
CodeOcean and CodeHarbor:
Auto-Grader and Code Repository

Sebastian Serth
Hasso Plattner Institute

Potsdam, Germany
sebastian.serth@hpi.de

Thomas Staubitz
Hasso Plattner Institute

Potsdam, Germany
thomas.staubitz@hpi.de

Ralf Teusner
Hasso Plattner Institute

Potsdam, Germany
ralf.teusner@hpi.de

Christoph Meinel
Hasso Plattner Institute

Potsdam, Germany
christoph.meinel@hpi.de

ABSTRACT
The Hasso Plattner Institute (HPI) successfully operates a
MOOC (Massive Open Online Course) platform since 2012.
Since 2013, global enterprises, international organizations,
governments, and research projects funded by the German
ministry of education are partnering with us to operate their
own instances of the platform. The focus of our platform in-
stance is on IT topics, which includes programming courses
in different programming languages. An important element of
these courses are graded hands-on programming assignments.
MOOCs, even more than traditional classroom situations, de-
pend on automated solutions to assess programming exercises.
Manual evaluation is not an option due to the massive amount
of users that participate in these courses. The paper at hand
presents two of the tools developed in this context at the HPI:
CodeOcean—an auto-grader for a variety of programming
languages, and CodeHarbor, a tool to share auto-gradable
programming exercises between various online platforms.

Author Keywords
MOOC; Scalability; Programming; Auto-Grader; Code
Repository; Sharing

CCS Concepts
•Applied computing → Collaborative learning; Learn-
ing management systems; Distance learning; E-learning;
•Computer systems organization → Embedded systems;
Redundancy; Robotics; •Networks→ Network reliability;

INTRODUCTION
Future generations should learn the skills to participate in
digital life as part of modern society. These skills are often
coined as fundamental digital knowledge, and most people
agree that this includes programming skills. For that reason,
educational measures to teach programming ”to the masses“
are both of huge interest as well as vastly required, given the
fact that neither enough teachers with the necessary skill set
exist nor will everybody be able to go back to school. But

Seventh SPLICE Workshop at SIGCSE 2021 “CS Education Infrastructure
for All III: From Ideas to Practice”, SPLICE’21, March 15-16, 2021, Virtual
Event

even when having a shared understanding of the necessity
of programming education, the follow-up questions, how far
that education should go, and what content it should include,
brings up vivid discussions again. From our point of view,
profound knowledge of syntax and control structures of at
least one major fourth-generation programming language is
just the basis of solid digital knowledge.

Being an informed digital citizen requires also the ability to
understand other peoples’ code as well as to express one’s own
thoughts in a formal way and being able to communicate and
discuss decisions when implementing program logic. Learn-
ing not just to implement a given logic, but to develop own
solutions, alter them and defend them against critic, should
therefore be learned in a collaborative way. Several schools
have already taken up that challenge. Despite being lead by
committed individuals, these efforts often face essential prob-
lems. Most schools simply cannot invest sufficient time and
money in solid infrastructure to support practical program-
ming assignments. Ensuring a reliable environment for 30+
pupils per class is already a challenging task during initial
setup and requires know-how in virtualization or remote setup
for desktop PCs. In the long run, the maintenance effort for
such approaches will further diminish the outcome that teach-
ers can achieve, even when spending additional efforts in their
spare time.

Another issue is the availability of tested and trusted educa-
tional content. For traditional subjects, schools often rely
on textbooks supplied by educational publishers. For com-
puter science, as of now, most teachers, however, rely on their
own material or material they got from their colleagues. The
creation of (particularly auto-gradable) programming assign-
ments tends to be very time-consuming and is requiring a
profound knowledge of the employed programming language
as well as suitable testing approaches. The body of available
exercises is therefore limited. A different issue is the absence
of local fellow learners. Some form of digital communication
tool, therefore, also promises to be beneficial. While being
able to consume online content, further mastery of the acquired
knowledge as well as the practical experience of discussing



one’s ideas would be prevented, when not having access to
a school or a group currently learning the content at hand
together. We present prototypical solutions for the challenges
mentioned above and propose further ideas for discussion to
leverage learning outcomes and digital maturity.

EARLY EXPERIMENTS
Back in 2013, when we started our first experiments
with JavaScript programming exercises in the course
Web-Technologies1, implementing a customized solution—
automated or peer-review-based—was out of question in terms
of effort and timing. Therefore, we evaluated several third-
party, web-based coding tools as a quick and cheap alternative
and finally decided to use JSFiddle2. To assess the students’ so-
lutions, we employed a methodology, which we called STEAP
(Solution Through Execution Assessment Pattern). The ba-
sic idea was to prepare a programming problem in a publicly
available online tool, along with a piece of code that is able
to evaluate the participant’s solution. The evaluation code
returns a password if the participant’s solution provided the
correct results. The participant then had to copy this password
and paste it in a free-text-question in a standard quiz on the
openHPI MOOC platform [9].

The next step towards auto-graded programming exercises on
our MOOC platform was the course Spielend Programmieren
lernen!3. It was the first pure programming course on our plat-
form and intended to teach the Python programming language
to school kids. To provide the participants with the possibility
to write and execute code in their browser, WebPython was
developed. The tool supported two modes, console mode for
text and number-based exercises, and turtle mode for graphical
output. Turtle graphics is a programming model developed by
Seymour Papert in the 1970s and a core part of the Python stan-
dard library [4]. Python programming literature for children
typically leverages this support [1, 3]. WebPython transmit-
ted the participants’ code for execution and evaluation to our
servers [12].

CODEOCEAN
WebPython had several issues and, therefore, inspired us to
implement a different solution:

• It required the hardware of the FutureSoc-Lab4, which we
cannot use on a regular basis.

• It only supported the Python programming language.

• Its implementation was prototypical and not really designed
for long-term productive use.

Therefore, CodeOcean was developed as an open-source tool5.
Before starting the development, an intensive literature review
was conducted to examine the state-of-the-art of such tools [7].
CodeOcean supports, at least in theory, every programming
language that can be executed on a Linux operating system. In

1https://open.hpi.de/courses/www
2https://jsfiddle.net
3https://open.hpi.de/courses/pythonjunior2014
4https://hpi.de/en/research/future-soc-lab.html
5https://github.com/openHPI/codeocean

practice, we made use of CodeOcean for Java, Python, Ruby,
JavaScript, and R exercises, in several courses by now. These
courses range from offline seminars at our institute to full-
scale MOOCs on our MOOC platforms with tens of thousands
of registered participants. We have also employed CodeOcean
to conduct a course on test-driven development with JUnit.
The participants had to write test cases and an implementation
for each exercise. While we were not able to guarantee that
they have actually been working test-driven, CodeOcean at
least allowed us to evaluate if they had written test-cases that
covered the requirements of the exercises [10].

Enabling additional programming languages only requires
writing an adapter for the output of the testing framework that
is to be employed and generating a Docker image that contains
all required components. For each programming language,
we created a dedicated set of a testing adapter suitable for
the employed testing framework and a custom Docker image
containing language-specific tools. This allows an exercise
author to use the standard testing frameworks of each language,
e.g., PyUnit for Python, JUnit for Java, and RSpec for Ruby.
The respective testing adapter for each framework extracts
meta information (such as the number of failed tests) and test-
specific error messages. So far, an additional adapter was
written for C++ but has not been used yet in a course. We
further created an adapter to parse the output of PyLint6 as
a static code analysis tool. In addition to the test output, it
provides suggestions on improving the code style based on
predefined rules. It enabled us to employ a new set of exercises
focusing on different aspects of software engineering (such as
understanding and refactoring of existing code).

Similar to WebPython, CodeOcean is a web-based develop-
ment environment composed of a client-side code editor and
a server-side component for code execution. An advantage
of this approach is that it allows us to provide learners with a
homogeneous and novice-friendly programming environment.
It simplifies the support of multiple programming languages
and third-party libraries while providing a consistent workflow
for both code execution and assessment. And very importantly,
it allows us to collect insights into learners’ problem-solving
strategies by analyzing their code submissions. CodeOcean
promotes the concept of files within exercises. Multiple files
can be editable per exercise, while the instructors have every
possibility to individually restrict read and write access to
each file. CodeOcean does not restrict the number of execu-
tions before an exercise has to be submitted. Its development
environment is based on widespread web standards that are
natively supported by current web browsers. Hence, learners
can interact with their program during execution and provide
input for the command line or turtle graphics. Figure 1 de-
picts the user interface for learners when solving an exercise.
Most of the time, learners can focus on the implementation
with the code editor. The right pane which is expanded in
Figure 1 is hidden per default and only shown if needed to
reduce distraction for novices.

Through its Learning Tools Interoperability (LTI) interface,
CodeOcean can be attached to any Learning Management

6https://www.pylint.org

https://open.hpi.de/courses/www
https://jsfiddle.net
https://open.hpi.de/courses/pythonjunior2014
https://hpi.de/en/research/future-soc-lab.html
https://github.com/openHPI/codeocean
https://www.pylint.org


Figure 1. Successfully evaluated programming assignment in CodeOcean. Below the exercise description (top), a three-pane view is available to learners.
The left sidebar is used to switch between different files or get support through tips, the center contains a code editor for working on the assignment
and the right sidebar is shown on request with test output.

System (LMS) that supports this standard. Next to openHPI,
these are e.g. Moodle7, Sakai8, Blackboard9, or openEdX10,
to name just a few. See Staubitz et al. [8] for further implemen-
tation details. The tool had a rough start going from a proto-
typical implementation directly into a real course with 10,000
enrolled participants. While the testing adapters and overall
web server worked as expected, the large number of parallel
users in the first course showed a performance bottleneck of
the single-threaded Docker service on our machine. As a result,
the startup time of containers was too long for our interactive
use case and necessitated pre-warming of idle containers for
immediate use. By now, CodeOcean runs smooth and doesn’t
require much troubleshooting. During a recent course, it pro-
vided about 2.5 million code executions per month.

An increasingly expressed interest by school and university
teachers motivated us to identify and tackle their needs re-
garding a stable programming environment for use in class
scenarios. Hence, most recently, CodeOcean gained support
for various configuration options through LTI allowing teach-
ers to customize the experience learners have with the tool at
any time. As of now, we added support for 14 independent
options according to requests by teachers (i.e., to adapt the
features offered by CodeOcean to comply with regulations for
graded exercises in university courses). We further use LTI
to mirror course participants to CodeOcean and automatically
create so-called study groups with the respective users. The
formation of study groups supports high-school teachers and
university instructors to monitor the progress of their students
and provide them with individual assistance whenever needed.

7https://docs.moodle.org/310/en/LTI_and_Moodle
8https://www.sakailms.org/feature-details
9https://help.blackboard.com/Learn/Administrator/SaaS/

Integrations/Learning_Tools_Interoperability
10https://open.edx.org/blog/open-edx-lti-tool-provider/

In distance education with a large number of users, individual
help by course instructors is almost impossible due to the sheer
volume of requests. Therefore, we designed CodeOcean to
minimize upcoming questions and support the help-seeking
behavior of learners. Thus, CodeOcean provides three dif-
ferent feedback mechanisms to learners: (1) Annotations for
uncaught runtime exceptions, (2) exercise-specific hints, and
(3) the possibility to ask fellow students questions regarding
their implementation. Depending on the situation, these as-
sistance features allow students to get tailored support. For
example, the annotations for runtime exceptions are automati-
cally shown when a learner’s program terminates unexpectedly
with an exception. Annotations are intended to rephrase the
error message and thereby offer students another approach to
identify the root cause of their issue.

If at any time, learners are unsure how to proceed with an
exercise, they can access teacher-defined hints tailored for
the current exercise. Depending on the assignment, these
tips may contain a reminder of core programming concepts
or exercise-specific hints. Multiple tips allow teachers to de-
fine incremental support steps for learners. Third, CodeOcean
enables students to share their current implementation with fel-
low students and ask for comments regarding their questions.
Targeted for beginners, this feature ensures that volunteers
dedicating resources to help fellow learners have all informa-
tion required to get a full picture of the question and provide
code-level support.

Throughout the past years, CodeOcean has evolved to an ed-
ucational development environment with support for various
learning scenarios. New exercise types allow instructors en-
hanced flexibility in teaching relevant concepts and no longer
limit them on grading through unit tests. For more advanced
use cases, CodeOcean can be used in combination with tradi-
tional integrated development environments (IDEs). A plugin

https://docs.moodle.org/310/en/LTI_and_Moodle
https://www.sakailms.org/feature-details
https://help.blackboard.com/Learn/Administrator/SaaS/Integrations/Learning_Tools_Interoperability
https://help.blackboard.com/Learn/Administrator/SaaS/Integrations/Learning_Tools_Interoperability
https://open.edx.org/blog/open-edx-lti-tool-provider/


for Eclipse11, a popular Java IDE, and a package for R enables
teachers to transition from CodeOcean to a local environment
with their students. The interface allows instructors to preserve
the ability to use server-side assessment and grading capabili-
ties. Learners can then transmit the score gained through the
locally edited source code using LTI to the LMS.

CODEHARBOR
We define auto-graders as software tools that help instructors
to grade programming assignments of their students accord-
ing to some pre-defined criteria. We distinguish between
dynamic testing approaches and static testing approaches in-
cluding style-checkers. While dynamic approaches check the
functionality of the handed-in assignments according to the
requirements of the given exercise, static approaches check
the code for possible flaws in the implementation or coding
style issues. Some tools allow a combination of both methods.

The effort that is required to create auto-graded exercises is
one of the major obstacles that we identified why these are
often not provided in a sufficient quantity. This is particularly
true for exercises that rely mostly on dynamic evaluation. Par-
ticularly, for computer science education in schools, MOOCs
that come with a sufficient amount of programming exercises
bear a great potential [2]. Using a form of a digital worksheet,
they can resemble traditional materials and combine them with
interactive content from MOOCs [6].

An experiment that we conducted in 2016—with two teachers
and thirty pupils of a local school— signaled that with certain
adjustments, the MOOC format can fit the special require-
ments of schools pretty well. The results of a similar experi-
ment that we conducted in 2017 at a larger scale—invited were
all MINT-EC schools and about 1000 pupils participated—
promise to confirm the findings of the first experiment. One
of the findings of several workshops that we conducted 2015
and 2016 with teachers both at a principal meeting of German
schools engaging in the area of STEM12 and a state meet-
ing of Berlin-Brandenburg computer science teachers13 was
that many computer science teachers in schools lack either
time or the ability or both to create such exercises. A survey
that we conducted among the teachers that participated in the
above-mentioned larger experiment, confirms this finding.

We, therefore, came up with the idea to provide a simple plat-
form that allows sharing auto-gradable coding exercises: Code-
Harbor. It allows sharing these exercises between auto-graders
such as CodeOcean or others, e.g. Praktomat, by employing
the ProFormA data format [11] that has been developed by
the eCult-project14. The ProFormA specification is used as
a foundation for the internal representation of exercises in
CodeHarbor and the data exchange between CodeOcean and
CodeHarbor. Interoperability with other ProFormA-compliant
tools has been tested successfully. In addition to the standard
compliance, CodeHarbor offers the most requested features of

11https://www.eclipse.org
12https://www.mint-ec.de/angebote/

angebote-fuer-schulleitungen/mint-ec-schulleitertagung/
13https://ibbb.cses.informatik.hu-berlin.de/events/

15-gi-tagung-zur-schulinformatik-in-berlin-und-brandenburg
14http://www.ecult-niedersachsen.de/

Figure 2. The same exercise as shown in Figure 1 with additional infor-
mation is available on CodeHarbor. Teachers can use additional labels to
classify the exercise and add a license information. Further, the test files
used for assessment are available so that other instructors can re-use the
assignment in their context.

an exercise repository: It enables course instructors to create
and share exercises among each other, tracks changes with
built-in versioning support, and offers collections to group
similar exercises. As shown in Figure 2, the shared exercises
include test files and additional metadata.

CodeHarbor15 is currently entering a public beta phase. It is
designed as an open-source project and available on GitHub16.

FUTURE WORK
The next steps on the agenda for our toolset are to deepen the
integration of CodeOcean and CodeHarbor by moving the
editing features closer to CodeHarbor, to ensure better inter-
operability of both tools with other systems, and to promote
CodeHarbor so that a lively community will evolve. Partic-
ularly, CodeHarbor is dependent on such a community by
definition. To just make reusing our own exercises for up-
coming courses easier, it would have been easier to introduce
the concept of an exercise repository directly to CodeOcean.
CodeHarbor follows a more general strategy, however. The
ability to share exercises between different auto-graders, to
fork exercises, and to review exercises within a larger commu-
nity will go way further than just reusing one’s own exercises.
To promote the idea we present the toolset at conferences
such as this one and are continuously communicating with
teachers and other projects, such as the MERLOT project17,
eCult14, or X5gon18. In order to further ease the discover-
ability of programming exercises stored in CodeHarbor, we
plan to automatically list available assignments in educational

15https://codeharbor.openhpi.de
16https://github.com/openHPI/codeharbor
17https://www.merlot.org
18http://www.k4all.org/project/x5gon

https://www.eclipse.org
https://www.mint-ec.de/angebote/angebote-fuer-schulleitungen/mint-ec-schulleitertagung/
https://www.mint-ec.de/angebote/angebote-fuer-schulleitungen/mint-ec-schulleitertagung/
https://ibbb.cses.informatik.hu-berlin.de/events/15-gi-tagung-zur-schulinformatik-in-berlin-und-brandenburg
https://ibbb.cses.informatik.hu-berlin.de/events/15-gi-tagung-zur-schulinformatik-in-berlin-und-brandenburg
http://www.ecult-niedersachsen.de/
https://codeharbor.openhpi.de
https://github.com/openHPI/codeharbor
https://www.merlot.org
http://www.k4all.org/project/x5gon


catalogs, such as EduSharing instances19. By supporting al-
ternative data exchange formats such as the Programming
Exercise Markup Language (PEML)20, the interoperability of
CodeHarbor could be increased.

In CodeOcean, we further plan to improve support for more
sophisticated programming exercises in order to teach ad-
vanced topics in software engineering. Therefore, we aim to
investigate how a static code analysis tool could be integrated
comprehensively to provide added value for students. While
these tools are commonly used in professional software devel-
opment, only a few courses for novices apply these techniques.
Another aspect found across software engineers is to use pair
programming techniques for complex tasks. Previous research
suggested a positive impact of using pair programming with
beginners but rarely dealt with the required adaption of the
concept to distance education [5]. This will not only teach
the basic principles of pair programming but will also foster
collaboration among participants. To enable programming
courses with ECTS points, we’re planning to add support
for proctored programming assignments to CodeOcean. This
would seamlessly supplement the face recognition solution,
which we are already using for our quiz-based assignments
in openHPI. On a technical level, we will evaluate which pre-
requisites machine learning courses imply on CodeOcean and
how to further improve the scalability of our services.

CONCLUSION
We have come a long way from our first steps with the STEAP
exercises in 2014 to our current possibilities concerning auto-
graded exercises in our MOOCs using CodeOcean. Program-
ming assignments in CodeOcean may contain unit tests and
style checkers to provide instant feedback to learners. When
questions arise while solving a task, students can use the built-
in assistance features of the platform to get individual support.
The toolset we developed for our platform covers most of
our current needs. In order to strengthen the efforts towards
auto-gradable exercises as open educational resources, we
encourage an open discussion of educators’ needs towards a
coding exercise repository. We propose our first version of
CodeHarbor as a starting point towards such a discussion.

REFERENCES
[1] Jason R. Briggs. 2012. Python for Kids: A Playful

Introduction to Programming. No Starch Press, San
Francisco, CA. 348 pages.

[2] Catrina Tamara Grella, Thomas Staubitz, Ralf Teusner,
and Christoph Meinel. 2017. Can MOOCs Support
Secondary Education in Computer Science? Springer
International Publishing, Cham, 478–493. DOI:
http://dx.doi.org/10.1007/978-3-319-50337-0_45

[3] Gregor Lingl. 2010. Python für Kids (4 ed.). bhv,
Heidelberg, Germany. 432 pages.

[4] Seymour A. Papert and Cynthia Solomon. 1971. Twenty
Things To Do With A Computer. MIT Artificial

19https://edu-sharing.com
20https://cssplice.github.io/peml

Intelligence Memo 248 (01 June 1971), 41.
http://hdl.handle.net/1721.1/5836

[5] Sebastian Serth. 2019. Integrating Professional Tools in
Programming Education with MOOCs. In 2019 IEEE
Frontiers in Education Conference (FIE). 1–2. DOI:
http://dx.doi.org/10.1109/FIE43999.2019.9028643

[6] Sebastian Serth, Ralf Teusner, Jan Renz, and Matthias
Uflacker. 2019. Evaluating Digital Worksheets with
Interactive Programming Exercises for K-12 Education.
In 2019 IEEE Frontiers in Education Conference (FIE).
IEEE Press, 1–9. DOI:
http://dx.doi.org/10.1109/FIE43999.2019.9028680

[7] Thomas Staubitz, Hauke Klement, Jan Renz, Ralf
Teusner, and Christoph Meinel. 2015. Towards practical
programming exercises and automated assessment in
Massive Open Online Courses. In IEEE International
Conference on Teaching, Assessment, and Learning for
Engineering, TALE 2015, Zhuhai, China, December
10-12, 2015. IEEE, 23–30. DOI:
http://dx.doi.org/10.1109/TALE.2015.7386010

[8] Thomas Staubitz, Hauke Klement, Ralf Teusner, Jan
Renz, and Christoph Meinel. 2016. CodeOcean - A
versatile platform for practical programming excercises
in online environments. In 2016 IEEE Global
Engineering Education Conference, EDUCON 2016,
Abu Dhabi, United Arab Emirates, April 10-13, 2016.
IEEE, 314–323. DOI:
http://dx.doi.org/10.1109/EDUCON.2016.7474573

[9] Thomas Staubitz, Jan Renz, Christian Willems,
Johannes Jasper, and Christoph Meinel. 2014.
Lightweight ad hoc assessment of practical
programming skills at scale. In 2014 IEEE Global
Engineering Education Conference, EDUCON 2014,
Istanbul, Turkey, April 3-5, 2014. IEEE, 475–483. DOI:
http://dx.doi.org/10.1109/EDUCON.2014.6826135

[10] Thomas Staubitz, Ralf Teusner, Christoph Meinel, and
Nishanth Prakash. 2016. Cellular Automata as basis for
programming exercises in a MOOC on Test Driven
Development. In IEEE International Conference on
Teaching, Assessment, and Learning for Engineering,
TALE 2016, Bangkok, Thailand, December 7-9, 2016.
IEEE, 374–380. DOI:
http://dx.doi.org/10.1109/TALE.2016.7851824

[11] Sven Strickroth, Michael Striewe, Oliver Müller, Uta
Priss, Sebastian Becker, Oliver Rod, Robert Garmann,
Oliver J. Bott, and Niels Pinkwart. 2015. ProFormA: An
XML-based exchange format for programming tasks.
eleed 11, 1 (2015).
http://nbn-resolving.de/urn:nbn:de:0009-5-41389

[12] Martin von Löwis, Thomas Staubitz, Ralf Teusner, Jan
Renz, Christoph Meinel, and Susanne Tannert. 2015.
Scaling youth development training in IT using an
xMOOC platform. In 2015 IEEE Frontiers in Education
Conference, FIE 2015, El Paso, TX, USA, October
21-24, 2015. IEEE Computer Society, 1–9. DOI:
http://dx.doi.org/10.1109/FIE.2015.7344145

http://dx.doi.org/10.1007/978-3-319-50337-0_45
https://edu-sharing.com
https://cssplice.github.io/peml
http://hdl.handle.net/1721.1/5836
http://dx.doi.org/10.1109/FIE43999.2019.9028643
http://dx.doi.org/10.1109/FIE43999.2019.9028680
http://dx.doi.org/10.1109/TALE.2015.7386010
http://dx.doi.org/10.1109/EDUCON.2016.7474573
http://dx.doi.org/10.1109/EDUCON.2014.6826135
http://dx.doi.org/10.1109/TALE.2016.7851824
http://nbn-resolving.de/urn:nbn:de:0009-5-41389
http://dx.doi.org/10.1109/FIE.2015.7344145

	Introduction
	Early Experiments
	CodeOcean
	CodeHarbor
	Future Work
	Conclusion
	References 

