
Interactive, Flexible, and Generic What-If

Analyses Using In-Memory Column Stores

Stefan Klauck1, Lars Butzmann1 Stephan Müller1, Martin Faust1, David
Schwalb1, Matthias Uflacker1, Werner Sinzig2, and Hasso Plattner1

1 Hasso Plattner Institute, University of Potsdam, Germany
{firstname.lastname}@hpi.de
2 SAP SE, Walldorf, Germany,

werner.sinzig@sap.com

Abstract One well established method of measuring the success of com-
panies are key performance indicators, whose inter-dependencies can be
represented by mathematical models, such as value driver trees. While
such models have commonly agreed semantics, they lack the right tool
support for business simulations, because a flexible implementation that
supports multi-dimensional and hierarchical structures on large data sets
is complex and computationally challenging. However, in-memory col-
umn stores as the backbone of enterprise applications provide incredible
performance that enables to calculate flexible simulation scenarios inter-
actively even on large sets of enterprise data.
In this paper, we present the HPI Business Simulator as a tool to model
and run generic what-if analyses in an interactive mode that allows the
exploration of scenarios backed by the full enterprise database on the
finest level of granularity. The tool comprises a meta-model to describe
the dependencies of key performance indicators as a graph, a method
to define data bindings for nodes, and a framework to specify rules that
describe how to calculate simulation scenarios.

Keywords: Business Simulation, Column Store, What-If Analysis

1 Introduction

Today’s reporting tools o↵er an unprecedented flexibility. Companies can dive
into their data, i.e filter for arbitrary criteria and drill down into hierarchies to
explore the data at the finest level of granularity. Companies wish to exploit
this flexibility not only for reporting but also for forecasting and simulating.
They want to define potential future scenarios and calculate how these influence
their businesses. With the help of what-if analyses, they can evaluate simulation
scenarios in terms of their goal fulfillment and support decisions in day-to-day
operations.

Mathematical models, hereinafter also called calculation models, are one way
to define the dependencies between measures, i.e. the logic how changes of one
key performance indicator (KPI) influence other KPIs. Value driver trees, such

Accepted at DASFAA 2015.
The final authenticated version is available online at https://doi.org/10.1007/978-3-319-18123-3_29.



Operating Profit

Marginal Income SG&A

Net Sales COGS

-

-

Figure 1: Value driver tree for the operation profit.

as the DuPont model [1], are a well-known method to model KPIs with linear
dependencies among each other [2]. Figure 1 shows a driver tree for the operating
profit, which can be calculated by subtracting selling, general and administrative
expenses (SG&A) from the marginal income. The marginal income depends on
net sales and cost of goods sold (COGS). The values of the nodes base on enter-
prise data, e.g. on G/L account transactions as actuals or a combination of the
actuals and planned sales, production costs, and expenses as forecasted KPIs.
On the basis of enterprise data, companies want to define scenarios, i.e. changes
of the data, which reflect changing KPIs, and calculate the e↵ects on other KPIs.
The challenge to define and run simulation scenarios is not the mathematical
complexity of the calculation, but the combination of a generic calculation model
and the large amount of data the model builds on, which enables the users to
define flexible scenarios and calculate them interactively.

For many years, the biggest obstacle has been the speed to access enterprise
data with all the relevant criteria to allow flexible and interactive simulations.
To run such simulations for net sales requires scanning sales documents with
all their associated line items. The corresponding tables can comprise billions of
records, specifying relevant attributes like sales date, sales volume, price, prod-
uct, and customer, but also hundreds of other attributes. The advent of columnar
in-memory databases has increased the performance of queries accessing few at-
tributes of large data sets, which enables the development of new enterprise
applications on top of it [3, 4].

This paper presents the HPI Business Simulator, a tool to create, modify
and run what-if analyses interactively. This comprises two things: First, a way to
define what-if simulations, which consist of a calculation model, the specification
of data bindings between KPIs of the model and data of database tables, and
the support to specify simulation scenarios. Second, the concept of a simulation
tool to define and edit what-if simulations as well as to calculate scenarios.

After this short introduction into the problem domain, Section 2 presents
the theoretical concepts of the HPI Business Simulator. Its implementation is
shown in Section 3. Section 4 presents related work. The paper closes with a
presentation of the conclusions and o↵ering an outlook for future work.



Marginal Income

Net Sales COGS

Sales Volume

Gross Sales Cost per Unit

*-

-

Time(month), Product(product)
SG&A

Operating Profit

-

Time(month), Product(category)

Time(month), Product(category)

NVO A&P

+

Gross To Net

Price per Unit

* Product Cost Calculation

Raw Material PricesBill of Materials

Time(month), Product(product)

Time(month), Product(product) Time(month), Product(product)

Time(month), Product(product) Time(month), Product(product) Material, Material Time(month), Material

Time(month), Product(product)

Time(month), Product(category) Time(month), Product(category)Time(month), Product(product)

Cost Center RatesBill of Operations
Operation, Material Time(month), Operation

Figure 2: Calculation model for the operating profit as extension of the value
driver tree in Figure 1.

2 Simulation Model

The HPI Business Simulator is a proof of concept for implementing generic what-
if analyses. This section presents its theoretical concepts called simulation model.
The simulation model consists of three parts: the generic calculation model to
describe the drivers and the dependencies between them, the data binding to
connect drivers with data, and a way to specify scenarios and to calculate their
results.

2.1 Calculation Model

Calculation models are hypergraphs and extend value driver trees by supporting
complex operations and the loosening of the tree structure for dependencies.
Each node has a language dependent name, a measure with a unit, and freely
definable dimensions for specifying further criteria of a measure. Nodes can be
connected with other nodes by operations, which are hyperedges. The simulation
model specifies available dimensions including their hierarchy levels. The time,
for example, can be structured hierarchically into years and months. Operations
define the dependencies between nodes, i.e. the way one can calculate the values
for the result node based on the data of input nodes. Operations can be one of the
four elementary operations addition, subtraction, multiplication, and division.
Besides, users can define own, more complex operations, e.g. a product cost
calculation based on raw material prices, the bill of materials, cost center rates,
and the bill of operations. Figure 2 shows a calculation model for the operating
profit.

Data of a node can be seen as a data cube. Combining data cubes with
elementary operations works as for one-dimensional data. However, one has to



define rules for dimension handling. For additions and subtractions, the result
data cube has the intersection of dimensions from all input data cubes. The
records of the input data cubes with the same dimension values are combined to
a single output record. Result data cubes for multiplications receive the union
of dimensions from all input cubes. When combining data cubes with divisions,
the calculation model has to define the dimensions for the result data cube so
that combining these dimensions with the dimensions of the divisor results in
the dimensions of the dividend. Table 1 shows a multiplication and subtraction
of data cubes.

Product Time Quantity
Product 1 01/15 5
Product 1 02/15 10
Product 2 02/15 5

(a) Sales Volume.

Product Price
Product 1 20
Product 2 5

(b) Product Prices.

Time Expenses
01/15 50
02/15 100

(c) Expenses.

Product Time Sales
Product 1 01/15 100
Product 1 02/15 200
Product 2 02/15 25

(d) Sales (= Sales Volume * Product Prices).

Time Profit
01/15 50
02/15 125

(e) Sales - Expenses.

Table 1: Data cube calculations.

User defined operations work in a similar way as elementary operations with
the distinction that arbitrary algorithms can define the calculation logic for the
result data cube. A simplified version of a product cost calculation with resolving
a hierarchical bill of materials (BOM) is described in the following. We assume
that product costs are only a↵ected by raw material prices and thus ignore
labor, energy, and machine costs, which would occur in a real world scenario. A
calculation of these costs bases on the bill of operations (BOO) and follows the
same calculation logic as the BOM resolution. Figure 3 and Table 2 present an
exemplary BOM and its database representation.

Semi-finished Product

Product 1

Raw Material1 Raw Material 2

2

1 2

3

Figure 3: BOM as graph.

Child Material Parent Material Quantity
Raw Material 1 Product 1 2

Semi-finished Product Product 1 3
Raw Material 1 Semi-finished Product 1
Raw Material 2 Semi-finished Product 2

Table 2: BOM as table.



Thereby, the table stores parent-child relationships, i.e. how much of a child
material is needed to produce a parent material. Child materials can be raw
materials and semi-finished products. Parent materials are semi-finished or end
products. The second input of our cost calculation scenario is a table with raw
material prices. To calculate product costs, we have to resolve the BOM so that
products are represented as costs of raw materials, but no semi-finished products.
Therefore, we traverse the BOM graph recursively or iteratively. The following
equations present the resolution for the exemplary BOM.

costsProduct1 = 2 ⇤ costsRawMaterial1 + 3 ⇤ costsSemi�finishedProduct

= 5 ⇤ costsRawMaterial1 + 6 ⇤ costsRawMaterial2
(1)

2.2 Data Binding

Nodes of the calculation model can obtain their data cubes in two ways. First,
they can query their data directly from data sources. Second, they can calculate
their values by solving the equation defined by the operation between connected
nodes and themselves. For the first case, data bindings are required. Our work fo-
cuses on relational databases as data sources. Data bindings define the database
connection and query to calculate the data cube with all dimension values. Addi-
tionally, data bindings have to specify how to filter the cube and reduce the level
of detail to calculate aggregates for higher levels of hierarchies. When specifying
the data binding, we have to ensure that the values of all nodes can be calculated
unambiguously, meaning that the data has to be su�cient and consistent.

2.3 Simulation Scenarios

Based on the calculation model and data binding, the data cubes of all nodes
can be calculated. These data cubes are the basis of what-if analyses. In addi-
tion, it is required to specify in which direction changes propagate through the
model. Thereby the direction of propagation is not allowed to contain cycles.
A simulation scenario is a set of changes to the data of nodes. A single change
specifies a node, optionally filter conditions to limit the change to a subset of
records, and how the specified values are changed. The HPI Business Simulator
implements three types of simulation changes: an overwrite for records of the
data cube, an absolute adjustment by a delta value, and a relative adjustment
by a linear factor.

3 HPI Business Simulator

This section describes the HPI Business Simulator, a proof of concept to imple-
ment generic what-if analyses. For the implementation, we have engaged with a
Fortune 500 company in the consumer goods industry and discussed their needs
in the area of what-if analyses. Based on their input and the data set they pro-
vided to us, we implemented the HPI Business Simulator. In this section, we



Figure 4: Screenshot of the HPI Business Simulator with anonymized data.

explain features and implementation details of the HPI Business Simulator, why
in-memory column stores enable flexible and interactive simulations, and the
benefits of the HPI Business Simulator compared to existing tools.

3.1 Features and Implementation

The HPI Business Simulator is a browser-based graphical tool to define sim-
ulation model instances and calculate simulation scenarios using SAP HANA.
Figure 4 shows a screenshot of the business simulator with the calculation model
from Figure 2. The legend in the top left corner shows the visualized metrics
of the calculation model. Each node contains the driver name, a forecast value,
and the delta of the forecast to the budget. Thereby, the forecast is calculated
as a combination of the actuals up to today and the budget until the end of the
planning horizon. After specifying simulation changes, the e↵ects are included
in the forecast and two additional values are displayed: the di↵erence between
the old and new forecast and the change in percentage.

The calculation model can be edited by adding, deleting, and dragging the
graph components, i.e. nodes and edges. To change node properties as the name,
unit of measure, available dimensions, and data binding, one can open a detailed
view on the right side. The information to store simulation model instances
consists of three parts, describing the available dimensions with their hierarchies,
the nodes, and the operations. The top dropdown menu o↵ers a way to drill down
into the data, e.g. by selecting a specific product category. In this case, the HPI
Business Simulator recalculates the drivers with the filter condition and displays
the new values. To define simulation scenarios, the user can select a node and
open the simulation interface in the bottom.

To calculate the operating profit for our use case, we worked with a denor-
malized table, which contained transactional as well as plan data. Following,



important attributes of the table are explained. The first two columns, Docu-
ment ID and is Plan Data, identify single records and declare whether the record
belongs to the actuals or the plan data. G/L Account Description indicates to
which driver the record belongs to. The following attributes, i.e. Product, Brand,
Category, and Time, specify criteria, which are mapped to dimensions of the
simulation model. Finally, Quantity, Quantity Measure, Amount, and Currency
describe the measures for the record. In particular, the values for Quantity and
Amount are aggregated to calculate the displayed value for each node.

3.2 In-Memory Technology as Enabler for Interactive Simulations

In-memory databases provide high performance and flexibility. This allows to
access the complete business data dynamically even of large companies at the
finest level of granularity, opening completely new opportunities. However, the
new dynamic nature and flexibility require adapting the way data is accessed
and consumed. Recently, self-service tools for business analytics fulfill this need
by providing intuitive interfaces to explore and analyze data. Typically, those
tools are focused on historic data and do not consider dependencies of the un-
derlying value drivers and metrics. With the HPI Business Simulator, we want
to extend self-service tools for business analytics and provide an intuitive ap-
proach to model value dependencies in enterprises with an interactive simulation
environment, leveraging the full computational power of in-memory databases.

In-memory column stores, such as SAP HANA [5], are the key enabler for
interactive simulations on large enterprise data. First of all, analytical queries
are accelerated compared to traditional disk-based systems by keeping all data
in main memory. Analytical queries are the basis to retrieve the data for busi-
ness simulations. Based on the specified parameters, the HPI Business Simulator
calculates aggregates of disjoint data sets: the ones which are a↵ected by simu-
lation parameters and the ones which are not. The values of the nodes can then
be calculated by applying changes and combining theses aggregates. The second
benefit is the columnar data layout. Since the data bindings of the simulation
model describe only columns that are required for a calculation, the amount of
processed data is kept to a minimum. This functionality is especially beneficial
in the context of enterprise systems where data is typically very wide and sparse,
with up to 400 columns per table [6]. A third benefit is an aggregate cache, which
is a transparent caching engine inside the database [7]. Other than classic mate-
rialized views, the aggregate cache does not create a hard copy of the data and
as a result does not return stale data. The aggregate cache leverages the internal
table representation in certain column stores like SAP HANA or Hyrise [8] and
always works on the latest data. During a typical simulation session, di↵erent
scenarios are analyzed and compared. The di↵erences between the scenarios can
vary, but are usually small. Consequently, the executed queries are similar and
can therefore benefit from the aggregate cache.

The performance to calculate a simulation scenario depends on many factors
like the number of records stored in the underlying tables, the number of nodes
with a data source, the number of simulation changes, the number of columns



used to specify the filter criteria, the granularity of filter criteria, and the data
distribution. For a preliminary performance test, our HPI Business Simulator
ran on a data set comprising 300 million records of customer data. The initial
on-the-fly calculation of an aggregate on a single enterprise class server with 128
cores and 256GB of RAM running SAP HANA was calculated within a second.
In that way, simulations can be defined and run interactively.

3.3 Benefits Compared to Existing Tools

Generic model. Existing simulation tools are targeted for specific processes and
are di�cult to modify or extend to capture new use cases. Users may want to
extend the calculation model for the operating profit (see Figure 2) to distinguish
between advertising channels, which enables to simulate changes for a specific
kind of advertisement. The HPI Business Simulator allows the modification of
existing calculation models and definition of new ones without changing the
source code of the simulation tool or rewriting the application.

Support for complex calculations. Calculation models should not be limited
to tree structures and elementary operations as in the DuPont model. Instead,
graph structures and custom calculations should be supported.

Using in-memory column stores. Exploiting information at the finest level of
granularity requires the capability to operate on terabytes of data. Simulation
tools without an enterprise database as backbone have to load pre-aggregated
measures, which come along with a loss of information. The speed of current
in-memory databases supports aggregating large amounts of data on the fly
within seconds, which enables us to define and calculate flexible what-if scenarios
interactively. In addition, simulations are always calculated on consistent and
up-to-date data.

Collaborations. The HPI Business Simulator supports iterative what-if anal-
yses of users in di↵erent roles: The management defines KPIs and adapts the
definitions in case the calculation model does not support a desired simulation
scenario. More technical sta↵ with extensive knowledge about the data schema
is responsible for providing the model with data and the integration of new data
sources. Concrete simulation scenarios are discussed and worked out by poten-
tially multiple controllers, which are responsible for di↵erent business areas.

4 Related Work

Golfarelli et al. introduce a methodology and process to design what-if anal-
yses [9]. Compared to our approach, they describe what-if simulations in a
more general way. In particular, they divide the process to design simulations
into seven phases: goal analysis, business modeling, data source analysis, multi-
dimensional modeling, simulation modeling, data design and implementation,
and validation. Our approach uses a multi-dimensional data model, which Gol-
farelli et al. see as most suitable to design what-if analyses. To describe the actual
simulation model, they propose an extension of UML 2 activity diagrams [10]. In



comparison to our work, they do not implement the simulation model instances
as applications, specify data bindings, nor define how to calculate simulation sce-
narios. Furthermore, we see the dependencies described by a calculation model
instance as subject to changes and extensions.

In the field of data cubes, which are the basis to calculate our simulation
scenarios, most research focuses on materialized data cubes [11–15]. Gray et al.
introduce a data cube operator as generalization and unification of following
database concepts: aggregates, group by, histograms roll-ups and drill-downs,
and cross tabs [11]. Further papers cover e�cient implementation [12, 13] and
maintenance techniques [14, 15] for materialized data cubes. In contrast to pre-
vious work, we calculate the required aggregates of the data cubes on the fly.

A further research area in the field of what-if analyses is the combination
of spreadsheets and SQL. Spreadsheets have an easy to understand interface,
but do not build on consolidated enterprise data, which is usually stored in a
RDBMS. On the other side, SQL lacks the support for array-like calculations
as Witkowski et al. claim in [16]. Their idea is to combine both and o↵er a
spreadsheet-like computation in RDBMS through SQL extensions. In [17], they
continue that research and introduce a way to translate MS Excel computations
in SQL. Using their approaches for what-if analysis comes with two drawbacks.
First, it does not encapsulate the definition of the simulation model so that it
is not tangible, but only expressed by multiple formulas spread over many table
cells. Second, MS Excel is limited to the two-dimensional representation and
cannot visualize graphical dependencies between nodes appropriately.

5 Conclusion

In this paper, we presented our vision of generic, flexible, and interactive busi-
ness simulations, enabled by the performance capabilities of columnar in-memory
databases. In particular, we presented the HPI Business Simulator and its theo-
retical concepts to specify and run enterprise simulations. We proposed a meta-
model to describe what-if analyses comprising a calculation model, the data
binding and simulation parameters. Implementing this meta-model, simulation
model instances can be created and edited, such as one for the operating profit.
Based on a simulation model instance, scenarios are specified and calculated
interactively. With the performance of in-memory column stores, such as SAP
HANA, what-if analyses can include millions of records and work on the finest
level of granularity to enable interactive and fully flexible simulations.

This paper names performance factors that influence the calculation of sim-
ulation scenarios. In this field a deep analysis can be conducted. Furthermore,
future work can investigate how to optimize the calculation of scenarios, for ex-
ample by exploiting cases in which nodes query the same table or by optimizing
queried data cubes so that their granularity is su�cient to calculate connected
nodes. The visualization of complex calculation models can be another field for
future investigations.



References

1. Chandler, A., Salsbury, S.: Pierre S. Du Pont and the Making of the Modern
Corporation. BeardBooks (2000)

2. Zwicker, E.: Prozeßkostenrechnung und ihr Einsatz im System der integrierten
Zielverpflichtungsplanung. Techn. Univ. Berlin (2003)

3. Plattner, H.: A Common Database Approach for OLTP and OLAP Using an
In-Memory Column Database. SIGMOD (2009)

4. Plattner, H.: The Impact of Columnar In-Memory Databases on Enterprise Sys-
tems. VLDB (2014)

5. Färber, F., Cha, S.K., Primsch, J., Bornhövd, C., Sigg, S., Lehner, W.: SAP HANA
Database - Data Management for Modern Business Applications. SIGMOD (2011)

6. Krüger, J., Kim, C., Grund, M., Satish, N., Schwalb, D., Chhugani, J., Dubey,
P., Plattner, H., Zeier, A.: Fast Updates on Read-Optimized Databases Using
Multi-Core CPUs. VLDB (2011)

7. Müller, S., Plattner, H.: Aggregates Caching in Columnar In-Memory Databases.
VLDB (2013)

8. Grund, M., Krüger, J., Plattner, H., Zeier, A., Cudre-Mauroux, P., Madden, S.:
HYRISE: A Main Memory Hybrid Storage Engine. VLDB (2010)

9. Golfarelli, M., Rizzi, S., Proli, A.: Designing What-if Analysis: Towards a Method-
ology. DOLAP (2006)

10. Golfarelli, M., Rizzi, S.: UML-Based Modeling for What-If Analysis. DaWak (2008)
11. Gray, J., Bosworth, A., Layman, A., Pirahesh, H.: Data Cube: A Relational Ag-

gregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. Data Min.
Knowl. Discov. (1997)

12. Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing Data Cubes E�-
ciently. SIGMOD (1996)

13. Sismanis, Y., Deligiannakis, A., Roussopoulos, N., Kotidis, Y.: Dwarf: Shrinking
the PetaCube. SIGMOD (2002)

14. Mumick, I.S., Quass, D., Mumick, B.S.: Maintenance of Data Cubes and Summary
Tables in a Warehouse. SIGMOD (1997)

15. Roussopoulos, N., Kotidis, Y., Roussopoulos, M.: Cubetree: Organization of and
Bulk Incremental Updates on the Data Cube. SIGMOD (1997)

16. Witkowski, A., Bellamkonda, S., Bozkaya, T., Dorman, G., Folkert, N., Gupta, A.,
Shen, L., Subramanian, S.: Spreadsheets in RDBMS for OLAP. SIGMOD (2003)

17. Witkowski, Andrew and Bellamkonda, Srikanth and Bozkaya, Tolga and Naimat,
Aman and Sheng, Lei and Subramanian, Sankar and Waingold, Allison: Query by
Excel. VLDB (2005)


