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Abstract. Caching optimized query plans reduces the time spent opti-
mizing SQL queries at the cost of increased memory consumption. Dif-
ferent cache eviction strategies, such as LRU(-K) or GD(F)S exist that
aim at increasing the cache hit ratio or reducing the overall cost of cache
misses. A comprehensive study on how different workloads and tuning
parameters influence these strategies does not yet publicly exist. We pro-
pose a tool that enables both such research as well as performance tuning
for DBAs by visualizing the effects of changed parameters in real time.

Keywords: Query Plan Caching, Cache Eviction, Query Execution

1 Introduction

The importance of choosing a query plan that uses the available compute and
memory resources efficiently can hardly be overstated. But while a good query
plan can mean the difference between milliseconds and minutes of execution,
finding it in the vast space of logically equivalent plans comes with its own costs.
For workloads like the Join Order Benchmark [3], parsing and optimizing can
take hundreds of milliseconds and in single cases even surpasses the execution
time1. Luckily, this cost can be amortized if query plans are cached and reused [2].

Most commercial databases such as SAP HANA [1], Oracle 11g [5], and
Microsoft SQL Server [4] use such a query cache. For SAP HANA, the cache
consumes ”a few GB out of a few TB of main memory to guarantee cache hit
ratios above 99%” [1]. Others, such as Oracle BI 11g, use much smaller caches
with only 1024 entries and warn users not to ”raise this value without consulting
Oracle Support Services” [5]. This serves to demonstrate why a careful selection
of cache algorithms and their parameters is of relevance for the overall database
performance. Surprisingly, only little academic research has been published that
evaluates different cache implementations and eviction strategies.

We work on getting a better picture on how different cache implementations
and eviction strategies influence the cache effectiveness and how this differs from
workload to workload. To do so, we capture KPIs like the cache hit ratio and
the overall time saved by the caches. When interpreting the results, we found it
very helpful to have a visualization2 that shows how changed parameters affect
the KPIs. The traditional approach is to run a benchmark, modify the cache

1 Query 28c takes roughly 600x longer to plan than to execute in PostgreSQL.
2 https://www.dropbox.com/s/b4kdbmdfntatdse/
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Fig. 1: Screenshot of the Cache Visualizer. The left side shows the different
caches. Red blocks symbolize currently cached items. White blocks show which
items are evicted. The main graph shows the performance of different compared
cache algorithms. Parameters can be chosen on the right.

algorithm in the DBMS, and rerun the benchmark. This is not time-efficient and
makes a live exploration of different influence factors impossible. Our presented
system lets different cache algorithms compete against each other in real time.
This allows the user, e.g., the DBA, to compare different algorithms, explore
tuning factors and, thereby, tune the overall system performance.

A workload mix, chosen by the user, is assembled from a list of pre- or
user-defined queries. It is then sent to our research DBMS Hyrise3. Currently,
these queries include the TPC-C and -H as well as the Join Order4 Benchmarks.
Internally, we also work with a workload of a live ERP system. The system can
be extended with further query sets. After assembling a workload mix, users can
configure parameters that affect the caches. Most important is the cache size,
which determines the number of queries that caches can hold. Algorithm-specific
settings, such as K for LRU-K can also be chosen. Based on these, the KPIs of
different caches are gathered and visualized in real-time as seen in Figure 1.

While a high cache hit ratio usually indicates a well-working cache, it ignores
the different costs associated with generating the query plans. Algorithms can
take this cost into account to make sure that an expensive query is not evicted by
a query that is only slightly more frequent but significantly cheaper to optimize.
Because of this, we found the saved optimizer cost to be a more accurate measure
of a cache algorithm’s performance and use it as the main KPI.

3 https://github.com/hyrise/hyrise
4 https://github.com/gregrahn/join-order-benchmark
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These costs depend on the implementation of the SQL parser, planner, and
optimizer. What is a good configuration for one DBMS can be subpar for others.
To account for this, our Cache Visualizer works with the optimizers in other
DBMSs, currently MySQL and PostgreSQL. Queries are sent to these backends,
the cost of optimizing is tracked and is then fed back into Hyrise’s caches.

Since we are focusing on comparing cache algorithms and reducing the overall
time spent in the optimizer, the plan execution time is out of scope. To increase
the tool’s throughput, plans are not executed. This is not a limitation of the
architecture and could be enabled for tracking other components.

2 System Overview

Figure 2 shows the system’s architecture. The selected queries and cache tuning
parameters are sent to the Cache Visualizer’s backend in Hyrise. Here, different
caches are probed for an existing query plan. If a cache miss occurs, the query
is planned using the selected DBMS’s backend. Queries are only planned once,
not repeatedly for each cache algorithm, because the time taken for planning
is independent of the simultaneously evaluated cache algorithms. The result is
then offered to the different caches. In the final step on the server side, the
information on which cache had a miss and how long the required generation
of the plan took is given back to the frontend. Here, it is aggregated and the
metrics for the main graph are calculated.

Currently, our system provides five cache eviction strategies: LRU, LRU-K,
GDS, GDFS, and a randomized strategy. Other strategies can be easily inte-
grated by implementing an abstract cache interface.

In addition to the default metric saved optimizer cost, other metrics can
be selected in the visualization options located above the graph. On the right,
different DBMS backends and parameters for the caches can be selected.

The frontend interacts with Hyrise to provide additional information and
options to the user. This includes the cache visualization seen on the left, where
both the fill level and ongoing evictions are shown. In the future, more infor-
mation such as the most recent use or the cost will be presented for each entry.
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Fig. 2: Architecture of the Cache Visualizer.
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Hovering over an entry in the cache gives the stored query. Clicking on an entry
will evict the entry manually.

3 Practical Use of the Tool and Demonstration

This tool makes it possible to compare the behavior of different plan cache al-
gorithms depending on a number of parameters chosen by the user. Being able
to see how they directly react to changes in the workload and the parameters
allows researchers, database administrators, and developers to get a better un-
derstanding of how to tune a query plan cache. We are using this tool in ongoing
research that looks at the cacheability of enterprise workloads. These differ from
synthetic benchmarks in the number and complexity of tables and queries. In
addition, the distribution of query executions rapidly changes over the workday
which especially challenges cache algorithms.

The screenshot in Figure 1 allows a glance into the findings made possible.
We can see how a change in the workload affects the different cache hit ratios.
While GDS adapts quickly and takes only little time to reach the previous cache
hit ratio, LRU-K takes longer because the wrong entries are chosen for eviction.
Interestingly, the random eviction strategy performs quite well. This is a finding
that can also be seen in the enterprise workload that we analyzed with this tool.

During the live demonstration, we will introduce the different configuration
options available in the visualizer. After this, the audience will be able to interact
with the tool, test different workload and parameter configurations, and see
how the cache algorithms outperform each other. We expect that this leads to
fruitful discussions on how to optimize databases’ query plan caches and provoke
additional questions that can be answered with the support of the tool.
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