more mistakes.

We provide a more detailed error analysis by considering
different cases that might appear when we compare the gold
standard to our matching output. We distinguish three error
types, concentrating on an individual object version and its
predecessor in the gold standard and the output. If the object
version has a predecessor only in the gold standard, we are
missing an edge, so this is a false negative. On the other side,
if the object version has a predecessor only in the output, this
is a false positive. If the object version has a predecessor in
both the output and the gold standard, but they are different,
then this is a wrong match, resulting in both a false positive
and a false negative. Table III uses this error classification to
provide a more detailed comparison of our approach against
the position baseline. Our matching drastically reduces the
absolute number of every error type (between factor 2 for
infobox FP and factor 53 for infobox FP∧FN). Furthermore,
the table shows that for most cases where both our matching
and the position baseline output a wrong result, the error
types remain the same. Still, there are a total of 86 cases for
infoboxes, 347 cases for lists, and 85 cases for tables, where
the position baseline is correct, but our matching is wrong.
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Fig. 7: Effect of different similarity threshold on precision,
recall and F-measure for Wikipedia infoboxes, lists and tables.

C. Parameter choice

In this research area, matching approaches typically have
many parameters for their similarity measures and candidate
set selection strategies. While our approach is no exception,
we justify our choice of parameter values with the following
experiments, which show that our approach is highly robust,
and most parameters can influence only runtime performance.

Figure 7 shows the effect of different similarity thresholds
on precision, recall, and F-measure for the three considered
object types. While the overall influence of these parameters
is low, higher thresholds generally result, as expected, in lower
recall and higher precision. The best overall F-measure is
achieved at θ2 = 0.6 and θ3 = 0.4, which we used for all
experiments.

Figure 8 shows the distribution of the number of object
candidates that have a very high similarity depending on the
maximum position difference between them. Most objects that
have a very high similarity also have a very low difference
in position. Once a maximum position difference of 2 is
exceeded, the number of candidates grows only very slowly.
On the other hand, the gold standard reveals that candidates
with a high similarity and also a high difference in position
are mostly non-matches. Thus, we allow a maximum position
difference of only θPOS = 2 in our first matching phase.

Figure 9 shows the number of candidates that are addition-
ally considered, when not only the most recent object version
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Fig. 8: Total number of object candidates for which
simstrict >= 0.99 for different limits of absolute position
difference θPOS.
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Fig. 9: Number of new candidates for different window sizes
k of previous object versions that improve or not improve
previous simstrict.

is considered, but also a number k of past versions. While for
smaller window sizes it is worthwhile to keep past versions,
larger window sizes increase the number of candidates for
which the similarity has to be calculated, but do not contribute
to higher similarity scores. Hence, we suggest to keep k small
and we use k = 5 in our experiments.

Finally, Figure 10 shows the effect of weighting similarity
scores by an inverse object frequency. While for object pairs
that should be matched the similarity mostly stays almost
the same, the similarity of all other pairs drops significantly.
This shows that the weighted similarity is the better similarity
measure here, because it allows an easier distinction between
matches and non-matches.

D. Runtime performance

For the following experiments, we report results only for
tables, but as previously seen, the different object types behave
quite similarly and tables are generally the most complex
objects and, thus, require the most matching time. Figure 11a
shows the general distributions of table matching runtimes for
all pages in our gold standard. We can see that the matching
steps take a short time, even without the first matching
stage. However, the first matching stage clearly improves the
runtime, especially on the long tail of matching times. The
median runtime per page version drops from 6.2ms to 4.2ms
and the 90th percentile drops from 55.7ms to 11.9ms. The
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Fig. 10: Effect of weighting similarity scores by an inverse ob-
ject frequency. While for true matches the weighting has little
effect, the similarity scores for non-matches drop significantly.
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Fig. 11: Effect of first stage on matching runtimes.

total runtime of all matchings for the gold standard tables
drops from 5.2 minutes to 1.6 minutes.

Figure 11b shows the effect of the first matching stage in
more detail: especially for pages that contain more tables,
and thus higher candidate counts, the first matching stage
dramatically improves efficiency. Instead of a quadratic scaling
in the number of tables, we observe a more linear behavior.

E. Case study: Natural key discovery

In prior work, we were able to directly benefit from the
knowledge about a table’s version history. When discovering
natural keys in Wikipedia tables [10], the object matching
approach discussed here gave us access to the tables’ version
histories, which we used to engineer temporal features. These
features exploit the fact that keys are usually static in nature
and do not change as much over time as other columns do,
and some key properties need to hold on all versions. A single
snapshot of a table cannot reveal this knowledge about the
dynamic behavior of columns. For example, a column might be
unique in the current snapshot but previously contained many
duplicates, effectively ruling it out as a key. Our experiments
showed that these temporal features raised the F-measure
of our classifier by 4.5 percentage points on average [10],
showing that knowledge about a table’s version history is
indeed valuable for downstream tasks.



VI. CONCLUSIONS

We have presented an approach that can track objects on
different versions of web pages over time. This matching
allows us to identify changes locally and calculate meaningful
differences between objects. We empirically demonstrated that
our approach is applicable to various object types, in particular
tables, lists, and infoboxes. It shows significant improvements
over baselines and related work.

As future work, we plan to classify the extracted changes
to better understand and explore the large number of changes.
For example, we want to distinguish between changes that
affect the presentation of data and those that reflect a change
in the actual semantics of the data value. Another classification
could distinguish between meaningful or correct changes on
the one hand and destructive changes, such as vandalism or
edit wars, on the other. Furthermore, future work could apply
the presented methods to other structured and semi-structured
elements of evolving corpora.
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