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Abstract

Languages evolve over time and the mean-
ing of words can shift. Furthermore, individ-
ual words can have multiple senses. How-
ever, existing language models typically only
reflect one word sense per word and don’t deal
with semantic changes over time. While there
are language models that can either model
semantic change of words or multiple word
senses, none of them cover both aspects simul-
taneously. We propose a novel force-directed
graph layout algorithm to draw a network of
frequently co-occurring words. In this way,
we are able to use the drawn graph to visu-
alize the evolution of word senses. In addi-
tion, we hope that jointly modeling semantic
change and multiple senses of words results in
improvements for the individual tasks.

1 Introduction

Language is dynamic and constantly evolving
which leads to changes in the context in which
individual words are used and thereby shifting the
meaning of words over time. In addition to this
semantic change, novel words are introduced or ex-
isting words get additional meanings. On the other
hand, certain old word meanings can also disap-
pear from active usage in a language. This results
in multiple word senses per word which in turn
can change or shift their meaning over time. Cur-
rent language models typically do not reflect the
dynamic and multi-sense aspect of words. There
are approaches which tackle one of the aspects, for
example, multiple senses (Reisinger and Mooney,
2010) or semantic change (Hamilton et al., 2016).

Static word embeddings, such as
word2vec (Mikolov et al., 2013), can only
reflect the prevalent meaning a the word as it
appears in the training data. Contextualized word
embeddings, such as BERT (Devlin et al., 2019),
circumvent this issue by including the surrounding

words for each usage of the word. However,
by using this approach, the representation of a
word has to be computed for each time it appears.
Furthermore, these models cannot inherently tell
which or even how many different senses a word
has or how it changed over time.

The boundary between a new word sense and a
shift in meaning is blurred. To illustrate this, con-
sider the term “rock”. It has various meanings, e.g.,
in the context of geology: stone and in the context
of music: genre. But those individual meanings are
not static. Rock music in the 1960’s is a lot differ-
ent compared to rock in the 1990’s, for example.
Nevertheless, in this case we would argue that the
meaning has evolved — the context of usage has
changed, and not that there was a new sense added.
The problem naturally decomposes into two parts:
identifying a sense for a given word in context and
tracking the shift in meaning over time.

In this work, we propose a novel data-driven ap-
proach that can reflect multiple senses of words as
well as how word senses change by jointly mod-
eling different senses over time. We deliberately
refrain from defining the senses of a word to be able
to also model subtle nuances of different contexts
and word usage. To do so, we define a special force-
directed graph layout algorithm to align networks
of frequently co-occurring words. By modeling
words as nodes and connecting co-occurring words
via edges, we create a web of language (Dorogovt-
sev and Mendes, 2001). The algorithm explicitly
models multiple word senses by dividing the input
data into time slices and duplicating nodes to ac-
commodate changing co-occurrence frequencies.
The resulting network layout allows for easy inter-
action and can be easily explained and understood.
This is in contrast to complex embedding models,
which function as a black box and are hard to intu-
itively understand.



2 Related Work

Modeling language as a graph has a long tradi-
tion (Dorogovtsev and Mendes, 2001; Mihalcea
and Radev, 2011; Cong and Liu, 2014; Nastase
et al., 2015). We propose to employ word co-
occurrence graphs to jointly solve the problems
of multiple senses and diachrony.

When representing or analysing words, embed-
dings are the state-of-the-art in NLP nowadays.
Contextualized word embeddings, such BERT, ac-
count for different word senses by computing indi-
vidual vectors for a word based on its context. Clas-
sical, static word embeddings, susch as word2vec,
use a single vector to represent a word. This is
problematic because they fail to capture polysemy.
Reisinger and Mooney (2010) presented a multi-
prototype vector-space model (VSM). The meaning
of a word is represented as a set of sense specific
vectors. Based on that, Huang et al. (2012) de-
veloped a neural network architecture that learns
multiple word embeddings per word. However,
both of these approaches use a fixed number of
clusters, even though different words might have a
different number of senses. In 1986, Lesk (1986)
developed an algorithm to automatically disam-
biguate word senses, by comparing the glosses of
words in a given phrase. The glosses are extracted
from traditional dictionaries. Similarly, Banerjee
and Pedersen (2002) adaped the idea and applied it
to WordNet. Brody and Lapata (2009) use a model
based on latent Dirichlet allocation (LDA) to solve
the word sense induction (WSI) problem. While
this approach uses a fixed number of senses across
all words, Lau et al. (2012) combine LDA with
a varying number of senses per word. Their ex-
periments show that LDA with a variable number
of senses outperforms their benchmark baseline.
However this approach requires the knowledge of
the number of senses per word in advance. More
importantly, they also show that hierarchical Dirich-
let process (HDP), which is an extension of LDA,
can effectively be applied to the WSI problem. The
advantage of HDP over LDA is that the number of
topics (or senses in this case) is learned from the
data automatically.

Besides the work on detecting word senses, also
the work on diachronic modeling has seen an in-
crease in interest due to the popularity of deep
learning in general and word embeddings in partic-
ular. Kim et al. (2014) separated the text corpus
into multiple time slices and trained a model on

each time slice to get different word embedding
models over time. Diachronic word embeddings
were investigated by aligning embeddings trained
on consecutive time slices (Hamilton et al., 2016).
Bamler and Mandt (2017) developed the concept
of dynamic word embeddings. Each document has
a timestamp. This allows the word embeddings to
change over time. Unlike previous approaches, a
single model is used to derive the shifts of word
embeddings over time. This has multiple advan-
tages, such as the complete training data is used for
a single model. While these papers focus on shifts
of words over time, they do not discover if a word
has multiple senses. Spitz and Gertz (2018) use
a network to model the co-occurrence of terms in
documents. Terms that are co-occurring together
are connected by an edge. Topics are discovered
by finding edges of frequently co-occurring terms.
For each document, the publication time is stored
which allows filtering the results by a given time
span. Gad et al. (2015) use a layout with multi-
ple vertical line segments to visualize the trends of
topics over time. Each vertical line segment corre-
sponds to a time slice. For each time slice, the topic
distribution is calculated. Common terms of the
underlying topics are grouped together and plotted
on the vertical line segments. This visualization
shows how different topics split up or converge over
time. Very recently, SemEval-2020 (Schlechtweg
et al., 2020) featured a task for unsupervised lexi-
cal semantic change detection, which has led to a
plethora of diachronic approaches.

Mitra et al. (2014) use co-occurrence networks
to find changes in word senses over time. They
distinguish between four different types of the evo-
lution of language senses: the birth of new sense;
splits of a sense; joins of senses; death of senses.
Candidate nodes for splits are computed with a
distributed thesaurus. For each candidate node, a
clustering algorithm is run on the neighborhood
graph. Each cluster represents a sense of the term
associated with the candidate node. As shown by
Ehmüller et al. (2020) however, matching clusters
across more than two or three time slices causes
problems such as sense shifting when matching
partially overlapping clusters. Hu et al. (2019) use
deep contextualized embeddings to track the senses
of words over time. For each word, the distribution
of the senses is calculated on a temporal slice of
the corpus. Over time, these distributions show
which senses gain or loose importance. While this



approach tracks the senses over time, it does not
discover them. Instead, the senses are extracted
from the Oxford dictionary.

3 Force-Direct Graph Layout Algorithm

In this section we describe our force-directed graph
layout algorithm for a network of co-occurring
words. In this network, each node corresponds
to a word in the vocabulary. We first split the cor-
pus in to disjunct sets of documents based on their
publication date to create partial corpora across
time. For each set, we compute a network of fre-
quently co-occurring words, where the weighted
edges represent the frequency of how often words
appear in the same context. In our preliminary ex-
periments, we saw promising results by limiting the
vocabulary to nouns and using sentences as context
windows. We call the sub-networks for individ-
ual time periods period graphs and edges in the
respective compontentsintra-edges. We connect
the network compontents by adding inter-edges
between identical words that appear in each time
slice. All edges are undirected.

Force-Directed Layout. A traditional force-
directed layout usually embeds a graph onto a 2D
plane. Attractive and repulsive forces act on the
nodes and therefore determine their position. We re-
tain this general concept, but apply different forces
for each type of edge. Therefore, nodes of each
period graph are restricted to only move along a
vertical one dimensional line as done in arc dia-
grams. For each time period corresponding to a
sub-corpus and its period graph, there is a vertical
line arranged from left to right in their temporal
order. As in traditional force layout algorithms,
we iteratively adjust the position of nodes for each
period graph. The higher the value of the intra-
edge, the higher the attractive force of the spring
that pulls the two nodes together. Repulsive forces
between nodes prevent that all nodes are clustered
together. Additionally, we introduce another force
to reduce the angle of inter-edges. The goal of the
layout algorithm is to reduce the overall stress of
the graph.

Let Vt be the set of nodes of the period graph for
time slice t and Pv the position along the vertical
axis for node v. The updated position of each node
in each period graph in an iteration is defined as

Pv := Pv + ψ
(
αFintra + (1− α)Finter − Fr

)

where ψ is the learning rate and Fintra, Finter and
Fr are the forces between nodes in the current
layout. We add α to balance the attractive forces
within and between different period graphs. The
forces between a pair of nodes u, v within each
period graph are defined as

Fintra :=
∑

w∈Nt(v)

k × w({u, v})× (Pv − Pu)
2.

where w({u, v}) is the edge weight and Nt(v) is
the set of nodes directly connected to v in the cur-
rent period graph and It+1(v) is the set of neighbor
nodes of v from the next period graph. Correspond-
ing nodes in different period graphs are vertically
aligned by

Finter :=
∑

v′∈It−1(v)∪It+1(v)

k

(Pv′ − Pv)2
.

We use k as a parameter to control the overall
strength of the forces in our system. In physics, this
k is a proportionality constant called Coulomb’s
constant (Gerthsen, 2006). The value of k is pro-
portional to the electric permittivity of the charged
particles in a vacuum. As in other force-directed
graph layout algorithms, we use a repulsive force
to prevent overlapping nodes:

Fr :=
∑
u∈Vt

k

(Pu − Pv)2

Typically, repulsive forces are computed pairwise
between all nodes. However, due to the clear sepa-
ration of the different time slices, we can limit the
calculation of repulsive forces to nodes within the
same period graph.

Representing Multiple Meanings. Thus far, we
described a layout for a graph based on a fixed
vocabulary with only one meaning for each word.
To reflect multiple senses of a word, we allow the
addition of duplicate nodes in a period graph. Dur-
ing the iterative updates of the graph layout, words
with multiple senses will cause significantly more
stress in the force-directed layout than others. This
is due to the fact, that they are associated with dif-
ferent domains, which are likely located far from
one another.

We use this to our advantage to discover ambigu-
ous words. First, we run the layout algorithm as
described above until it converges to initialize the
layout. Afterwards, we identify nodes that cause



(a) Single-sense pre-layout

(b) Final Layout

Figure 1: Example layout over three time slices.

significant stress to the overall layout and duplicate
them when the forces of the connecting edges ex-
ceed a threshold. Let node v be such an ambiguous
word, then we split it into two nodes v′ and v′′. The
intra-edges that were previously incident to v are
replaced by

∀v̂ ∈ Nt(v) :

{
(v̂, v′), if Pu > Pw

(v̂, v′′), otherwise.

Afterwards, we add inter-edges to connect v′ and
v′′ to their respective nodes in the previous and
following period graphs. This splitting operation
can be repeated for the same word again to reflect
more than two meanings.

Figure 1 shows an example of the layout be-
fore and after adjustment for multiple meanings of
words and balancing the forces. Over time, the vo-
cabulary expands and a new meaning of the word
“mouse” appears in the context of computers. Note,
that in the early days of computing, mice were
not used as input devices yet, thus the new sense
surfaces only in the last time slice.

4 Evaluation

Word sense detection is hard to evaluate given the
lack of annotated ground truth data (Usama et al.,
2019). General thesauri could be used but only
for the period graph for the latest time slice. To
our knowledge, there are no established datasets to
evaluate both, the multi-sense aspect of a model, as
well as the dynamic evolution of senses. Thus, it

is necessary to evaluate our approach with respect
to both aspects individually and compare results to
respective state-of-the-art approaches.

Evaluation of Word Similarities. Even though
our proposed algorithm focuses on word sense de-
tection, the underlying co-occurrence network can
as well be used for other analysis tasks, e.g., word
similarity. The vicinity of nodes in a period graph
should roughly compare to the neighborhood of
vectors in word embeddings trained or fine-tuned
on the same set of documents of one time slice.

Evaluation of the Number of Senses. The
Merriam-Webster dictionary stores metadata for
its entries, e.g., a section “First Known Use of . . . ”,
which lists the year where a sense of that word was
first used. Unfortunately, this information does not
exist for all entries. However, we can use the exist-
ing ones to estimate how well our model performs
in finding senses for a specific time period. In
addition, manually created thesauri, such as Word-
Net (Miller, 1995), can also be used.

Contextualized Word Representations State-
of-the-art embedding models, such as BERT, com-
pute the representation of a word based on the con-
text it appears in. A competitive baseline could be
based on contextual word embeddings. Using a
pre-trained model, we apply it to each appearance
of a word in a corpus. Each meaning of a word
should form a cluster of contextual embedding vec-
tors. By doing this for every time slice, we can
compare the number of clusters and their similarity
neighborhoods to the layout of our graph.

Qualitative Evaluation of Selected Word Sense
Changes. In a collaboration with digital humani-
ties experts, we developed a use case for a qualita-
tive evaluation by analyzing the different contexts
of mentions of natural phenomena in German fic-
tion novels. This allows to qualitatively compare
selected parts of our layout to expected changes dis-
cussed in relevant literature on digital eco-criticism.

5 Conclusion

In this paper, we proposed a novel approach for a
multi-sense time-sensitive word similarity model.
As it is based on a force-directed graph layout
of aligned co-occurrence networks, it allows di-
rect and intuitive interpretation as opposed to most
black box embedding models. In future work, we
are developing the model further and compare it



to state-of-the-art language models as discussed in
the evaluation section.
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