
Hybrid Data Layouts for Tiered HTAP Databases
with Pareto-Optimal Data Placements

Martin Boissier, Rainer Schlosser, Matthias Uflacker

Hasso Plattner Institute, Potsdam, Germany
{fistname.lastname}@hpi.de

Abstract—Recent developments in database research intro-
duced HTAP systems that are capable of handling both trans-
actional and analytical workloads. These systems achieve their
performance by storing the full data set in main memory. An
open research question is how far one can reduce the main
memory footprint without losing the performance superiority of
main memory-resident databases. In this paper, we present a
hybrid main memory-optimized database for mixed workloads
that evicts cold data to less expensive storage tiers. It adapts the
storage layout to mitigate the negative performance impact of
secondary storage. A key challenge is to determine which data
to place on which storage tier. We introduce a novel workload-
driven model that determines Pareto-optimal allocations while
also considering reallocation costs. We evaluate our concept for
a production enterprise system as well as reproducible data sets.

Publication: This paper has been published in the proceedings of the
34th IEEE International Conference on Data Engineering 2018. The
final publication is available at IEEE Xplore via http://dx.doi.org/10.
1109/ICDE.2018.00028.

I. HYBRID DATA LAYOUTS FOR HTAP

Modern enterprise systems are no longer separated into tradi-
tional transaction-dominated systems and analytics-dominated
data warehouses. Modern mixed workload (HTAP or OLxP)
systems are expected to handle transactional OLTP workloads
as well as analytical OLAP workloads, both on a single system.
Until today it is argued which storage format is the best
for mixed workloads. Columnar table layouts incur a large
overhead for write-intensive OLTP workloads, especially inserts
and wide tuple reconstructions (cf. [1], [2]), while performing
well for analytical tasks. Row-oriented table layouts – the de-
facto standard for enterprise databases – have shown to be
insufficient for increasing analytical workloads of upcoming
enterprise systems [3]. Hence, commercial database vendors
added columnar storage engines [4]–[6] to their row stores. To
combine both worlds, research has proposed hybrid systems
that combine both row- and column orientation in a single
storage engine and adjusting a table’s layout depending on the
workload. Recent work includes, e.g., H2O [7] and Peloton [8].

Most hybrid systems show improvements over pure row-
or column-oriented variants. Peloton and most other hybrid
database systems presented improvements by factors of 3−4×
over non-hybrid counterparts. We see two problems with
these results. First, most hybrid research prototypes evaluate
the performance of hybrid structures against homogeneous
layouts using the same execution engine. Hence, homogeneous
implementations pay the price for hybrid data layouts that

usually incur indirections and abstractions that affect database
performance negatively. Second, well-known optimizations for
homogeneous layouts (e.g., SIMD for sequential operations [9])
have not been fully exploited. We think that none of the
proposed systems have proven yet that the advantages brought
by hybrid designs justify the added complexity.

The added complexity of a hybrid storage engine introduces
new complexity in higher-level functionalities of the database
since both, query optimization as well as query execution, have
to deal with additional variables and uncertainty. It remains
questionable whether the gained flexibility is worth the added
complexity that further impedes optimal decisions, e.g., during
query plan building. While the overhead of hybrid abstractions
and indirections can partially be mitigated by query compilation,
the process of compiling efficient query plans for diverse data
formats is highly sophisticated as Lang et al. have shown
in [10]. Thomas Neumann stated that the query optimizer’s
impact is often a factor 10 improvement while tuned runtime
systems might bring 10% improvements [11]. Based on our
experience with Hyrise, we think this is not only true for
the runtime system, but for the physical design too. As a
consequence, the project presented in this paper focuses less
on further optimizing the physical layout of hybrid DRAM-
resident databases, but instead on the tiering aspect and how
hybrid data structures can be used to improve data eviction and
loading. Our goal is to evict data to secondary storage without
impacting performance for HTAP workload patterns. While
the performance impact of data eviction for main memory-
resident databases can be disastrous, also the benefits are
manifold. Reduced main memory footprints can lower the
costs for hardware, allow larger systems on a single server,
improve elasticity, reduce recovery times, or simply allow for
more memory-intensive algorithms to be executed.

A straightforward tiering approach for column stores that
evicts attributes can cause disastrous performance losses (e.g.,
for tuple reconstructions of wide tables with dictionary-encoded
attributes from disk), rendering hybrid data layouts a promising
idea. Hence, we do not solely use hybrid layouts in order to
evict data to secondary storage, but rather to optimize it towards
the characteristics of each storage layer (cf. [12]).

A. Workload-Driven Attribute Separation

To get an idea of the potential for data tiering in main
memory-resident databases, we have analyzed several produc-
tion systems. Amongst them has been, e.g., a live production

SAP ERP system of a Global 2000 company and a large
German blogging platform. We focused on voluminous tables
as they have a larger potential for footprint reductions. In the
context of tiered HTAP databases, important findings were:
• Tuple reconstructions (comparatively expensive operations

in column stores) are highly skewed towards few entities.
For most tables that skew is also strongly time-correlated.

• Attributes can often be separated into two distinguished
groups: (i) columns that are accessed for table searches,
aggregations, joins, and other sequential operations that
favor columnar layouts; and (ii) remaining columns that
are either never accessed or point-accessed, e.g., for tuple
reconstruction or probing.

These findings are not particularly new but have – to our
best knowledge – not been exploited for data tiering of HTAP
systems yet. We analyzed the five largest tables of the financial
module in a production SAP ERP enterprise system. We
concentrated on the financial module, as it covers the largest
analytical load. We found that these five tables have in average
256 attributes of which less than 41 are accessed for filtering
(i.e., selection). Particularly interesting for our tiering approach
is the fact that many of the filtered columns are either (i) filtered
very seldom or (ii) usually filtered in combination with other
highly restrictive attributes. As shown in Table I, when looking
for attributes that are filtered at least once every 1000th query
execution, the skew is even higher. The negative impact of
these columns not being DRAM-resident can be negligible with
an execution model that is aware of the interaction between
attribute selectivity and placement (see Section II-B).

TABLE I
ACCESS STATISTICS OF A PRODUCTION SAP ERP SYSTEM

Attribute Attributes Attributes filtered in
Table count filtered ≥1h of queries

BSEG 345 50 18
ACDOCA 338 51 19
VBAP 340 38 9
BKPF 128 42 16
COEP 131 22 6

These characteristics are not only true for most enterprise
systems, but also for many data mining applications. The
bing.com data analysis platform contains tables with thousands
of attributes of which only few are regularly filtered [13].

B. Our Approach
Our tiering approach combines our work on hybrid data

layouts in Hyrise [14], workload analyses, and data tiering.
The idea is straightforward:

1) We separate attributes into point access-dominated at-
tributes and attributes that are mainly processed sequen-
tially by analyzing the database’s plan cache.

2) Given a main memory budget, our column selection
solution efficiently determines which attributes to evict.

3) The memory-resident columns remain dictionary-encoded
while the remaining attributes are stored in a row-oriented
and latency-optimized format on secondary storage.

The model is deliberately simple. Each column of a tiered
table is completely and solely stored in one single format
without any replication or additional data structures. We are
aware that – from a storage engine viewpoint – it is appealing
to add further formats such as disk-optimized column formats
for secondary storage that still allow scans for rarely filtered
attributes. But we think a simple model is superior in an end-
to-end consideration as it is better maintainable and does not
add complexity to higher-level functionalities such as query
optimization (see Section II-B).

In our case of tiered HTAP databases, the most important
optimization challenge is to decide which data to keep in
DRAM and which data to evict. In Section III, we present
a novel linear programming solution to the column selection
problem that is able to efficiently answer this question. Most
notably, the presented model incorporates selection interactions.

As shown in Section III, the integration of selection inter-
action significantly improves the solution quality over various
heuristics. For tuple-based query evaluation in row stores (cf.
Volcano model [15]), vertical partitioning is usually approached
by heuristics that count filtering frequencies and determine
partitions accordingly (cf. [7], [16]–[18]). This is a feasible
approach for tuple-based query evaluation in row-oriented
databases as the execution of the first predicate automatically
loads the tuple’s remaining attributes.

However, most HTAP databases are column stores, which
execute predicates in a fundamentally different way. Here,
predicates are (usually) ordered by their selectivity (with
the most restrictive predicate executed first) and executed
successively where each operator passes a list of qualifying
positions, cf. [19]. Due to the multiplicative selectivities
of conjunctive predicates, the expected number of accesses
decreases with each executed predicate. Hence, the effect of
having frequently accessed columns in DRAM is reduced. It can
be advantageous to store other columns in DRAM although they
are less often filtered. For compiled query engines, operators
are chained and process in a tuple-based manner and only load
the next predicated attribute in case the previous (conjunctive)
predicate evaluated as true. Both ways, with each successive
filter, a smaller part of the following attribute is accessed.

As a consequence, counting filter frequencies is not a fitting
model to vertically partition relations in columnar execution
engines. The problem to solve rather resembles the problem
of index selection with index interaction, cf. [20].

II. ARCHITECTURE

We have implemented our concept in Hyrise1. Hyrise is a
hybrid main memory-optimized database for HTAP workloads.
Each table in Hyrise consists of two partitions, a write-
optimized delta partition (cf. C-Store’s writable store [21]) and
a read-optimized main partition. Using an insert-only approach,
data modifications are written to the delta partition, which is
periodically merged into the main partition [22]. Attributes in
the main partition are dictionary-encoded with a bit-packed

1Hyrise repository: https://github.com/hyrise/hyrise

Val Dict Val Dict Val

CG1 (a1) CG2 (a2) CG3 (a3, a4, a5, … an)

Allocated in
main memory

Allocated on
secondary storage Consecutive data

MRC MRC SSCG

<
<

<

Fig. 1. Exemplary hybrid table layout with three column groups (CG). The
first two groups are both dictionary-encoded memory-resident columns (MRC).
The remaining attributes are stored without any compression in a secondary
storage column group (SSCG).

order-preserving dictionary. Attributes in the delta partition use
an unsorted dictionary with an additional B+-tree for fast value
retrievals. ACID compliance in Hyrise is implemented using
multi-version concurrency control [23].

Hyrise is able to combine row- and column-oriented data
layouts as well as horizontal and vertical partitioning in a
free manner, a concept which has recently been adopted by
Peloton [8]. While Hyrise’s initial objective was to improve
cache hit rates in the case of full DRAM residence, our
approach’s objective is to mitigate the negative performance
impact of secondary storage. Our implementation uses a
simplified hybrid format consisting of column groups of
variable lengths, comparable to H2O’s “group of columns” [7].

A. Storage Layout

To keep complexity manageable, we deliberately limited
ourselves to the most common data structures for databases:
(i) singular column groups storing exactly one attribute and
being completely DRAM-resident and (ii) row-oriented column
groups that store attributes adjacent together and reside on
secondary storage. The data layout is depicted in Figure 1.

Singular Columns: Attributes dominated by sequential
reads are stored column-oriented (hereafter referred to as a
Memory-Resident Column, MRC) using order-preserving dictio-
nary encoding, the de-facto standard for HTAP databases [24],
[25]. The goal is to be able to execute all sequential operations,
e.g., filtering and joining, on MRCs. We apply well-known
optimization techniques on MRCs such as vectorization, SIMD,
and processing compressed data with late materialization.

Uncompressed Column Groups: One of the most expen-
sive operations for disk-resident column stores are wide tuple
reconstructions (cf. [26]). For a table with 100 attributes,
e.g., a full tuple reconstruction from a disk-resident and
dictionary-encoded column store reads at least 800 KB from
disk (i.e., 100 accesses to both value vector and dictionary
with 4 KB reads each). In contrast, row-oriented column
groups (hereafter referred to as a Secondary Storage Column
Group, SSCG) are optimized for tuple-centered accesses, e.g.,
tuple reconstruction or probing. For performance reasons,

SSCGs are stored uncompressed. This way, we trade off
space consumption (assuming secondary storage layers are
cheap) with performance due to improved data locality for
tuple accesses. Further page-wise compression is possible but
not yet implemented. Using the proposed SSCGs, full-width
tuple reconstructions require only single 4 KB page accesses
to secondary storage. Tuple inserts, deletions, and updates are
handled via the DRAM-resident delta partition.

Consequently, attributes stored in an SSCG resemble disk-
resident row stores. This way, we exploit both major advantages
of row-oriented data structures. First, the comparatively easy
eviction since a tuple’s attributes are stored consecutively in one
place. Second, advantages for tuple reconstruction with perfect
cache locality for point accesses. In contrast, MRC-attributes
resemble in-memory databases such as SAP HANA [24] or
HyPer [25], which execute analytical/sequential operations on
columnar dictionary-encoded attributes.

B. Query Execution & Optimization

In Hyrise, filters are executed using indices if existing.
Afterwards, the remaining filters are sorted by increasing
selectivity (we define attribute selectivity as 1/n for an attribute
with n distinct values2). With the introduction of SSCG-placed
attributes, the only change is that filters on non-indexed columns
are sorted first by the location (DRAM-resident or not) and
second by selectivity. The goal is to ensure fast query filtering
via index accesses or scans on DRAM-resident columns.

The goal is to keep columns in DRAM that are regularly
used in sequential operations. It turns out that it is not necessary
to keep all these attributes DRAM-resident. As discussed in
Section I-A, many attributes are filtered in combination with
highly restrictive attributes. Hyrise’s query executor switches
from scanning to probing as soon as the fraction of remaining
qualifying tuples falls below a certain threshold (usually set to
0,01% of the table’s tuple count). Probing a DRAM-resident
cell is still faster than accessing a 4 KB page from secondary
storage, but the further the tuple probing is delayed, the higher
the probability that the currently evaluated tuple is part of the
result set. This way, we piggyback probing during filtering
to load the remaining attributes in DRAM in case several
projected attributes of the tuple are part of the result.

C. Data Eviction

For the process of data eviction and caching, we use
EMC’s memory management library AMM (Advanced Memory
Manager, previously known as EMT [28]) that provides a
facility to pre-allocate fixed-size page caches. In [28], we have
compared AMM’s performance against Linux’s default mmap
and malloc implementation under memory pressure.

III. COLUMN SELECTION

The question of what data to keep in DRAM or evict is
challenging. Classical page-based eviction mechanisms worked
well for OLTP systems, but less so for HTAP systems with
analytical queries often accessing attributes in their full length.

2For inequality predicates, we use heuristics similar to [27].

M
A

N
D

T

B
U

K
R

S

B
E

LN
R

G
JA

H
R

B
U

Z
E

I

K
O

S
T

L

K
U

N
N

R

H
_M

O
N

AT

H
K

O
N

T

A
U

G
D

T

X
R

E
F

3

K
O

A
R

T

V
B

E
LN

G
V

T
Y

P

B
U

Z
ID

LI
F

N
R

B
S

C
H

L

E
B

E
LN

A
W

T
Y

P

A
W

S
Y

S

A
W

K
E

Y

S
H

K
Z

G

M
W

S
K

Z

P
E

R
N

R

A
U

G
B

L

W
R

B
T

R

S
G

T
X

T

K
T

O
S

L

U
M

S
K

S

Z
LS

P
R

A
U

F
N

R

M
W

A
R

T

H
_B

S
TA

T

U
M

S
K

Z

E
B

E
LP

LZ
B

K
Z

R
E

B
Z

G

R
E

B
Z

J

R
E

B
Z

Z

Z
U

M
S

K

R
E

B
Z

T

A
N

LN
1

R
F

Z
E

I

F
D

TA
G

P
R

C
T

R

Z
F

B
D

T

V
O

R
G

N

X
H

R
E

S

X
K

R
E

S

S
E

C
C

O

F
K

B
E

R

F
K

B
E

R
_L

O
N

G

V
B

E
L2

X
Z

A
H

L

O
B

Z
E

I

29
1

re
m

ai
ni

ng
 a

ttr
ib

ut
es

1

10

100

BSEG AttributesQ
ue

rie
s

fil
te

rin
g

on
 a

ttr
ib

ut
e

[%
]

 Fixed Columns (OLTP) Fixed Columns (OLAP) Dynamically Placed Columns

Fig. 2. This graphs shows the attributes of table BSEG of a production SAP ERP system and their filter frequencies. 291 attributes have not been filtered at
all and will thus be evicted. The first two groups show pinned attributes (e.g., primary key attributes for OLTP) while the allocation of the remaining attributes
will be decided by the column selection solution.

The goal of column selection is to determine which at-
tributes/columns to evict given DRAM budget constraints.
Therefore, we analyze the workload (in form of the database’s
plan cache) in order to determine sequential accesses. As a
trivial preprocessing step, we add all attributes to the list of
columns to evict which have not been filtered at all. Following,
the actual column selection is done to further lower the memory
footprint. Here, we determine which additional attributes have
the smallest negative effect on performance when added to the
list of columns to evict (i.e., being added to an SSCG).

We determine the utility (i.e., the expected performance)
by calculating the required data that needs to be processed.
This bandwidth-centric model is driven by the observation
that mixed workload systems are increasingly limited by the
bandwidths of modern NUMA servers.

At first sight, the problem is related to the binary Knapsack
problem [29]. We maximize the utility (i.e., the expected
performance) for a given space constraint (i.e., the DRAM
budget). Unfortunately, Knapsack approaches cannot be used
to solve column selection problems as the utility of having a
column in DRAM typically depends on other column decisions
(i.e., selection interaction). The problem belongs to the class
of resource allocation problems, which in general, have to be
solved using suitable solvers (cf. [30]).

The column selection is an autonomous process. In case the
database administrator has additional performance requirements,
attributes can be pinned in DRAM. This can be done, e.g., for
primary key attributes in order to ensure sufficient transactional
performance or to fulfill service-level agreements (SLAs) for
particularly important processes (see Figure 2).

The remainder of this section is organized as follows. In part
A, we present an integer linear programming model to solve
column selections problems. Further, we prove that a continuous
relaxation of the problem can be used to identify Pareto-efficient
solutions. In part B, we demonstrate the applicability of our
model on a real-life production system. In part C, we verify
the high performance of our solution compared to benchmark
heuristics using more general reproducible examples. In part D,
we include reallocation costs to be able to deal with dynamic
workload scenarios. In part E, we analyze the structure of
solutions of the continuous model and the integer model. In
part F, we finally show that optimal solutions can be computed

explicitly in milliseconds without using a solver. In part G,
we illustrate the scalability of our explicit solution (called
Schlosser Heuristic). In part H, we propose a general solution
principle to approximate efficient solutions.

A. Model Description

We want to select columns to be in DRAM such that (i) the
overall performance is maximized, i.e., a workload’s execution
time is minimized, and (ii) the total DRAM used does not
exceed a given budget. We consider a system’s workload
characterized by N columns and Q queries.

In our bandwidth-centric workload model, each query j is
characterized by the set of columns q j ⊆ {1, ...,N}, j = 1, ...,Q
that are accessed during query evaluation. All accesses are
modeled as scans with a particular selectivity (e.g., OLAP joins
and aggregations are large sequential accesses). The access
costs of a query depend on whether or not occurring columns
are in DRAM. To indicate whether a column i is either stored
in DRAM (1) or not (0), we use binary decision variables xi,
xi ∈ {0,1}, i= 1, ...,N. The size of column i in bytes is denoted
by ai. The total scan costs F depend on the column allocation
~x := (x1, ...,xN) and are defined by the sum of scan costs f j
of all queries j multiplied by their number of occurrences b j:

F(~x) := ∑ j=1,...,Q b j · f j(~x)

Hyrise executes attribute filters sequentially in ascending
order of the attribute’s selectivity. Consequently, the expected
selectivity of each attribute depends on the other attributes in
the query. In our model, we assume that columns with lower
selectivity are scanned first. We also account for the selectivity
of columns that have been already scanned.

The selectivity si of column i, i = 1, ...,N, is the average
share of rows with the same attribute. Note, for simplicity
we only define selectivity for equi-predicates with uniform
value distributions. Hyrise estimates selectivities similar to [27]
(using distinct counts and histograms when available) which are
straightforward to implement in our cost model. We describe
scan costs f j of query j, j = 1, ...,Q, by

f j(~x) := ∑
i∈q j

(xi · cmm +(1− xi) · css) ·ai · ∏
k∈q j :sk<si

sk (1)

where cmm > 0 is a scan cost parameter for main memory;
css > 0 denotes the cost parameter for secondary storage. Both

parameters can be calibrated; they describe the time it takes to
read data (e.g., seconds to read a gigabyte of data) and is used
to calculate estimated runtimes. Typically, we have cmm < css.

Given a column selection ~x, the allocated space in DRAM
required to store the main memory-resident data amounts to:

M(~x) := ∑i=1,...,N ai · xi

1) Step 1: Initial Optimization Problem: The problem is to
minimize total scan costs such that the DRAM used does not
exceed a given budget A, i.e., we consider the objective:

minimize
xi∈{0,1},i=1,...,N

F(~x) (2)

subject to M(~x)≤ A (3)

As we avoided conditional expressions in the definitions of
scan costs and the DRAM used the integer problem (2) – (3)
is linear, and thus can be solved using standard integer solvers.

2) Step 2: Relaxation of Variables: We model problem (2) –
(3) as a continuous linear problem, i.e., We allow the variables
xi, i = 1, ...,N, to take continuous values between 0 and 1:

minimize
xi∈[0,1],i=1,...,N

F(~x) (4)

The relaxed problem (4) with (3) can be solved using standard
solvers. However, the solution is not necessarily of integer type.
In Step 3, we use a reformulation of (4) and (3) to guarantee
admissible integer solutions in a continuous framework.

3) Step 3: Penalty Formulation of Size Constraint: We omit
constraint (3) and include a penalty term in the objective (4)
for the DRAM space used:

minimize
xi∈[0,1],i=1,...,N

F(~x)+α ·M(~x) (5)

The penalty parameter α is assumed to be non-negative. The
new problem (5) has the following fundamental property.

Lemma 1. For all α the solution of the continuous linear
problem formulation (5) is guaranteed to be integer.

Proof. The isoquants of objective (5) form a hyperplane.
Minimizing the linear objective (5) corresponds to the point
in which the best hyperplane touches the feasible region (for
~x). Hence, a corner of the feasible region (an N-dimensional
cube) is always part of an optimal solution. Since all corners
have integer coordinates (total unimodularity of the constraint
matrix) an optimal solution of integer type is guaranteed.

Note, the optimal (integer) solution of (5) depends on the
penalty parameter α . The higher α , the lower is the DRAM
space used by an optimal solution. While for α = 0 (no penalty)
all columns are in DRAM, for α → ∞, no column is selected
at all. Hence, α can be chosen such that the associated column
selection ~x =~x(α) just satisfies the budget constraint (3).

B. Application to Enterprise System

We applied the integer and continuous solution approaches
to the workload and data of the BSEG table of a production
SAP ERP system (overall ∼20,000 plans, 60 for BSEG).

Without loss of generality, we used A = A(w) := w ·
∑i=1,...,N ai, where w, w ∈ [0,1], is the relative memory budget.
By “relative performance” we denote the minimal scan costs
(where all columns are DRAM-resident) divided by the scan
costs F(~x) of a specific solution ~x as defined in (1)-(2).

Figure 3 illustrates solutions of the integer and the continuous
model for different memory budgets w. We observe that the
relative performance is higher the more DRAM is allowed.

The first interesting aspect is the initial eviction rate of over
78% that is achieved solely by evicting attributes that have not
been selected. The remaining 22% are chosen by the continuous
and the integer solution. The workload of the BSEG heavily
relies on one of the largest columns called BELNR. The sudden
drop of performance for eviction rates over 95% is caused by
the fact that BELNR no longer fits into the memory budget.
According to our model, sequential accesses are slowed down
by less than 25% for eviction rates of up 95%.

Note, the integer formulation, cf. problem (2) – (3), allows
identifying optimal combinations of performance and DRAM
budgets. These combinations cannot be dominated by others
and hence, form a “Pareto-efficient frontier” (cf. Figure 3).

●●●
●●●

●●●●●●●●●
●●

●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.00

0.25

0.50

0.75

1.00

0.00 0.05 0.10 0.15 0.20

Relative Memory Budget w

R
el

at
iv

e
P

er
fo

rm
an

ce
● ● Continuous Solution Integer Solution

Fig. 3. Comparison of optimal integer and continuous solutions for BSEG
table: Different combinations of relative performance and data loaded in
DRAM (cf. efficient frontier).

Using different penalty parameter α , the continuous problem
formulation (5) allows identifying feasible combinations of
performance and DRAM budgets used, which are also efficient.

Theorem 1. For all α > 0 the solutions of the continuous
problem (5) are part of the efficient frontier, which is charac-
terized by optimal solutions of the integer problem (2)-(3) for
different DRAM budgets A. Hence, they are Pareto-efficient.

Proof. For an arbitrary but fixed penalty α > 0 let~x∗=~x∗(α)
be an optimal solution of the continuous problem (5). It follows
that ~x∗ is also an optimal solution of the continuous problem
(4) subject to (3) with budget A := A(α) := M(~x∗(α)), since a
better solution ~x of (4) st. (3) with F(~x)< F(~x∗) and M(~x)≤
M(~x∗) would imply that ~x∗ is not optimal for (5). Further, let
~x∗int =~x∗int(α) be an optimal solution of the integer problem (2)
subject to (3) with the same budget A := A(α) := M(~x∗(α)). It
follows that F(~x∗int)≥F(~x∗) since the feasible space in problem
(5) dominates the feasible space in problem (2), i.e., {0,1}N ⊆
[0,1]N . Further, Lemma 1 implies that ~x∗ is of integer type and

thus, an admissible candidate for problem (2) with budget A :=
M(~x∗). It follows F(~x∗int) = F(~x∗). Finally, M(~x∗int)< M(~x∗) is
not possible as F(~x∗int)+α ·M(~x∗int) < F(~x∗)+α ·M(~x∗) would
imply that ~x∗int is a better solution to (5) than ~x∗, which is a
contradiction. Consequently, we also have M(~x∗int) = M(~x∗).

C. Performance Comparisons

We demonstrate the performance of our approaches com-
pared to benchmark heuristics. We consider a general scalable
class of reproducible column selection problems. The con-
sidered heuristics are greedy approaches, which resemble the
status quo for vertical partitioning models (see Section V).
We consider three heuristics which assess attributes by (i) the
selection frequency (cf. [16]), (ii) by selectivity (cf. [19]), and
by weighing selectivity and size of each attribute (cf. reactive
unload in [31]). The assessment of attributes is motivated by
LRU approaches and the used metric to build the eviction order.

Example 1. We consider N columns, Q queries, and random-
ized parameter values3. We compare optimal integer solutions
(cf. (2)-(3)) solutions of the continuous model (cf. (5)) as well
as allocations of the following three benchmark heuristics:

(H1) Include columns in DRAM that are most used (in
descending order), measured by the number of occur-
rences gi, where gi := ∑

j=1,...,Q,i∈q j

b j, i = 1, ...,N.

(H2) Include columns in DRAM that have the smallest
selectivity si, i = 1, ...,N, (in ascending order).

(H3) Include columns in DRAM that have the smallest
ratio of selectivity and number of occurrences, i.e.,
si/gi, i = 1, ...,N, (in ascending order).

If a column does not fit into the DRAM budget anymore, it
is checked if columns of higher order do so. In all heuristics,
columns which are not used at all (gi = 0) are not considered.

We solve Example 1 for different DRAM budgets A(w). We
consider N = 50 columns and Q = 500 queries. We apply the
integer and the continuous solution approach as well as the
heuristics (H1)-(H3). Figure 4 illustrates different admissible
combinations of estimated runtime and associated relative
DRAM budget w for the different column selection strategies.

The solutions of the integer problem form the efficient
frontier. The solutions of the continuous problem are again part
of the efficient frontier. We observe that both our approaches
outperform all three heuristics (H1)-(H3). Depending on the
DRAM budget, performance is up to 3× better.

In general, the heuristics (H1)-(H3) are reasonable heuristics.
In Example 1, some columns are more often included in queries.
Hence, on average, the corresponding gi values are higher.
Moreover, in our example, gi and selectivity si are slightly
negatively correlated. Hence, columns with a small selectivity
are more likely to be less often used. This explains why pure
heuristics like (H1) and (H2) are suboptimal. Heuristic (H3)

3Repository containing definition and reproducible example code:
https://github.com/hpi-epic/column_selection_example

●●●●
●●●●●

●●●●●●●●

●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●
●●●●

●●●●●●●●●●●●●●●●
●●● ●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●

●●●●●

●
●
●●●●

●●●

●●●●

●
●●●●

●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●

●●●●●
●●●

●●●
●●●●●●●●●●

●●●
●●● ●●●●●●●●●●●●●●●

●●●●
●●●●

●●●●●

●●
●●●●

●●●●●

●●
●

●●●●

●●
●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●● ●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●

●
●
●

●

●●

●●
●
●
●
●●

●●
●●●

●●●
●● ●●● ●●●●●●●●

●●●●

●●

●●●

●●

●●
●●

●●●

●●●

●●●●
●●

●●●
●● ●●●● ●● ●●● ●●●● ●● ●● ●●●● ●●●●●● ●● ●● ●● ●●●●● ●● ●●●● ●● ●●● ●●● ●● ●●● ●●● ●●●●●●●●

Efficient frontier

0.0e+00

5.0e+07

1.0e+08

1.5e+08

2.0e+08

2.5e+08

0.00 0.25 0.50 0.75 1.00

Relative Memory Budget w

E
st

im
at

ed
 R

un
tim

e

●●●● ●●●● ●●●● ●●●● ●●●● (H1) (H2) (H3) Cont. Solution Int. Solution

Fig. 4. Estimated runtime comparison of integer and continuous approach
vs. heuristics (H1)-(H3) for Example 1.

●

●

●●

●

●●●●
●●●●

●●
●●●●

●●●●
●●●●

●●●●●●●●●●●●●●●●●

●●

●●●●
●●●●

●
●●●●

●●●●●
●●●●

●● ●●●●●●●●●●●●●●●●●●●

●

●●●●●

●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●●●

●
●●●●

●●
●●●●

●●●●
●
●●

●●●●●●●●●●●● ●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●

●●●●●●●●●

●

●●●

●

●●●

●●●

●

●

●

●●

●●●

●●

●●●

●

●●●●●●●●
●●●●

●●●
●●●

●●●
●●●●

●●●
●●●●●●●● ●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●

●

●●

●
●●

●●
●
●●

●●
●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●

●

●●

●
●●●●●

●●
●●

●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●● ●●●● ●●●● ●●

Efficient frontier
0.0e+00

5.0e+13

1.0e+14

1.5e+14

2.0e+14

0.00 0.25 0.50 0.75 1.00

Relative Memory Budget w

E
st

im
at

ed
 R

un
tim

e

●●●● ●●●● ●●●● ●●●● ●●●● (H1) (H2) (H3) Cont. Solution Int. Solution

Fig. 5. Estimated runtime comparison of integer/continuous approach vs.
heuristics (H1)-(H3) for the BSEG table of the traced enterprise system.

achieves better performance results as both effects are taken
into account. However, those results are still far from optimal,
because more complex effects, such as selection interactions
are not taken care of. As in real-life workloads, in our example,
some columns often occur in queries simultaneously. Hence, it
is advisable just to select some of them to be in DRAM. Our
model-based solution yields better results because all complex
effects are taken into account.

Example 1 can be used to study the performance of
heuristics for various workload characteristics. For special
cases, rule-based heuristics may perform well. As soon as
selection interaction becomes a factor, however, only advanced
approaches can lead to good results. Note, that in real-life
settings, workloads are typically of that complex type.

In this context, Figure 5 shows the performance results
for the BSEG table (see Section III-B). We observe, that the
interaction between selectivity and the number of accesses even
leads to an (up to 10×) worse performance of the heuristics.
It is unlikely that simple heuristics exist that fit all scenarios.
This is due to the unforeseeable character of a workload which
is characterized by the complex interplay of the quantities
b j, gi, si, and ai as well as further important effects such
as selection interaction or the structure of queries qi. Hence,
an effective allocation strategy will have to find complex
customized solutions (in a reasonable amount of time) that take

all these effects simultaneously into account. Note, solutions
of the continuous model are of that particular type as they are
guaranteed to be efficient in any setting.

D. Dynamic Workloads and Reallocation Costs

Another import aspect for real-life settings are reallocation
costs. As workloads typically change over time, current data
placements have to be recalculated regularly. However, reor-
ganizations of data allocations are costly and time-consuming.
The challenge is to identify reallocations that have a significant
impact on performance compared to their costs.

We consider a current column allocation yi ∈ {0,1}, i =
1, ...,N, and a cost parameter β for changing the memory
location of a column (from secondary storage to DRAM or
vice versa). We extend model (5) to minimize total scan costs,
DRAM space used, and memory changes made:

minimize
xi∈[0,1],i=1,...,N

F(~x)+α ·M(~x)+β · ∑
i=1,...,N

ai · |xi− yi| (6)

Due to reallocation costs, the objective of the problem becomes
nonlinear. To linearize (6), we introduce additional variables
zi, i = 1, ...,N, which are continuous on [0,1]. Further, we add
two families of linear constraints such that problem (6) can be
equivalently rewritten as:

minimize
xi,zi∈[0,1],i=1,...,N

F(~x)+α ·M(~x)+β · ∑
i=1,...,N

ai · zi (7)

subject to xi− yi ≤ zi, i = 1, ...,N
yi− xi ≤ zi, i = 1, ...,N

The new constraints guarantee that zi = |xi− yi| for all i. Further,
as the total unimodularity of the constraint matrix is still
satisfied integer solutions of (7) and thus of (6) are guaranteed.

In practice, β is selected depending on the system’s require-
ments. In most cases, physical data maintenance is executed
during night times. In this context, the numbers b j should be
normalized on a daily basis and β = 1 may serve as a reference
case. We can obtain the expected maintenance duration (usually
bound by the secondary storage bandwidth) and adjust β

accordingly so that we only initiate reallocations that will
finish within the allowed maintenance time frame.

E. Solution Structures

Looking at optimal allocations of the continuous problem
for different parameters, α reveals an interesting structure,
which is illustrated in Figure 6. Figure 6(a) shows the optimal
column selection of the integer problem for different w
values. Figure 6(b) illustrates the solution of the corresponding
continuous problem. While the optimal column allocations of
the integer problem are quite complex, the solutions of the
continuous problem have a recursive structure.

Remark 1. Consider problem (6). If a column i, i = 1, ...,N, is
assigned to an optimal DRAM allocation for a budget A=A(α),
A≥ 0, then column i is also part of optimal DRAM allocations
for all larger budgets Ã>A. Consequently, solutions of problem
(6) have a recursive structure and columns are assigned to an
optimal allocation in a fixed order.

1

0
0 10 20 30 40 50

Column number

w

(a) Integer solution

1

0
0 10 20 30 40 50

Column number

w

(b) Continuous solution

1

0
0 10 20 30 40 50

Column number

w

(c) Continuous solution
with remainder filling

Fig. 6. Optimal column selections (integer, continuous, and continuous with
filling) for varying DRAM budgets, w ∈ [0,1]. The graph indicates whether a
column is in DRAM (shown blue, xi = 1, i = 1, ...,50) for Example 1.

The order of columns described in Remark 1, which we
call “performance order”, allows ordering the set of columns
according to their impact on reducing runtime.

Finally, Figure 6(c) depicts the case, in which for a given
budget A(w) the unused space of the next smaller Pareto-
optimal solution of the continuous model is filled with further
(smaller) columns according to the order described in Remark 1.
Note, this recursive allocation strategy (with filling) closely
resembles the optimal integer solution (cf. Figure 6(a)).

A huge disadvantage of the continuous approach, however,
is that the model has to be solved multiple times in order to
identify the optimal penalty parameter α that is associated with
the intended DRAM budget A. The goal of the next subsection
is to overcome this problem.

F. Explicit Solution

The results obtained in the previous sections (cf. Remark 1
and Theorem 1) can be exploited to compute optimal solutions
of (6) without solving any optimization program. The key idea
is to explicitly derive the performance order oi.

The decision whether a column is in DRAM boils down
to the question whether xi has a positive or negative effect
on (6). Due to its structure, objective (6) can be written as
∑i=1,...,N ci(xi)+C, where C is a constant. Collecting terms
that depend on xi, we obtain that ci, i = 1, ...,N, amounts to

ci(xi) := ai · ((Si +α) · xi +β · |xi− yi|) (8)

where, i = 1, ...,N,

Si := ∑
j=1,...,Q:i∈q j

b j · (cmm− css) · ∏
k∈q j :sk<si

sk

Hence, whether a selection of column i has a positive or
negative effect on (6) depends on its effect on (8).

Theorem 2. (i) Pareto-optimal solutions of problem (6) that
satisfy a given DRAM budget A can be calculated as follows:
Include as many columns as possible in DRAM in the order
oi, i = 1, ...,N, with Si +β · (1−2 · yi)< 0, defined by

oi := |{k = 1, ...,N : Sk−2 ·β · yk ≤ Si−2 ·β · yi}| .

(ii) The structure described in Remark 1 generally holds.
(iii) In (i) columns are recursively chosen such that the
additional runtime improvement per additional DRAM used is
maximized.

Proof of (i) Considering (8), we distinguish the following
four cases, i = 1, ...,N:
• If yi = 0 and Si +α +β < 0 then (8) decreases in xi.
• If yi = 0 and Si +α +β ≥ 0 then (8) increases in xi.
• If yi = 1 and Si +α−β < 0 then (8) decreases in xi.
• If yi = 1 and Si +α−β ≥ 0 then (8) increases in xi.

Summarizing the four cases, we obtain that if, i = 1, ...,N,

Si +α +β · (1−2 · yi)< 0 (9)

then (8) decreases in xi and x∗i = 1 is optimal else we obtain
x∗i = 0. Hence, if α decreases then the left-hand side of (9)
decreases as well and, in turn, one column i after another is
included in DRAM. The order in which columns are included in
DRAM coincides with the performance order oi (cf. Remark 1).
Now, oi can be easily determined by comparing each column
i’s critical α value that puts the left-hand side of (9) equal to
zero. The column with the smallest value Si−2 ·β · yi is the
first column to be put in DRAM. Finally, the order oi allows
computing Pareto-optimal solutions of (6) that are admissible
for a given budget A.

Proof of (iii). Assume a column allocation ~x corresponds
to a runtime of F(~x) (including reallocation costs). Selecting
a new column i in DRAM (xi := 1) reduces the value F by
ci(1)−ci(0) = ai ·(Si+β ·(1−2 · yi)) (cf. (8)) while the DRAM
budget used increases by ai.

Note, the strategy defined in Theorem 2 (i) combines two
advantages: Allocations are necessarily Pareto-optimal and can
be computed as fast as simple heuristics (cf. (H1)-(H3)) since
no penalty values α are needed anymore.

Remark 2. The result of Theorem 2 (i) can be combined with a
filling heuristic: Include columns in DRAM that are of highest
importance, cf. oi. If a column does not fit into the DRAM
budget A anymore, it is checked if columns of higher order do
so, cf. Figure 6(c).

G. Scalability

Enterprise systems often have thousands of tables. For
those systems, it is unrealistic to expect that the database
administrator will set memory budgets for each table manually.
Our presented solution is able to determine the optimal data
placement for thousands of attributes. We measured the solution
runtime for a large synthetic data set with a varying number
of queries and attributes using the MOSEK solver4.

Table II compares the computation time of the integer model
and the explicit solution in the setting of Example 1 for different
numbers of columns N and queries Q.

Table II shows that optimized data placements can be
efficiently calculated, even for large systems. The linear

4MOSEK Solver: https://www.mosek.com

TABLE II
RUNTIME COMPARISON OF COLUMN SELECTION

Column Query Mean Runtime Mean Runtime
Count Count Integer Solution Explicit Solution

100 1 000 0.01 s 0.001 s
500 5 000 0.13 s 0.01 s

1 000 10 000 0.32 s 0.01 s
5 000 50 000 6.74 s 0.03 s

10 000 100 000 27.4 s 0.07 s
20 000 200 000 113.6 s 0.15 s
50 000 500 000 2210.3 s 0.48 s

problem is manageable for state-of-art integer solvers. However,
runtimes can become large when the size of the system is large.
The explicit solutions (cf. Theorem 2) have been computed
locally using a simple single-threaded C++ implementation.
As expected, the computation of the explicit solution is orders
of magnitudes faster and allows for immediate response.

Hence, it becomes easy for a database administrator to
(i) dynamically update optimized allocations and (ii) decide
whether it is worth to allow for a slightly larger budget
compared to the expected additional performance.

H. Solution Principle for Generalized Selection Problems

The allocation strategy described in Theorem 2 (iii) reveals a
general solution principle to approach the challenging problem
of identifying the key columns that have the most impact.

Remark 3. We propose the following recursive heuristic:
Columns are subsequently selected such that the “additional
performance” per “additional DRAM used” is maximized.

Remark 3’s heuristic allows to approximate Pareto-optimal
combinations of performance and memory budget. This
approach is effective as the efficient frontier is naturally
characterized by a convex shape, see Figures 4 and 5, since
the value of an additional unit of DRAM is decreasing with
the memory budget (diminishing marginal utility).

This principle can be easily adapted to compute optimized
allocations for more general column selection problems with
highly complex scan cost functions. Note, for such problems
even state-of-the-art nonlinear solvers might fail. Moreover,
the approach can also be applied if query optimizers are used
as they similarly allow to estimate and to compare the relative
performance improvements of specific column selections.

I. The Bottom Line

Our solution approach is applicable to general column selec-
tion problems. Performance is close to optimal and outperforms
other heuristics since coupled aspects as selectivity, size, and
frequency of queries are taken into account. Computation is fast
and scalable. We have shown how to determine an optimized
order of columns which can be exploited as a near-optimal
heuristic for any DRAM budget that is performance-wise on
par with the fastest heuristics. Our penalty formulation for
allocated main memory mirrors opportunity costs for DRAM
and might be even more realistic than hard DRAM budget

constraints. Moreover, our model is able to take reallocation
costs for DRAM into account. This way, we can determine
whether it is advantageous to evict or load data over time.

IV. TIERING PERFORMANCE

In this section, we evaluate the performance of our imple-
mentation. All benchmarks have been executed on a four-socket
Fujitsu Primergy RX4770 M3 with Intel Xeon E7-4850 v4
CPUs (16 cores per socket, 40M L3-Cache, 2.1 GHz), 2 TB
of DRAM, running 64-bit Ubuntu 14.04 LTS with kernel 4.2.
We evaluated the following devices:
• CSSD: consumer-grade solid-state drive (Samsung SSD

850 Pro) with 256 GB storage capacity.
• ESSD: enterprise-grade SANDISK Fusion ioMemory

PX600 SSD with 1 TB storage capacity.
• HDD: SATA-connected Western Digital WD40EZRX

HDD with 4 TB storage capacity and 64MB cache.
• 3D XPoint: 3D XPoint-based Intel Optane P4800X.

Both solid-state drives are NAND devices which are widely
used in modern data centers, whereas the ESSD is a bandwidth-
optimized device that reaches its top performance with large
IO queues. The 3D XPoint device is the first generation of
solid-state drives that does not use a NAND architecture. This
device is particularly interesting for us as it has ∼10× lower
random access latencies than NAND devices even for short IO
queues. The HDD device serves as a reference device. Due to
its poor random access performance, we do not include the
device in the materialization measurements.

Benchmark Data Sets: We evaluated the performance on
three different data sets: (i) The SAP ERP data set which
reflects characteristics (distinct counts, data types, etc.) of the
BSEG table of the analyzed production SAP ERP system [32].
The BSEG table is the central table of the financial module
and has the highest analytical load in an SAP ERP system (20
M tuples with 345 attributes). (ii) The TPC-C data consists of
the ORDERLINE table of the TPC-C benchmark with a scale
factor of 3 000 (300 M tuples). (iii) The Synthetic data set is
a table with 10 M tuples and 200 attributes which are filled
with random integer values. Both BSEG and ORDERLINE
tables belong to the largest tables of each system and are
thus of special interest for our focus on cold data eviction.
ORDERLINE and BSEG have vastly differing widths (10 vs.
345 attributes) and depict both extremes for the effect on tuple
reconstruction in our implementation.

Before discussing end-to-end performance, we briefly discuss
the modified components compared to vanilla Hyrise. Our data
allocation model aims to keep all sequentially accessed columns
in DRAM. Hence, analytical performance remains the same
except from very tight DRAM budgets. But several components
that potentially negatively impact the transactional performance
of Hyrise have been modified.

Transaction Handling: Hyrise uses MVCC to ensure con-
current and transactionally safe accesses the data [33]. MVCC-
related columns (cf. [23]) are kept unchanged and DRAM-
allocated. Thus, transaction performance is not impacted.

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

Latency − 99th Percentile Latency − Average

20 40 60 80 100120140160180200 20 40 60 80 100120140160180200

 0

 50

100

150

 0

200

400

Number of columns in SSCG (table with 200 attributes)

La
te

nc
y

[µs
]

Device ● 3D XPoint CSSD ESSD

Fig. 7. Latencies for full-width tuple reconstructions on synthetic data set
(uniformly distributed accesses).

●

●

● ●●
●●●●●●

●●●●●●●

●●●●●●●●●●●

●●●

●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

Uniform Distribution Zipfian Distribution

B
S

E
G

O
R

D
E

R
LIN

E

3D XPoint

CSSD

ESSD

IMDB (M
RC)

3D XPoint

CSSD

ESSD

IMDB (M
RC)

 0

20

40

60

0.0

0.5

1.0

1.5

2.0

2.5

Device (Allocation)

La
te

nc
y

[µs
]

Fig. 8. Latency box plot for full-width tuple reconstructions on tables
ORDERLINE and BSEG (uniform- and zipfian-distributed accesses).

Indices: To ensure high throughput for point accesses, Hyrise
has several index structures such as single column B+-trees
and multi-column composite keys [34]. As of now, we do not
evict indices and keep them completely DRAM-allocated.

Data Modifications: Throughput and latency of modifi-
cations are not impacted, because by using an insert-only
approach, modifications are handled by the delta partition
which remains fully DRAM-resident (cf. Section II). However,
the periodic process of merging the delta partition with the main
partition is negatively affected. But since the merge process
is asynchronous and non-blocking, ongoing transactions are
neither blocked nor slowed down during the merge phase [22].

A. End-to-End Benchmark Performance

We evaluated the performance of our approach for TPC-
C and the CH-benCHmark [35]. Due to the unchanged
transactional components, only reading queries are impacted.
Hence, excluding the asynchronous merge phase, runtime
performance depends largely on the given memory budget.
For TPC-C’s largest table ORDERLINE, 4 out of 10 columns
are selected/aggregated leaving at least 6 columns to be evicted
to disk. Probably not surprisingly given TPC-C’s complexity,
our data allocation model separates ORDERLINE into the four

primary key attributes as memory-resident columns (MRCs)
and the remaining attributes into a secondary storage column
group (SSCG). Table III shows the relative performance impact
of TPC-C’s delivery transaction and CH-query #19.

TABLE III
PERFORMANCE IMPACT ON TPC-C’S DELIVERY TRANSACTION AND Q19

OF CH-BENCHMARK (3D XPOINT)

Data Evicted Slowdown

TPC-C Delivery 80 % 1.02x
CH-query #19 80 % 6.70x
CH-query #19 63 % 1.12x

While the performance results for TPC-C are promising,
please note that TPC-C’s workload and data model are simple
and no performance-critical path accesses tiered data. The
same is partially true for the CH-benCHmark that accesses
ORDERLINE mainly for grouping, filtering, and joining on
(non-tiered) primary key columns. More interesting is CH-
query #19 which filters on a non-primary-key column. Given
a DRAM budget of w = 0.2, only the primary key columns
of ORDERLINE remain DRAM-resident and even analytically
accessed columns would be evicted as part of an SSCG. For
query #19, the join predicate on ol_i_id and the predicate
on ol_w_id are not impacted, but the range predicate
on ol_quantity is executed on a tiered column. For a
warehouse count of 100, Hyrise probes ol_quantity with a
selectivity of ∼0.05. In the configuration shown in Table III, the
probing alone is slowed down by a factor of 40× which leads
to an overall query slowdown of 6.7×. If we allow for a larger
DRAM budget of w = 0.4, columns ol_delivery_d and
ol_quantity become DRAM-resident lowering the slow-
down to 1.12×, which we attribute to the narrow materialization
of ol_amount (SSCG-placed).

The remainder of this section studies the three access patterns
that have been altered in our prototypical implementation: (i)
random accesses for wide tuple reconstructions, (ii) sequentially
scanning a tiered column, and (iii) probing a tiered column.

B. Tuple Reconstruction

Our main focus with respect to tiering performance is the
latency of wide tuple reconstructions. Especially for column
stores, wide tuples reconstructions are expensive as each
attribute materialization potentially leads to two L3 cache
misses (access to value vector and dictionary). We measure
reconstruction performance by accessing randomly chosen
tuples using a uniform random distribution. We set AMM’s
page cache to 2% of the evicted data size and disable page
pinning. The uniform distribution of accesses reflects the worst
case scenario for our implementation with almost no cache
hits during tuple reconstruction.

We measure the mean latency as well as the 99th percentile
latency of full-width tuple reconstructions on the synthetic
data set. We vary the number of attributes stored in the SSCG
from 20 to 200. For each benchmark, we execute 10 M tuple
reconstructions. The results are shown in Figure 7. For the

uniformly distributed accesses, we observe that the latency-
optimized 3D XPoint device outperforms the NAND devices.
This trend is even more nuanced when comparing the 99th
percentile latencies. Most notably, SSCG-placed tuples on 3D
XPoint outperform fully DRAM-resident dictionary-encoded
tuples when ≥ 50% of the attributes are stored in the SSCG.

The second benchmark evaluates tuple reconstructions for
BSEG and ORDERLINE tables with zipfian (α = 1) and
uniformly distributed accesses, shown in Figure 8. IMDB (MRC)
denotes a columnar, dictionary-encoded, and fully DRAM-
resident data schema. The BSEG table consists of 20 MRC-
attributes and 325 attributes in an SSCG (ORDERLINE: 4 MRC
and 6 attributes in SSCG). The results show that runtimes are
dominated by the width of the SSCG with an increasingly
lower latency the higher the share of SSCG-placed attributes
gets. The tiered uncompressed column group (SSCG) is able
to compensate the negative performance impact of accessing
secondary storage. It can even outperform full DRAM-resident
cases since non-local DRAM accesses (twice per attribute due
to dictionary-encoding) quickly sum up for wide tables. For
wide tables such as the BSEG table, the performance improves
up to ∼2× for uniform accesses and ∼1.1× for zipfian accesses.
For the narrow ORDERLINE table, performance degrades by
∼70% for uniform accesses.

C. Sequential Access Patterns

To evaluate the impact on analytical workloads, we measure
the performance of sequential scans and probing.

Scanning: An important assumption of our approach is that
the vast majority of sequential processing remains on DRAM-
allocated attributes (see Section III for column selection and
pinning). In case the workload is well known and does not
change significantly, sequential processing is expected to never
access secondary storage. As columns that are not tiered remain
unmodified, the performance remains the same. Nonetheless,
unexpected workloads patterns or very low DRAM budgets
pose performance problems. They might still occur due to
(i) exceptional or seasonal queries or (ii) changing workload
patterns that have not yet resulted in an adapted data placement.

Figure 9(a) shows the performance of column scans with
varying thread counts and widths of the SSCG. A column
group access of 1/1 means that we scan one attribute in an
SSCG that contains a single attribute. 1/100 means that one
attribute out of 100 in an SSCG was scanned. As expected, the
costs scale linearly with the width of SSCG. The reason is the
effective data that is read with each single 4 KB page access.
With 100 integer columns, each 4 KB page contains 10 values
to scan while each page for an SSCG of 10 attributes contains
100 values to scan. HDDs perform well for pure sequential
requests but significantly slow down with concurrent requests
by multiple threads while modern SSDs require concurrent
access/larger IO queues for full performance.

Probing: Figure 9(b) shows the probing performance. Due
to our data placement model, we expect probing to happen
infrequently on tiered attributes, but more frequently than

●

● ●
●

● ●
●

● ●

Column Group
Access: 1/1

Column Group
Access: 1/10

Column Group
Access: 1/100

1 8 32 1 8 32 1 8 32
 0

10

20

30

40

0

1

2

3

4

0.0

0.1

0.2

0.3

Thread Count

M
ea

n
ru

nt
im

e
[s

]

Device ● 3D XPoint CSSD ESSD HDD

(a) Sequential scanning

● ●

●

● ●
●

● ●
●

01 Thread 08 Threads 32 Threads

0.1 1 10 0.1 1 10 0.1 1 10
 0

10

20

30

 0

 5

10

15

20

 0

 5

10

15

20

25

Probing Selectivity

M
ea

n
ru

nt
im

e
[s

]

(b) Probing

Fig. 9. Runtime performance of sequential access patterns.

scanning. Again, thread count has a significant impact on
the performance of NAND devices as does the selectivity.

Table IV lists the relative slowdown comparing the mea-
surements discussed before (cf. Figures 9(a) and 9(b)) with a
full DRAM-resident and dictionary-encoded columnar system.
As expected, tuple reconstructions can be sped up, depending
on the number of columns accessed and their storage tier.
Sequential accesses slow down linearly with the number of
attributes stored in the SSCG. Due to non-sequential access
pattern, HDDs perform clearly worse probing than scanning.

TABLE IV
PERFORMANCE OF ANALYTICAL ACCESS PATTERNS: COMPARING SSCG

ON 3D XPOINT VS. DRAM-RESIDENT MRC (32 THREADS). SHOWING
RELATIVE SLOWDOWN (latency SSCG/latency MRC)

1 Thread 8 Threads 32 Threads

Uni. Tuple Rec. (100/200) 1.02 0.92 0.86
Uni. Tuple Rec. (180/200) 0.81 0.72 0.64
Zipf. Tuple Rec. (100/200) 0.92 0.83 0.77
Zipf. Tuple Rec. (180/200) 0.75 0.67 0.60
Scanning (1/100) 335.69 644.44 548.85
Probing (1/100, 0.1%) 5 447.11 301.89 78.95
Probing (1/100, 10%) 4 446.25 1 195.00 987.50

D. The Bottom Line

The evaluation of an SAP ERP system shows that usually
between 5-10% of the attributes are accessed for sequential
operations, while our prototype with SSCG-placed attributes
outperforms the fully DRAM-resident counterpart as soon as
more than 50% of the attributes are stored in the SSCG (cf.
Figure 2). We see that SSCGs can compensate the performance

impact of secondary storage access. We conclude that tiering
SSCGs is worth the added complexity in Hyrise. As long as the
workload is known and not frequently changing, performance
can be improved while reducing memory footprints. But in
case of recurring analytical queries on SSCG-placed attributes,
the only feasible approach from a performance perspective is
to load the columns back into DRAM as MRCs.

V. RELATED WORK

In this section, we briefly discuss related areas of research:
physical design advisors, hybrid data layouts, and data tiering.

Several prior publications have used solver-based approaches
for allocation problems. Rotem et al. [18] optimize concurrent
accesses to parallel disks for two-ways joins via join graphs
using integer programming. Ozmen et al. [17] also focus
multi-disk setups and distribute relations to balance load
and minimize interference using non-linear programming.
Microsoft’s AutoAdmin recommends column groups using
strongly pruning greedy heuristics that estimate costs by
counting co-occurrences of attributes [16]. In its essence,
AutoAdmin is comparable to our heuristics as it uses occurrence
counting. Rösch et al. [36] built a storage advisor for the HTAP
database SAP HANA, which recommends both horizontal as
well as vertical partitioning. Their vertical partitioning approach
splits tables into row- and column-oriented tables, comparable
to our hybrid data format. Halim et al. [37] presented an
approach called database cracking. Both [38] and [37] focus
on increasing performance for disk-optimized databases while
our approach rather focuses on preserving performance of
an in-memory database when a substantial share of data is
evicted to secondary storage. In contrast to our proposal, all
the mentioned approaches for physical design optimization
disregard the effects of successive columnar filtering.

In the field of hybrid data layouts for disk-resident databases,
PAX [39] stores a page’s tuples in a columnar format to improve
cache locality. There are several comparable approaches
for hybrid disk-based layouts without multiple data copies.
They have in common that point accesses (e.g., via tuple
reconstructions) are fast due to reading only single pages while
(analytical) sequential accesses are decelerated compared to
columnar approaches (DSM). We think using formats such
as PAX for SSCGs is useful and beneficial to restrict the
negative impact of sequential accesses (cf. Section IV-C) and
see it as future work. Idreos et al. [26] found columnar tuple
reconstruction from secondary storage to be problematic and
use sideway cracking at the expense of additional mapping
structures and multiple data copies. In the field of DRAM-
resident databases, Peloton [8] is a recent hybrid approach with
a flexible tile concept that can resemble both row- and column-
oriented schemes, similar to Hyrise. H2O [7] uses adaptable
column groups to adjust to the given workload on the fly.

Recent DRAM-optimized approaches such as Anti-
Caching [40] or Siberia [41] horizontally separate and evict
data that has not been accessed for a certain period using LRU-
like approaches. Both approaches focus on tuple-/block-wise
eviction optimized for transactional workloads. In the context

of HTAP, HyPer compresses cold columnar data but does not
(yet) evict data [10], [25]. Hoeppner et al. proposed a solution
for SAP HANA [42]. Infrequently accessed attribute vectors
are evicted while dictionaries are left DRAM-resident.

VI. CONCLUSION & FUTURE WORK

We have presented a tiered main memory-optimized database
for mixed workloads using hybrid table layouts. The hybrid
layout separates attributes into two groups in order to retain
the analytical performance of in-memory column stores and
improve access performance to cold data on secondary storage.
We evict a significant share of the data to secondary storage
while simultaneously showing comparable (and for several
real-world workloads improved) performance.

To determine which columns to keep in DRAM, we have
introduced a novel optimization model using integer linear
programming (ILP). The model’s performance is optimal and
outperforms heuristics since coupled aspects such as selectivity,
size, and frequency of queries are incorporated. Our model is
also able to take reallocation costs for secondary storage into
account to determine whether a reconfiguration is advantageous.

Further, we have shown two interesting results. First, we
prove that solutions of a transformed continuous LP coincide
with optimal ILP solutions for specific memory budgets.
Second, we show how to compute these optimal solutions
of the transformed LP explicitly. Hence, our explicit solution
combines both advantages: optimized performance and rapid
computation times. In addition, our results reveal a recursive
solution principle which can be used as an effective heuristic
in general column selection problems.

In future works, we will analyze scenarios in which workload
changes over time in more detail. To react to changing
workloads – which are characterized by query frequencies
– varying time frames (moving windows) of historic workload
data can be used to feed the model and to adapt the data layout
successively. Further, our model can also be directly combined
with approaches to predict future workloads (e.g., via time
series analyses). Estimations of expected query frequencies
can be used in our model framework to compute optimized
column selections for anticipated workloads.

ACKNOWLEDGMENTS

We want to thank our project partner Dell EMC2. Besides
supplying the AMM software, we want to thank Adrian
Michaud, Kurt Roedszus, and Ken Taylor for their continuous
support and feedback over the past years. Further, we want to
thank Intel for providing the Intel Optane P4800X devices.

REFERENCES

[1] D. J. Abadi, D. S. Myers et al., “Materialization strategies in a column-
oriented DBMS,” in Proc. ICDE 2007. IEEE, 2007, pp. 466–475.

[2] D. J. Abadi et al., “Column-stores vs. row-stores: how different are they
really?” in Proc. SIGMOD 2008. ACM, 2008, pp. 967–980.

[3] H. Plattner, “The impact of columnar in-memory databases on enterprise
systems,” PVLDB, vol. 7, no. 13, pp. 1722–1729, 2014.

[4] P. Larson, C. Clinciu, C. Fraser et al., “Enhancements to SQL Server
column stores,” in Proc. SIGMOD 2013. ACM, 2013, pp. 1159–1168.

[5] N. Mukherjee et al., “Distributed architecture of oracle database in-
memory,” PVLDB, vol. 8, no. 12, pp. 1630–1641, 2015.

[6] V. Raman et al., “DB2 with BLU acceleration: So much more than just
a column store,” PVLDB, vol. 6, no. 11, pp. 1080–1091, 2013.

[7] I. Alagiannis, S. Idreos, and A. Ailamaki, “H2O: a hands-free adaptive
store,” in Proc. SIGMOD 2014, 2014, pp. 1103–1114.

[8] J. Arulraj, A. Pavlo, and P. Menon, “Bridging the archipelago between
row-stores and column-stores for hybrid workloads,” in Proc. SIGMOD
2016. ACM, 2016, pp. 583–598.

[9] T. Willhalm et al., “SIMD-Scan: Ultra fast in-memory table scan using
on-chip vector processing units,” PVLDB, vol. 2, pp. 385–394, 2009.

[10] H. Lang, T. Mühlbauer, F. Funke et al., “Data blocks: Hybrid OLTP and
OLAP on compressed storage using both vectorization and compilation,”
in Proc. SIGMOD 2016. ACM, 2016, pp. 311–326.

[11] T. Neumann, “Engineering high-performance database engines,” PVLDB,
vol. 7, no. 13, pp. 1734–1741, 2014.

[12] L. Ma, J. Arulraj, S. Zhao et al., “Larger-than-memory data management
on modern storage hardware for in-memory OLTP database systems,” in
Proc. DaMoN. ACM, 2016, pp. 9:1–9:7.

[13] H. Bian et al., “Wide table layout optimization based on column ordering
and duplication,” in Proc. SIGMOD 2017. ACM, 2017, pp. 299–314.

[14] M. Grund, J. Krüger, H. Plattner et al., “HYRISE - A main memory
hybrid storage engine,” PVLDB, vol. 4, no. 2, pp. 105–116, 2010.

[15] G. Graefe, “Volcan - an extensible and parallel query evaluation system,”
IEEE Trans. Knowl. Data Eng., vol. 6, no. 1, pp. 120–135, 1994.

[16] S. Agrawal et al., “Integrating vertical and horizontal partitioning into
automated physical database design,” in SIGMOD, 2004, pp. 359–370.

[17] O. Ozmen et al., “Workload-aware storage layout for database systems,”
in Proc. SIGMOD, 2010, pp. 939–950.

[18] D. Rotem et al., “Data allocation for multi-disk databases,” IEEE Trans.
Knowl. Data Eng., vol. 5, no. 5, pp. 882–887, 1993.

[19] P. A. Boncz, M. Zukowski, and N. Nes, “MonetDB/X100: Hyper-
pipelining query execution,” in CIDR 2005, 2005, pp. 225–237.

[20] K. Schnaitter, N. Polyzotis, and L. Getoor, “Index interactions in physical
design tuning: Modeling, analysis, and applications,” PVLDB, vol. 2,
no. 1, pp. 1234–1245, 2009.

[21] M. Stonebraker, D. J. Abadi, A. Batkin et al., “C-Store: A column-
oriented DBMS,” in Proc. VLDB 2005, 2005, pp. 553–564.

[22] J. Krüger et al., “Fast updates on read-optimized databases using multi-
core CPUs,” PVLDB, vol. 5, no. 1, pp. 61–72, 2011.

[23] D. Schwalb et al., “Efficient transaction processing for Hyrise in mixed
workload environments,” in Proc. IMDM@VLDB 2014. IMDM, 2014.

[24] F. Färber et al., “The SAP HANA database – an architecture overview,”
IEEE Data Eng. Bull., vol. 35, no. 1, pp. 28–33, 2012.

[25] F. Funke et al., “Compacting transactional data in hybrid OLTP & OLAP
databases.” PVLDB, vol. 5, no. 11, pp. 1424–1435, 2012.

[26] S. Idreos et al., “Self-organizing tuple reconstruction in column-stores,”
in Proc. SIGMOD 2009, 2009, pp. 297–308.

[27] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price, “Access path selection in a relational database management
system,” in Proc. SIGMOD 1979. ACM, 1979, pp. 23–34.

[28] C. Meyer, M. Boissier, A. Michaud et al., “Dynamic and transparent
data tiering for in-memory databases in mixed workload environments,”
in Proc. ADMS@VLDB 2015, 2015, pp. 37–48.

[29] G. B. Mathews, “On the partition of numbers,” Proceedings of the London
Mathematical Society, vol. s1-28, no. 1, pp. 486–490, 1896.

[30] N. Katoh and T. Ibaraki, Resource Allocation Problems. Boston, MA:
Springer US, 1998, pp. 905–1006.

[31] R. Sherkat et al., “Page as you go: Piecewise columnar access in SAP
HANA,” in Proc. SIGMOD, 2016, pp. 1295–1306.

[32] M. Boissier et al., “Analyzing data relevance and access patterns of live
production database systems,” in Proc. CIKM 2016, 2016, pp. 2473–2475.

[33] Y. Wu et al., “An empirical evaluation of in-memory multi-version
concurrency control,” PVLDB, vol. 10, no. 7, pp. 781–792, 2017.

[34] M. Faust, D. Schwalb, and H. Plattner, “Composite group-keys: Space-
efficient indexing of multiple columns for compressed in-memory column
stores,” in Proc. IMDM@VLDB 2014. IMDM, 2014, pp. 42–54.

[35] R. L. Cole et al., “The mixed workload CH-benCHmark,” in Proc. DBTest
2011. New York, NY, USA: ACM, 2011, pp. 8:1–8:6.

[36] P. Rösch et al., “A storage advisor for hybrid-store databases,” PVLDB,
vol. 5, no. 12, pp. 1748–1758, 2012.

[37] F. Halim, S. Idreos, P. Karras, and R. H. C. Yap, “Stochastic database
cracking: Towards robust adaptive indexing in main-memory column-
stores,” PVLDB, vol. 5, no. 6, pp. 502–513, 2012.

[38] A. Rasin et al., “An automatic physical design tool for clustered column-
stores,” in Proc. EDBT 2013. ACM, 2013, pp. 203–214.

[39] A. Ailamaki et al., “Weaving relations for cache performance,” in Proc.
VLDB 2001. VLDB Endowment, 2001, pp. 169–180.

[40] J. DeBrabant, A. Pavlo, S. Tu, M. Stonebraker, and S. B. Zdonik, “Anti-
caching: A new approach to database management system architecture.”
PVLDB, vol. 6, no. 14, pp. 1942–1953, 2013.

[41] A. Eldawy et al., “Trekking through siberia: Managing cold data in a
memory-optimized database,” PVLDB, vol. 7, no. 11, pp. 931–942, 2014.

[42] B. Höppner et al., “An approach for hybrid-memory scaling columnar
in-memory databases,” in Proc. ADMS@VLDB 2014. ADMS, 2014.

VII. NOTATION

W
or

kl
oa

d

i 1, ...,N, N the number of columns
j 1, ...,Q, Q the number of queries
ai size of column i, i = 1, ...,N
si selectivity of column i, i = 1, ...,N

(i.e., average share of tuples with same value)
q j columns used by query j, j = 1, ...,Q,

subset of {1, ...,N}, e.g., q1 = {8,6,13,14,87}
b j frequency of query j, j = 1, ...,Q
gi number of queries j in a workload that include

column i, i.e., gi := ∑
j=1,...,Q,i∈q j

b j , i = 1, ...,N

f j scan costs of query j, j = 1, ...,Q
ci coefficients of the transformed objective, i = 1, ...,N
Si auxiliary parameter, j = 1, ...,Q
oi optimized order of columns i, i = 1, ...,N

C
os

t
Pa

ra
m

et
er

s cmm scan cost parameter main memory
css scan cost parameter secondary storage
α cost parameter for DRAM used
β cost parameter for reallocation
A DRAM budget
w share of total size of columns allowed in DRAM

V
ar

ia
bl

es

xi decision variables: column in DRAM yes (1) / no (0),
i = 1, ...,N, and allocation vector ~x = (x1, ...,xN)

F(~x) total scan costs of allocation ~x
M(~x) required DRAM budget of allocation ~x
yi given initial/current state for xi, i = 1, ...,N
zi auxiliary variable for linearization, i = 1, ...,N

