
Copyright ©2019 IEEE. Personal use of this material is permitted.
C. Matthies, “Feedback in Scrum: Data-Informed Retrospectives,” 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion), Montreal, QC, Canada, 2019, pp. 198-201. https://doi.org/10.1109/ICSE-Companion.2019.00081.

Feedback in Scrum: Data-Informed Retrospectives
Christoph Matthies

Hasso Plattner Institute
University of Potsdam, Germany

christoph.matthies@hpi.de

Abstract—Improving the way that teams work together by
reflecting and improving the executed process is at the heart of
agile processes. The idea of iterative process improvement takes
various forms in different agile development methodologies, e.g.
Scrum Retrospectives. However, these methods do not prescribe
how improvement steps should be conducted in detail. In this
research we investigate how agile software teams can use their
development data, such as commits or tickets, created during
regular development activities, to drive and track process im-
provement steps. Our previous research focused on data-informed
process improvement in the context of student teams, where
controlled circumstances and deep domain knowledge allowed
creation and usage of specific process measures. Encouraged
by positive results in this area, we investigate the process im-
provement approaches employed in industry teams. Researching
how the vital mechanism of process improvement is implemented
and how development data is already being used in practice in
modern software development leads to a more complete picture
of agile process improvement. It is the first step in enabling a
data-informed feedback and improvement process, tailored to a
team’s context and based on the development data of individual
teams.

Index Terms—agile, software development, Scrum, retrospec-
tive, software process improvement

I. BACKGROUND & MOTIVATION

A major aspect of modern, agile software development pro-
cesses is the focus on iterative development [1] and adaptation
to the given context [2].

A. Feedback Cycles in Agile Methods

Continuously repeating the stages of analysis, design, im-
plementation, and evaluation enables frequent deliveries and
timely feedback cycles [2]. Feedback is not only collected
regarding the developed software, i.e. whether the require-
ments were correctly implemented, but also regarding the
process itself. By critically examining the development process
and how it was executed, problems within a team can be
identified and improvements can be proposed for the next
iteration, making it more effective and enjoyable [3]. In most
software development methodologies, this concept is assigned
a dedicated term, such as Kaizen, the idea of continuous
improvement in Lean or the Inspect & Adapt approach of
Empirical Process Control in Scrum [4].

B. Feedback in Scrum

Scrum, the agile process framework most often employed in
industry [5], explicitly provides meetings for the collection of
feedback on iteration outcome and the enacted process. While
during the sprint review meeting, the team looks at what was

built, the retrospective focuses on how it was built. Figure 1
gives an overview of the process and its different meetings.

1
2
3
4
5
6
7

Product Owner

Sprint Planning 
with Team

Sprint
Backlog

Every
day

2-3 Week
Sprint

Stand-up
meeting

Input from 
stakeholders

Product
Backlog

Prioritized

Sprint Retrospective

Product 
Increment

Sprint 
Review

Fig. 1. Generalized overview of the Scrum development process.

During retrospectives, the software development team dis-
cusses what aspects of the performed work and collaboration
worked well during the last iteration, and should consequently
be continued, as well as what issues hindered a smooth
workflow and posed problems. The team then collectively
decides which improvements could be made in the next
development iteration. While effectively reflecting on one’s
own executed process and finding concrete action items that
should be tackled is already challenging, a possibly even larger
challenge is tracking the identified issues and their possible
resolutions over time.

C. Progress Measurement

In order to allow insights into which improvements were
made in the last iteration, some form of progress measurement
must exist, i.e. the check stage of the Plan-Do-Check-Act
cycle [6]. The Scrum Guide itself states that “Scrum is founded
on empirical process control theory”, with “empiricism as-
serting that knowledge comes from experience and making
decisions based on what is known” [4]. Traditionally, the team
decides, based on personal appraisals of the last sprint, whether
headway has been made on an action item and whether it
can, therefore, be considered resolved or needs to be further
worked on in the following iteration [2]. Additionally, an
external third party, with knowledge of the chosen develop-
ment methodology and the teams can be consulted in order to
identify process improvement steps or determine their success.
However, it is a challenge to instinctively gauge whether an
issue has improved. To tackle this issue improvement actions
can be based on data produced during the last iteration, relying
on a common understanding of the produced development
artifacts [7], i.e. “artifact transparency” [4], in order to con-
tinuously improve team processes and collaboration.

https://doi.org/10.1109/ICSE-Companion.2019.00081


II. RESEARCH OBJECTIVES

The main objective of this research is to gain a better
understanding of the role of development data in process
improvement approaches of agile software development teams.
In particular, we are interested in how teams can be supported
in their continuous software process improvement steps by
employing measurements based on their own development
data.

A. Research Hypothesis

Our research hypothesis, motivated by preliminary inter-
views with agile coaches and Scrum Masters in industry, is
as follows:

The development data already created by agile software
teams during regular development activities holds ex-
tensive information on how team members work and
collaborate. Teams can use analyses of this data to
inform and track their process improvement steps.

B. Previous Work

Our previous work has focused on supporting process im-
provement efforts of student teams in university capstone soft-
ware engineering courses, employing analyses of development
data to gauge the conformance to agile processes. In university
project courses, gaining insights into student teams can be a
challenge for educators due to the large number of course
attendees. However, giving feedback and providing support for
software process improvement steps within teams is vital for
learning success. Furthermore, student teams repeatedly face
similar issues and challenges, which allowed us to iteratively
improve the utilized analyses and measurements [8]. We
employed surveys, tutors as well as custom software to as-
certain student behavior [9]. The developed software analyzed
the large amounts of development data produced by student
teams, identifying those areas and artifacts, where the executed
process deviated from the prescribed one [10]. The identified
artifacts could then be used to discuss the executed process
and possible improvements on the basis of concrete data
points. This approach of process conformance is especially
applicable as the environment that students worked in was set
up and controlled by the course educators. The problems and
challenges that arise in these software engineering courses are
well understood. This is not the case in industry, where teams
have various contexts, team members have different levels of
experience and there are many organizational constraints.

C. Next Steps

We propose studying the status quo of how professional
development teams currently understand and practice process
improvement in their individual contexts, focusing on how
improvement possibilities are detected and how decided upon
actions are tracked over time. By collecting the experiences of
developers in a multitude of companies, working on different
problems in different domains we can gain insights into how

process improvement is executed in industry, what roles and
meetings are involved and how teams can be further supported.
In particular, the ratio of identified action items that are related
and can be tracked using development data to those identified
items not related to development data, e.g. human issues, is of
interest. Furthermore, we aim to form further hypotheses on
how exactly development teams could best be supported with
additional tools for process improvement.

III. RESEARCH METHODOLOGY

An interview study with professional Scrum Masters, agile
coaches or other roles, tasked with process conformance, pro-
cess guidance or process improvement within multiple com-
panies in different contexts will be performed, focusing on the
executed process improvement process in the company. Sur-
veys of professional development teams have shown that agile
methodologies, particularly Scrum, are widely understood and
employed in a multitude of projects [11]. The vast majority
of teams practicing Scrum also holds retrospective meetings
after each sprint [5]. In fact, in the 2017 State of Agile survey,
more respondents used agile project tools, such as task boards,
than relied on spreadsheets for project management tasks [11].
Many companies following agile development processes rely
on employees in Scrum Master or agile coach roles to mentor
and advise development teams on agile methodologies and
their implementation. These individuals have deep process
knowledge, often know multiple development teams, and un-
derstand the challenges of the company’s context. Interviews
with these individuals are most suited to gain insights into
how a company or individual teams implement development
processes. Interviews will be performed in a half-structured
manner in order to allow exploring beliefs and attitudes as well
as observing non-verbal indicators [12] and allowing questions
to be appropriately adapted to different companies contexts.
The main goal of the interviews is to establish how process
improvement is handled in the company by the interviewee and
to what degree development data is being used or considered
useful. Interviews will take a maximum of 30 minutes, in
order to not overly disturb the working day and allow easier
scheduling. However, interviewees will be asked beforehand
to collect, if available, the minutes or protocols of the last
three meetings that process improvement was discussed in.
After the interviewing researcher has introduced themselves
and has stated the goal of the study, i.e. learning about the
implementation of agile process improvement in the teams the
interviewee is knowledgeable in, the following topics will be
discussed:

• What is the general idea of process improvement in the
company? Do teams actively implement these ideas?

• What is the agenda for process improvement meetings?
What is regularly discussed? Can you share or summarize
the minutes of these meetings?

• If action items for improvements are decided upon, how
are these tracked over time?

• Are tools or frameworks for process conformance mea-
surement employed? If so, which ones?



Following the advice in the literature on half-structured
interviews [13], the audio of interviews will be recorded if the
interviewee is comfortable with this, otherwise, notes will be
taken by the interviewer. To build trust, the goal of the research
will be explained at the start of the interview. Additionally,
the interview questions will be made available to interviewees
beforehand. All personal data will be anonymized, although
we will report on the metadata of interviews, such as the how
long the interviewee has been with the company, details of
the interviewee selection process and the employed interview
guides. After the interview, a summary of the meeting will be
made available to the interviewee in order to allow feedback
and correct possible communication errors. As in related liter-
ature, interviews will be transcribed [14] and coded with topics
in an iterative fashion. We will analyze the frequency of topics
mentioned in interviews and group them by company, team
age, and other factors, dependant on interviewee selection. We
plan to present our analysis to the research community in the
form of a conference paper, focusing on analyses of collected
improvement action items and the applicability of development
data analyses for observed teams.

A. Research Timeline

We expect to finish the interview study with industry part-
ners within the next six months. We have already conducted
initial interviews with interested Scrum Masters from select
companies, who showed interest in the research as a means
of supporting teams and gaining insights into the executed
processes of teams. After the initial phase of participants re-
cruitment, scheduled for two months, we will begin interviews,
iteratively refining the interview guide. Interviews are expected
to be completed within an additional two months, depending
on interviewee availability and their schedules. The last two
months will be used to code interview outcomes, analyze the
data and summarizing the findings in an initial research paper.
Based on the conclusions drawn from the gathered data, we
will form further hypotheses on how to best support teams
with software solutions, that will be evaluated in future work.

IV. RELATED WORK

A. Software Development Artifacts

Part of our research hypothesis is that development data is
already present in development teams. Due to the nature of
modern software development, this is a necessity. Software
engineers practically digitally ”self-document“ continuously,
producing data about the development process and their steps
while they work. Not only does the version control system log
which change (the diff) was made at what point in time (the
timestamp), but also who authored and committed the changes
and what the goal of the change was (the commit message).
Furthermore, there is likely more detailed information in a
ticket within an issue tracker, clarifying the scope and context
of the change, which can be referenced in the commit message.
Other tools used on a daily basis by programmers, such as
test frameworks, Continuous Integration services, static code

analysis tools or code coverage analytics provide data on the
status of the software at a particular point in time.

Especially interesting is the fact, that this information not
only meticulously includes successes and progress but also
documents failures, setbacks, and conflicts, something that is
otherwise unlikely to be communicated.

Based on these data sources, a range of metrics can be
constructed that might be used to guide process improvement
in a development team. These can range from traditional soft-
ware metrics, such as McCabe’s cyclomatic complexity [15],
to those of the agile context, such as effort estimation vs.
real invested effort [16]. In the context of agile process
improvement, especially the combinations of these metrics can
be of interest. For example, it can be detected if the Test-
Driven Development (TDD) process was followed [17].

B. Software Repository Mining

This research heavily draws from software repository min-
ing techniques to analyze the development data of agile
teams. Multiple frameworks and tools have been proposed in
related literature to extract insights from software development
repositories [18]–[20]. However, these tools mostly focus
on analyses of large amounts of software repositories on
GitHub or similar collaboration platforms. These tools excel
at supporting analyses to answer questions such as “what is
the most widely used open source license?” [20]. However,
little research has focused on how insights from single a
repository can be used by the people that created the data and
thus have intricate knowledge of it and are able to interpret
analyses extremely well. Furthermore, little research thus far
has focused on how insights gained from repository analyses
are used by development teams, e.g. for process improvement.

C. Software Process Improvement

Work related to this research can furthermore be found
in the field of software process improvement (SPI) [21].
However, as Santana et al. point out, organizing software
process improvement activities in environments employing
agile methodologies is quite different than in more tradi-
tional ones [22]. The authors conducted a systematic literature
review, including 423 papers published between 2001 and
2013. They conclude that it is necessary to adapt existing
SPI approaches or to create new methods for agile contexts.
Kuhrmann et al. note that there is a growing interest in agile
methods and adopting agile principles in SPI [23]. However,
in accordance with our own research to date, they note that
research mostly focuses on student labs or a single case study
in industry. The authors conducted a comprehensive systematic
mapping study of publications related to SPI over the past
25 years. They identified agility becoming more relevant for
SPI as companies adopt agile methods as a major research
direction.



V. SUMMARY

In previous work, we showed that analyzing the develop-
ment data of university students provided actionable insights
into the problems of agile development teams made up of stu-
dents [8]–[10], [24]. Measurements, in this case, were derived
from years of institutional knowledge and experience running
the university course as well as from literature. However, these
learning are not transferable to industry, with experienced pro-
fessional developers working full-time in development teams,
employing custom development processes. Encouraged by
previous research results, we aim at understanding the methods
and approaches as well as the difficulties and challenges
involved in improving work processes in industry. To this end,
we propose an interview study with those roles in companies,
tasked with process improvement, conformance, and coaching,
focusing on the currently implemented processes and the
development data being produced in teams. We aim at gaining
an understanding of how process improvement is conducted
in teams, as a starting point for supporting teams in these
activities. A core component of agile methodologies is the
idea of self-organizing teams, i.e. teams that do not need
management to give them structure and processes, but who
create structures that work best for them [25].

Our vision is that this idea could also apply to software
improvement processes, where teams can autonomously de-
cide how their improvement approach should work. In order
to make the first steps in this direction, the problem domain
needs to first be better understood using empirical methods.

REFERENCES

[1] K. Schwaber, “Scrum development process,” in Business Object Design
and Implementation. Springer, 1997, pp. 117–134.

[2] H. Kniberg, Scrum and XP from the Trenches. C4Media, 2007.
[3] K. Schwaber, Agile Project Management with Scrum. Microsoft Press,

2004, vol. 7.
[4] K. Schwaber and J. Sutherland, “The Scrum Guide - The

Definitive Guide to Scrum: The Rules of the Game,” Tech. Rep.,
2017. [Online]. Available: http://scrumguides.org/docs/scrumguide/
v2017/2017-Scrum-Guide-US.pdf

[5] Scrum Alliance, “The State of Scrum Report 2017
Edition,” Scrum Alliance, Tech. Rep., 2017. [Online]. Avail-
able: https://www.scrumalliance.org/scrum/media/ScrumAllianceMedia/
FilesandPDFs/StateofScrum/State0fScrum 2016 FINAL.pdf

[6] International Organization for Standardization, “ISO 9001:2015 Quality
management systems,” 2015.

[7] D. M. Fernández, W. Böhm, A. Vogelsang, J. Mund, M. Broy,
M. Kuhrmann, and T. Weyer, “Artefacts in Software Engineering:
What are they after all?” International Journal on Software and
Systems Modeling, may 2018. [Online]. Available: http://arxiv.org/abs/
1806.00098

[8] C. Matthies, T. Kowark, M. Uflacker, and H. Plattner, “Agile metrics
for a university software engineering course,” in IEEE Frontiers in
Education Conference (FIE). Erie, PA: IEEE, oct 2016, pp. 1–5.
[Online]. Available: https://doi.org/10.1109/FIE.2016.7757684

[9] C. Matthies, T. Kowark, K. Richly, M. Uflacker, and H. Plattner,
“How surveys, tutors, and software help to assess Scrum adoption in
a classroom software engineering project,” in Proceedings of the 38th
International Conference on Software Engineering Companion (ICSE).
New York, New York, USA: ACM Press, 2016, pp. 313–322.

[10] ——, “ScrumLint: Identifying Violations of Agile Practices Using
Development Artifacts,” in Proceedings of the 9th International
Workshop on Cooperative and Human Aspects of Software Engineering
- CHASE ’16. New York, New York, USA: ACM Press, 2016, pp.
40–43. [Online]. Available: https://doi.org/10.1145/2897586.2897602

[11] VersionOne Inc., “The 11th Annual State of Agile Report,” VersionOne
Inc., Tech. Rep., 2017. [Online]. Available: https://explore.versionone.
com/state-of-agile/versionone-11th-annual-state-of-agile-report-2

[12] K. Louise Barriball and A. While, “Collecting data using a
semi-structured interview: a discussion paper,” Journal of Advanced
Nursing, vol. 19, no. 2, pp. 328–335, feb 1994. [Online]. Available:
https://doi.org/10.1111/j.1365-2648.1994.tb01088.x

[13] S. Hove and B. Anda, “Experiences from Conducting Semi-structured
Interviews in Empirical Software Engineering Research,” in 11th
IEEE International Software Metrics Symposium (METRICS’05),
no. Metrics. IEEE, 2005, pp. 23–23. [Online]. Available: https:
//doi.org/10.1109/METRICS.2005.24

[14] I. Richter, F. Raith, and M. Weber, “Problems in Agile Global
Software Engineering Projects especially within Traditionally Organised
Corporations,” in Proceedings of the Ninth International C* Conference
on Computer Science & Software Engineering - C3S2E ’16. New
York, New York, USA: ACM Press, 2016, pp. 33–43. [Online].
Available: https://doi.org/10.1145/2948992.2949019

[15] T. J. McCabe, “A complexity measure,” Software Engineering, IEEE
Transactions on, no. 4, pp. 308–320, 1976.

[16] S. H. Kan, Metrics and Models in Software Quality Engineering.
Addison-Wesley Longman Publishing Co., Inc., 2002.

[17] A. Ju and A. Fox, “TEAMSCOPE: measuring software engineering
processes with teamwork telemetry,” in Proceedings of the 23rd
Annual ACM Conference on Innovation and Technology in Computer
Science Education - ITiCSE 2018. New York, New York, USA: ACM
Press, 2018, pp. 123–128. [Online]. Available: https://doi.org/10.1145/
3197091.3197107

[18] J. Bevan, E. J. Whitehead, S. Kim, and M. Godfrey, “Facilitating
software evolution research with kenyon,” in Proceedings of the
10th European software engineering conference held jointly with 13th
ACM SIGSOFT international symposium on Foundations of software
engineering - ESEC/FSE-13. New York, New York, USA: ACM
Press, 2005, p. 177. [Online]. Available: http://portal.acm.org/citation.
cfm?doid=1081706.1081736

[19] E. Linstead, S. Bajracharya, T. Ngo, P. Rigor, C. Lopes, and
P. Baldi, “Sourcerer: mining and searching internet-scale software
repositories,” Data Mining and Knowledge Discovery, vol. 18, no. 2,
pp. 300–336, apr 2009. [Online]. Available: http://link.springer.com/10.
1007/s10618-008-0118-x

[20] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: A
language and infrastructure for analyzing ultra-large-scale software
repositories,” in 2013 35th International Conference on Software
Engineering (ICSE). IEEE, may 2013, pp. 422–431. [Online].
Available: http://ieeexplore.ieee.org/document/6606588/

[21] S. Zahran, Software Process Improvement: Practical Guidelines for
Business Success. Essex, UK, UK: Addison-Wesley Longman Ltd.,
1998.

[22] C. Santana, F. Queiroz, A. Vasconcelos, and C. Gusmao, “Software
Process Improvement in Agile Software Development A Systematic
Literature Review,” in 2015 41st Euromicro Conference on Software
Engineering and Advanced Applications. IEEE, aug 2015, pp.
325–332. [Online]. Available: https://doi.org/10.1109/SEAA.2015.82

[23] M. Kuhrmann, C. Konopka, P. Nellemann, P. Diebold, and J. Münch,
“Software process improvement: where is the evidence?: initial findings
from a systematic mapping study,” in Proceedings of the 2015
International Conference on Software and System Process - ICSSP
2015. New York, New York, USA: ACM Press, 2015, pp. 107–116.
[Online]. Available: https://doi.org/10.1145/2785592.2785600

[24] C. Matthies, “Scrum2Kanban: Integrating Kanban and Scrum in a
University Software Engineering Capstone Course,” in SEEM’18:
IEEE/ACM International Workshop on Software Engineering Education
for Millennials. Gothenburg, Sweden: ACM, New York, NY,
USA, 2018, p. 8. [Online]. Available: https://doi.org/10.1145/3194779.
3194784

[25] R. Hoda, J. Noble, and S. Marshall, “Organizing self-organizing teams,”
in Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering - ICSE ’10, vol. 1. New York, New
York, USA: ACM Press, 2010, p. 285. [Online]. Available: https:
//doi.org/10.1145/1806799.1806843

http://scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
http://scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
https://www.scrumalliance.org/scrum/media/ScrumAllianceMedia/Files and PDFs/State of Scrum/State0fScrum_2016_FINAL.pdf
https://www.scrumalliance.org/scrum/media/ScrumAllianceMedia/Files and PDFs/State of Scrum/State0fScrum_2016_FINAL.pdf
http://arxiv.org/abs/1806.00098
http://arxiv.org/abs/1806.00098
https://doi.org/10.1109/FIE.2016.7757684
https://doi.org/10.1145/2897586.2897602
https://explore.versionone.com/state-of-agile/versionone-11th-annual-state-of-agile-report-2
https://explore.versionone.com/state-of-agile/versionone-11th-annual-state-of-agile-report-2
https://doi.org/10.1111/j.1365-2648.1994.tb01088.x
https://doi.org/10.1109/METRICS.2005.24
https://doi.org/10.1109/METRICS.2005.24
https://doi.org/10.1145/2948992.2949019
https://doi.org/10.1145/3197091.3197107
https://doi.org/10.1145/3197091.3197107
http://portal.acm.org/citation.cfm?doid=1081706.1081736
http://portal.acm.org/citation.cfm?doid=1081706.1081736
http://link.springer.com/10.1007/s10618-008-0118-x
http://link.springer.com/10.1007/s10618-008-0118-x
http://ieeexplore.ieee.org/document/6606588/
https://doi.org/10.1109/SEAA.2015.82
https://doi.org/10.1145/2785592.2785600
https://doi.org/10.1145/3194779.3194784
https://doi.org/10.1145/3194779.3194784
https://doi.org/10.1145/1806799.1806843
https://doi.org/10.1145/1806799.1806843

