
Learned What-If Cost Models for Autonomous
Clustering

Daniel Lindner, Alexander Löser, and Jan Kossmann

Hasso Plattner Institute, University of Potsdam, Germany
{daniel.lindner,alexander.loeser}@student.hpi.de

jan.kossmann@hpi.de

Abstract. Clustering database tables, i.e., storing similar values in phys-
ical proximity, can be used to enhance the performance of a database sys-
tem. Determining optimal clustering configurations manually is cumber-
some due to the large solution space and because the performance impact
depends on the workload at hand. Autonomous clustering approaches
can support database administrators in this task. However, determining
the optimal clustering by physically applying all possible clusterings is
prohibitively expensive. We present a what-if-based learned cost model
that simulates the effects of a hypothetical clustering and then estimates
the resulting workload latency based on previously trained cost models.
Optimal clustering configurations can be found with these estimations.
Our model accurately estimates the latencies of the TPC-H workload for
different clusterings with a relative error of at most 5 %.

Keywords: Physical Database Design · Database Clustering · Autonomous
Database · Learned Cost Models.

1 Introduction

The physical data layout of a database table has a large impact on the database
performance [7]. Database clustering is the process of reorganizing a table’s phys-
ical layout in a way that tuples with similar values in certain columns are grouped
and stored together. Thereby, clustering increases data locality and may enable
further optimizations, such as partition pruning [9]. Database vendors such as
Oracle [23], IBM [14], Snowflake [19], and Microsoft [2] have acknowledged the
importance of clustering, and provide tools to cluster the stored data by one
or multiple columns. However, real-world databases often contain wide tables
with numerous columns [3,13], e.g., enterprise resource planning systems consist
of tables with hundreds of columns. In such scenarios, a tremendous number of
clustering options exists, which makes it challenging to determine the cluster-
ing that results in the best performance. Traditionally, this choice is made by
database administrators [10] who must have detailed knowledge of the database
and its workload.

Autonomous databases promise to simplify the work of database administra-
tors [18]. Not only does the DBMS itself decide on its configuration, but it may



2 D. Lindner, A. Löser, J. Kossmann

even identify settings superior to human decisions: The database has the most
profound knowledge of workload and data and thus has also the best rationale for
decisions [22]. In general, autonomous systems simulate multiple configuration
options. To allow weighing these options, learned cost models are a fundamental
part of autonomous databases [18]. They estimate the run time of a database
operation based on particular features, and thus are crucial for the quality of the
decisions. As they can be re-trained when the code-base or the underlying hard-
ware changes, they are independent of implementation and hardware. Learned
cost models have been used for various applications, e.g., query optimization,
index selection, or transaction management [22].

Contributions In this work, we use a learned cost model to identify how a specific
clustering impacts the database’s performance. We use a what-if-based approach,
i.e., we do not actually change the clustering and measure the resulting perfor-
mance. Instead, we first perform a rule-based clustering simulation that predicts
the effect of a clustering on certain database operations (e.g., whether the order
of table scans changes). In the second step, a learned cost model estimates the
workload’s latency. Such a cost model can be integrated into a what-if-based
clustering model, e.g., the clustering model by Löser [15].

The remainder of this paper is structured as follows: Section 2 introduces
basic concepts and fundamentals for Hyrise, the DBMS we used for our inves-
tigations. In Section 3, we present our approach on what-if-based latency esti-
mation. After describing how we obtain training data in Section 3.3, Section 4
evaluates both steps of our model, the clustering simulation in Section 4.1 and
the learned cost model in Section 4.2. Section 5 discusses related work in the
areas of autonomous clustering and learned cost models. Finally, Section 6 sums
up our insights and concludes our work.

2 The Hyrise Database System

This work was developed for the research database Hyrise1 [6]. This section
provides an overview of the parts and concepts of the Hyrise database system
that are necessary for understanding our approach presented in Section 3.

Storage layout Hyrise is a relational, non-distributed, memory-resident research
database. Tables are stored in a column-oriented fashion but are partitioned
into chunks with a fixed number of rows, 65 535 by default. Thus, each chunk
contains a fraction of all columns. Those fractions are called segments. For each
segment, Hyrise stores aggregated segment information [17], such as the mini-
mum and maximum value present in the segment. During query optimization,
the minimum and maximum values may be used to prune chunks, i.e., to exclude
chunks from the query execution without scanning their actual segment data.
Figure 1 visualizes Hyrise’s storage layout.

1 https://github.com/hyrise/hyrise

https://github.com/hyrise/hyrise


Learned What-If Cost Models for Autonomous Clustering 3

Table T

Chunk #1

Segment a

dictionary-
encoded

Segment b

run length-
encoded

Segment c

unencoded

Chunk #2

Segment a

dictionary-
encoded

Segment b

dictionary-
encoded

Segment c

dictionary-
encoded

Chunk #n-1

Segment a

unencoded

Segment b

unencoded

Segment c

unencoded

Chunk #n

Segment a

unencoded

Segment b

unencoded

…

im
m

ut
ab

le
im

m
ut

ab
le

im
m

ut
ab

le
m

ut
ab

le

Segment c

unencoded

Column T.a Column T.b Column T.c

Fig. 1. Visualization of Hyrise’s storage layout. Reprinted from Hyrise Re-engineered:
An Extensible Database System for Research in Relational In-Memory Data Manage-
ment [6].

Within a segment, data may be stored in an encoded format. Hyrise supports
a variety of encoding types, e.g., dictionary encoding [1] (default), run length
encoding, or frame of reference encoding. All measurements in this work were
performed with dictionary-encoded segments.

SQL Pipeline Hyrise can be queried via SQL. When Hyrise receives an SQL
query, the SQL pipeline is triggered: First, the SQL query is translated into a
logical query plan, called LQP. An LQP is a directed acyclic graph (DAG) whose
nodes represent operations of the relational algebra, such as joins or aggregates.
The LQP is then optimized by the query optimizer and finally translated into
a physical query plan, called PQP. A PQP is a DAG whose nodes are specific
implementations of database operations. For example, a join in the LQP may be
translated to a hash join, a sort-merge join, or a nested loop join in the PQP. In
Hyrise, those specific implementations are called operators.

An operator may receive none, one, or two other operators as input. The
leaves of the PQP are GetTable operators, a particular Hyrise operator that
receives only a table name as input and returns the table with the given name.
To execute an SQL query, Hyrise triggers the SQL Pipeline to obtain a PQP
and then executes the PQP bottom up. The result of the query is the output of
the root PQP node. Hyrise maintains a cache of recently executed query plans,
called PQP cache.

Reference segments In Hyrise, the output of an operator is a temporary table.
Usually, these tables are reference tables, which contain reference segments. They



4 D. Lindner, A. Löser, J. Kossmann

do not store the data, but only point to where the data is located in the orig-
inal table. There is always at most one level of indirection, i.e., if an operator
receives a table with reference segments as input and outputs a table with ref-
erence segments, the output segments still directly point to the original table.
The process of accessing the actual values behind a reference segment is called
materialization. Figure 2 visualizes the concept of reference segments.

1

3

4

3

3

2

C
hu

nk
 0

C
hu

nk
 1

X

Scan: X > 2

0 1

0 2

1 0

1 1

Chunk ID Offset

Data Segment Reference Segment

Materialize

3

3

3

Data Segment

X X

Scan: X < 4

0 1

1 0

1 1

Chunk ID Offset

Reference Segment

X

still refers to this table

refers to this table

Fig. 2. Visualization of Hyrise’s reference segments. Reprinted from Automatic Clus-
tering in Hyrise [15].

Operator Performance Data In Hyrise, operators collect statistics about their
execution. These statistics include, e.g., input and output row counts, the ex-
ecution time, and the accessed columns and are available via the PQP cache.
In our clustering model, we use the entirety of all executed operators and their
performance data to represent workloads.

3 What-If Latency Estimation for Autonomous
Clustering

This section presents our approach on what-if-based latency estimation for au-
tonomous clustering. While we provide a brief overview of the entire clustering
model in Section 3.1, this work focuses on our latency estimation technique and
its training data, which we describe in Section 3.2 and Section 3.3, respectively.

3.1 Clustering Model

We use the clustering model that was developed during the master’s thesis of
Löser [15]. Given the current database workload, the model aims to find a clus-
tering that maximizes the database’s performance. There are different ways to
define performance. Analogous to Löser, we choose the workload’s latency, i.e.,
the sum of all individual query latencies, as our performance metric, so maxi-
mizing performance is equivalent to minimizing the workload’s latency.



Learned What-If Cost Models for Autonomous Clustering 5

The model operates in two steps: First, the candidate creator analyzes the
current workload and determines a list of possible clustering candidates. Second,
for each clustering candidate, the latency estimator is used to estimate the im-
pact of such a clustering on the current workload’s performance. The database
can then weight the expected performance gain against the expensive process of
reclustering.

Candidate creator The first step towards creating clustering candidates is to
identify interesting columns. In a nutshell, a column is considered interesting if
a scan predicate or a join predicate operates on it. Table scans on a clustered
column can benefit, e.g., from pruning [7]; hash-based joins on a clustered column
may benefit through better cache hit rates.

An arbitrary number of these interesting columns can be chosen for clus-
tering, thereby allowing for n-dimensional clusterings. However, in this work,
we only consider one-dimensional clusterings, i.e., with exactly one clustering
column.

Latency estimator The most precise way to determine a clustering’s performance
impact is to physically implement the clustering, and measure the latency. Since
physically implementing a clustering is a very expensive process, we consider it
an unfeasible approach for production databases, especially if a large number of
clusterings has to be considered.

Consequently, the latency estimator works on a what-if basis: Instead of
physically applying a certain clustering and measuring its actual performance
impact, the latency estimator only assumes the clustering was implemented and
provides a latency estimate.

Löser [15] uses a set of handcrafted rules to estimate the latency of table
scans and hash joins. In this work, we replace the handcrafted rule system with
a learned cost model that can predict latencies for table scans, hash joins, and
hash aggregates.

3.2 Latency Estimation

Determining how a certain clustering will affect the current workload’s latency
is a crucial part of our clustering model. The latency estimation is conducted
per operator for aggregates, scans, and joins. For all other operators, we assume
that their latency is unaffected by the clustering. This simplifying assumption
is justified by the fact that the aforementioned three operators are responsible
for more than 90 % of the execution time of the TPC-H benchmark [7].

Our latency estimation approach consists of two steps: First, we perform a
clustering simulation. In a clustering simulation, we apply a set of rule-based
transformations to the operators. The aim is to predict how a hypothetical
clustering will affect the operators’ clustering-dependent features, such as the
number of input rows they receive. For example, when estimating the latency
for clustering by column X, the simulation would consider an input reduction



6 D. Lindner, A. Löser, J. Kossmann

through pruning for filter predicates that operate on column X. The clustering
simulation is described in more detail in Section 3.2.

In the second step, we perform the actual latency estimation using learned
physical cost models. The cost models receive the clustering simulation’s output
as input and yield latency estimates as output. Figure 3 displays the latency
estimation process.

Learned 
Cost Model

Clustering 
Selection

Operators 
with 

Clustering 
Features

Latency 
Estimates

PQP Cache

OperatorOperatorOperator

Clustering 
Simulation

Clustering 
Configuration

Optimal 
Clustering 

Configuration

Fig. 3. Architecture of the latency estimation.

Clustering Simulation In Hyrise, operators track certain performance data,
such as the number of input rows, output rows, or the input data’s sort order.
Given a workload (i.e., a set of operators), our clustering simulation applies a
predefined set of rules to identify the operators impacted by the clustering and
estimates how their input rows, output rows, sortedness, and operator-specific
features will change. We identified two aspects that need to be considered for a
precise clustering simulation: PQP awareness and predicate reordering.

Awareness of surrounding operators For some operators, it might be sufficient
to consider only the operator itself to determine whether the clustering will
influence its performance. For example, if a filter predicate occurs on a particular
column, clustering by that column reduces the input size of scans that operate
on it through chunk pruning. In general, however, we found that it is crucial to
be aware of an operator’s position in the physical query plan, and, thereby, its
surrounding operators.

Consider the following excerpt from Hyrise’s query plan for query 20 of the
analytical TPC-H benchmark [5,21], which is is visualized in Figure 4: Hyrise first
performs semi joins on the l partkey and l suppkey columns of the lineitem

table, before performing a scan on the l shipdate column. By default, the
lineitem table is sorted by the l orderkey column. If we assume that lineitem
was clustered by l shipdate instead, it is obvious that the scan on l shipdate

will benefit from pruning. The semi joins are executed before the scan; however,
the scan enables chunk pruning, which Hyrise applies during query optimization,



Learned What-If Cost Models for Autonomous Clustering 7

i.e., even before executing the joins. Thus, despite the semi joins neither operate
on l orderkey nor on l shipdate, clustering by l shipdate has a significant
impact on their input size, reducing it by factor 6. Embedding these operators
into the surrounding PQP is required to obtain precise information about run
time-critical properties.

Lineitem
Chunks pruned: 0%

Semi Join on l_partkey
Selectivity: 1%

Input Rows: 6 million

Semi Join on l_suppkey
Selectivity: 100%

Input Rows: 60 000

Scan on l_shipdate
Selectivity: 16%

Input Row: 60 000
...Clustering by l_orderkey

Clustering by l_shipdate Lineitem
Chunks pruned: 83%

Semi Join on l_partkey
Selectivity: 1%

Input Rows: 1 million

Semi Join on l_suppkey
Selectivity: 100%

Input Rows: 10 000

Scan on l_shipdate
Selectivity: 99%

Input Rows: 10 000
...

Fig. 4. Partial PQP of TPC-H Query 20 at scale factor 1, with l orderkey and
l shipdate clustering. Reprinted from Automatic Clustering in Hyrise [15].

Predicate Reordering There is another crucial aspect to consider: predicate re-
ordering. In Hyrise, an operator is considered a predicate when it filters its input
table. The most important types of predicates are table scans and semi joins.

One of the steps performed by Hyrise’s query optimizer is the reordering
of predicates: Predicates are re-arranged so that the predicate with the highest
selectivity is executed last. If a scan operates on a clustered column, large parts of
the non-matching values may have been pruned. Consequently, the scan will have
a selectivity close to 1 and be executed last, i.e., its input size will be further
reduced by other predicates. Additionally, the reordering may cause another
predicate to operate on data segments instead of reference segments and vice
versa, which should be considered in the clustering simulation. Figure 5 visualizes
a predicate reordering with a change of segment types at the example of query
6 of the analytical TPC-H benchmark.

Lineitem
Chunks pruned: 0%

Scan on l_shipdate
Selectivity: 16%

Dictionary Segments
Input Rows: 6 million

Scan on l_discount
Selectivity: 20%

Reference Segments
Input Rows: 1 million

Scan on l_quantity
Selectivity: 50%

Reference Segments
Input Rows: 200 000

...Clustering by l_orderkey

Lineitem
Chunks pruned: 83%

Scan on l_discount
Selectivity: 20%

Dictionary Segments
Input Rows: 1 million

Scan on l_quantity
Selectivity: 50%

Reference Segments
Input Rows: 200 000

Scan on l_shipdate
Selectivity: 99%

Reference Segments
Input Rows: 100 000

...Clustering by l_shipdate

Fig. 5. Partial PQP of TPC-H Query 6 at scale factor 1, with l orderkey and
l shipdate clustering. Reprinted from Automatic Clustering in Hyrise [15].



8 D. Lindner, A. Löser, J. Kossmann

Learned Cost Model We perform the actual latency estimation using a
learned cost model, i.e., a machine learning model is used to predict the operator
run times. In this work, we use a gradient boosting regressor [8] with a Huber
loss function [11] provided by scikit-learn2. Boosting allows for different types
of dependencies within variables, e.g., linear, quadratic, or logistic relationships,
without explicitly modeling these types [12, chapter 8].

In Hyrise, operators can have multiple implementations. E.g., the TableScan
has five specialized implementations for different types of predicates. For each
operator implementation, we use a dedicated regressor, i.e., we train five models
for these five implementations. Furthermore, we observed that the type of input
tables, i.e., if a table contains data or is an intermediate reference table, has a
strong influence on the performance of JoinHash. Thus,we add models for each
combination of table types of the build and probe input table for this operator.
A complete overview of the features used to predict the operator latency can be
found on GitHub3.

3.3 Obtaining Data for Training

When Hyrise executes a given workload, i.e., a set of SQL queries, the result-
ing PQPs are stored in the PQP cache. Combined with information about the
current clustering, we use the performance data of the PQPs’ operators as our
training data.

Specifically, we use the current workload in combination with the currently
implemented clustering as a part of the training data. In our case, this is the
workload defined by the TPC-H benchmark, with all tables being left as gener-
ated. By default, the lineitem table is sorted by l orderkey.

Clustering may lead to changes of the PQPs, e.g., we have seen that both
input sizes and input table types of a TableScan may change due to the cluster-
ing in Figure 5. For operators that are not affected by clustering, the execution
data of the current workload is sufficient to predict their run time. However, if
an operator is affected by the clustering, its features (e.g., input size) may be
unlike any the model has seen during training. Consequently, additional training
data is required.

Thus, we add dedicated calibration data. Calibration data contain execution
information of synthetic PQPs, covering variations of the cost model’s input
features. For example, we add table scans on different input sizes, i.e., with a
variable amount of pruned chunks, to our training data. The calibration data
also covers different input sizes for semi joins and aggregates. Overall, we include
the execution information of more than 90 000 dedicated PQPs.

Additionally, our calibration data contain performance data for the TPC-H
workload executed on a randomly shuffled l lineitem table. These data are
useful for, e.g., joins that operate on sorted data in the current clustering, but
would not receive sorted data in a hypothetical new clustering.

2 https://scikit-learn.org/stable/modules/ensemble.html
3 https://github.com/aloeser/hyrise/blob/whatif/cost_model_features.md

https://scikit-learn.org/stable/modules/ensemble.html
https://github.com/aloeser/hyrise/blob/whatif/cost_model_features.md


Learned What-If Cost Models for Autonomous Clustering 9

3.4 Limitations

Our latency estimation process has two limitations. First and foremost, we cur-
rently consider only one-dimensional clusterings. Second, our learned cost model
can hardly interpolate observations, and thus does not yield reasonable estimates
for previously unseen operators. However, this is only a limitation our chosen
machine learning model type.

4 Results and Discussion

In this section, we evaluate our latency estimation approach. For that purpose,
we use our model to predict how the latencies of the TPC-H benchmark will
change, assuming that the lineitem table was sorted, i.e., clustered, by another
column than l orderkey (the default). We operate on the lineitem table be-
cause it is the largest of the TPC-H tables, and responsible for the major share
of execution time. For the clustering columns, we consider a column mostly used
in filter predicates, l shipdate, and a column mostly used for joins, l partkey.

Our model was developed based on TPC-H data with a scale factor of 1. For
that reason, the evaluation is focused on data with a scale factor of 1, too, but
we also evaluate data with a scale factor of 10 to determine how well our model
scales. Our implementation is publicly available on GitHub4.

Like the approach itself, our evaluation is divided into two steps: We evaluate
the clustering simulation’s precision in Section 4.1 and the latency estimates’
precision in Section 4.2.

4.1 Clustering Simulation

For scans and joins, we evaluate our predictions of input rows, output rows,
and segment types, i.e., whether the operator receives dictionary or reference
segments. For the input and output rows, we consider the relative errors, i.e.,
the ratio between predicted and actual size; for the segment type, we consider
the ratio of correctly predicted segment types.

Table Scans By default, Hyrise stores data in dictionary encoded segments.
The dictionaries of those segments contain a list of all unique values present
in the segment, which enables an early-out optimization for scans: For range
predicates such as the SQL BETWEEN keyword, the dictionaries can be used to
determine whether none, all, or some of the segment’s values will match. In
particular, if both the minimum and the maximum value of the dictionary are
within the range specified by the predicate, all values in the segment will match.
Consequently, Hyrise only has to write the output, without actually scanning
(and materializing) the segment. In addition to input rows, output rows, and
the segment type, our clustering simulation also predicts whether the early-
out optimization is applicable. Table 1 shows the precision of our clustering

4 https://github.com/aloeser/hyrise/tree/db73923

https://github.com/aloeser/hyrise/tree/db73923


10 D. Lindner, A. Löser, J. Kossmann

simulation for scans that operate on lineitem. First of all, we observe that
the simulation yields precise results for a large majority of the table scans. We
further observe that the simulation is almost perfect for the l partkey clustering.
This can be expected, as neither clustering by l partkey nor by l orderkey

allows any pruning or sorted searches; i.e., the features of the table scans remain
unaffected.

Clustering
Input rows Output rows

Segment type
Early-out
applicable≤ 10% ≤ 20% ≤ 10% ≤ 20%

l shipdate 75% 86% 83% 93% 97% 90%
l partkey 99% 99% 99% 99% 100% 100%

Table 1. Aggregated statistics for the clustering simulation of scans on lineitem. For
the input and output rows, it lists the share of operators for which the prediction is
within 10 % (or 20 %, respectively) of the actual value. For the segment type and early-
out optimization (binary values), it displays the share of correctly predicted values.

The simulation achieves similar performance on data with a scale factor of
10. We conclude that our clustering simulation is sufficiently precise for table
scans, even for higher scale factors.

Hash joins For the joins, we evaluate the input rows, output rows, and the
segment type of the input tables. If a join operates on reference segments, we
additionally predict (and evaluate) the number of referenced chunks, i.e., the
number of chunks of the original table that the join’s input refers to. Intuitively,
a join which receives 1 000 input rows that refer to 1 000 different chunks should
be slower than a join whose 1 000 input rows refer to only two chunks, as we
need to access fewer dictionaries when materializing the reference segments.
Hyrise’s operators already track their input chunk count; however, this metric is
highly misleading: Depending on the build table’s size, hash joins in Hyrise may
apply an r-Bit radix partitioning [4], which moves data across chunk boundaries.
The output of a hash join with radix partitioning contains at most 2r chunks,
independent of the number of referenced segments. Table 2 shows the precision
of our clustering simulation for joins that operate on lineitem. We observe
that the clustering simulations yields precise results for the vast majority of the
hash joins. Analogous to the table scans, changes in the input size of joins only
occur through pruning; which explains why simulation performs better for the
l partkey clustering.

The simulation achieves similar performance on data with a scale factor of
10. We conclude that our clustering simulation yields precise results for hash
joins, even for higher scale factors.

Evaluation of Sortedness An essential part of the clustering simulation is to de-
termine whether the original sort order of a table is still maintained. Hyrise does



Learned What-If Cost Models for Autonomous Clustering 11

Clustering
Input rows Output rows

Segment type
Referenced chunks

≤ 10% ≤ 20% ≤ 10% ≤ 20% ≤ 10% ≤ 20%

l shipdate 96% 96% 99% 99% 100% 92% 92%
l partkey 100% 100% 100% 100% 100% 100% 100%

Table 2. Aggregated statistics for the clustering simulation of hash joins that operate
on lineitem (as probe or build side). For the input rows, output rows, and the number
of referenced chunks, it lists the share of operators for which the prediction is within
10 % (or 20 %, respectively) of the actual value. For the segment type it displays the
share of correctly predicted values.

track whether a segment is flagged as sorted; however, this flag is set very con-
servatively. Only certain operators, such as table scans, forward the sortedness
flags, while other operators, such as hash joins, do not forward the flag, even if
they do maintain the original sort order. As a consequence, we cannot provide
a meaningful evaluation for our sort order predictions.

Aggregates In Hyrise, aggregates usually occur in the PQP after scans and joins
are executed. As a consequence, the input and output size of aggregates can-
not be modified by the clustering. This implies that we only need to predict
whether an aggregate’s input table still has the same sort order as the original
table. However, as explained in the previous paragraph, such an evaluation is
not possible.

4.2 Learned Cost Model

After evaluating the quality of the learned cost model’s input data, we investi-
gate its run time estimates. To identify the most suitable clustering regarding
a workload scenario, we focus on the aggregated latencies for each clustering
candidate. Since we considered three affected operators, TableScan, JoinHash,
and AggregateHash, we limit our examination to them. Furthermore, we only
take operators on the lineitem table into account, as they are the only ones
affected by one-dimensional clusterings of this table.

We have already introduced the l shipdate and the l partkey columns
as clustering candidates and the l orderkey column as the original clustering
column. The accumulated run times for the three operators are displayed in
Figure 6.

For all three clustering candidates, the learned cost model estimates the
overall latencies with a relative error of at most 5 %. Though the joins are con-
sistently over-estimated, the aggregates’ run times are estimated too low for two
clusterings. This is also the case for the l orderkey clustering, which was part of
the training data. Though we have both under- and over-estimations, the most
important information statement is precise: The order of the clustering candi-
dates’ run times is preserved, and our clustering model suggests the optimal
one-dimensional clustering correctly.



12 D. Lindner, A. Löser, J. Kossmann

0 1 000 2 000 3 000 4 000 5 000
Accumulated run time [ms]

l_partkey

l_shipdate

l_orderkey
Cl
us
te
rin

g

4 702

4 211

3 622

4 931

4 102

3 668

TableScan
JoinHash
AggregateHash

measured
estimated

Fig. 6. Accumulated run times of selected operators on lineitem, estimated vs. mea-
sured, for three clusterings.

Table 3 shows the mean squared error (MSE) of the accumulated latencies
for each clustering and operator. Though these MSEs are high compared to the
average run times of the operators, we have already seen that the accumulated
latencies are accurate.

Clustering TableScan JoinHash AggregateHash

l orderkey 11 / 9 39 / 40 1 085 / 94
l shipdate 1 / 2 346 / 48 1 574 / 106
l partkey 14 / 10 167 / 54 2 258 / 131

Table 3. Mean squared error (MSE) in ms2 of latency estimations / average run time
in ms for chosen operators and clusterings.

For a scale factor of 10, the results are comparable: The estimations of the
accumulated run times of the three operators are exceeded by maximal 7 %. This
small overall relative error is achieved by a consistent under-estimation of aggre-
gates and over-estimation of joins. Though we focused on modeling calibration
data suitable for a scale factor of 1, this is a satisfying result.

Overall, our model predicts the latency of the workload for given clustering
scenarios with an adequate accuracy: We obtain the correct order for clustering
candidates and the estimations are precise enough to make a deliberate decision
regarding the application of a clustering.

5 Related Work

Recently, there have been advancements in both research areas, learned cost
models and database clustering.

Zhou et al. [22] give an overview of current applications of learned cost models
in databases. These cost models are used to tackle various problems, e.g., query
optimization, index selection, or transaction management. However, none of the



Learned What-If Cost Models for Autonomous Clustering 13

cited authors use machine learning techniques for latency estimations of different
clusterings.

Marcus et al. [16] and Sun et al. [20] present cost models to estimate query
latencies with tree-structured deep neural networks. These models have a high
precision, but require a lot of training time, and they infer knowledge about the
current data layout, which hinders the simulation of hypothetical data layouts.

Hilprecht et al. [10] present a clustering model for cloud databases. They
argue that exact latency estimates are essential for identifying an optimal clus-
tering. However, latency estimation is a difficult task; even more so for cloud
databases, which often use heterogeneous hardware. As a consequence, they sug-
gest a model based on deep reinforcement learning: the model learns the latencies
of different clusterings by implementing a clustering and measuring its latency.
However, when considering a large number of clusterings, the training process
becomes very expensive. To speed up the training, Hilprecht et al. argue that –
being in a cloud environment – the latency of transferring data between differ-
ent nodes accounts for the dominating part of the query latencies. Thus, for an
approximate latency estimate, clusterings need not be physically implemented;
it is sufficient to estimate the amount of data that needs to be transferred. How-
ever, this cost model cannot be applied to non-distributed database systems like
Hyrise, as no data is transferred over the network.

6 Conclusion and Future Work

This paper presented a what-if model for clustering-specific latency estimation,
consisting of a clustering simulation and a learned cost model for latency esti-
mation. The resulting system is a hybrid approach: The results of the rule-based
clustering simulation are the input of a gradient boosting regressor to estimate
the latencies of a given workload. These latencies are estimated with a relative
error of at most 5 % for the TPC-H workload with a scale factor of 1, and our
model correctly identifies the optimal one-dimensional clustering. Compared to
rule-based approaches, the learned cost model is more flexible and can be re-
trained if the implementations of the database operators change or if the system
runs on different hardware.

Nevertheless, there are still aspects that are subject to future work. First,
the model only considers one-dimensional clusterings. Second, we focused on one
workload and one specific type of learned cost model. Additional workloads and
calibration data covering a more extensive range of characteristics can general-
ize the stated observations. Other types of learned cost models, which support
interpolation and fine-tuning in a more sophisticated manner, could further im-
prove latency estimation. Third, the rule-based clustering simulation could also
be automated, e.g., by incorporating the database optimizer.

References

1. Abadi, D.J., et al.: Integrating compression and execution in column-oriented
database systems. In: SIGMOD. pp. 671–682 (2006)



14 D. Lindner, A. Löser, J. Kossmann

2. Agrawal, S., Narasayya, V.R., Yang, B.: Integrating vertical and horizontal parti-
tioning into automated physical database design. In: SIGMOD. pp. 359–370 (2004)

3. Bian, H., et al.: Wide table layout optimization based on column ordering and
duplication. In: SIGMOD. pp. 299–314 (2017)

4. Boncz, P.A., et al.: Database architecture optimized for the new bottleneck: Mem-
ory access. In: VLDB. pp. 54–65 (1999)

5. Boncz, P.A., et al.: TPC-H analyzed: Hidden messages and lessons learned from
an influential benchmark. In: Performance Characterization and Benchmarking -
TPC Technology Conference. vol. 8391, pp. 61–76 (2013)

6. Dreseler, M., et al.: Hyrise re-engineered: An extensible database system for re-
search in relational in-memory data management. In: EDBT. pp. 313–324 (2019)

7. Dreseler, M., et al.: Quantifying TPC-H choke points and their optimizations.
PVLDB 13(8), 1206–1220 (2020)

8. Friedman, J.H.: Greedy function approximation: A gradient boosting machine. The
Annals of Statistics 29(5), 1189–1232 (2001)

9. Herodotou, H., et al.: Query optimization techniques for partitioned tables. In:
SIGMOD. pp. 49–60 (2011)

10. Hilprecht, B., et al.: Learning a partitioning advisor for cloud databases. In: SIG-
MOD. pp. 143–157 (2020)

11. Huber, P.J.: Robust Estimation of a Location Parameter. The Annals of Mathe-
matical Statistics 35(1), 73 – 101 (1964)

12. James, G., et al.: An Introduction to Statistical Learning with Applications in R.
Springer (2013)

13. Krüger, J., et al.: Fast updates on read-optimized databases using multi-core cpus.
PVLDB 5(1), 61–72 (2011)

14. Lightstone, S., Bhattacharjee, B.: Automated design of multidimensional clustering
tables for relational databases. In: VLDB. pp. 1170–1181 (2004)

15. Löser, A.: Automatic Clustering in Hyrise. Master’s thesis, Hasso-Plattner-
Institute, University of Potsdam (2020)

16. Marcus, R.C., Papaemmanouil, O.: Plan-structured deep neural network models
for query performance prediction. PVLDB 12(11), 1733–1746 (2019)

17. Moerkotte, G.: Small materialized aggregates: A light weight index structure for
data warehousing. In: VLDB. pp. 476–487 (1998)

18. Pavlo, A., et al.: Self-driving database management systems. In: 8th Biennial Con-
ference on Innovative Data Systems Research, CIDR Online Proceedings (2017)

19. Snowflake: Clustering Keys & Clustered Tables (2020), https://docs.snowflake.
com/en/user-guide/tables-clustering-keys.html

20. Sun, J., Li, G.: An end-to-end learning-based cost estimator. PVLDB 13(3), 307–
319 (2019)

21. Transaction Processing Performance Council: TPC-H Specification (2014), http:
//www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf

22. Zhou, X., et al.: Database meets artificial intelligence: A survey. TKDE (2020)
23. Ziauddin, M., et al.: Dimensions based data clustering and zone maps. PVLDB

10(12), 1622–1633 (2017)

https://docs.snowflake.com/en/user-guide/tables-clustering-keys.html
https://docs.snowflake.com/en/user-guide/tables-clustering-keys.html
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf

	Learned What-If Cost Models for Autonomous Clustering

