Bringing Back Structure to Free Text Email
Conversations with Recurrent Neural Networks

Tim Repke and Ralf Krestel

Hasso Plattner Institute, Potsdam, Germany
(tim.repke|ralf.krestel)@hpi.de

Abstract. Email communication plays an integral part of everybody’s
life nowadays. Especially for business emails, extracting and analysing
these communication networks can reveal interesting patterns of pro-
cesses and decision making within a company. Fraud detection is another
application area where precise detection of communication networks is
essential. In this paper we present an approach based on recurrent neural
networks to untangle email threads originating from forward and reply
behaviour. We further classify parts of emails into 2 or 5 zones to capture
not only header and body information but also greetings and signatures.
We show that our deep learning approach outperforms state-of-the-art
systems based on traditional machine learning and hand-crafted rules.
Besides using the well-known Enron email corpus for our experiments,
we additionally created a new annotated email benchmark corpus from
Apache mailing lists.

1 Introduction

Emails are an important part of day to day business communication, hence their
analysis inspired research from a variety of disciplines. In Social Network Anal-
ysis, User Profiling, or Behaviour Analysis often only information contained in
the well structured email protocol headers is used. However, a lot more informa-
tion remains hidden in the free text body of an email, which contains additional
meta-data about a discussion in the form of quoted messages that are forwarded
or replied to.

In the early days of email communication, users followed clear rules, e.g.
prefixing quoted text with angle brackets (>). Nowadays, due to the diversity
of email programs, formatting standards, and the freedom to edit quoted text,
identifying the different parts of a message body is a surprisingly challenging
task. Email programs like Outlook, Thunderbird, or even online services such
as Gmail, usually group emails into conversations and attempt to hide quoted
parts. To this end, they try to match preceding emails by subject and sender,
which fails in case the subject or quoted text was edited.

We propose a neural network based approach for extraction of the inher-
ent structure in email text to overcome problems of error-prone rule-based ap-
proaches. This enables downstream tasks to work with much cleaner data and
additional information by focusing on specific parts. Further we show improve-
ments in flexibility and performance over earlier work on similar tasks.

Problem statement Our goal is to extract the inherent structure of free text
emails containing a conversation thread composed of consecutive quoted or for-
warded messages. Components of an email are referred to as zones similar to
the definition used by Lampert et al [10]. We assume that a conversation thread
is represented as a sequence of client header and body blocks. A pair of corre-
sponding header and body is called conversational part or message.

In this context, client headers are blocks of meta-data automatically inserted
by an email program, usually containing information on the sender, recipient,
date, and subject of the quoted email. Generally the header indicates, whether
the subsequent message body was forwarded or replied to by the text above.
Bodies are the actual written messages, which on reply or forward are quoted
below the newer message.

Message bodies can often be further separated into a greeting (such as a
formal or informal address of the recipient at the beginning of the message),
authored text (the actual message), signoff (closing words of the message), and
a signature (containing contact information, advertising, or legal disclaimers).
As emails with inline relies are usually copied, we consider a block of copied lines
and responses as one body block.

We assume that each single line can be assigned to exactly one zone as Fig. 1
exemplary shows. In case of conflicts, the predominant or detailed type is used.

2 Related Work

Email corpora provide fascinating insights into human communication behaviour
and therefore inspire research in many different areas. Datasets such as the En-
ron [9] or Avocado corpus [15] provide real world information about business
communication and contain a mix of professional emails, personal emails, and
spam. Ben Shneiderman published parts of his personal email archive for re-
search [16]. Also popular is the 20 Newsgroups dataset [12] sampled from news-
group postings in the early 90s, which we discard as it contains only few conver-
sation threads. For the work at hand, we use the Enron corpus and emails we
gathered from public email archives of the Apache Software Foundation®.

A recent survey shows the diversity of email classification tasks alone [14].
Similarly interesting is the analysis of communication networks based on meta-
data like sender, recipients, and time extracted from emails [1].

Models based on the written content of emails may get confused by automat-
ically inserted text blocks or quoted messages. Thus, working with real world
data requires normalisation of data prior to the problem at hand. Rauscher et
al. [17] developed an approach to detect zones inside work-related emails where
relevant business knowledge may be found.

In their work towards detecting emails containing requests for action, Lam-
pert et al. [11] observed a relative error reduction by 40% when removing quoted
sections of emails. Similar observations were made more recently predicting reply
behaviour within the Avocado dataset [21].

! http://mail-archives.apache.org/mod_mbox/

From: Alice Sent: Mon, 14 May 2001 07:15 AM
To: Bob, Brian
Subject: RE: Telephone Call with Jerry Murdock

Body Thank you for your help.

Body

Body/Signature|ISC Hotline

Header 03/15/2001 10:32 AM

Header

Header Sent by: Randi Howard

Header To: Jeff Skilling/Corp/Enron@ENRON

Header cc:

Header Subject: Re: My ”P” Number

Body

Body/Greeting |Mr. Skilling:

Body

Body Your P number is P00500599. For your convenience, you can also go to
Body http://isc.enron.com/ under Site Highlights and reset your password or
Body find your ”P” number.

Body/Signoff |Thanks,
Body/Signoff
Body/Signoff |Randi Howard
Body/Signature|ISC HOTLINE

Body

Header From: Jeff Skilling 03/15/2001 10:01 AM
Header

Header To: ISC Hotline/Corp/Enron@Enron
Header cc:

Header

Header Subject: My ”P” Number

Body

Body Could you please forward my ”P” number. I am unable to get into the XMS
Body system and need this ASAP.

Body

Body/Signoff |Thanks for your help.

Fig. 1: Example email with zones; consecutive blank lines reduced to one

Thread Reconstruction Another popular area of research is the reconstruction
of graphs reflecting which message responds to another. Wang et al. propose
baseline approaches based on temporal relationships [20]. There are also more
advanced models that use sentence-level topic features to resolve a message graph
using random walks [7]. Most recently, Tien et al. [19] proposed a novel convo-
lutional neural network over a grid built by assigning roles to extracted entities.
The latent graph is derived from the configuration with the highest coherence
score. In our work however, we only focus on separating conversational parts
within free text messages, not the actual reconstruction of the thread.

Email Zoning with Rules and Text Alignment. We identified three approaches
to email zoning: rule based, text alignment, and machine learning.

The most naive approach is to write specific rules that match commonly
used patterns in email text. Talon? provides a sophisticated set of patterns to
match most popular client header formats. The obvious downside is the lack of
flexibility and that it’s error-prone to changes.

Assuming a complete email corpus, a message in one user’s outbox may
be found in the inbox of other user(s). Likewise, quoted messages exist within

2 https://github.com/mailgun/talon

the corpus as an original message from preceding communication. By finding
overlapping text passages across the corpus, Jamison et al. managed to resolve
email threads of the Enron corpus almost perfectly [6]. It has to be noted, that
the claimed accuracy of almost 100% was only tested on 20 email threads.

In order to reassemble email threads, Yeh et al. considered a similar approach
with a more elaborate evaluation reaching an accuracy of 98% separating email
conversations into parts [22]. To do so, they rely on additional meta information
in emails sent through Microsoft Outlook (thread index) and rules that match
specific client headers. Thus, such an approach will not work on arbitrary emails,
nor can it handle different localisation or edits by the user.

Contrary to approaches using text alignments, we don’t assume a complete
corpus. Our goal is to extract all information from only a single email archive
or even a single email.

Machine Learning for Email Zoning. Another approach to email zoning uses
machine learning with carefully designed features.

Carvalho and Cohn proposed Jangada [2], a system to remove quoted text
and signature blocks from emails in the twenty newsgroup dataset [12]. They
first classify emails to find those that contain quoted text or signatures and
then classify each line individually using Conditional Random Fields (CRF) and
sequence-aware perceptrons. Reported accuracies range from 97% to above 99%.

Other researchers applied Jangada to Hotmail emails and measured accura-
cies around 64% [4]. With some adaptation, they managed to extract five dif-
ferent zones (author text, signature, advertisement, quoted text and reply lines)
with an average accuracy of up to 88%.

Lampert et al. developed the Zebra system [10] as a pre-processor to their
previously mentioned work on requests for action [11]. Adversely to previous
approaches, they use Support Vector Machines and therefore classify lines of an
email into zones individually rather than considering a sequence of lines. For
that, they describe graphic, orthographic, and lexical features to represent lines
within their context reaching an average accuracy of 93% on the two-zone task
and 87% on a nine-zone task. Comparing the performance by zone type, most
problems are caused by signature lines (F-score around 60%), signoffs (70%) and
attachments (69%). It was found, that adding contextual features didn’t improve
the performance [10]. Contrary to our objectives, Zebra only tries to identify the
zones within the very last message within an email thread and rejects the rest
as quoted text, whereas we aim to detect the zones across the entire email.

We compare results of our system described in Section 3 with Jangada and
Zebra. We not only aim to improve upon those results, but also provide a system
that is able to detect zones along the entire conversation thread contained in
an email and not only the latest part. Furthermore, our system uses neural
networks rendering expensive and potentially error-prone feature engineering
obsolete. This way, even very small or incomplete datasets can be utilised for
downstream tasks like social network analysis, speech act recognition and other
research areas using email data.

(1) Line Encoder (2) Email Zoning
Ly o
| | |
I Convolutions
\%) 7
Max-Pooling ¢ 54’{/) -
LTI 7 i s —
Convolutions — -
| T TGibbal Averaing | |———4ﬂ// -
Y i RNN CRF

Fig.2: Schematic model overview; Left side shows line embedding stage using
the CNN approach, right side outlines email zoning model.

3 Segmentation of Emails

Systems for email segmentation that are discussed earlier are based on hand
written rules to match common structures directly or use them as features for
machine learning models. Such approaches will fail when client headers are lo-
calised, formats are changed, or quoted messages are edited by users or get
corrupted.

In most cases it may seem obvious to the human eye how to segment an email
into client headers and quoted text even though different or corrupted formats
are used. However, even a sophisticated text parsing program will fail since
client headers follow no standardised format. Usually lines start with attribute
keywords such as ”From:” or ”Subject:”, however their value may span multiple
lines and use varying delimiters. This even makes it hard to detect the boundaries
between header and body blocks, since one can not rely on the presence of
keywords or well formed, deterministic schemas.

In this paper, we propose the Quagga® system based on neural network archi-
tectures. As shown in Fig. 2, emails are processed in two stages: the line encoding
and the email zoning stage. In this section we describe he how email text is rep-
resented and how classifiers can be used as a reliable and robust preprocessor
for a simple program to extract its inherent structure.

3.1 Representation of Email Data

In the initial stage of our system, the email text data is encoded into a low
dimensional space to be used as input to the second stage as outlined on the
left side in Fig. 2. The smallest fragments to be considered for email zoning are
the lines in the email text. Lines are delimited by the newline character (\n),
which may not necessarily be the same as wrapped lines displayed by an email

3 The quagga is a subspecies of zebras. (https://en.wikipedia.org/wiki/Quagga)

program. Analysis of the annotated data shows that this granularity is sufficient
for all header, body, and signature zones as was assumed by other research on
similar tasks.

Each line is encoded as a sequence of one-hot vectors representing respective
characters. We distinguish one hundred different case-sensitive alpha-numeric
characters and basic ASCII symbols plus an out-of-scope placeholder. This is
sufficient for all email corpora we looked at, where only a negligible portion of
characters exceeds this set. We presume, that this could be adapted for applica-
tions with Cyrillic, Arabic or other alphabets.

Inspired by research on character-aware language models [8], we devised a
recurrent and a convolutional neural network model. The recurrent model con-
sists of a layer with varying number of gated recurrent units (GRU), where the
last unit’s output serves as a fixed size embedding of the line. The convolutional
model uses two convolutional layers, which scan the sequence of characters in a
line and are intertwined by max-pooling and global-averaging layers finally lead-
ing into a densely connected layer, where the number of neurons corresponds to
the embedding size as shown on the left in Fig. 2.

In both models, the line representations are learnt in a supervised fashion.
During training, a densely connected layer with softmax activation is appended
so that a classifier can be trained to distinguish between lines of corresponding
zone types. Optimal parameters of the topology such as the number of layers and
embedding size are determined experimentally. A detailed analysis of embedding
accuracy when limiting the length per line is found in Section 3.3.

3.2 Classification of Email Lines

A model in the first stage of our Quagga system learns line representations by
classifying them into zones. That way however, the context in which a line ap-
pears is missing, resulting in less ideal performance on ambiguous or deceptive
cases. Thus, we added a second stage to our system for sequence to sequence
classification using a GRU-CRF model as outlined in the right part of Fig. 2,
which takes a sequence of line encodings per email as input. Three of the five zone
types only appear within message bodies, so we use two concatenated embed-
dings as input, where one is pre-trained using two- and the other with five-zone
classification.

Best performance was achieved with a bidirectional GRU layer, which scans
the lines from top to bottom and in reverse order and concatenates the hidden
states of respective lines. In sequence to sequence classification, recurrent neu-
ral networks only consider the previous hidden state but neglect the actually
predicted label sequence. We already observed small improvements by using a
bidirectional layer over a unidirectional one, since each line’s context reflects the
previous and following lines. Like in language models [5,13], the addition of a
CRF to the output shows further performance gains.

Training both parts of the system as an entire model in one pass by directly
connecting the encoder output layer to the second stage model’s input lead to

(a) Two-Zone Model (b) Five-Zone Model
T T T T
0.95 |- I
> - <1080 .
Q Q
2 :
5 0.90 I =)
8 = 10.75 3
< <
—— CNN —x— CNN
0.85 - - o- RNN || - ©- RNN lb -10.70
! ! ! ! I
0 50 100 150 0 50 100 150
Maximum Line Length Maximum Line Length

Fig. 3: Accuracy for increasing max line length using 32-dimensional embeddings

unstable results even after pre-training the line encoder. Therefore we train the
model in the second stage of our system separately from the line encoding model.

The predicted sequence of zone types can be used to extract the conversa-
tional parts of an email and also separate the message from additional content
such as signatures, greetings and signoffs. Consecutive lines with the same pre-
dicted zone type are aggregated into a block. Further processing inevitably re-
quires making some assumptions about the general structure of emails. Based
on the analysis of emails in the training data, we assume that a body proceeds
a header block. Furthermore, we define that in-line replies with quoted parts
belong to one message, which is not problematic, since this would usually only
appear in Usenet-style emails, which use indicators like repeated > at the begin-
ning of a line and therefore don’t require sophisticated processing as presented
here.

Small errors in the prediction can be fixed heuristically, for example a block
with a single line classified as header containing only the ”Subject:” keyword
likely is either a false positive or belongs to another block nearby. The introduc-
tion of such rules could reduce the initial robustness and is omitted for the eval-
uation in this paper. In the scope of our work, we found that using the Quagga
system as a pre-processor for finding related blocks significantly improves the
accuracy of parsing rules for downstream tasks like constructing communica-
tion graphs from header blocks compared to a purely rule-based parser without
pre-processing.

3.3 Selection of Model Parameters

In the description of the proposed model we highlighted adjustable parameters.
This includes the model for line representations in the first stage, limiting the
length of each line, and finding the ideal dimension of line embeddings. We base
the model’s topology configuration on the analysis of related models [8, 13, 5].
The ideal configuration for the line encoder model is determined through grid
search across mentioned parameters. We record the accuracy of the convolutional

and recurrent approach for line encoding in Fig. 3. Note, that the convolutional
model assumes a fixed size input, so shorter lines are zero-padded at the end.
When evaluating the reported accuracy, one has to consider two things. First,
this metric may not project down to the later stage of our system, and second, the
line type distribution bias reduces the range of values to 0.81 (or 0.65) upwards.

We did not observe significant differences between embedding dimensions
above 32, so we choose this dimensionality in favour of a less complex model.
Most errors are caused by blank lines, which are usually classified as ”Body”.
Results when training using two-zone classification are mostly stable for both
models. The majority of lines in our training data are between forty and fifty
characters long.

Both approaches for line representations seem to have their strengths and
weaknesses. Since there is no clear winner, we continue only using the convolu-
tional model in this work and fix the input length to 100 characters per line. We
do so based on the argument, that one may want to process large corpora and
prefer a faster system.

4 Experimental Setup

In this section we present an overview of the email datasets we used and discuss
the sampling of emails to create an unbiased evaluation set. Further, we describe
competing approaches that are used as baselines for comparison of our results.
We also analyse model parameters and its robustness to changes in email text.

4.1 Dataset

We evaluate our proposed approach to email zoning on the Enron corpus [9] and
emails gathered from public mail archives of the Apache Software Foundation*
(ASF). Estival et al. [4] and Lampert et al. [10] discussed shortcomings in working
with Usenet-style emails, leading us to refrain from using the twenty newsgroup
dataset [12] as was done for the Jangada system. We found that more recent
email threads from the ASF archives, especially those on mailinglists for users
of different software projects, offer diverse formatting patterns.

Each dataset is divided into three subsets for training, validation, and testing.
Emails are sampled at random from their respective original dataset and put
into one of those subsets. To ensure representative results that are not biased
by author or domain, sampling per subset is restricted to distinct mailboxes
(Enron) or mailing lists (ASF). The ASF dataset was compiled by randomly
selecting emails from the flink-user, spark-user, and lucene-solr-user mailing list
archives.?

Table 1 shows an overview of the selected dataset and the expected number of
messages to be extracted. Prior heuristic analysis of the Enron corpus estimated

* http://mail-archives.apache.org/mod_mbox/
® Annotated datasets and code can be found at
https://github.com/TimRepke/Quagga

Table 1: Annotated Datasets in Numbers

Enron ASF
Train Test Eval Train Test Eval
Emails 500 200 100 350 100 50
Individual messages 1048 474 233 934 226 108
Average length of threads 3.5 3.6 3.5 3.5 3.7 3.1
Number of signatures 103 58 26 76 13 5

60% of emails to contain conversation threads [9], which is close to our annotated
data. On average an email has two parts with 20 lines per message. Only a few
messages contain a signature, which on average are six lines long.

4.2 Competing Approaches

We compare our proposed model for extracting zones from emails against several
other approaches. Most notably, Jangada [2] and Zebra [10] are reimplemented
with slight modifications to fit the more refined problem statement. Both systems
originally are intended to distinguish lines within an email, which are not part of
the latest message of that thread. Clearly that deviates from our goal to extract
all individual parts and detect zones with additional detail within those. Since
the systems are supposed to detect zones within the first part of the email, their
features and underlying models should in principle also work on our task.

The source code for Jangada is freely available on the author’s web page®.
We used the source code as a basis for an implementation in Python and the
originally used model for sequence labelling, which is part of the MinorThird
Library”. For the extraction of signatures, Jangada originally only considers the
last ten lines of an email. In our implementation, the perceptron performs a
multi-class classification along all lines of the email corresponding to zone types
defined earlier. The model is trained with window-size 5 for 40 epochs.

The Zebra project web page® does only provide annotated data, but not the
system’s source code. Gossen et al. implemented? it for their work on classifica-
tion of action items in emails [18]. We used that as a guideline for our adapted
Python implementation. The SVM is trained for a maximum of 200 iterations
in a one-versus-rest fashion for multi-class classification using RBF kernels.

We use a selection of features from both models as input for a recurrent neural
network with two GRU layers [3], which we will refer to as FeatureRNN. The
above models are baselines for the comparison to our proposed Quagga system
as described in Section 3 using a convolutional model as line encoder with fixed
input sizes of 100 characters per line.

5 http://www.cs.cmu.edu/ vitor/software/jangada/
" http://minorthird.sourceforge.net/

8 http://zebra.thoughtlets.org/zoning.php

9 https://github.com/gerhardgossen /soZebra

10

Table 2: Classifying Emails into Zones (Precision/Recall/Accuracy)

Approach Zones Enron ASF
Jangada|2] 2 0.89 / 0.88 / 0.88 0.97 / 0.97 / 0.97

Zebra[10] 2 0.66 / 0.25 / 0.25 0.88 / 0.18 / 0.18
FeatureRNN 2 0.98 / 0.98 / 0.97 0.97 / 0.95 / 0.94

Quagga 2 0.98 / 0.98 / 0.98 0.98 / 0.98 / 0.98
Jangada|2] 5 0.82 / 0.85 / 0.85 0.90 / 0.92 / 0.91

Zebra[10] 5 0.60 / 0.25 / 0.24 0.81 / 0.20 / 0.20
FeatureRNN 5 0.92 /0.75 / 0.75 0.90 / 0.60 / 0.60

Quagga 5 0.93 / 0.93 / 0.93 0.95 / 0.95 / 0.95

5 Results

In this section we compare Quagga to similar systems found in related work. To
get a good understanding of the versatility, we not only look at the results shown
in Table 2, but also consider the robustness against noise or otherwise changing
data as well as how many training samples are required to get good results.

We were not able to reproduce reported accuracies of Zebra [10], which given
the nature of the features and individual classification of lines disregarding their
position and context in an email was expected. Jangada uses more general fea-
tures and looks at a sliding window of lines and we got close to reported accu-
racies, especially for the ASF dataset, which is closer to the twenty newsgroup
data the authors used [10]. Overall, our system shows very good performances
and seamlessly adapts to other datasets without problems.

Number of Training Samples Complex neural network based machine learning
models require lots of training samples to reliably proficiently solve a given task.
We limited the number of Enron emails shown to the network during training
down to 10% of the Enron training set, corresponding to 50 emails and then
measured the performance whilst continuing to add training samples up to all
500 emails. The model trained with the least data in this scenario only lags
behind around 1% in accuracy compared to a model trained on all data in both
the two- and five-zone task.

Cross Corpus Compatibility Ideally, a system like Quagga would be trained
once and work well on arbitrary emails. The Enron and ASF datasets show
more differences than there are in samples in the training and testing data of
one corpus. Thus we trained Quagga on Enron and tested it on ASF emails
and vice versa. We observe, that by training on ASF emails, Quagga does not
generalise as well to emails from he other corpus (Accuracy: 0.86 or 0.80, for two-
or five-zones) as the other way around (Accuracy: 0.94 or 0.86). Compared to
the results when training and testing using emails from the same base dataset,
this results in a decrease of performance of around 4-10%.

11

(a) Two Zones (b) Five Zones
1 T T] - T T]
1.0 —r——e o ., 1.0
e e e o : D S —
08| ngooe o o | | Qo oo s 108
> S x >
% o+ Jangada X 0 Jangada x %
5 06]_o_ zewra | — - Zebra T 106 3
S x RNN x RNN BRRETE S
< 0.4 || —e— Quagga N —e— Quagga -10.4 <
o - _ o - _
0.2 - -0 --6--6--6--0 | [- o--e-—6--0-- (02
\ \ \ ! \ \ \ \
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6
Perturbation Perturbation

Fig. 4: Robustness against perturbation for the Enron test set

Robustness to Noise Our hypothesis is, that a model which learns meaningful
features itself is more robust towards changes to the email text as hard coded
rules responding to specific keywords or patterns. To show the flexibility of
our model, we first introduce the notion of a perturbation threshold p € [0, 1).
Before passing an email to a model, a function iterates over each character and
with probability p edits, removes, or duplicates it. Training was performed on
uncorrupted data only.

The robustness of each model against increasing perturbation is shown in
Fig. 4. Relatively, the drop in performance is the same the for two- and five-
zone task, although at different absolute accuracies. Quagga doesn’t seem to
be affected up to p = 0.2 and keeps producing reliable results even at higher
perturbation thresholds. Surprisingly, also Jangada is not influenced significantly
by the introduction of perturbation. As opposed to Zebra and FeatureRNN, it is
using more features related to small patterns or proportions of types of symbols,
whereas the others depend on more complex patterns which are more error prone
to change.

6 Conclusion and Future Work

In this work we presented a reliable and flexible system for finding the inherent
structure of an email containing multiple conversational parts. In the first stage,
the system uses a convolutional neural network to encode lines of an email which
are used by a GRU-CRF to predict a sequence of zone types per line reaching
accuracies of 98%. Compared to similar models, we show significant improvement
and especially seamless adaptation to other datasets as well as robustness against
corrupted data.

Research based on email data can largely benefit from this system by pre-
processing the text and focus downstream algorithms on relevant parts of an
email like client headers or the actual text cleaned of irrelevant parts.

12

In addition to the Quagga system, we provide a detailed annotation of a
subset of the Enron corpus that can directly be used for building communication
networks without further parsing including linked person aliases and, if present,
contact details from email signatures as well as the new ASF corpus.

References

1. Bonchi, F., Castillo, C., Gionis, A., Jaimes, A.: Social network analysis and mining
for business applications. TIST 2(3) (2011)
2. Carvalho, V., Cohen, W.: Learning to Extract Signature and Reply Lines from
Email. In: CEAS (2004)
3. Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the Properties of
Neural Machine Translation: Encoder-Decoder Approaches. CoRR (2014)
4. Estival, D., Gaustad, T., Pham, S., Radford, W., Hutchinson, B.: Author profiling
for English emails. In: Conference of the Pacific ACL (2007)
5. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF Models for Sequence Tagging.
CoRR (2015)
6. Jamison, E., Gurevych, I.: Headerless, Quoteless, but not Hopeless? Using Pairwise
Email Classification to Disentangle Email Threads. In: RANLP (2013)
7. Joty, S., Carenini, G., Ng, R.T.: Topic segmentation and labeling in asynchronous
conversations. Artificial Intelligence Research 47, 521-573 (2013)
8. Kim, Y., Jernite, Y., Sontag, D., Rush, A.: Character-Aware Neural Language
Models. CoRR (2015)
9. Klimt, B., Yang, Y.: The Enron corpus: A new dataset for email classification
research. Machine learning: ECML (2004)
10. Lampert, A., Dale, R., Paris, C.: Segmenting Email Message Text into Zones. In:
EMNLP (2009)
11. Lampert, A., Dale, R., Paris, C.: Detecting Emails Containing Requests for Action.
In: Human Language Technologies. ACL (2010)
12. Lang, K.: Newsweeder: Learning to filter netnews. In: Twelfth International Con-
ference on Machine Learning (1995)
13. Ma, X., Hovy, E.H.: End-to-end Sequence Labeling via Bi-directional LSTM-
CNNs-CRF. CoRR (2016)
14. Mujtaba, G., Shuib, L., Raj, R., Majeed, N., Al-Garadi, M.: Email Classification
Research Trends: Review and Open Issues. IEEE Access (2017)
15. Oard, D., Webber, W., Kirsch, D., Golitsynskiy, S.: Avocado research email col-
lection. Linguistic Data Consortium (2015)
16. Perer, A., Shneiderman, B.: Beyond threads: Identifying discussions in email
archives. Tech. rep., MUC (2005)
17. Rauscher, F., Matta, N., Atifi, H.: Context Aware Knowledge Zoning: Traceability
and Business Emails. In: IFIP Workshop (2015)
18. Scerri, S., Gossen, G., Davis, B., Handschuh, S.: Classifying Action Items for Se-
mantic Email. In: LREC (2010)
19. Tien Nguyen, D., Joty, S., El Amel Boussaha, B., de Rijke, M.: Thread reconstruc-
tion in conversational data using neural coherence models. In: Neu-IR (2017)
20. Wang, Y.C., Joshi, M., Cohen, W.W., Rosé, C.P.: Recovering implicit thread struc-
ture in newsgroup style conversations. In: ICWSM (2008)
21. Yang, L., Dumais, S., Bennett, P., Awadallah, A.: Characterizing and Predicting
Enterprise Email Reply Behavior. In: SIGIR (2017)
22. Yeh, J., Hamly, A.: Thread Reassembly Using Similary Matching. In: CEAS (2006)

