
Prof. CI: Employing Continuous Integration Services
and Github Workflows to Teach Test-driven

Development
Christoph Matthies, Arian Treffer, and Matthias Uflacker

Hasso Plattner Institute, University of Potsdam
August-Bebel-Str. 88

14482 Potsdam, Germany
Email: {firstname.lastname}@hpi.de

C. Matthies, A. Treffer and M. Uflacker, “Prof. CI: Employing continuous integration services and Github workflows to teach test-driven
development,” 2017 IEEE Frontiers in Education Conference (FIE), Indianapolis, IN, 2017, pp. 1-8. doi: 10.1109/FIE.2017.8190589
Copyright c©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract—Teaching programming using Massive
Open Online Courses (MOOCs) is gaining popularity
due to their scalability and efficiency of knowledge
distribution. However, participating in these courses
usually means fully committing to the supplied pro-
gramming environment in the browser. While this al-
lows a consistent and controllable setup, learners do not
gain experience with actual development tools, such as
local code editors, testing frameworks, issue trackers or
continuous integration (CI) services, which is critical
for subsequent real-world projects. Furthermore, the
tests for the functionality that is to be developed are
oftentimes already available in MOOCs and simply
need to be executed, leading to less involvement with
developing appropriate tests. In order to tackle these
issues while maintaining a high degree of automation
and scalability, we developed Prof. CI, a novel approach
to conducting online exercises. Prof. CI leverages the
existing automation infrastructure that developers use
daily, i.e. CI services and Github workflows, to teach
test-driven development (TDD) practices. Participants
work on their own repositories in Github and receive
feedback and new challenges from the CI server when
they push their code. We have successfully applied
this approach in a pilot project with 30 undergraduate
students learning the Ruby on Rails web development
framework. Our evaluation shows that the exercise
effectively increased students’ motivation to write tests
for their code. We also present the results of participant
surveys, students’ experiences and teachers’ observa-
tions.

I. Introduction

Online courses can efficiently teach a large number
of students. Automating the evaluation and grading of
student work allows to provide quick feedback and enables
scalability. In computer science, online courses can be used
to teach programming, languages, and frameworks, such as
Ruby on Rails; or methodologies such as behavior-driven
design (BDD) and TDD [13]. Other advantages of online
courses include reporting and analytics possibilities that
help teachers to improve exercises and identify students
in need of targeted help [3].

A. Problem Statement
In online courses, programming tasks often happen en-

tirely in the browser. Participants do not learn to use local
programming-related tools, such as their IDE, a version
control system (VCS), or CI, all of which are vital for
working effectively in practice. Because of the granularity
of coding tasks, they also often don’t learn to work on a
full project, e.g. where certain files, such as configurations,
are located, or how to test and build the application. When
teaching methodologies, a balance has to be found between
the structure of the exercise and individual freedom. With
too much structure, students follow tasks without reflect-
ing their purpose, with too much freedom, they may stop
correctly using the methodology. For these reasons, when
we used online courses to prepare students for a software
project, the participants reported that the learnings were
too theoretical to be used in practice and more preparation
time was needed.

B. Research Questions
The following research questions guided our research:
• Can we lead students towards the habit of writing

tests in software projects using introductory program-
ming exercises?

• Can these exercises be implemented in a highly auto-
mated, yet student-centered manner?

C. Approach
In this paper, we present Prof. CI, a new form of

programming exercise to teach programming skills and
TDD. Students work on their local machines, and a VCS
and CI server are used to evaluate tasks and provide
feedback. However, unlike in traditional programming ex-
ercises where the entire assignment is specified up-front,
Prof. CI reveals requirements in small tasks as tickets in
an issue tracker. This happens automatically based on
the student’s progress and is designed to reinforce the
workflows of TDD.

This approach combines the benefits of both online
and conventional programming exercises. Compared to
online courses, students gain more practical experience by

https://doi.org/10.1109/FIE.2017.8190589

immediately working on a full project and using actual
development tools. Nevertheless, students are guided in
small steps of increasing difficulty and receive immediate
feedback on their work. Furthermore, the tight interaction
with the exercise systems allows us to influence how
students approach the coding assignments, in particular
regarding the test-first rule of TDD.

Our evaluation shows that a Prof. CI exercise posi-
tively influences student behavior in subsequent software
projects, compared to online courses and conventional
exercises.

The evaluation data, as well as all source code and
additional documentation on our prototype exercise is
publicly available1. The exercise runs fully on free online
services such as GitHub and Travis CI, which gets students
familiarized with existing popular technologies. However,
it is also possible to use private, self-hosted infrastructure,
which might be preferable in some cases.

The remainder of this paper is structured as follows:
Section II discusses related work. Section III presents the
details of our approach. Section IV reports how we used
Prof. CI in practice and evaluates the effectiveness of our
approach. Section V concludes.

II. Related Work
Jones [8] summarizes four experience reports, one con-

ceptual paper, and three experiments concerning peda-
gogical experiences with using a test-first approach in the
classroom. While the author points out that evaluation of
the purported benefits of TDD yielded only mixed results,
he concludes that TDD shows promise as a means to help
students achieve a verifiable design specification.

In a later study, Desai et al. [2] conducted a survey of
TDD usage in academia, analysing 18 case studies and
experience reports. They highlight the positive effects of
TDD, including increased student confidence. However,
the authors also note that the best learning outcomes were
achieved by more mature students of junior undergraduate
and graduate levels. This is encouraging as we employed
Prof. CI with undergraduate students with prior program-
ming experience.

Janzen and Saiedian [6] introduced Test-driven learning
(TDL), a pedagogical tool which involves introducing new
programming concepts through complete unit tests. By
including assertions together with examples, the use of
interfaces as well as the expected behavior of the software
element is documented. The authors list “encouraging the
use of TDD” as one of TDL’s goals. TDL highlights the
importance of testing in education.

Spacco and Pugh [11] introduced Marmoset, a system
for student programming project submission and testing.
It lays a strong focus on increasing student motivation
concerning the writing of tests. Projects including skele-
ton starter code and initial test cases are distributed to

1https://hpi-epic.github.io/profci-exercise/

students. The authors point out that TDD heavily relies
on rapid feedback, so students can submit their code
at any time to Marmoset, where it is tested using the
student’s tests, in a traditional CI setup. Additionally,
students can request a release test, which triggers a set
of secret, teacher supplied, tests. Students are supplied
the names of failing release tests. The process of release
testing consumes a token, which is limited in supply. The
goal is to encourage students to write their own test
cases and motivate them to start doing so earlier, so
that more opportunities for release testing are available.
Marmoset presents an interesting approach for increasing
the need for student testing. However, some caveats apply,
such as the need to use custom software that students
need to be familiarized with. Furthermore, communicating
only the names of failing test cases might not be enough
information to write meaningful test cases and makes it
hard for educators to provide additional helpful resources.

Staubitz et al. [12] provide an overview of automated
assessment approaches with a focus on MOOCs. While
they argue that beginners benefit more from a browser-
based environment, which relieves them from “the agony
of installation hassles”, they also point out more advanced
users. They are more inclined to stick with familiar tools
they have already installed. The authors, furthermore
conclude, that a “code local — assess remote” approach
has benefits, including not having to provide an immediate
response.

Similarly, Fox et al. [4] employed Continuous Integration
services in conjunction with a software engineering MOOC
as well as in Small Private Online Courses (SPOCs). Their
MAGIC approach uses CI tasks to automatically install
and run an autograder software. When a student creates
a new pull request, the autograder checks the code against
a set of known solutions and gives feedback to the student.
Much like in our courses, the authors point out that the
exercises are used as formative rather than summative
assessments. As such, the issue of cheating is not explicitly
addressed by the software.

Others have used CI services in education mostly for
their original use. Billingsley et al. [1] employed CI prac-
tices in a software engineering course with 70 participants
working on real-world legacy code. They point out that
this allowed them to use a realistically sized project with-
out needing significant extra staffing.

We aim to employ standard CI services to provide
detailed error reports or user stories to be worked on
next to students using the Prof. CI system. Rather than
having the CI system itself act as the feedback mechanism,
GitHub issues containing these details are created in the
student’s repository when educator tests are not passed.

III. Professor CI
Prof. CI is a new approach for teaching software devel-

opment using continuous integration (CI) services to au-
tomatically manage participants’ work. It allows students

https://hpi-epic.github.io/profci-exercise/

Fig. 1. The workflow in a Prof. CI exercise

to work on their local machine and gain experience with
the tools and processes they will apply in subsequent real-
world software development projects. Participants have
the freedom to decide how to implement a requirement,
while also being encouraged to use agile methods, such
as test-driven development (TDD). As in a web-based
programming exercise, Prof. CI allows the automatic eval-
uation and detailed reporting of participants’ work.

A. Exercise Procedure
The central piece of a Prof. CI exercise is a continuous

integration server which provides tasks to each participant
and evaluates their progress. Figure 1 shows the interac-
tion between participants and the CI server.

Initially, participants receive a link to a public exer-
cise repository. The repository contains an almost empty
project template, a readme file, and the CI scripts that
run the validation logic. The readme contains all the
information students need to get started.

To begin the exercise, students fork the exercise repos-
itory, set up the CI service for their fork, and clone it to
their local machine.

To help students to get started, the project already
contains an easily fixable failing test. For example, in our
exercise a heading on the application’s front page had to
be changed. When participants push the change, the first
CI build is triggered.

Every time the CI server builds a project, it will first
conduct a normal build, which includes running all tests
written by the students. If an error occurs, the build will
fail and the student receives a notification about the failure
via the normal mechanisms of the CI software.

If the build using the participant’s test cases was
successful, the CI server will run the evaluation script.
This script loads files from a hidden repository containing

Fig. 2. Screenshot of a GitHub issue, opened by Prof. CI in a
participant’s repository.

additional feature tests. Then, these tests are executed in
order and the first failing test will be used to create the
next task of the exercise to be solved.

To notify students of the next task, we use the issue
tracker of their GitHub repository. The script will either
create a new issue with the test’s name as title, or com-
ment on an existing issue of the same name if it is still
open. Figure 2 shows an example ticket created by Prof.
CI.

The message of the issue or comment always consists
of the test’s description and error message. The test
description expresses the test logic in natural language
and follows the “Given-When-Then” pattern. It may also
contain additional hints such as links to relevant online
resources or short code snippets. The error message of
the failed assertion is included to provide a more detailed
explanation of why the feature was rejected. In the exercise
introduction, students are instructed to always document
the missing feature with a failing test before starting to
implement the solution and to prove this by committing
the test first. When all feature tests have passed, students
receive a final notification that they have completed the
exercise.

In our setup, we did not employ measures to prevent
cheating because the exercise was not graded. However,
while no software solution can prevent students shar-
ing their solutions, using private repositories (e.g., with
GitHub’s classroom feature) can keep students from se-
cretly looking at other students’ code. Furthermore, a nosy
student could run the CI script locally to gain access
to the secret task repository. This can be prevented by
storing the URL of the task repository in an environment
variable on the CI server or by using a CI server that allows
running custom code that is not stored in the respective
repository. Finally, while we randomly checked if TDD was
used, we suspect that not every student wrote tests first
all the time. For a complete picture, tools can be used to
automatically measure how thoroughly students apply the
methods of TDD [9].

B. Reporting
When relying on a large degree of automation in ex-

ercises, it is vital to ensure that problems are detected
quickly. While our approach reduces the direct involve-

Fig. 3. Extract of the GitHub network graph showing commits by
course participants, as well as links to their forked repositories.

Fig. 4. Extract of a course participant’s punch card visualization of
commit times for the last week of the exercise.

ment of educators compared to face-to-face lectures, it also
frees up time to analyze and compare course participants
based on concrete data. An analysis of such data is
only viable due to automated data collection; manually
collecting progress data is infeasible in large user groups.
Our approach of leveraging existing CI tools allows auto-
matically extracting exercise progress data without relying
on instrumenting development tools [7] or introducing
overhead through documentation duties. This analysis is
advantageous as it gives educators insights into which
students are in need of additional coaching or which exact
parts of the exercise should be improved in the next
iteration.

1) Employing GitHub Reports: GitHub, the platform
used for code hosting, already provides tools to analyse
and visualize repositories. In particular, an overview of
participants, their forked repositories and their commits
is available, cf. fig. 3. This view allows identifying partic-
ipants who have not committed recently and may be in
need of assistance. Furthermore, more detailed analyses
such as punch cards, cf. fig. 4, showing at which times
participants committed to their repositories, are available.

2) Participant Progress: In addition to the analysis
available through GitHub directly, we implemented cus-
tom visualizations of participant progress. After a course
participant pushes a correctly solved task and moves on to
the next task, the user identifier as well as the score, i.e. the
number of the task that was solved, and a timestamp are
transmitted to a reporting system. This data is rendered as
a live chart of student progress for educators (cf. fig. 5). It
helps to identify those students who might have problems
solving a particular task and allows educators to give
targeted support, e.g. pointing them to those participants
who have already solved the task and might be able to
offer assistance. Furthermore, it provides a way to gauge
whether a participant’s support request is due to problems

Fig. 5. Progress of exercise participants. Every line represents the
amount of completed tasks.

with their setup or with the task itself, by visualizing how
many other participants have already solved that task. A
decreasing line, i.e. a drop in the score, signifies that the
student broke the functionality of an earlier task, which
now again fails.

3) Time-Per-Task Analysis: An indicator of both the
general difficulty of a task as well as how much effort was
required by participants is the time taken to solve tasks.
For every participant of the exercise, the time taken to
complete every task is recorded. This is based on the sub-
mitted timestamps of task hand-out and task completion
by the CI script, that was run at every build. Participants
that did not trigger a CI build for an hour were considered
inactive until the next build occurred. For the first commit
after a break, we assumed 15 minutes of preceding work.
The matrix of time taken per task is presented in table I for
the 2016 exercise instalment. Blank cells represent tasks
that were already already implemented by participants
before they were explicitly tasked to do so, i.e. students
anticipated the next requested feature.

This table allows selecting those tasks that took the
largest amount of cumulative time over all participants,
i.e. those tasks that students had most difficulties with.
Difficult tasks can then be assessed in terms of potential
issues, e.g. by collecting targeted feedback or reviewing
participants’ repositories for solution strategies for this
particular task. If an issue is found that makes the task
more time consuming than envisioned, it can be fixed in
the next iteration or even while the exercise is running.
For example, task no. 20 contained a test for an HTML
element with a default identifier, which failed for students
who customized this element. The task was fixed by using
a more general matcher. Furthermore, the time visualiza-
tion allows identifying participants who took much longer
than others to complete a specific task. This can be helpful
to find those issues that could lead to student frustration
and/or quitting [10].

IV. Evaluation
We conducted a three week Prof. CI exercise at the

beginning of an undergraduate capstone course on soft-

TABLE I
Extract of time taken by exercise participants for completing tasks.

Student 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22 23 24 26 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 Total

1 0.0 0.2 0.2 0.2 0.5 0.2 0.5 0.1 0.1 0.1 0.1 0.3 0.2 0.9 0.1 0.2 0.2 0.3 1.2 0.2 0.1 0.3 0.4 6.3

2 0.0 0.8 0.1 0.4 0.8 0.4 0.7 0.2 0.3 0.1 0.4 1.9 0.1 0.3 0.2 0.6 0.3 0.4 0.3 0.4 0.1 0.4 0.1 0.1 0.1 0.1 0.4 0.4 0.1 0.1 0.1 0.4 0.7 0.2 0.7 0.2 0.3 0.8 0.2 0.2 14.1

3 0.8 0.7 0.1 0.9 0.2 0.2 0.4 1.2 0.8 0.5 0.3 0.3 0.3 0.2 0.3 0.4 0.3 0.5 1.0 0.9 0.7 0.1 0.2 0.6 0.5 0.1 0.8 0.2 0.1 0.2 0.7 0.2 0.2 0.4 0.2 15.2

4 0.0 0.2 2.3 0.1 0.5 2.3 0.4 0.2 0.2 0.4 0.2 0.2 0.2 0.1 1.0 0.2 0.8 0.2 1.7 0.2 0.9 0.5 0.1 0.3 12.9

5 0.0 0.7 0.1 0.1 0.3 1.0 0.5 0.5 0.6 0.2 0.2 0.1 0.2 0.5 0.2 0.2 0.1 0.1 0.7 0.2 0.2 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.3 0.2 0.2 0.2 8.2

6 0.2 1.0 0.6 0.1 0.2 0.2 0.2 1.1 0.2 0.4 0.6 0.4 0.2 0.2 0.3 1.3 0.0 0.5 0.8 0.1 0.3 0.1 0.0 0.3 0.1 0.6 0.1 0.1 0.1 0.7 10.9

7 0.0 0.9 1.5 0.1 0.7 0.7 0.3 0.2 0.3 0.1 0.1 0.1 0.2 0.3 0.1 0.1 0.0 0.0 0.2 0.1 0.2 0.5 0.4 0.2 0.9 0.2 0.6 0.3 9.2

8 0.2 0.3 0.1 0.4 0.2 0.2 0.7 1.8 0.0 0.4 0.4 0.2 0.1 0.5 0.2 1.3 0.1 1.7 0.2 0.6 0.1 0.0 0.0 0.1 0.2 0.2 0.1 0.9 0.1 0.2 0.2 0.2 0.2 0.2 0.7 0.6 13.3

9 0.8 0.2 0.3 0.7 0.2 0.6 0.3 0.4 0.1 0.2 0.4 0.1 0.1 0.2 0.4 0.7 0.3 0.5 0.2 0.1 0.1 0.1 0.1 0.7 0.1 0.1 0.3 0.2 0.3 0.1 1.1 0.1 10.1

10 0.8 0.2 0.1 1.2 0.8 0.1 0.3 1.6 0.2 0.2 0.0 0.2 0.1 1.1 0.0 0.9 0.1 8.1

Avg 0.5 0.4 0.6 0.4 0.3 0.4 0.1 0.6 0.2 0.3 0.0 0.4 0.2 0.2 0.2 0.2 0.4 0.2 0.6 0.4 0.0 0.2 0.3 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.0 0.1 0.2 0.1 0.2 0.3 0.1 0.2 0.4 0.2 0.2 0.3 0.3 10.8

Fig. 6. Final ticket given to students upon completing the Prof. CI
exercise. Participants are asked to fill out a survey gathering their
feedback.

ware engineering in the 2016 winter term. The purpose of
the exercise was to introduce students to Ruby on Rails
and TDD, before they begin a joint software project using
Scrum, which is the main focus of the course.

We evaluated our approach using two different methods:
• Immediately after the completing the last task, stu-

dents were asked to fill out a survey about their opin-
ions on the exercise. Results showed positive student
attitudes towards the Prof. CI exercise. All partici-
pants stated they had understood TDD practices and
more than half would recommend the exercise to their
peers.

• We compared the students’ development results in
the main software project with the previous year,
where no Prof. CI exercise was conducted. We found
a significant increase in both the number of tests
written as well as the number of students writing
tests. Furthermore, students showed greater aware-
ness towards the importance of code and test quality
in the early stages of the project.

A. Surveys
After completing the final task, students received a

last ticket, that provided information on the subsequent
development project as well as a link to a survey collecting
their opinions on the exercise (cf. fig. 6). As such, the
survey could be integrated into the flow of the exercise.

1) Questionnaire: The main goal of the survey was to
gather the opinions and attitudes of students about two
key aspects:

• Impressions of the specifics of the Prof. CI exercise,
i.e. learning TDD and Ruby on Rails by iteratively
solving GitHub tickets.

• General feedback on the exercise, its success and
improvement possibilities.

The questionnaire, featuring twelve questions, is shown
in table II. Two of the questions (6a and 11) were
answerable with free text, the rest could be answered
using a 5-point Likert scale (“Strong no”, “No”, “Neutral”,
“Yes”, “Strong yes”). Overall, 26 students took part in the
survey. The survey was pseudonymous, as students could
optionally state their GitHub user name.

2) Discussion of Likert-Scale Questions: The answers
to the Likert-scale questions of the survey are summarized
in fig. 7.

One of the major premises of Prof. CI is to require
students to write their own test cases, in order to ensure
that TDD practices are learnt and applied. The majority
of students (73%) agreed with this premise, stating that
writing their own tests (as opposed to being given finished
test cases) helped them learn (#1). The vast majority of
students (92%) self-reported that they had understood
TDD (#9) with only positive answers and the highest
amount of strong yes answers. The idea of teaching TDD
at the same time as a new programming language did
not overwhelm students, according to survey answers.
77% of survey participants stated that the exercise had
challenged them (#8). However, answers to this question
also showed the largest agreement on the yes answer, with
few extreme answers and only a single strong no. While
the practice of using GitHub tickets to communicate new
tasks and requirements was generally accepted—65% of
participants stated they were satisfied (#3)— issues were
also pointed out. Only 23% of participants considered the
requirements they were given as easy to understand (#2).
Furthermore, 50% and 65% of students disagreed with the
statements that they always knew what to do next (#5)
and that they were never unable to continue working (#6),
respectively. These represent areas of improvement for
future exercise instalments. Even with these shortcomings,
58% of students stated that they would recommend the
Prof. CI exercise to peers (#7), with no strong no answers.
The question with the highest amount of neutral answers

TABLE II
Feedback survey. Questions 6a and 11 allowed free text,

others used a 5-point Likert scale.

Methodology
Question
1 Writing my own tests helped me learn.
2 The requirements in tickets were easy to understand.
3 Working with GitHub tickets that contained new require-

ments works well.
4 In the next iteration of the course all requirements should

not be completely available at the start.
5 I always knew what to do next.
6 At no point was I unable to continue working.
6a If yes, why? What did you do in the meantime?

General Feedback
Question
7 I would recommend this course to other students.
8 The exercise challenged me.
9 I have the feeling of having understood TDD.
10 I would consider using CI for my own projects.
11 What would you change in the next course iteration?

concerned the question of whether in the next iteration
of the exercise all requirements should be available at
the start. With no clear consensus amongst students on
this topic, this is an interesting discussion for the future.
While the primary goals of teaching TDD and getting
students to write their own tests were fulfilled, based on
student answers, there were multiple specific problems in
implementation. Furthermore, the Prof. CI exercise also
introduced students to CI services. 88% of participating
students answered that they would consider using CI for
own projects in the future (#10).

3) Discussion of Free Text Questions: One of the major
drawbacks of using CI services for exercises is the down
time that is introduced when waiting for the results of CI
builds as well only communicating requirements through
short user stories and acceptance criteria in GitHub tick-
ets. A free text question (#6a) was introduced to collect
student approaches for coping with getting stuck or not
being able to continue working. The gathered answers
were tagged with the most common corresponding topics
amongst answers. Of the collected 21 answers, 9 were
considered invalid as they did not specify coping methods.
In the remainder, the most common answer (5 mentions)
was to use a search engine (specifically Google) to research
the problem. Four participants mentioned asking others
for advice, while the strategies of simply waiting, or read-
ing the documentation directly were each only mentioned
once. While all repositories of students were openly ac-
cessible, only a single student mentioned checking another
participant’s repository for the next work items ahead of
time. As the exercise was not graded there was no strong
incentive for circumventing the exercise process.

The other free text question (#11) sought to gather
feedback on what students would change in the next itera-

6 6

1
4 5

12 11

13

6

11

8 5
4

11

15

12
12

6

11

8

12

7

4

7

5

2
2

1

8

1

3

10

13

4
11

3 3
5

1

0%

25%

50%

75%

100%

1 2 3 4 5 6 7 8 9 10

Strong yes Yes Neutral No Strong no

Fig. 7. Summarized answers of participants to questions 1-10 of the
survey.

tion of the exercise. The same tagging procedure as in the
previous question was applied. In the 19 answers that were
collected, the most common topic (9 mentions) concerned
more instruction regarding test writing. Other answers
mentioned more specific issues (4), an overview of progress
through the exercise (3) as well as a better explanation
of how the system worked (2). One student requested
a shorter exercise, another requested a mock-up of the
functionality to be developed. These answers strengthen
the case for a clearer focus on practicing writing effective
tests in university software engineering courses [5].

Overall, while students reported that there were a num-
ber of issues with implementation, the Prof. CI exercise
challenged them and the goal of teaching an understanding
of Ruby on Rails and TDDwas successful. At the same
time, the benefits of using CI services could be demon-
strated to students in a hands-on manner.

B. Impact on Subsequent Software Projects
As the purpose of the Prof. CI exercise was to prepare

students for a larger software project, we also evaluated
the impact on students’ subsequent behavior.

In every iteration of the project, we
strongly recommend test-driven development
and emphasize the importance of a well-
maintained test suite. However, in past years most
students started writing tests only late into the project,
often only after the lack of a proper test suite had already
caused several problems and dissatisfaction with the
overall process. Students reported that despite a lecture
on TDD and testing in Rails, as well as a MOOC-based
introductory exercise2, they did not feel confident in
writing tests for their code.

In the previous installment of this lecture, in the 2015
winter term, students were given the same introductory
exercise as was used for the Prof. CI one, except that all
required feature tests were provided from the start. During
the exercise, students were told to add unit tests for their
code and to employ test-driven development.

2In previous years, Codeschool courses, such as
http://railsforzombies.org/ were employed.

http://railsforzombies.org/

0

5

10

15

20

25

o
f

Te
st

s

Students 2015 2016

Fig. 8. Snapshot of the number of manually written or modified tests
per student, two weeks into the project. Each data point on the x-axis
represents one student, sorted by number of tests.

To compare the students’ early project progress, we
looked at the results of the first sprint, which was two
weeks long in both years. For each project, we merged all
open branches at the last commit before sprint end.

First, we found that in the previous year, in the first two
weeks, 44 commits touched the “spec” folder that contains
all of the application’s tests. The commits were authored
by 10 of the 21 students. In this year, the “spec” folder was
touched by 153 commits over the same period, authored
by 24 of 31 students. This shows that tests were considered
more frequently by more students, but it does not paint
the full picture.

Because Ruby on Rails automatically generates many
tests when application components are created and the
previous year’s project had a more model classes, it also
had a higher total number of tests. However, of the 377
tests 145 were “pending”, i.e., auto-generated test stubs
not completed to form an actual test. Of this year’s 268
tests, none were “pending”. Furthermore, manual changes
to the generated code require additional tests. Thus, we
compared the number of manually written tests of both
years. A test was considered “manually written” if it
was written from scratch or generated but enriched with
meaningful assertions. Figure 8 compares the number of
manually written tests per student of both years. Not only
did the average number of tests per student rise from 1.6
to 4.3, but more importantly the ratio of students who
wrote at least one test increased by 37 percentage points,
from 24 to 61 percent.

Furthermore, the students of the 2016 course set up
the dev and master branches of their project as protected
branches, a GitHub feature that disables force pushes and
deletions of these branches and allows a range of custom
behavior related to merging. In particular, it requires CI
status checks to pass before allowing merging into these
branches. Students of the previous project did not protect
any branches or require CI checks to pass.

Overall, our evaluation shows that not only were stu-

dents much more confident in writing tests for their code
after participating in the Prof. CI exercise, they also placed
a greater emphasis on tests as part of their development
process.

C. Threats to Validity
First, we had only 31 students in the experiment and

21 in the control group. While both groups had the
same amount of formal education, individual skill and
knowledge can vary, which may lead to statistical artifacts.
Furthermore, all our students were at the end of their
Bachelor’s studies. Further studies are needed to evaluate
our approach with students at different experience levels.

Second, the exercise of the previous year was not
planned to be a control exercise. As such, available data
about the student’s performance is incomplete and we
could not directly compare students’ experiences or the
improvement of tool knowledge.

Third, our study is based on only one exercise. In the
exercise, we taught the basic skills necessary to develop
in Ruby on Rails with test-driven development. The effec-
tiveness of our approach for other technology stacks and
development methodologies may vary.

Fourth, while we measured a great increase in the
number of tests written, we did no formal comparison of
test quality except for code coverage. Likewise, we have no
objective comparison of students’ proficiency in test-driven
development except for their self-reported assessments.

Finally, differences in the subsequent projects’ perfor-
mances might also have been caused by differences in
the project’s requirements, even though the projects were
similar with respect to scope and difficulty.

V. Conclusion

We presented Prof. CI, an approach for conducting
programming exercises, featuring automated incremental
task assignment in the form of GitHub issues. We used this
system to introduce students to Ruby on Rails and TDD
in an undergraduate capstone course. Prof. CI features
a high degree of automation, as well as possibilities to
gather concrete data on student progress and the abil-
ity to offer targeted help and continuous improvement
of the exercise. Unlike common browser-based Massive
Open Online Course (MOOC) platforms or more managed
setups, students work on their own computers and use CI
services to manage tasks and evaluate work. This allows
students to acquire practical skills beyond coding in a
new programming language, such as working with a full
project and its file tree, running tests locally, working with
an issue tracker, and using an IDE and a version control
system (VCS). Contrasting existing approaches that use
CI services to evaluate students’ work, we built an entire
exercise workflow based on CI. This allows us to provide
software requirements in small incremental tasks, which
encouraged testing and the usage of TDD practices.

We found that extra care is required by the exercise
authors to ensure the clarity and comprehensibility of each
task. However, our evaluation shows that the approach is
effective at teaching complementary skills and increased
the students’ motivation to write tests for their code in
subsequent software projects.

Future work will focus on augmenting the Prof. CI
software using the collected feedback, especially more
detailed requirements, a clearer explanation of how the
system works and an indicator of progress through the
exercise. Furthermore, we will explore how other devel-
opment practices, apart from TDD, can be better taught
with exercises utilizing CI services and local development
tools.

References
[1] W. Billingsley and J. Steel. A comparison of two iterations

of a software studio course based on continuous integration.
In Proceedings of the 18th ACM conference on Innovation and
technology in computer science education, pages 213–218. ACM,
2013.

[2] C. Desai, D. Janzen, and K. Savage. A survey of evidence for
test-driven development in academia. ACM SIGCSE Bulletin,
40(2):97, 2008.

[3] H. Fournier, R. Kop, and H. Sitlia. The value of learning analyt-
ics to networked learning on a personal learning environment.
ACM International Conference Proceeding Series, pages 104–
109, 2011.

[4] A. Fox, D. Patterson, S. Joseph, and P. McCulloch. Magic:
Massive automated grading in the cloud. In CHANGEE (Facing
the challenges of assessing 21st century skills in the newly
emerging educational ecosystem) workshop at EC-TEL, 2015.

[5] D. Janzen and H. Saiedian. Test-driven learning in early
programming courses. In ACM SIGCSE Bulletin, volume 40,
page 532. ACM, 2008.

[6] D. S. Janzen, H. Saiedian, and S. H. Janzen D.S. Test-driven
learning: Intrinsic integration of testing into the CS/SE curricu-
lum. In Proceedings of the Thirty-Seventh SIGCSE Technical
Symposium on Computer Science Education, volume 38, pages
254–258. ACM, 2007.

[7] P. M. Johnson and H. Kou. Automated Recognition of Test-
Driven Development with Zorro. In AGILE, volume 7, pages
15–25. Citeseer, 2007.

[8] C. G. Jones. Test-driven development goes to school. Journal
of Computing Sciences in Colleges, 20(1):220–231, 2004.

[9] H. Kou and P. M. Johnson. Automated Recognition of Low-Level
Process: A Pilot Validation Study of Zorro for Test-Driven De-
velopment, pages 322–333. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2006.

[10] J. Mackness, S. Mak, and R. Williams. The ideals and reality
of participating in a MOOC. Networked Learing Conference,
pages 266–275, 2010.

[11] J. Spacco and W. Pugh. Helping students appreciate test-driven
development (TDD). In Companion to the 21st ACM SIG-
PLAN symposium on Object-oriented programming systems,
languages, and applications, pages 907–913. ACM, 2006.

[12] T. Staubitz, H. Klement, J. Renz, R. Teusner, and C. Meinel.
Towards practical programming exercises and automated assess-
ment in massive open online courses. In Teaching, Assessment,
and Learning for Engineering (TALE), 2015 IEEE Interna-
tional Conference on, pages 23–30. IEEE, 2015.

[13] A. Vihavainen, M. Luukkainen, and J. Kurhila. Multi-faceted
Support for MOOC in Programming. Proceedings of the 13th
annual conference on Information technology education - SIG-
ITE ’12, 68:171–176, 2012.

	Introduction
	Problem Statement
	Research Questions
	Approach

	Related Work
	Professor CI
	Exercise Procedure
	Reporting
	Employing GitHub Reports
	Participant Progress
	Time-Per-Task Analysis

	Evaluation
	Surveys
	Questionnaire
	Discussion of Likert-Scale Questions
	Discussion of Free Text Questions

	Impact on Subsequent Software Projects
	Threats to Validity

	Conclusion
	References

