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Abstract

In the past few years various government funding or-
ganizations such as the U.S. National Institutes of
Health and the U.S. National Science Foundation
have provided access to large publicly-available on-
line databases documenting the grants that they have
funded over the past few decades. These databases pro-
vide an excellent opportunity for the application of sta-
tistical text analysis techniques to infer useful quan-
titative information about how funding patterns have
changed over time. In this paper we analyze data from
the National Cancer Institute (part of National Institutes
of Health) and show how text classification techniques
provide a useful starting point for analyzing how fund-
ing for cancer research has evolved over the past 20
years in the United States.

1 Introduction
The U.S. National Institutes of Health (NIH) invests over
$30 billion each year in scientific research and development,
with the mission of promoting advances and innovations that
will improve population health and reduce the burden of
disease. As a result of this investment there is significant
interest in quantifying and understanding public outcomes
from the NIH funding process (Lane and Bertuzzi 2011; Tal-
ley, Hortin, and Bottomly 2011), for example to help deter-
mine policies for equitable and fair practices for allocation
of funding resources across different diseases (Hughes 2013;
Hanna 2015).

In this paper we use statistical text mining techniques to
analyze how NIH funding for cancer-related research has
changed over the past two decades. As the basis for our anal-
ysis we use data extracted from the NIH RePORTER online
system for a 20-year period from FY1994 through FY2013.
From this data we use NIH’s Research Categorization and
Disease Classification (RCDC) labels, project titles and ab-
stracts, as well as annual funding amounts, to create a quan-
titative picture of how NIH funding for cancer has evolved
since 1994.

The work we describe in this paper has two main parts.
First, we use text classification techniques (labeled topic
modeling and logistic regression) to infer RCDC labels for
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projects from 1994 to 2013, inferring the probability that
each grant is associated with each label. In the second part
of our work we then utilize the probabilities generated by
text classification to partition each grant’s total funding, per
year, across categories, and use the resulting information to
analyze how NIH funding is changing at the category level
over time.

In terms of related work, NIH grant abstracts have been
analyzed using unsupervised topic modeling methods (Tal-
ley et al. 2011; Mimno et al. 2011) but without leveraging
RCDC category information. In the public policy sphere,
RCDC categories have been used to make broad inferences
about directions in funding policy and to connect this infor-
mation to external data. For example, Sampat, Buterbaugh,
and Perl (2013) used RCDC categories to investigate associ-
ations between NIH funding and deaths from diseases. How-
ever, to the best of our knowledge, the work we describe
here is the first to systematically RCDC labels to extrapo-
late funding patterns for specific research categories over a
two-decade period.

2 National Cancer Institute Grant Data
We focused in this study on NIH projects that were funded
through the National Cancer Institute1 (NCI) in the years
1994 to 2013. The upper plot in Figure 1 illustrates how the
NCI’s budget has grown over this time period, from slightly
above $1 billion per year in the early 1990’s to around $3
billion in recent years. The 4 year-period from 1999 to 2002
corresponds to a doubling of the overall NIH budget during
that time. The peaks in years 2009 and 2010 (and to a certain
extent in 2011) could be viewed as somewhat anomalous
since they correspond to an infusion of new funds to the NIH
via the American Recovery and Reinvestment Act (ARRA).
The lower plot in Figure 1 shows the number of projects
funded each year by NCI, ranging between 4,500 and 10,000
per year. There is a close correlation between the number of
grants per year in the lower plot and the total NCI funding
per year in the upper plot.

NIH provides online public access to information on
projects it funds2. Each project has entries for each year it
was funded, with information such as project id, project ti-

1http://www.cancer.gov/
2http://exporter.nih.gov/
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Figure 1: Plots over time of (a) the total amount of funding
per year for NCI awards (upper plot), and (b) the number of
projects funded per year by NCI.

tle, short summary of the project proposal (abstract), appli-
cation type, support year, total cost, spending categories3.
The spending categories are based on the Research, Condi-
tion, and Disease Categorization (RCDC), consisting of over
200 categories of disease, condition, or research area—they
are described in more detail below.

2.1 RCDC Categories
The RCDC system4 consists of a set of categories devel-
oped by NIH to characterize funded research projects in
a standardized manner. Examples of RCDC categories in-
clude disease categories such as Brain Cancer and Liver
Disease, broad research areas such as Biotechnology and
Gene Therapy, as well as general categories associated with
research projects such as Clinical Trials and Networking
and Information Technology R&D. RCDC categories are as-
signed to a project by mapping terms from a project’s ti-
tle/abstract/specific aims, into a vector representation based
on an RCDC thesaurus. The thesaurus is derived from well-
known medical and biomedical ontologies such as Medical
Subject Headings (MeSH) and the Unified Medical Lan-
guage System (UMLS) metathesaurus. A system developed
by NIH is then used to map term vectors to RCDC cate-

3More details can be found at http://exporter.nih.
gov/about.aspx

4http://report.nih.gov/rcdc/
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Figure 2: Histogram of the number of RCDC categories per
document for the 31,628 labeled documents in the NCI data
set.

gories (Baker, Bhandari, and Thotakura 2009). The RCDC
categories are not mutually exclusive, and thus, each vector
(or project) can be mapped to multiple labels in the manner
of a multi-label classification process.

The goal of our work is to attribute funding to specific
RCDC categories over time, to derive (for example) an es-
timate of how much total funding was allocated by NCI to
each RCDC category per year. NCI projects between 2008
and 2011 have been assigned RCDC category labels already
by NIH, but projects from other years in our data do not have
labels. Thus, the first part of our work involves constructing
a multi-label classifier that is trained on the 2008-2011 docu-
ments (that have RCDC labels), and then using the resulting
classifier to infer category labels for the projects that were
funded prior to 2008 or after 2011.

3 Predicting RCDC Categories
3.1 Document Preprocessing
We downloaded from the NIH ExPORTER system5 all
records for projects funded by the NCI over a 20-year pe-
riod from 1994 to 2013. After removing project records
with missing abstracts, etc., this resulted in a data set of
149,901 projects. We represented each project record using
a standard bag of words representation as follows. The ti-
tles and abstracts were tokenized and a set of 300 common
stopwords removed. In addition to unigrams we also used
n-grams in our vocabulary, corresponding to noun phrases
extracted using the UIUC Chunker (Punyakanok and Roth
2001), with examples such as “radiation biology”, “research
project”, and “flow cytometric analysis.” Terms that ap-
peared in less than 15 documents were discarded, resulting
in a vocabulary of 29,713 terms in total and about 50 terms
on average per document.

Documents in the 4 years from 2008 to 2011 had RCDC
categories associated with them and the other 16 years did
not. The number of documents with labels (in the 4-year
window) was 31,628 and the number without was 118,273.
Figure 2 shows a histogram of the number of RCDC cat-
egories attached to each document in the labeled set. The

5http://exporter.nih.gov/



RCDC categories present in the NCI project awards are pri-
marily of relevance to cancer, and thus, there is a significant
fraction of the categories that occur relatively infrequently
in the NCI documents. Removing codes that occurred in less
that 50 documents, and merging a smaller set of redundant
codes, resulted in a set of 88 RCDC codes that we used in
our experiments.

3.2 Learning a Labeled Topic Model for RCDC
Categories

In order to analyze funding patterns across the full 20-year
period we developed a document classification approach by
training on the 31,628 documents with RCDC labels and
then estimating RCDC category probabilities for all 149,901
documents. Our classification method consisted of two com-
ponents.

The first component uses a variant of LDA (latent Dirich-
let allocation, or topic modeling), called labeled-LDA (L-
LDA), to learn a labeled topic model from the 31,628 labeled
documents. L-LDA is an extension of the more widely-
known unsupervised LDA approach, and has been found
to be broadly useful for multi-label classification prob-
lems (e.g., see (Ramage et al. 2009; Rubin et al. 2012;
Gaut et al. 2016)). L-LDA operates by using topics in one-
to-one correspondence with labels (where by ‘labels’ we
are referring here to RCDC categories). In the collapsed
Gibbs sampling version of topic modeling, which is what
we use in the work reported here, the sampling algorithm
learns the topics by iteratively sampling assignments of in-
dividual word tokens to topics. In the unsupervised version
of LDA any topic can be assigned to any word-token. In
labeled-LDA the word tokens within a document can only
be assigned to labels (topics) associated with that docu-
ment. This provides the sampling algorithm with a signif-
icant amount of additional “semi-supervised” information
compared to the fully unsupervised case, and the sampling
algorithm tends to converge quickly.

We have found it useful in our work to include in the
model a certain number (B) of additional “background top-
ics”, that the sampling algorithm can use for any word token
— one way to think about the background topics is that they
can be associated with any documents in the corpus. These
topics are useful because they can account for words in doc-
uments that are not necessarily associated with any of the
known labels, e.g., for the NIH documents these topics tend
to learn sets of words associated with general research topics
that would be considered too general and broad to be defined
as RCDC categories. In our experiments in this paper we
used B = 10 background topics with L = 88 labeled top-
ics when fitting our models. For the results in this paper we
ran 70 collapsed Gibbs sampling iterations for training the
model, and 20 iterations for making predictions with docu-
ments without labels. Our results appeared to be relatively
insensitive to these specific choices of parameters and algo-
rithm settings.

The L-LDA model requires the specification of hyperpa-
rameters for (a) the Dirichlet prior parameters for the word-
topic distributions (the β′s, one βw value per term w in the
vocabulary), and (b) the Dirichlet prior parameters for the

Topic Most Probable Terms
Brain Cancer glioma, gbm, brain tumor, malig-

nant glioma, glioblastoma, brain
Breast Cancer breast cancer, women, breast cancer cell,

breast, breast cancer patient, brca1
Kidney Disease rcc, kidney cancer, renal cell carcinoma,

vhl, renal cancer
Hepatitis hcv, hbv, liver cancer, hepatitis virus,

hbv infection, hbv replication
Lung Cancer lung cancer, nsclc, lung, leading cause,

cancer death, egfr
Mind and Body life, quality, intervention, distress, women,

exercise
Obesity obesity, physical activity, diet, association,

change, bmi
Pediatric children, childhood cancer, parent, age,

neuroblastoma, adolescent
Background1 program, trainee, university, training, can-

didate, field
Background7 model, mice, work, experiment, human,

mouse model
Background9 meeting, field, conference, researcher, area,

collaboration

Table 1: The most probable terms inferred for the topics associated
with RCDC codes as well as for background topics, obtained from
training an L-LDA model on 31K documents labeled with RCDC
categories. The 6 most probable n-grams are shown, i.e., that have
the largest values p(w|c) where w is a term in the vocabulary and
c is a category.

document-topic distributions (the αc’s, one per topic). We
followed the usual convention of setting all the β’s equal to
each other (for a symmetric prior) with each βw = 0.01. For
the αc values, we set the priors on a document-by-document
basis as follows. In a particular document d in the training
data, αd

c is either proportional to the frequency with which
the label c occurs across documents in the training data (if
label c is attached to the document) or αd

c = 0 if the docu-
ment does not have this label. The sum of the non-zero αc’s
is set to 5 for each document. The background topics are
set to be equally likely across all training documents with∑B

b αb = 1. These same settings were used for both training
with labeled documents and prediction with unlabeled doc-
uments. For prediction, when we have no labels for a docu-
ment d, we use the “proportional” αc’s as described above,
with none set to 0, and

∑88
c=1 αc = 5.

We found that the performance of the model was not par-
ticularly sensitive to the β values, but could be somewhat
sensitive to how the α’s were set, consistent with prior find-
ings on the effect of priors in LDA (Wallach, Mimno, and
McCallum 2009). We found some evidence for example
that larger α values could give better test performance—but
these models had poorer calibration, so we did not use the
larger α’s in the results shown here. How to set the priors
in labeled-LDA in a systematic way, to optimize a metric
such as precision, is beyond the scope of this paper, but is an
interesting avenue for future work.



3.3 Evaluation of the Topic Model

Table 1 shows the highest-probability words for several of
the topics learned by the model, both for topics that are in
one-to-one correspondence with RCDC categories, as well
as for background topics. We can see for various disease
topics (corresponding to known RCDC categories), such as
Brain Cancer, Breast Cancer, and so on, that the words
and n-grams that have high probability for that topic appear
to be appropriate. In addition we show the high probabil-
ity words for 3 of the 10 background topics, corresponding
to general themes such as training/education, mouse mod-
els, and meetings/conferences. These are common themes
in NIH research but are not explicitly identified as categories
in the RCDC system. The labeled LDA model is able to ac-
count for words associated with these topics rather than be-
ing forced to assign them to the RCDC categories.

In addition to visual inspection we also conducted internal
train-test evaluations by partitioning the 31,628 labeled doc-
uments into a randomly selected training set and test set with
about 90% of the data in the training set and the other 10% in
the test set. To make predictions on the test set we fit the L-
LDA model to the training data and then ran collapsed Gibbs
sampling on each test document, where the topic-word prob-
abilities were treated as known and fixed, but the document-
topic probabilities and the assignments of word tokens to
topics were treated as unknown. After the sampler converges
on each document dwe take the sampling probabilities com-
puted during the final iteration for each word token wi in
that document, p(c|wi, d), c = 1, . . . , 88, and compute the
sum of these probabilities over all word tokens wi (in docu-
ment d) to get a score for each category in each document,
i.e., s(c|d) =

∑
i p(c|wi, d). In effect this is the expected

number of word tokens in document d that the model esti-
mates will be associated with category c. We can normal-
ize these numbers across the categories to obtain a condi-
tional probability p(c|d) = s(c|d)/

∑
k s(c = k|d), which

can be interpreted as the probability (according to the model,
given the word tokens observed in the document) that a ran-
domly selected word token in this document will be assigned
to topic c. These probabilities, p(c|d) can then be used to
rank documents for a given topic c (allowing computation
of AUC (area-under-the-curve) scores, per topic, relative to
the known labels for the test documents), and can be thresh-
olded to provide document-specific predictions.

Treating each label as a binary label we computed AUC
and R-precision metrics on the test data using the L-LDA
model’s p(c|d) scores. We found that the model was able
to achieve an average AUC (area-under-the-curve) score
of 0.80 and an average R-precision number of 0.56, using
weighted averaging across all 88 labels with weights pro-
portional to the number of documents in the test data that
contained each label. In diagnosing the predictions of the
model we noticed that the predictions from L-LDA (the
p(c|d) scores) were not well-calibrated in the sense that they
tended to spread probability mass among many labels for
a given document, rather than concentrating the mass on a
small subset of labels. To address the calibration issue, we
added a logistic classifier component to our setup. We fit a

binary logistic regression classifier6 for each category c on
the training data, using the p(c|d) scores from L-LDA as in-
put features (so, 88 inputs plus an intercept) — this serves to
calibrate the relatively poorly-calibrated L-LDA scores. On
the test data documents we then used the 88 logistic mod-
els, with the L-LDA inferred scores p(c|d) as inputs, to pro-
duce a probability pl(c|d) for each document for each cate-
gory from the logistic models. We found that these predic-
tions were much better calibrated than the original L-LDA
scores. Furthermore, when we computed the weighted aver-
age of AUC and R-precision scores (as before for the L-LDA
scores) we found significant improvements in performance:
the average AUC was 0.89 and the average R-precision was
0.64.

In making predictions for the full NCI data set, we re-
peated the same procedure as above, consisting of 3 steps:
• L-LDA and logistic regression were fit using all of the

31,628 labeled documents (in the manner describe above
for the training data);

• L-LDA was then used to infer p(c|d) scores (via Gibbs
sampling) for all 149,901 documents in the NCI corpus
(across both labeled and unlabeled documents);

• Finally the trained logistic regression model was used to
generate probabilities pl(c|d) for each of these documents
and for each RCDC category c = 1, . . . , 88.

In this manner we were able to extrapolate estimates of
RCDC categories from the labeled subset to the full data set.

4 Analyzing Funding Patterns over Time
4.1 Funding per RCDC Category per Year
We use the probabilities pl(c|d) produced by logistic regres-
sion, for each document d and each category c as described
above, to infer how much funding to attribute to each cat-
egory c. Let xd be the amount of funding awarded to doc-
ument d and let yd be the year in which the funding was
awarded. For a given document d we would like to be able
to distribute the funding amount xd across the different cat-
egories. We adopt a simple approach and fractionally assign
the funds in direct proportion to the logistic class probabili-
ties pl(c|d). Specifically, we define a set of weights

wcd =
pl(c|d)∑

k pk(c = k|d)
, c = 1, . . . , 88

for each document d, where the weights sum to 1 by defi-
nition for each document across the categories. The amount
of funding attributed in document d to category c is then de-
fined as wcdxd.

In this manner we can compute the total estimated amount
of funding for category c in a given year y by summing up
all the attributed funding for category c across documents,
i.e.,

F y
c =

∑
d:yd=y

wcdxd,

6The SciKit Learn Python library was used to obtain all logistic
regression results. All settings were left at their defaults. Cross-
validation runs showed that performance appeared to be insensitive
to optimization and regularization parameter choices.
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Figure 3: Estimated percentage of funding allocated to 4
general RCDC categories .

with c = 1, . . . , 88, y ∈ {1994, . . . , 2013}. From these
numbers we can for example compute the relative percent-
age of funding awarded in year y to the different RCDC cat-
egories (as we will do in the next section).

In addition, if we wish to know what fraction of projects
(independent of funding) is devoted to category c in year y,
we can estimate this via P (c|y) = 1

Ny

∑
d:yd=y wcd where

Ny is the number of projects that were funded in year y.

4.2 Funding Patterns over Time
Using the methodology described in the last section, we
show in Figure 3 the estimated funding percentage as a
function of time for 4 different RCDC categories, all of
which are somewhat broader and more general than can-
cer research. All 4 categories exhibit systematic increases
in their portion of funding over time, which is not surprising
given that these are categories that have received increas-
ing attention in recent decades for a variety of reasons. The
Human-Genome and Nanotechnology exhibit systematic in-
creases from the mid 2000s onwards. The Networking-and-
Information-Technology category also begins to increase its
funding share from 2007 onwards although it decreases af-
ter 2009—the two peak years of 2009 and 2010 correspond
to the years of ARRA funding in NIH. The Obesity cate-
gory accounts for a smaller percentage of NCI funding than
the other categories, but exhibits a visible systematic shift in
level of funding from 2005 onwards.

Figure 4 focuses on RCDC categories associated with
specific diseases. Brain Cancer and Lung Cancer show con-
sistent and sustained increases in their share of funding over
most of the 20-year period. The Infectious Disease category
shows a steady decline until 2006, with a subsequent in-
crease in funding in 2007, but declining again from 2008 on-
wards. The Liver Cancer category has a much smaller share
of funding than the others, and appears to have undergone a
systematic increase in funding between 2006 and 2008.

Figure 5 shows plots for three of the RCDC cate-
gories that each had a relatively stable share of funding
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Figure 5: Estimated percentage of funding allocated to 3
RCDC categories with changes in percentages during the
late 2000’s.

but then experienced significant shifts around 2006-2008.
Breast Cancer starts a steady decline in 2007 that continues
through 2013. Translational Research and Epidemiology-
and-Longitudinal-Studies both appear to have seen rapid in-
creases in their share of funding around 2009 and 2010,
again coinciding with the two years of NIH ARRA funding.

The changes that we see in these plots may be due to
a number of different factors, for example, known inter-
ventions such as the ARRA funding program, or other less
well-known policy changes and shifts within NIH. The time-
series plots in these figures cannot on their own provide pre-
cise understanding of the factors that are governing NIH
funding over time. Nonetheless, the patterns are sugges-
tive of systematic changes in NIH funding and can provide
decision-makers and policy-makers (both inside and outside
NIH) with a broad quantitative look at how funding alloca-
tions have been changing over time.
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4.3 Funding Ratios over Time
We can also use this data to analyze how the share of funding
that is being assigned to a category each year relative to the
fraction of documents assigned to the category in the same
year, by computing the ration of (a) the normalized F y

c score
(normalized across categories) and (b) P (c|y). For example,
if a particular category has a 3% share of funding, and also
a 3% share of grants assigned to this category, then the ratio
is 1. If a category is getting a greater share of funding than
grants the ratio will be above 1, and if it is getting less of a
share of funding than grants, then the ratio will be less than
1. We explore some of these ratios in Figure 6 for 5 RCDC
categories. The dotted black line at y = 1 is what we would
expect to see if all categories had the same funding and doc-
ument shares over time. What we see instead is that there is
significant and systematic variation in these ratios. The two
cancer categories have ratios lower than 1 indicating a lower
ration of funding share to document (grant) share, and for
the category Breast Cancer there is evidence of a system-
atic decline over time. Conversely, for the 3 other categories
plotted in Figure 6 the ratio is consistently above 1 indicat-
ing a greater share of funding for these categories. There is
also a quite striking increase in this ratio over time for all 3
of these categories, with the ratio for the Networking cate-
gory effectively doubling over time. These types of patterns
could (for example) reflect systematic differences and shifts
in project budgets across different categories, with some cat-
egories tending to have more expensive budgets than others.

5 Conclusions
In this paper we have shown how labeled topic-modeling
and logistic classifiers can be combined to analyze NIH
grant funding data and to extract potentially useful infor-
mation. Directions for further research include both method-
ological issues such as investigating how best to calibrate the
L-LDA model, as well as broader analysis of the economic
and policy implications of the extracted information. Finally,

it is also of significant interest to policy analysts to not only
look at grant abstracts but to other relevant data, such as sci-
entific articles that resulted from the funded grants, citation
data, and so on.
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