
Dynamic Channel and Layer Gating in
Convolutional Neural Networks

Ali Ehteshami Bejnordi and Ralf Krestel

University of Passau
ehteshami.bahador@gmail.com, ralf.krestel@uni-passau.de

Abstract. Convolutional neural networks (CNN) are getting more and
more complex, needing enormous computing resources and energy. In this
paper, we propose methods for conditional computation in the context
of image classification that allows a CNN to dynamically use its chan-
nels and layers conditioned on the input. To this end, we combine light-
weight gating modules that can make binary decisions without causing
much computational overhead. We argue, that combining the recently
proposed channel gating mechanism with layer gating can significantly
reduce the computational cost of large CNNs. Using discrete optimiza-
tion algorithms, the gating modules are made aware of the context in
which they are used and decide whether a particular channel and/or a
particular layer will be executed. This results in neural networks that
adapt their own topology conditioned on the input image. Experiments
using the CIFAR10 and MNIST datasets show how competitive results
in image classification with respect to accuracy can be achieved while
saving up to 50% computational resources.

Keywords: Conditional Computation, Channel and Layer Gating, CNN,
ResNet, Image Classification

1 Introduction

Conditional computation is a new emerging field in deep learning [4, 3]. Condi-
tional computation aims to dynamically allocate resources in a neural network
conditionally on the data. Conditional computation can be implemented in dif-
ferent ways such as dynamic execution of different sub-networks inside the main
network or different layers or filters. Such models could allow running of differ-
ent computation graphs conditioned on the input. For example, images that are
easier may need less layers/filters or even shallower sub-branches in the network
for making a prediction, while more complex examples may warrant the use of
more computational resources in the network.

The most obvious benefits of conditional computation is saving resources at
inference time. This is because the network is able to dynamically use parts of its
units conditioned on the input. While the original base network can have a very
large number of parameters and Multiply-accumulate operations (MAC), due to
the dynamic structure of the network during inference, the resulting model may
use a much lower average number of parameters and MACs.

2 A. Ehteshami Bejnordi and R. Krestel

The other advantage of conditional computation can be related to the forma-
tion of mixture of experts [11] inside the network. By gating individual compo-
nents inside a network, we can make the parts that are active more specialized
for the specific input, while other elements (filters/layers or sub-networks) may
be specialized to perform well on other types of inputs. The idea of mixture of
expert neural networks has been previously explored. Early works trained inde-
pendent expert models to do different tasks and then joined the models and used
a gating unit that could select the right model for the given input. Conditional
computation, offers a generalized way of forming mixture of experts inside a
neural network in which there is potentially a single expert model per example.

Dynamic capacity networks (DCN) [1] picked-up this idea by using a high
capacity and a low capacity sub-network. The low capacity sub-network analyzes
the full image, while the high capacity sub-network only focuses on task-relevant
regions identified by the low capacity part.

In this paper, we propose to combine channel and layer gating using light-
weight gating modules that can make binary decisions (1 for execution and 0
otherwise), saving computational costs, while maintaining high performance.

2 Related Work

There are several works in recent literature on conditional computation that suc-
cessfully use gating to learn conditional layers/features in their networks. In this
section we review and discuss several approaches for implementing conditional
computation for computer vision applications.

2.1 Conditional Computation in Neural Networks

Stochastic Times Smooth Neurons. Bengio et al. [4] introduced stochastic times
smooth neurons as gating units for conditional computation that can turn off
large chunks of the computation performed within a deep neural network. The
proposed gating units can produce actual zero for certain irrelevant inputs and
hence lead to a sparsity that greatly reduces the computational cost of large deep
networks. Even though stochastic gates perform non-smooth functions such as
thresholds, the authors show that it is possible to obtain approximate gradients
by introducing perturbations in the system and observing the effects.

The proposed stochastic neurons were used in the context of conditional
computation to dynamically select parts of some computational graph for exe-
cution, given the current input. This work was among the first to show that a
dynamic computational saving could be obtained without any significant loss in
performance.

2.2 Layer Gating

Independence of Layers in Residual Neural Networks. Many of the modern CNNs
are based on the recently proposed residual neural networks. In traditional archi-
tectures such as AlexNet [14] or VggNet [16], inputs are processed via low-level

Dynamic Channel and Layer Gating in Convolutional Neural Networks 3

features in the first few layers up to task specific high-level features in the very
deep layers. However, the identity skip-connection in residual networks allows
the data to flow from any layers to any subsequent layer [19]. In a study by Veit
et al.[19], it was shown that removing single layers from residual networks at test
time does not cause a significant drop in performance. This is in sharp contrast
to traditional architectures such as AlexNet and VGG which have a dramatic
performance drop after a layer removal. This shows that layers in ResNets[8]
exhibit a significant degree of independence and that residual networks can be
viewed as a collection of many paths, instead of a single very deep network. Mo-
tivated by these results, several methods were proposed for skipping execution
of layers inside a network conditioned on the input such as convolutional neural
networks with adaptive inference graph (ConvNet-AIG) [18] and SkipNet [20].

Convolutional Networks with an Adaptive Inference Graphs. Veit et al. [18] pro-
posed a CNN architecture called convolutional neural networks with adaptive
inference graph (ConvNet-AIG) that dynamically decides whether the current
layer should be activated or not based on the input it receives. This allows con-
structing adaptive inference graphs conditionally on the input. This is achieved
by training a set of gating units. Specifically, ConvNet-AIG [18] works with resid-
ual networks (ResNets) architecture [8] that are gated at each layer. The gating
function is actually a basic neural network that can get the same featuremap
that goes to a ResNet block as the input. The gating network makes a binary
decision whether a layer should be enabled or turned off for the given input.

In ConvNet-AIG [18], the gating unit computes the global average pooling
of the input and shrinks the entire featuremap into a vector size of 1 × 1 ×
C, where C is the number of input channels. This vector is then passed to
two fully connected layers that generate an output. This output has two nodes
for two decisions: on meaning executing the layer, and off meaning skipping
the layer. Technically, selecting the maximum between these two decisions for
learning the gating function is a bad idea. If the network only considers this
maximum decision, it might end up learning trivial solutions (For example, the
gate may learn to remain always on or always off regardless of the input). Besides
that taking the hard argmax function of the output is not differentiable. To
circumvent this problem, the authors used the Gumbel-max trick [7]. Gumbel
sampling is a strategy that allows us to sample from a discrete distribution.

The major limitation of this method is that it is not able to save computation
on a more fine-grained level. In ConvNet-AIG[18], gates are only defined for each
individual ResNet block (skip a whole block). It makes sense to enable more fine-
grained gating such as gating of filters of the convolutional layers.

Skipping Layers Using Long Short-Term Memory Gates. SkipNet [20] is another
method that can dynamically skip a layer in a ResNet architecture in a similar
fashion. The authors use Long Short-term Memory (LSTM) [9] modules as the
gating units for their network. For skipping redundant layers, the gating blocks
of SkipNet[20] use a binary decision similar to ConvNet-AIG[18]. To overcome
the problem of non-differentiable discrete decision Wang et al. [20] proposed a

4 A. Ehteshami Bejnordi and R. Krestel

hybrid algorithm that is a combination of supervised learning and reinforcement
learning.

The gating module of SkipNet[20] is composed of a global average pooling
layer and one 1× 1 convolutional layer and also one LSTM layer. This recurrent
gating design allows it to take benefits of LSTM architecture and reduces the cost
of a CNN network inference time while at the same time achieving better results.
SkipNet[20] bypasses fewer layers for difficult samples like dark or noisy images
and skips more layers for easy images. However, in comparison to ConvNet-
AIG[18] it achieves lower performance. One major problem with SkipNet[20] is
that its accuracy drops rapidly as it saves more compute.

2.3 Gating Individual Filters/Channels

GaterNet [5] is a gating architecture that learns a complete convolutional net-
work jointly and in parallel with the original network, and tries to gate individual
filters in the base model. This method, however, comes at a high extra compu-
tation cost which may not be necessary. The authors proposed a gater network
that extracts the features of the input and then based on these features gates
the filters of main network. Chen et al. employed Improved SemHash trick[12]
to make discrete gate functions differentiable during the backward pass. Un-
fortunately, the authors do not report any information about the MAC count
or trade-off points between the accuracy and MAC-saving for different sparsity
levels. This makes comparison of their approach with other methods challenging.

Dynamic channel pruning [6] is another recently proposed method that selects
individual features to be turned on/off based on the input. This is done by
choosing the top-k ranked features that should be executed for the specific input.
Gao et al. [6] proposed using Feature Boosting and Suppression (FBS) method.
This method uses auxiliary blocks that determine the importance of the output
of a convolutional layer based on the input it receives. The authors showed that
the Feature Boosting and Suppression method can improve the execution time 5
times faster than VGG-16 and 2 times faster than ResNet-18 while at the same
time the reduction in accuracy is less than 0.6%.

Bejnordi proposed a model [2] which performs a more fine-grained level skip-
ping by learning to execute filters inside a residual block conditioned on the
input. The authors also proposed the batch-shaping loss to encourage the net-
work to learn more conditional features. More recently, a new residual block
was proposed where a gating module learns which spatial positions to evaluate
exploiting the fact that not all regions in the image are equally important for
the given task. The major benefit of our method is the ability of saving more
computation cost rather than other methods. This architecture allows the model
to gate a channel in a convolutional layer or a whole layer of residual block based
on the input it receives.

Dynamic Channel and Layer Gating in Convolutional Neural Networks 5

3 Dynamic Layer and Channel Gating

In this work, we design a neural network architecture that enables fine-grained
filter gating as well as layer-gating of whole residual blocks of convolutional
neural networks. Unlike GaterNet [5] that gates individual channels using a
learned auxiliary network, we use very light-weight gating modules similar to
the ones used in ConvNet-AIG[18] for gating the filters and layers in each layer.
Our proposed solution is called dynamic layer and channel gating (DLCG).

Fig. 1. Overview of different mechanism for gating a residual network. The top shows
the layer gating approach proposed by Veit et al. [18]. The ResNet block in the bottom
shows our proposed joint channel and layer gating (DLCG). In DLCG, we use a single
gating module Gφ to jointly gate filters and layers

3.1 Proposed Gating Architecture

Figure 1 shows an overview of different gating strategies we consider in our work:
Layer gating as proposed by Veit et al. [18], and our proposed joint channel and
layer gating (DLCG). As shown in the lower part of the figure, we learn a single
gating module to jointly gate layers and filters in the residual block.

3.2 The Structure of our Gating Module

The aim of the gating module Gφ is to estimate the relevance of a layer or filter
given the input features. The gating module should have a light design (low MAC
consumption) to not undermine the value of conditional computation, while at
the same time operate in an input dependent fashion and make smart decisions
for activating channels or layers in the block. Beside that, the gates should make

6 A. Ehteshami Bejnordi and R. Krestel

binary decisions. A gate with a soft output will not be useful. While a hard zero
means we can skip the computation of a unit, a soft value such as 0.3 means we
should still give some attention to the current unit and hence no computational
saving will be obtained.

Our gating modules have a light and efficient structure inspired by the gating
modules of ConvNet-AIG[18]. An overview of our gating module is presented in
Figure 2. Our gating module takes the incoming featuremap to the residual block
as input and applies a global average pooling to reduce the input dimension to
1 × 1 × N , where N is the number of channels in the input featuremap. This
step significantly reduces the computation costs of the gating network and is
similarly used in Squeeze and Excitation networks [10]. This representation is
obtained through:

zc =
1

H ×W

H∑
i=1

W∑
j=1

xi,j,c (1)

Fig. 2. Illustration of the gating module structure for our joint channel and layer gating
network

This representation is then fed to a small MLP with a first fully connected
layer with 16 neurons. This fully connected layer is a shared layer for both
channel and layer gating. The output of this layer is passed to a ReLU non-
linearity. After that, there are two separate heads, one for channel gating and
one for layer gating (see Figure 2). The fully connected layer on the channel
gating head generates the output probabilities for gating individual filters α̂i,
where i ∈ {1, 2, · · · , N ′}, and N ′ denotes the number of channels in the first
convolutional layer of the ResNet block. Note that each element in the output

Dynamic Channel and Layer Gating in Convolutional Neural Networks 7

of this gating network is an independent binary gate α̂i responsible to choose to
either execute or skip the computation of the filter i in the first convolutional
layer of the ResNet block.

For layer gating, we use a fully connected layer that linearly projects the
feature to a single output β̂ (single gate) whose output determines if the current
residual block should be executed or not. All the gates are trained using the
Gumbel max trick[7] with sigmoid relaxation.

Note that during inference, we first look at the output of the layer gating
and if it chooses to skip the layer, we do not perform any channel gating and
the whole ResNet block is skipped. And in case the gate decides to execute the
block, we proceed with the channel gating unit.

3.3 Sparsity Objective

Consider a gated classification model which only uses the task loss (e.g. cate-
gorical cross-entropy) to optimize the network. The gradients coming from the
task loss could be back-propagated through the gating units. The most trivial
solution for the gating units would be to make sure all the gates are always on.
In this case, we end up with a network that is equivalent to a model trained
without any gating units. Ideally, however, we would like the units and layers
in the network to be input dependent. That means we want the gates to be on
when the specific layer/filter is relevant for the current input and to be off if oth-
erwise. To encourage this behaviour we use a sparsity objective which penalizes
the gates for being always on.

Target Loss. In ConvNet-AIG[18], the sparsity is achieved by defining a loss
function that encourages each layer to be executed at a certain target rate. The
target rate can take a value between 0 and 1 representing the overall execution
percentage of a layer. The execution rate is penalized in a mini-batch of data.
The loss term is expressed as:

Ltarget =

N∑
l=1

(z̄l − t)2 (2)

in which t is the target rate and is a parameter selected by the user during
training and z̄l represents the fraction of images that are executed for a certain
layer l and N is the total number of ResNet blocks. The total loss for optimizing
the layer gated network is then obtained by summing up the normal loss function
LC (categorical cross-entropy) and the target rate loss Ltarget:

LAIG = LC + Ltarget (3)

In practice, the best results in ConvNet-AIG[18] were achieved by manual
setting of target rates per layer and following a lot of heuristics and hyper-
parameter tuning. For example, the target rate of the initial layers and layers
at the end of the network were set to 1 while the intermediate layers were given
lower target rates as they seemed to be more prunable.

8 A. Ehteshami Bejnordi and R. Krestel

Target-Free Sparsity Loss. Unlike ConvNet-AIG[18], we propose to remove
the target rate. This would allow different layers/channels to take varying dy-
namic execution rates. This way, the network may automatically learn to use
more units for a specific layer and less for another, without us having to de-
termine a target rate in advance. Besides that, we give weight to the sparsity
loss by the coefficients λ and γ which control the pressure on the sparsity loss
for layer gating and channel gating, respectively. The resulting loss equation for
layer gating is, therefore:

Ll−sparsity =

N∑
l=1

z̄2l (4)

And for the case of channel gating we have:

Lch−sparsity =

K∑
f=1

z̄2ch (5)

where zch denotes the fraction of images which activate a specific gate that
gates whole layers, and K is the total number of filters that are gated in the
network. Therefore, the final objective for joint channel and layer gating of our
DLCG network is:

LDLCG = LC + λLl−sparsity + γLch−sparsity (6)

We optimize this loss with mini-batch stochastic gradient descent. To gener-
ate different sparsity levels for our gating network we set different values for our
λ and γ coefficients.

4 Experiments

Evaluation Metrics. Top-1 and top-5 accuracies [14] are the measures that are
used to evaluate the performance of algorithms for image classification tasks such
as the ImageNet [14] or CIFAR [13] classification. Top-1 accuracy describes that
the classifier gives the highest probability to the target label. Top-1 accuracy is
also known as the normal accuracy and is widely used in benchmarks to rank
different algorithms. Top-5 accuracy is mostly common when the number of
classes are very large such as for ImageNet classification (1000 classes). Since we
apply our model to MNIST and CIFAR10 classification tasks, we only report
the top-1 accuracy.

Also for evaluating the computation cost of the model we report multiply-
accumulate operations count (MAC). This measure gives us a good criterion of
how fast our model is in practice. The computation time of a layer in a CNN
architecture mostly depends on the MAC operations performed on that layer
during the convolutional operation. The MAC count for a standard convolutional
layer is (H×W×C)×(K×K×C ′). Where (H×W×C) represents the dimension
of the input featuremap and (K ×K × C ′) represents the spatial size of filters

Dynamic Channel and Layer Gating in Convolutional Neural Networks 9

Table 1. Results of the experiment on the CIFAR10 dataset for our joint channel and
layer gating architecture (DLCG) with different sparsity loss coefficients

Gate loss factor Average activation rate Accuracy GMAC

Layer Channel Layer Channel

0.09 0.15 0.399 0.215 88.96 0.0076

0.07 0.12 0.464 0.262 89.67 0.0089

0.09 0.10 0.405 0.272 89.87 0.0091

0.05 0.10 0.564 0.305 90.59 0.0115

0.05 0.07 0.677 0.388 91.55 0.0145

0.02 0.03 0.727 0.548 91.99 0.0206

0.00 0.03 0.992 0.591 92.49 0.0232

0.00 0.05 0.999 0.791 92.74 0.0320

0.00 0.00 0.999 0.880 92.86 0.0353

times the number of filters in the convolutional layer. By gating a specific filter
we affect the number of filters C ′ that are applied to the input. Note that gating
filters not only reduces the MAC count of the current layer, but also affects the
MAC count of the following layer because the input dimension to the next layer
is automatically reduced.

To get better insight into the effectiveness of the gating architectures, we also
plot the MAC versus Accuracy curve to see how saving computation affects the
accuracy of the gated models.

4.1 Experiments on CIFAR10

For evaluation of our approach, we use the CIFAR10 dataset [13]. CIFAR10 is a
popular dataset for the task of image classification consisting of 10 categories It
contains of 50000 images for training and 10000 images for testing of size 32×32
pixels.

Training Configuration for CIFAR10 Classification. We used ResNet20 [8] as
the base network for our CIFAR10 experiments. We trained our joint layer and
channel gated models using stochastic gradient descent with Nesterov momen-
tum [17]. The network was trained for a total of 400 epochs with a batch size
of 256. At the start of training, the learning rate was set to 0.1. We followed
a step policy for learning rate drop and divided the initial learning rate by a
factor of 10 at epochs 200, 300 and 375. The weight decay for the parameters
of the network was set to 5e−4. We did not apply weight decay to any of the
parameters of the gating modules (weights or biases).

We used random cropping and random horizontal flipping as data augmen-
tation to improve the generalization of our model. To generate trade-off points
for our MAC-accuracy curve, we experimented with different values of λ and γ
for the sparsity objectives.

10 A. Ehteshami Bejnordi and R. Krestel

Fig. 3. The top-1 accuracy vs MAC count curve for the three gating architectures
trained on CIFAR10 dataset

Results on CIFAR10: We present the result of our DLCG model in Table 1
with different accuracy vs mac trade-offs. This model is performing consistently
better than ConvNet-AIG[18] as shown in Figure 3. We additionally compare
the results to the case in which we only use channel gating. The accuracy of
our DLCG model is slightly higher than a sole channel gated model as well. We
argue that the major performance gain comes from the channel gating modules
and that is clear from the significant performance gap between channel gating
alone and ConvNet-AIG[18].

In Figure 3, we show the trade-off between MAC count and accuracy for the
three different gating schemes: ConvNet-AIG[18] and channel gating as well as
joint channel and layer gating. Note that in all MAC count calculations, we also
include the overhead of the gating modules (less than 0.03%).

From the results, it is obvious that our proposed gating models outperform
ConvNet-AIG[18] by a large margin. In this plot we also present the performance
of two baseline models: ResNet20 and ResNet14 without any gating. As can be
seen, ResNet14 without gating outperforms a gated ConvNet-AIG[18] model at
a similar MAC count. This result is surprising, because in such a case one would
prefer to use a ResNet14 model rather than a ConvNet-AIG[18] model with a
ResNet20 backbone. This result questions the entire value of conditional com-
putation. Our ResNet20 based gated models, in contrast, outperform ResNet14
non-gated baseline by a large margin at a similar MAC count. This is highly
desirable, as it means we can take a large capacity neural network (such as
ResNet20) and sparsify it to the size of a smaller network (such as ResNet14),
while getting a much higher accuracy than the smaller non-gated model.

Dynamic Channel and Layer Gating in Convolutional Neural Networks 11

Fig. 4. The top-1 accuracy vs MAC count curve for the three gating architectures
trained on MNIST dataset

4.2 Experiments on MNIST

To verify our results from the CIFAR10 dataset, we additionally evaluated our
approach on the smaller MNIST dataset [15]. MNIST is a database of handwrit-
ten digits from 0 to 9. Each image is available in the form of a grayscale image
with a size of 28×28 pixels. This dataset contains 60000 images for training and
10000 images for testing.

Figure 4 shows the top-1 accuracy versus MAC count curve for the three
gating scenarios: layer gating, channel gating, and joint channel and layer gating
(DLCG). As can be seen, our DLCG model outperforms the channel gating
model and also the ConvNet-AIG[18] model (layer gating) in high accuracy
ranges. DLCG outperforms ConvNet-AIG[18] at all trade-off points and shows
that the addition of a more fine-grained gating mechanism could be beneficial
for conditional computation neural networks.

5 Conclusions and Future Work

In this paper, we studied conditional computation models for vision applica-
tions. An important limitation in conventional neural network architectures is
their fixed static graph. The deep learning models we train for various tasks are
largely task- and context-agnostic. This implies that regardless of the input, all
elements of the network are executed. This shortcoming may render such models
inefficient in many real-world applications such as running models on mobile de-
vices. Therefore, we focused on the design of a convolutional neural network that

12 A. Ehteshami Bejnordi and R. Krestel

can dynamically utilize its units conditioned on the input image. In particular,
we presented a joint layer and channel gating architecture, that can decide to
activate or deactivate channels in a convolutional layer or a whole residual block
based on their relevance to the specific input.

Our empirical evaluations show that channel gating alone can outperform
layer gating methods such as ConvNet-AIG [18] by a large margin on the MNIST
and CIFAR10 datasets. This increase in performance could be attributed to the
fine-grained nature of our architecture design. Rather than saying a whole resid-
ual block with all its computation units are irrelevant for the input, we decide the
computation saving at the fine-grained channel level. Our joint layer and channel
gating show some improvement over channel gating alone, but not significantly
as most of the computational saving comes from the channel gating operations.
Overall, our proposed gating architecture provides improved efficiency and clas-
sification accuracy.

We speculate that the reason why channel gating alone may perform as good
as joint channel and layer gating could be as follows. The gating module gener-
ally produces very sparse channel gating solutions in each ResNet block which
would lead to significant saving in computation. However, the small number of
filters which are remaining active are necessary to achieve a high performance.
Therefore, the model generally prefers to choose some filters from each layer
(albeit small in number) rather that skipping the entire block.

A highly desirable aspect of our proposed gating approach is that we can
take a large capacity neural network such as ResNet20 and sparsify it to the size
of a smaller network such as ResNet14, while achieving a much higher accuracy
than this small non-gated model (ResNet14).

There are many future research directions. One would be to use the batch-
shaping loss proposed in [2] for our model. We think our joint channel and layer
gating architecture could potentially benefit from this loss. It would additionally
be useful to evaluate the performance of our method on the larger scale ImageNet
dataset.

Another direction would be to integrate early exiting methods to our model
to not only save computation by gating individual filters and layers but also exit
the whole model at an early stage in case the model is already certain about
the decision regarding an easy example. This way, the model can choose to skip
huge amount of computation for easier examples.

References

1. Almahairi, A., Ballas, N., Cooijmans, T., Zheng, Y., Larochelle, H., Courville, A.:
Dynamic capacity networks. In: International Conference on Machine Learning.
pp. 2549–2558 (2016)

2. Bejnordi, B.E., Blankevoort, T., Welling, M.: Batch-shaping for learning condi-
tional channel gated networks. In: International Conference on Learning Repre-
sentations (2020), https://openreview.net/forum?id=Bke89JBtvB

3. Bengio, E., Bacon, P.L., Pineau, J., Precup, D.: Conditional computation in neural
networks for faster models. arXiv preprint arXiv:1511.06297 (2015)

Dynamic Channel and Layer Gating in Convolutional Neural Networks 13

4. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradi-
ents through stochastic neurons for conditional computation. arXiv preprint
arXiv:1308.3432 (2013)

5. Chen, Z., Li, Y., Bengio, S., Si, S.: You look twice: Gaternet for dynamic fil-
ter selection in cnns. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (June 2019)

6. Gao, X., Zhao, Y., Lukasz Dudziak, Mullins, R., zhong Xu, C.: Dynamic chan-
nel pruning: Feature boosting and suppression. In: International Conference on
Learning Representations (2019), https://openreview.net/forum?id=BJxh2j0qYm

7. Gumbel, E.J.: Statistical theory of extreme values and some practical applications.
NBS Applied Mathematics Series 33 (1954)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8), 1735–1780 (1997)

10. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. pp. 7132–7141 (2018)

11. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E., et al.: Adaptive mixtures
of local experts. Neural computation 3(1), 79–87 (1991)

12. Kaiser, L., Bengio, S.: Discrete autoencoders for sequence models. arXiv preprint
arXiv:1801.09797 (2018)

13. Krizhevsky, A.: Learning multiple layers of features from tiny images. Tech. rep.,
Citeseer (2009)

14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems.
pp. 1097–1105 (2012)

15. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning ap-
plied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

17. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization
and momentum in deep learning. In: International conference on machine learning.
pp. 1139–1147 (2013)

18. Veit, A., Belongie, S.: Convolutional networks with adaptive inference graphs. In:
Proceedings of the European Conference on Computer Vision (ECCV). pp. 3–18
(2018)

19. Veit, A., Wilber, M., Belongie, S.: Residual networks behave like ensembles of
relatively shallow networks. Conference on Neural Information Processing Systems
(NIPS) (2016)

20. Wang, X., Yu, F., Dou, Z.Y., Darrell, T., Gonzalez, J.E.: Skipnet: Learning dy-
namic routing in convolutional networks. In: Proceedings of the European Confer-
ence on Computer Vision (ECCV). pp. 409–424 (2018)

